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Abstract
This paper presents the results of a pitch accent categorisation
simulation which attempts to classify L*H and H*L accents us-
ing a psychologically motivated exemplar-theoretic model of
categorisation. Pitch accents are represented in terms of six lin-
guistically meaningful parameters describing their shape. No
additional information is employed in the categorisation pro-
cess. The results indicate that these accents can be success-
fully categorised, via exemplar-based comparison, using a lim-
ited number of purely tonal features.

Index Terms: pitch accent categorisation, exemplar theory,
generalized context model, usage-based

1. Introduction
Exemplar-theoretic models of language processing have been
shown to be suited for a variety of phenomena, such as
vowel identification, sex identification [1], diachronic language
change and frequency of occurrence effects [2], the emergence
of grammatical knowledge [3, 4], syllable duration variability
[5, 6], entrenchment and lenition [7], among others. While evi-
dence for usage based production and perception is growing, as
is the number of successful simulations of behavioural exper-
iments by means of exemplar models, intonation has received
little attention.

We present pitch accent categorisation simulation results,
using a psychologically motivated exemplar model [8, 1], which
demonstrate that exemplar-based categorisation of pitch accents
is achievable with only a small number of tonal features to de-
fine each pitch accent.

The paper is structured as follows: section 2 describes the
basic assumptions of exemplar theory. Section 3 argues for
an exemplar-theoretic approach to intonation. Section 4 de-
scribes the Generalized Context Model, with which we carried
out our simulations. Sections 5–7 detail our methodology and
sections 8 and 9 provide an analysis of the results.

2. Exemplar theory
Exemplar theory [9, 1, 8, 7, 4] assumes that language is acquired
in a usage-based fashion. That is, the main assumption is that
concrete language input can be stored in memory in the form of
“exemplars”: single instances of previously perceived speech.
Importantly, theses stored stretches of speech are assumed to be
rich in detail – that is, unlike in abstract models of language,
no normalisation processes, i.e. no loss of information, are as-
sumed.

The accumulation of instances that are similar to each other
is often termed “exemplar cloud”, since it is assumed that sim-
ilar instances are stored closely together in the exemplar space.

Exemplars are assumed to be employed for both production and
perception. In production, a production target is constructed
from a set of exemplars. In perception, existing exemplars
are used as references for categorisation. It is assumed that
for newly incoming stimuli a similarity comparison takes place
which determines the category of the stimulus, according to the
properties of the previously encountered exemplars.

Computational models of the exemplar memory also argue
that it is in a constant state of flux with new inputs updating it
and old unused exemplars gradually fading away [7].

3. Exemplar theory and intonation

To date, to the authors’ knowledge, no exemplar model exists
which incorporates tonal parameters, nor do models that attempt
to explain tonal phenomena work in usage based fashion. How-
ever, Hawkins and Smith [10] take a theoretical position which
argues for a model that allows for storage of rich phonetic de-
tail with pitch information included in the mental representa-
tion. Furthermore, there is evidence that tonal features should
be part of the mental representation. Goldinger [9] reports a pi-
lot study which found that subjects in a shadowing experiment
adapt their pitch to the pitch of the speakers who recorded the
stimuli – a finding that points to the possibility of pitch being
an inherent part of the mental representation of a word. Results
from production and perception studies clearly indicate that the
mental representation of intonation must be rich in detail. For
example, subjects in a mimicry task remember and reproduce
fine detail of intonation [11]. Moreover, unfamiliar intonation
contours slow down lexical access, indicating that intonation is
directly involved when the word is accessed [12], although it is
also suggested that the unusual contour might lead to interpre-
tation problems and therefore a greater cognitive load which re-
sults in slower reaction times. Results from corpus analyses also
point to a stronger coherence between words and their prosodies
than traditionally assumed: Words often combine with the same
tonal contour, and tonal contours can have different discourse
meanings depending on the words they occur with [13]. In ad-
dition, combinations of words that occur together relatively of-
ten, display less variability with respect to their intonation than
uncommon combinations of words [14].

Thus an increasing body of evidence seems to indicate that
intonation contours can be stored, in rich detail, in memory.
Consequently, they should be available to the speaker as pro-
duction targets, and to the listener as exemplars against which
new percepts can be compared. Given this, in the experiments
that follow we employ Nosofsky’s model of exemplar categori-
sation [8, 15] to simulate categorisation of intonation contours,
or more specifically, pitch accents.
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4. The Generalized Context Model
An exemplar-theoretic perspective on categorisation assumes
that an incoming percept is categorised by comparing it against
remembered exemplars of each potential category. The cate-
gorisation decision is made based on the extent to which the
incoming percept activates each category, and this activation
is modelled using sums of similarity over each category. The
category to which the percept is considered most similar is the
“winner”. An important facet of the categorisation process is
that not all features of the exemplars involved are considered
equal, that is, certain features are attended to to a greater/lesser
degree and play different roles in the decision making process.

In the context of the experiment described in section 7, the
task is to categorise an incoming pitch accent with regard to two
potential pitch accent types. Following [1] and [15] the model
can be described and implemented using equations (1)-(4):

Given a percept i, and an extant exemplar j residing in
memory, the similarity between them is calculated by first us-
ing equation (1) to determine the attention-weighted Euclidean
distance dij between them, and then equation (2) to arrive at a
similarity score using an exponential decay function. In equa-
tion (1), m represents an auditory property (in our case one of
six features characterising the shape of the pitch accent) of i
and j, and wm is the attention weight given to feature m. In
equation (2) c is a sensitivity constant which restricts distant
exemplars from influencing the similarity score too much.

The attention-weighted Euclidean distance dij is given by:

dij = [
X

wm(xim − xjm)2]1/2
(1)

The auditory similarity sij is defined as:

sij = exp(−cdij) (2)

Having arrived a similarity score for i and j, the extent to
which percept i activates exemplar j in memory (assuming base
activation Nj and optional Gaussian noise) is given by equa-
tion (3).

aij = Njsij + ej (3)

The base activation reflects the fact that high frequency ex-
emplar types are expected to have higher resting activation lev-
els. The sum of activations of exemplars j of a particular cate-
gory C1 is then taken as evidence that percept i belongs to the
category:

E1,i =
X

aij , j ∈ C1 (4)

5. Categorising pitch accents
To see how the Generalized Context Model performs when used
to categorise intonation parameters, we chose to categorise two
pitch accent types. Pitch accents are tonal events that mark a
syllable as prominent within the phrase. The data we used for
our experiment is annotated manually with German ToBI pitch
accent types according to the Stuttgart specification (GToBI(S),
[16]). Since previous research has shown that inter-annotator
agreement of pitch accent labelling is problematic [17] (in man-
ual GToBI labelling the inter-transcriber consistency has been
determined to be at only 51% for agreement on the full set of
9 different GToBI accent types) we chose two fairly distinct
accents: a rising one, labelled as L*H in the GToBI(S) taxon-
omy and a falling one, H*L. According to the labelling scheme,
these two accents are characterised by a low target in the ac-
cented syllable, followed by a rise on the post-accented one

(L*H) and, respectively, by a high target in the accented syl-
lable followed by a fall (H*L). In intonation labelling, however,
annotators often rely more on their perceptual judgement than
on pitch curves made visible by a fundamental frequency al-
gorithm. For the database used in the study, annotators were
specifically instructed to trust their perception rather the visu-
alised contour, in cases of uncertainty.

As input for the exemplar-based categorisation model we
used 6 parameters defining the shape of each accent. The pa-
rameters were retrieved using the PaIntE model which approxi-
mates stretches of smoothed F0 contours. The approximation is
carried out with the help of a mathematical function term with
6 free parameters. The function is built by summing up two sig-
moids with a fixed time delay which is selected so that the peak
does not fall below 96% of the function’s range.

The sigmoids are subtracted from a basic value giving the
function’s maximum value within the analysis window. In this
way the upper bound for the function is defined. The two sig-
moids are defined each by 3 free parameters (a,b, and c, where a
and c are sigmoid-specific and hence indexed according to their
belonging to the first or the second sigmoid e.g. as a1 or a2, re-
spectively) and a constant alignment parameter γ. The function
term is given in equation (5).

f(x) = d− c1

1 + exp(−a1(b− x) + γ)

− c2

1 + exp(−a2(x− b) + γ)

(5)

The 6 free parameters are linguistically motivated and re-
flect the shape of an accent (cf. figure 1): parameter b locates
the peak of the accent within a three-syllable window, that is,
the function normalises the syllable duration. Parameters c1
and c2 model the amplitudes of the rising and falling movement
of the accent’s contour, d corresponds to the absolute height of
the peak and parameters a1 and a2 (not displayed in the figure)
denote the “amplitude-normalised” steepness of the rising and
falling slope (see [18, 19] for further information and illustra-
tions concerning the mechanics of the PaIntE model).

Thus, the PaIntE parameters can be matched to the expecta-
tions for the shape of different GToBI(S)-accents in a straight-
forward way: H*L is defined as having a peak in the accented
syllable, followed by a fall of the pitch contour. That is, the
b parameter should be located in the accented syllable which
means its value should be between 0 and 1 (in the temporally
normalised syllable). As for the c-parameters, c1 (the ampli-
tude of the rise) would be expected to be small, whereas the
amplitude of the fall, c2, would be expected to be high, since
the definition of the accent requires a fall of the contour into
the lower range of the speakers register. Likewise, for L*H, a
higher b value would be expected (since there is a low target
in the accented syllable, therefore a peak can only be in one of
the post-accented syllables), and the values for c1 would be ex-
pected to be high, whereas the c2 values are expected to be small
(cf. figure 2 which illustrates these assumptions by displaying
the average shape of the two accent types in our data).

For our experiment, we used the newest version of the
PaIntE model [20]. Note that the PaIntE model has different
ways of approximating an accent: either both sigmoids of the
function term are employed or, if the approximation is not suc-
cessful in this way, only one of the accents is used (see [20]
for details). This has implications for the data extraction (cf.
section 6).
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Figure 1: The PaIntE model function is the sum of a rising and
a falling sigmoid with a fixed time delay. The parameters are
calculated over the span of the accented syllable (σ∗) and its
immediate neighbours. The x-axis indicates time (normalised
for syllable duration) and the y-axis displays the fundamental
frequency in Hertz.

6. Data
For the categorisation task we used the DIRNDL corpus [21],
which comprises recordings from three days of radio news
broadcasts from a German radio station, summing up to more
than 5 hours of read speech. The data was manually labelled and
annotated for GToBI [16] pitch accent types. We represented
each accent as a vector of 6 PaIntE parameters, describing the
accent’s shape.

We excluded those accents where the PaIntE model could
only approximate the shape by deviating from the standard two-
sigmoid case. This resulted in a dataset of 4604 H*L accents
and 3787 L*H accents. The average accent shape for both ac-
cent types is displayed in figure 2.

Since the value distributions for the PaIntE parameters dif-
fer with respect to their means, ranges and standard deviations,
we normalised each parameter by calculating the z-score (the
number of standard deviations the respective value is away from
the mean).

Importantly, we did not exclude outliers from the analysis
in order not to make the categorisation task easier.

7. Experiments
One thousand tokens of each pitch accent type, L*H and H*L,
were extracted from the corpus discussed above. The following
experiments were then carried out:

7.1. Experiment 1 (a)

In a similar fashion to Johnson’s vowel identification study [1],
each L*H and H*L token was removed in turn from the corpus
and treated as an incoming percept requiring categorisation us-
ing the L*H and H*L exemplar clouds and equations (1)-(4).
As it is difficult to estimate the true frequency of occurrence
of these pitch accent types, their base activation levels were
both set to 1. Random noise was not employed. The attention
weights (values between 0 and 1) for each of the PaintE param-
eters (wa1,wa2,wb,wc1,wc2,wd) were initially randomised and
were then modified using simulated annealing to maximise cat-
egorisation accuracy. The sensitivity constant c was set to 0.105
following Johnson [1]. Given a L*H percept, if the evidence for
membership of the L*H category exceeded the evidence for the
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Figure 2: Two accents (L*H and H*L) generated using the
mean values for each PaIntE dimension in the employed subset
of the DIRNDL database.The x-axis indicates time (normalised
for syllable duration) and the y-axis displays the fundamental
frequency in Hertz.

H*L category, using equation 4, then the categorisation of the
L*H percept was deemed correct. Categorisation of H*L tokens
was performed in an analagous manner. The output is an accu-
racy rate over the input for a given set of attention weights. The
annealing process iteratively modifies the weights and reruns
the simulation in an attempt to increase the accuracy rate.

7.2. Experiment 1 (b)

In order to test the robustness of the results from experiment 1
(a), a further 500 tokens of both L*H and H*L tokens were ex-
tracted from the corpus and categorisation was carried out, with-
out annealing. The best-fitting weights from experiment 1 (a)
were employed.

7.3. Experiment 2 (a)

To determine the contribution of those dimensions with the
highest attention weights in categorising the accents, another
categorisation experiment was carried out. In this experiment,
we essentially repeated experiment 1 (a), using only the three di-
mensions that received the highest weights in experiment 1 (a),
i.e. b, c1 and c2, to categorise the two accents.

7.4. Experiment 2 (b)

To test the robustness of the results from Experiment 2 (a), we
employed a similar methodology as in experiment 1 (b): a fur-
ther 500 tokens of both L*H and H*L were extracted from the
corpus and categorisation was carried out, without annealing,
with the best-fitting weights from experiment 2 (a) employed.

7.5. Experiment 3 (a)

To investigate how well the model trained on PaIntE parameters
performs compared to one trained on tonal features, which are
directly derived from the F0-contour, we run a further categori-
sation experiment in which we employed three tonal features
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Exp1 Exp2 Exp3

c 0.105 0.105 0.105

wa1 0.40 –
wa2 0.40 –
wb 0.71 0.37 wb′ 0.66
wc1 0.85 0.39 wc1′ 0.24
wc2 0.99 0.46 wc2′ 0.69
wd 0.15 –

Accuracy (a) 80% 75% 68%
Accuracy (b) 81% 75% 66%

Table 1: Attention weights and accuracy results from the exper-
iments.

which resemble the three PaIntE dimensions that had the high-
est weights in experiment 1.

The tonal features were derived using a speech synthesis
system [22], which enabled us to encode the pitch of each syl-
lable by means of 3 Hertz-values (extracted from the beginning,
the middle and the end of the syllable). For each syllable we se-
lected one pitch value out of these three as follows: If the pitch
value for the middle of the syllable was not zero, we took this
value (assuming that this should in most cases account for the
pitch height within the nucleus). If, however, the algorithm did
not find a valid value and thus returned zero, we took the mean
value of the pitch at the beginning and at the end of the syllable.
If one of those values was zero, as well, we took the remaining
one. Thereby, we derived one pitch value for each syllable from
which we then calculated, for each accented syllable, the differ-
ence in pitch height between the accented syllable and its pre-
ceding and following syllables. These two values roughly cor-
respond to the PaIntE-values c1 and c2. To account for PaIntE-
value b, i.e. the location of the peak, we determined the maxi-
mum pitch value of the three syllables and encoded its position
as 1,2, or 3 (corresponding to the pre-accented, the accented
and the post-accented syllable). These three tonal features were
z-scored and used as input to the Generalized Context Model to
classify pitch accent types. These three parameters are termed
c1′, c2′ and b′ in table 1.

7.6. Experiment 3 (b)

This is analogous to experiments 1 (b) and 2 (b).

8. Results and discussion
Results from experiments 1 and 2 are presented in table 1. For
experiment 1 (a), for the best-fitting set of weights, the abil-
ity of the model to categorise L*H and H*L accents is 80%.
This is 30% above chance and multiple reruns of the simula-
tion achieved similar results. Clearly, the model is reasonably
capable of differentiating between the two accents, particularly
in light of the fact that the low-level of inter-annotator agree-
ment for pitch accent labelling would indicate that the data is
probably somewhat noisy. Interestingly, the attention weights
on which the model is most reliant are those for the PaIntE
parameters which combine the most meaningful characteristics
(though in different ways) of both pitch accent shapes: namely
the location of the peak, wb = 0.71, the amplitude of the rise,
wc1 = 0.85, and the amplitude of the fall, wc2 = 0.99. The
other parameters, which govern the steepness of the slopes and
the overall height of the peak, while important in defining the
shape of the accents, are intuitively not as important for dis-
criminating between the two accents, and the exemplar model

appears to pick up on this.
This is confirmed by our results from experiment 2 (a),

which achieved 75% accuracy using only the three above di-
mensions. That is, the three highest-weighted PaIntE dimen-
sions account for most of the classification, however, the addi-
tional features can improve the classification further. In addi-
tion, experiment 2 (a) confirms the ranking of the three param-
eters, with c2 receiving the highest attention weight, followed
by c1. Figure 2 demonstrates that, while the average L*H and
the average H*L accent both have a relatively large amplitude
of the rise (c1), the difference between c2 for L*H and for H*L
is greater, and the model identifies this by giving c2 the greatest
weight.

Experiment 1 (b), which tested the robustness of the re-
sults from experiment 1 (a), using a further 500 tokens of each
pitch accent type and the weights reported in Table 1, produced
slightly improved accuracy results: 81%. Analogously, exper-
iment 2 (b), which tested the robustness of the results from ex-
periment 2 (a), achieved an identical accuracy of 75%.

Experiment 3 (a), which analysed the categorisation perfor-
mance of the model using three tonal features that were deter-
mined without using a sophisticated mathematical model func-
tion, but simply by comparing F0 values, returned an accuracy
of 68%. This demonstrates that while the classification is still
considerably above chance, the more sophisticated PaIntE pa-
rameters contribute valuable information. The robustness test-
ing (experiment 3 (b)) resulted in a slightly decreased accuracy
of 66%, indicating that the model trained on these tonal features
is consistently worse than the model trained on PaIntE features.

9. Conclusion
This paper lends further weight to the body of evidence advocat-
ing exemplar-based categorisation in language. To our knowl-
edge this is the first attempt to successfully apply a psycholog-
ical model of exemplar-based categorisation to pitch accents.
Furthermore, the results show that an exemplar-based model
of pitch accent categorisation can achieve reasonable and ro-
bust levels of accuracy on the basis of a very small number of
linguistically motivated features which define the pitch accent
shape.

It is important to note that the accents in the database were
assigned by human annotators. Since they use far more in-
formation from the speech signal in the annotation task, e.g.
spectral and temporal properties of the utterance, the model’s
achieved accuracy of 81% is reasonably high. Therefore one
might speculate that the PaIntE parameters are valid approxima-
tions for dimensions in the perceptual space, as has been sug-
gested elsewhere [20]. However, perception experiments would
have to be carried out to further investigate this hypothesis.

Note that our experiments do not attempt to automatically
annotate ToBI accents [23, 24, 25, 20], but rather seek to deter-
mine whether pitch accent categorisation can be captured by an
exemplar-based psychological model of categorisation. Auto-
mated approaches to ToBI labelling tackle categorisation from
an engineering perspective and use far more features.

Future work will also examine the effect of additional fea-
tures, e.g. duration and segmental information, and explore cat-
egorisation using more accent types.
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