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Abstract observed from the input) and higher-order syntac-
tic relations (those that require some generalization

Thi - i o
is paper presents a graph-theoretic model of from what is directly observable).

the acquisition of lexical syntactic representa-

tions. The representations the model learns Redington et al. (1998) give an influential account
are non-categorical or graded. We propose a  Of the acquisition of lexical syntactic representations
new evaluation methodology of syntactic ac- in which a standard syntactic category like verb or
quisition in the framework of exemplar theory. noun is assigned to each word. Our third contribu-

When applied to the CHILDES corpus, the  tjon s to show that, in the context of acquisition,
evaluation shows that the model's graded syn- 45 4o representations are superior to standard cat-
tactic representations perform better than pre- o, i reresentationim supporting judgments of
viously proposed categorical representations. . i
local syntactic coherence. A graded representation
formalism is one that, for any two words, can rep-
resent a third word whose syntactic properties are
In recent years, exemplar theory has had great eltermediate between the two words (Manning and
planatory success in phonetics. Exemplar theor§chutze, 1999).
posits that linguistic production and perception are Clearly exemplar theory is not the only frame-
not mediated via abstract categories, but that insteagbrk in which lexical acquisition has been explored.
each production and perception of a linguistic uniGleitman (1990) for example argues for syntactic
is stored and retained. Linguistic inference then dibootstrapping to infer lexical semantics, work not at
rectly operates on these stomdemplarsin this pa- odds with our own (see discussion on the role of se-
per, we propose a new approach to lexical syntactimantics below). Our argument for the importance
acquisition in the framework of exemplar theory.  of distributional evidence does not call into question
Our approach uses an evaluation measure thide large body of work in child language acquisition
is different from previous work. Lexical syntac-that demonstrates that “part of the capacity to learn
tic acquisition is most often evaluated with respedanguages must be ‘innate’ ” (Gleitman and New-
to standard syntactic categories like verb and nouport, 1995). Tabula rasa learning is not possible. Our
Ouir first contribution in this paper is that we insteadyoal is not to show that language acquisition pro-
evaluate learned representations in the context ofcaeds with a minimum of inductive bias. Rather, we
syntactic task. This task is the determination of aattempt to formalize one aspect of language acquisi-
aspect of grammaticality that we cédcal syntactic  tion, the use of distributional information.
coherence The paper is organized as follows. Section 2 moti-
Our second contribution is @raph-theoretic vates the exemplar-theoretic approach by reviewing
model of the acquisition of lexical syntactic rep-its success in phonetics. Section 3 defines local syn-
resentationsthat is more rigorous than previoustactic coherence, which is the basis for a new evalu-
heuristic proposals. The graph-theoretic modeition methodology for the acquisition of lexical rep-
can learn both categorical and non-categorical (gesentations. Section 4 develops the graph-theoretic
graded) representations. The model is also a unifiedodel. Section 5 compares graded and categorical
framework for syntagmatic and paradigmatic relarepresentations for the task of inferring local syn-
tions (as will be discussed below), and for lowertactic coherence. Section 6 presents our evaluation.
order syntactic relations (those that can be directigections 7 and 8 discuss related and future work, and

1 Introduction



present our conclusions. ity computations. Accordingly, we first motivate the
representation we use and then introduce a similarity
2 Exemplar theory measure on these representations.

The general idea of research into exemplars in Representation. There are two main sourceef
speech production and perception is that encouflirectly observable information about the syntactic
tered items (segments, words, sentences etc.) dr@perties of words: semantic cues (e.g., things are
stored in great detail in memory along with richoften referred to with nouns) and the neighbors of
linguistic and extra-linguistic context information. @ word in sentences that it is used in. In this pa-
These exemplars are organized into clouds of merfer, we only consider the second source of informa-
ory traces with similar traces lying close to eacHion for acquisition, lexical neighbofs.We further
other while dissimilar traces are more distant. Aimit ourselves to the immediate left and right lexical
number of such models have had great success gighbors (see discussion in Section 7).

accounting for production and perception phenom- When using lexical neighbors as the basis of rep-
ena in phonetics. E.g., Johnson (1997) offers ai¢sentation, we have to make a basic choice as to
exemplar model which challenges the notion thawhether we look at left and right neighbors sepa-
speech is perceived through a process of normagtely or whether we only look at the “correlated”
ization whereby a speaker-specific representation fieighborhood information of left and right neigh-
mapped or normalized into a speaker-neutral catéors jointly. Our approach is based on the first alter-
gorical abstraction. Johnson’s model successfulljative: we separate the processing of left and right
treats aspects of vowel perception, sex identificaaeighbors. We do this for two reasons. First, gener-
tion, and speaker variability. Crucially, no normal-alization improves and model complexity decreases
ization of percepts into categorical representation$ left-neighbor information and right-neighbor in-
takes place. The correct identification of phonemeformation are looked at separately. E.g., the right
and words in his model is a function of direct com-heighbors ofto, might and not are similar because
parison to richly detailed exemplars stored in memall three words can be followed by base verbs like
ory. Other examples of exemplar-theoretic phonetidance to dance might dance (might) not dance
accounts include (Goldinger, 1997), (PierrehumberBut their left neighbors are very different.

2001), and our own work (Schitze et al., 2007). Ex- Second, exemplar-theoretic similarity is best de-
emplar theory’s success in phonetics motivates us fmed at the smallest possible scale in order to allow
investigate its use as a model for local syntactic pheptimal matching between parts of the stimulus and

nomena. parts of memory. In phonetics, we use a time scale
_ of 10s of milliseconds or even less. Conceivably,
3 Local syntactic coherence one could also use segments (e.g., consonants and

In the context sequence model for exemplavowels) as the smallest unit; however, this would

theoretic phonetics (Wade et al., 2008), we represeRfesume a segmented signal. And segmentation is
speech using amplitude envelopes derived from tHart of the perception task we want to explain in the
acoustic signal and then compute similarity as thérst place.
integral over the correlation of the two acoustic sig- Separating left and right neighbors — which
nals. amounts to looking at left and right local contexts
For the syntactic level, we need a represent®f each word separately — is the smallest scale we
tion that has two key properties of the represercan operate at when doing syntactic matching. We
tation we use in phonetics in order to support aghoose this small scale for the same reasons as we
exemplar-theoretic account. First, the representghoose a small scale in phonetics: to ensure maxi-
tion must be directly derivable from the perceivednum flexibility when matching parts of the stimulus
inpUt'- n pa-rtiCUI-ar’ 't cannot rely on th-e results OfTmprehensive account of acquisition must also include
any dlsamblguatlon_ that wou!d occgr either as part orphology. See Christiansen et al. (2004).
of exemplar-theoretic perception or in further down-  2pgycholinguistic evidence for the importance of neighbor

stream processing. Second, it must support similaiiformation for learning categories includes (Mintz, 202



with exemplars in memory. Using words, bigrams o4, ..., h, >) < 6 whered is a parameter.

larger units would reduce the flexibility in matching Finally, we define a sentence to hecally n-
and require a larger amount of experience (or traircoherentif all of its subsequences of length are
ing data) to learn a particular generalization. locally coherent.

We refer to the representations of left and right The graph-theoretic model that is introduced in
contexts of a given word alalf-words In other the next section will be evaluated with respect to
words, we split a word into two entities, a left half-how well it captures local syntactic coherence. This
word that characterizes its behavior to the left an@nables us to evaluate the model with respect to a
a right half-word that characterizes its behavior téask as opposed to its ability to reproduce a particu-
the right. Thus left-context and right-context comdar linguistic representation of syntactic categonies.
ponents of the representation of a given focus wor@bviously, the notion of local syntactic coherence
are defined, where a left (right) half-word consist®nly captures some aspects of syntax — e.g., it does
of a probability distribution over all words that oc-not capture long-distance dependencies. However,
cur to the left (right) of the focus word and theit is a plausible component of syntactic competence
dimensionality of the vector for each word is de-and a plausible intermediate step in the acquisition
pendent on the number of distinct neighbors (lefef syntax.
and right). For example, having experiencadte
doll twice anddrop doll once, then the left con-

text distribution, or left half-word otloll, doll;, is e briefly review the structuralist notions of syntag-
P(take) = 2/3, P(drop) = 1/3. By extension, the matic and paradigmatic relationships that have been
phrasetake the dollis represented as the following frequently used in prior work in NLP (e.g., (Church
six half-words: take, take., the, the., doll;, and et al., 1994)). De Saussure defined a syntagmatic
doll,.. relationship between two words as their contigu-
Distance measure The basic intuition behind lo- ous occurrence in a sentence and a paradigmatic re-
cal syntactic coherence is that an important compdgationship as mutual substitutability (de Saussure,
nent of syntactic wellformedness — and a compot962) (although he used the temapport associ-
nent that is of particular importance in acquisitionatif instead ofparadigmati¢. E.g.,brownanddog
— is whether a similar sequence has already beepand in a syntagmatic relationship with each other
stored as grammatical in memory. The same way the phrasdrown dog brownandblackstand in a
that a phonetic signal that is well-formed in a particparadigmatic relationship with each other with re-
ular language has many similar exemplars in menspect to the position betweehe and dog in the
ory, a syntactic sequence should also be licensed pyirasethe X dog De Saussure’s conceptualization
similar, previously perceived sequences in memoryf syntactic relationships captures the fact that both
To operationalize this notion, we need to be able tadmissibleneighborsand admissiblesubstitutesin
compute the similarity or distance between an intanguage are an important part of the characteriza-
put stimulus and exemplars in memory. We do thigion of the syntactic properties of a word.
by first defining a distance measure for sequences ofWe formalize the two relations aslistribu-

4 Graph-theoretic model

fixed length. tions over words where we assume a vocabulary
The distanceA between two sequences of half-{w;,...,wy} andV is the number of words in the

words< ¢1,...,9, > and< hq,...,h, > is de- vocabulary.

fined to be the sum of the distances of their half- We denote théeft syntagmatic distributiomf w;

words: by pi.s,1.m Wherei is the vocabulary index of;, s

A1y ey gn><hi, ... hy>) =30 A(gi, hi) stands forsyntagmatic!/ for left andm is the order

This definition presupposes a definition of the disef the distribution as discussed below. Intuitively,
tance of two half-words which will be given below. p; s .,.(w;) is the probability that worav; occurs to

We then call a sequence of half-words 3Freudenthal et al. (2004) have much the same motivation

g1,---,gn locally coherentif there is a sequence i introducing an evaluation measure of syntactic acqaisit
hi,...,h, in memory withA(< ¢1,...,9, >,< based on chunking.



the left of w;. Similarly, for theleft paradigmatic
distribution of wj, p; ,.1.m(w;) is the probability that
w; can be substituted fap; without changing local
syntactic coherence as far as the context to the left
is concerned. Note that we distinguish between left
and right paradigmatic distributions. A wotg; can
be a perfect substitute fas; as far as the context to
the left is concerned, but a very unlikely substitute as
far as the context to the right is concerned. E.g., in
the phrasé&he loves her jaldhe wordhimis a good Figure 1: The distribution of typical right neighbors (the
left-context substitute foher, but a terrible right- ght syntagmatic distributiop; ., ) is computed from
context substitute faner. the dl_strlbufuon_ of_ typ_mal “right substitutes” (the right
We will now show how the syntag- paradigmatic distribution; ..
matic/paradigmatic (henceforth: syn/para) dis-
tributions are defined iteratively, based on the Basic matrix arithmetic shows thaf; ; is sim-
bigram distributionp,,.,, and grounded by defining ply pieft(.|w:) andp; s 1 is pright(-[w; ).
Pipi1 @andp;, 1. For higher orders, the principle underlying Eq.s
Puww(w;w;) is the probability that the bigram 1-4 is that when moving from left to right, we use
w;w; occurs, that is, that; andw; occur next to  pright (that is,JT N), the conditional distribution that
each other (and in that order). We definethex V' characterizes right neighbors; when moving from
joint probability matrix.J by J;; = puw(wiw;). right to left, we usepeft (that is, JN), the condi-
Denote byN the diagonal/ x V matrix that con- tional distribution that characterizes left neighbors.
tains inN;; the reciprocal op,, (w;) wherep,, isthe  This is graphically shown in Fig. 1.
marginal distribution 0f.q,: As illustrated by Fig. 1, the underlying graph for
. v Di,s,rm @Ndp; , IS @ weighted bipartite directed
prw (wiw;) = prw (wjwi) = po(wi) = 1 graph that connects the_ vocabulgry on the left with
e = N;;  the vocabulary on the right. A directed edge from
w; on the left tow; on the right is weighted with
The conditional probabilitypes; of the fol- Puw(wiw;) /pw(w;). A directed edge fromo; on
lowing word and the conditional probability the right tow; on the left (not shown) is weighted
Pright of_ thg preceding word can be computedyith Puw(Wiw;) /pu (w;).
by multiplying (the transpose of)J and N: Eq.s 1-4 define four Markov chains:
pleﬁ(wi‘wj) = pww(wiwj)/pw(wj) - (JN)ij; and Dislm = (JNJTN)pZ"SJym_l (5)

pright(wi|wj) = (‘]TN)ij' DPipim = (‘]TNJN)pi,p,l,m—l (6)
The “grounding” paradigmatic distributions ofor- p, . ... = (JINJN)p; s rm—1  (7)
der 1 are defined as follows. Piprm=(INIJEN)p; prm-1 (8)

Itis easy to see that, is a stationary distribution

0 ifw; 7w, for Eq. 1-4. Writingz for p,,, we have:

Pip 1 (Wg) = Pipra(wy) = { 1 if ;= w,

In other words, each word has only one perfect left (JN ), = Mpw(wj) = po(w;) = z;

/ right substitute and that perfect substitute is itself. j=1 Puw(wj)
We define the syn/para distributions of higher order 1% .
- T AT\, Puw (W;w;) _ _
recursively: (JIND); =Y =L opy(w)) = pulw;) = z;
j=1 p’w(wj)

Pisl, B JTJZ\; P (2) Hence,p,, is a solution for Eq.s (5)—(8).

Piplm = . Pislm—1 (@ The series converge #NJTN and JTNJN

Pisrm = J NDiprm (3)  are ergodic, i.e., if the chain is aperiodic and irre-

Diprm = JNDisrm—1 (4) ducible (Kemeny and Snell, 1976). Observe that



for many simple probabilistic context-free gram-
mars (PCFGs) the series in Eq. 1-4 wilbt con-

verge. For simple PCFGs, the alternation between o © |

syntagmatic and paradigmatic distributions is peri- § =

odic. E.g., if inflected verb forms only occur after 3 » | &

nouns and nouns only before inflected verb forms, z°

then the right syntagmatic distributions of nouns will g’ S

have non-zero activation only for verbs and the right £ « |

paradigmatic distributions of nouns will have non- § N b\

zero activation only for nouns, thus preventing con- é, S |

vergence'. E .,
The key difference between a simple PCFG and 24 o [& demmncgrate ‘gxg;_g”g”g"_gﬁgi_ig”g”g

o

natural language is ambiguity and noise. Because T
of ambiguity and noise/NJ'N andJTNJN are coration m
likely to be ergodic — there is always a small non-

zero probability that two words can occur next tOFigure 2: The distance betweasiephantand giraffe

each other. Ambiguity and noise have the same {r‘neasured by the Jensen-Shannon divergence) is accu-

fect as teleportation for PageRank (Brin and Pageately represented after a number of iterations. The words
1998) in the sense that we can jump from each worglephantandtheretain their large distance.

to each other word with non-zero probability.
Assuming that the Markov chains are ergodic, all
four converge t@u,: pip.roo = Piploo = Pisroo = ing the product/T Np; 1. E.Q., p1sr1(w2) =
Disloo = Puw, fOr1 <i <V, Pww(Wiw2) /py(wy) - 1.0 =77/(82 + 77+ 112) ~
Thus, in this formalization, given enough itera-0.28.
tions, syntagmatic and paradigmatic distributions of By jterationm = 4, the seriew; s r.m (EQ. (7))
words eventually all become identical with the priorandpi’p’rvm (Eq. (8)) have converged to:
distributionp,,. This is surprising because Iinguisti-pmm’m = Piprm = (0.2704,0.2145,0.5149)
cally and computationally syntagmatic and paradigfor all three wordsw;. One can easily verify that
matic relations are fundamentally different. this ispy. E.g.,pw(w1) = (824 90 + 99)/1002 =
However, on closer inspection, we observe thais 4 77 4 112)/1002 ~ 0.27045.
limiting the nqmber of_lteratlons is often peneflmal Example 2. We computed 15 iterations of
when computing solutions to a problem iteratively,

syn/para distributions for the corpusthe giraffe

E.g., the expectation-maximization algorithm is Of'ran. An elephant fell. The manran. Anauntfell. The

ten stopped early because results close to conver-

h Its obtained aft Ian slept. The aunt slegtig. 2 shows that the dis-
gence are worse than results oblained atter a Smgi, .o petween the right syntagmatic distributions of
number of iterations. From the point of view of

deling h | isiti v st elephantandgiraffe is large form = 1. The reason
modeling human fanguage acquisition, €arly StoRg y4: the two words have no right neighbors in com-
ping is perhaps also more realistic since humans

ikelv t p | ber of iterat Afon. The right neighbors of the two words aem
uné ely 1o pertorm a large nNumpber ot erations. e, Althoughran andfell have no left neighbors
xample 1. For the following matrixJ . : . . )
in common, their left neighbors have a right neigh-
w1 wa w3 bor in common: the wordlept This indirect simi-
wi  82/1002 77/1002  112/100 larity information is exploited to deduce by iteration
wz 9071002 18/1002  107/100 15 that the two words are very similar with respect to
ws 99/1002 120/1002 297/100 o . .
their right syntactic context. In contrast, no such in-
we getp; .1 = (0.31,0.28,0.41) by comput- ference, even a very indirect one, is possible for the
mmn_ergo dicity of/N' does not imply non- rlght contexts oélephanandt_he. Co_nsequently, the_
ergodicity of JN.JT N andJ” N.JN, so Eq. (5)~(8) can con- distance between the two distributions remains high
verge even for non-ergodieN. and unchanged with higher iterations.



In this case, the Markov chain is not ergodic angmalld will impose strict requirements on which se-
the syntagmatic and paradigmatic series (Eq.s (5tiences in memory match, resulting in false nega-

(8)) do not converge tp,,. tive decisions for local grammaticality. A large
) ) will incorrectly judge many locally incoherent se-
5 EXpe“mental evaluatlon quences to be grammatical_

Recall from Section 3 that our evaluation task is to e Will pick the optimalé in both cases. For
discriminate sentences that exhibit local coherencgtegorical representations, this amounts to select-
from those that do not; that sentences are repr@g the HAC dendrogram with optimal performance.
sented as sequences of half-words; that syntactic cb@ experiment below evaluates whether grammati-
herence of a sentence is defined as all subsequen€8s@nd ungrammatical sentences are well separated
of a given length: exhibiting local coherence; and bY the proposed meastite.
that a subsequence is locally coherent if its distance Experiment on CHILDES. We used the well-
from a sequence in memory is less titan known CHILDES database (MacWhinney, 2000), a
These definitions can be applied to the grapROrpus of conversations between young children and
model as follows. A left half-word is a left syntag- their playmates, siblings, and caretakers. In order to
matic (or paradigmatic) distribution and a right half-2void mixing varieties of English (e.g., British En-
word is a right syntagmatic (or paradigmatic) distri-glish vs. American English), we selected the largest
bution. We compute the distance of two half-wordd1omogeneous subcorpus of CHILDES, the Manch-
either as the Jensen-Shannon (JS) divergence (LBSter corpus. It contains roughly 350,000 sentences
1991) or ag1 — cos(a)). JS divergence is more ap-and 1.5 million words. This is a conservative esti-
propriate for the comparison of probability distribu-mate of the amount of child-directed speech a child
tions. But the cosine is more efficient when a spars&ould receive annually (Redington et al., 1998). All
vector is compared to a dense vedtdile therefore Names in the corpus (i.e., all capitalized words) were
employ the cosine for the compute-intensive experfeplaced with a special word.r.”. A boundary
ments in Section 6. symbol “b_" was introduced to separate sentences.
The baseline representation is the categorical rephe representation of the corpus is then a concate-
resentation proposed by Redington et al. (1998). Aation of all its sentences. The vocabulary consists
difficulty in replicating their experiments is that theyof V' = 8601 words.
use hierarchical agglomerative clustering (HAC), Construction of the evaluation set. We tested
which eventually agglomerates all words in a sinthe ability of the two models to distinguish locally
gle category. To circumvent the need for a stopeoherent vs. incoherent sentences by selecting 100
ping criterion, we represent each word as the tenynattestedsentences from the corpus, which were
poral sequence of clusters it occurred in during agiot used to train the model. We only selected unat-
glomeration and define the distance of two words désted sentences that were not a substring of a sen-
the agglomeration step in which the two words aréence in the training corpus since, presumably, any
joined in a cluster. E.g., given the agglomeration sesubstring of a sentence in the training corpus is lo-
quenceq 1}, {1,2},{1,2,4},{1,2,3,4} forw; and cally coherent. A further constraint was that the
{4},{4},{1,2,4},{1,2,3,4} for w,, the distance unattested sentence was not allowed to contain a
betweenw; andw;, is 3 since they are joined in stepword that did not occur in the training corpus, the
3 when cluste1, 2,4} is created. rationale being that we want to address the prob-
For both graded (graph-theoretic) and categoricd¢m of local coherence for known words only since
(cluster-based) representations, we need to set theknown words present special challenges. Finally,
parametef that is the boundary between locally co-we ensured that each unattested sentence contained
herent and locally incoherent sentences. This p& word that occurred in only one sentence type in

rameter gives rise to a precision-recall tradeoff. A———
®This evaluation of “separation” is not directly an evaloati
®This is so because, when computing the cosine, we can igf classification performance, but more similar to an evidna
nore all dimensions where one of the two vectors has a zewf ranking using AUC or an evaluation of clustering using a
value. measure like purity.



the training corpus. In early experiments, we found
that local grammatical inference for frequent words
is easy as there is redundant evidence available that =
characterizes legal syntactic environments for fre- '
guent words. Since rare words are a key challenge in . x
syntactic acquisition, we only selected sentences as -
unattested sentences that contained at least one rare
word (where a rare word is defined as a word that

occurs once in the training set).

100 ungrammatical sentences were generated by
randomly selecting and concatenating words from
the vocabulary. Ungrammatical sentences were o gaed
matched in length to unattested sentences, so that ° 7 : : 5 o
both sets contained the same number of sentences number of half words
of a given length. As with unattested sentences, un-

grammatical sentences that were substrings of SeI"—%’gure 3: Accuracy of discrimination between grammati-

tences in the training. corpus were eliminated. Aga| and ungrammatical sentences for graded and categor-
there are many more infrequent words than frequemal representations.

words in the vocabulary, the construction ensured
that, as with unattested sentences, infrequent words
were overrepresented in ungrammatical sentencesdistinguish good models from bad models.

To summarize, our setup consists of 348,463 Discrimination experiment. In order to train the
training sentences, 100 unattested grammatical segfaph model, the entries of matrikwere estimated
tences and 100 ungrammatical sentences. using maximum likelihood based on the training

The task of discriminating the 100 unattested©PUS: Pisi1 @ndp;s .1 were then computed for
from the 100 ungrammatical sentences cannot (il 8601 words. Replicating (Redington etal., 1998),
solved perfectly as CHILDES contains ungrammatt® most frequent 1000 words were clustered (using
ical sentences, a few of which were randomly sesingle-link HAC, Manning and Schuitze (1999)). For
lected as unattested sentences (gas pleaswhich ~€aCh remaining wordb, the closest neighbar’ in
is missing the final letter). Similarly, one or two the 1000 most frequent words was determined and

of the automatically generated ungrammatical ser? Was then assigned to the clustendf

tences were actually grammatical. Fig. 3 shows the performance of graded and cat-
Since the test set does not consist of a randofgorical representations for different subsequence

sample of sentences, performance on the test setSigesn. To compute the accuracy for eachthe §

not a direct indicator of the percentage of sentenc&éth optimal discrimination performance was cho-

that the model can correctly discriminate in a child'$$en (for both graded and categorical).

typical input. A large proportion of sentences in For asubsequence of size= 1, the performance

child input are simple 1-word, 2-word, and 3-wordis 0.5 in both cases since the 200-sentence test set

sentences that even simplistic models can evalua@@es not contain unknown words. So for every half-

with high accuracy. However, the test set is approvord, there is a sequence of one half-word in the

priate for a comparative evaluation of graded antfaining corpus with distance 0. Thus, all sentences

categorical syntactic representations in language a@et the same local coherence scores, both for graded

quisition, which is one of the goals of the paper. Dif-and categorical representations.

ficult sentences (those with rare words and greater This argument does not apply to= 2 since we

length) are overrepresented in the test set as the dearlier defined a sentence to be locally coherent if

crimination of short sentences containing only freall of its subsequences are coherent. While subse-

guent words can easily be done by simplistic modgquences of 2 half-words that are part of theme

els. Thus, a test set of “easy” sentences would netord have local coherence score 0, this is not true of

on

i

riminal

accuracy of di




subsequences of 2 half-words that are paditfér-
entwords, e.g., the subsequeneblack.,dog > in

black dog If black dogdoes not occur in the train- 8 15 ;g’r‘;‘_lz S e,
ing set, then its local coherence score-i$. “t- synt-2 e {“ L
The main result of the experiment is that except S & |4 para3 A e
for n=1 (p = 1) and n=2 p = 0.39) the differences £ | v e
between categorical and graded representations are§ © o A
significant §? test,p < 0.05 for 3 < n < 10). This 2 8 | I ;’—" . -
is evidence that graded representations are more ac-g : Q/*#?
curate when determining local syntactic coherence § S . A
and grammaticality than categorical representations. o | *-./
The experimental results demonstrate that, for S *
syntagmatic distributions of order 1, graded repre- I T L r A

sentations discriminate locally coherent vs. incoher-
ent sentences better than categorical representations.

We attribute this to the ability of exemplar theory to_. _ ST
, . . o .7 Figure 4: Accuracy of discrimination between grammat-
incorporate rich context information into discrimi-

X - “AL ) - ical and ungrammatical sentences of the exemplar-based
nation decisions. This is of particular importancenethod for different orders. Key: synt = syntagmatic,
for ambiguous words. Categorical representations @hra = paradigmatic; s is of order 1; p and t are of order
ambiguous words are problematic because they a2eq is of order 3.

either too similar or not similar enough to the two

alternatives. E.g., if a word with a verb/noun ambi- . . I
o . requirements for the syn/para distributions (which is
guity is represented as one of the alternatives, s

S 6%/3 V2 for each order) and the cost of the matrix mul-
as a verb, then subsequences containing its noun yse. . .

: o _tiplications. We also used — cos(«)) instead of JS

will no longer be similar to other subsequences with,: .

. . .divergence as distance measure.

nouns. If a special conflation category noun/verb is

introduced, then we are faced with the same prob- The results of the experiment are shown in Fig. 4.

lem: subsequences containing the noun/verb Catlg_igher-order representation_s are clearly superior for
gory are not similar to subsequences containing e§_hort subsequences, especiallyzior 2 andn = 3

ther non-ambiguous verbs or non-ambiguous nounga.‘nd up to 5 half-words when comparing synt-1 gnd
para-2). However, for long subsequences, there is no

6 Higher-order distributions consistent difference between the syntagmatic distri-
bution of order 1 (synt-1) and higher order distribu-
The main motivation for highel’-order distributionStions_ Apparenﬂy, the generalized information avail-
is that syntagmatic vectors of order 1 do not peraple in higher orders is not helpful in local grammat-
form well for some infrequent words. In the ele-jca inference if long contexts are considered.
phant/giraffe example above, the distance betweenWe were surprised that the best-performing dis-
the two words is close to maximum for order 1 repreg.intion for short sequences is para-2 (paradigmatic
sentations because each occurs only once, in entirgf)tribution of order 2), not a higher order distri-
different contexts. As we showed in Fig. 2, higherbution. E.g., para-3 performs worse than para-2.
order representations address this problem becaugg would expect the performance to decrease with
they exploit indirect evidence about the syntactigjigher order eventually since the distributions con-

properties of words. verge towardg,,. The fact that this happens so early

To evaluate higher-order representations Of, thjs experiment merits further investigation.
CHILDES, we used the same setup as before, but

computed several additional iterations. We also lim7  Related work

ited the experiments to a subset consisting of 60,000

words of the Manchester corpus. It contains onlfData-oriented parsing (Bod et al., 2003) shares
V/=1666 different words, which reduces the storagéasic assumptions about linguistic inference with

number of half words



exemplar-based theory, but it does not model or usdgher order representations improve generalization
the similarity between input and stored exemplarand exemplar-theoretic inference. We also want
Previous work on exemplar theory in syntax (Abbotio address that the model as it currently stands is
Smith and Tomasello, 2006; Bybee, 2006; Hay anttained under the false assumption that the train-
Bresnan, 2006) has not been computational or fomRg input is grammatical. Ungrammatical test input
mal. Previous work on non-categorical representavhich matches a learned ungrammatical sequence
tions of words has viewed these representations @adll be deemed grammatical. Future work will ex-
an intermediate step for arriving at categorical partamine how to best treat this challenge, e.g., by using
of speech (Redington et al., 1998; Schitze, 199%n estimation of density instead of the simplistic “1
Clark, 2003). Consequently, all of these papers evatearest neighbor” distance used here.
uate their results by comparing induced categories to The most important future work concerns class-
gold-standard parts of speech. based language models. The cognitive-linguistic
Redington et al. (1998) did not find a difference intradition we have mainly addressed in this paper
categorization accuracy between simple syntagmatitas focused on the task of learning traditional parts
representation and those using non-adjacent wordsf speech and has usually not discussed the rele-
The BEAGLE model (Jones and Mewhort, 2007)yance of language models to acquisition. If, as we
and related work (Sahlgren et al., 2008), merges ctxave argued, instead of learning traditional parts of
occurrence information and word order informatiorspeech the focus should be on performance in par-
into a single composite vector through a process aicular language processing tasks (like grammatical-
vector convolution. Our model differs in that it ex-ity judgments), then language models are the nat-
plicitly captures the recursive relationship betweenral competing account that we must compare our
the orders in a unified framework. work to. Of particular relevance are class-based lan-
Previous graph-theoretic work (Biemann, 2006juage models (e.g., (Saul and Pereira, 1997; Brown
uses order 1 representations. Several papers hateal., 1992)). In ongoing work, we are attempting
looked at higher-order representations, but have nti show that the exemplar-theoretic model performs
examined the equivalence of syn/para distributionisetter on grammaticality judgments than class-based
when formalized as Markov chains (Schiutze anthnguage models.
Pedersen, 1993; Lund and Burgess, 1996; Edmonds,
1997; Rapp, 2002; Biemann et al., 2004; Lemair@cknowledgements. This research was funded by
and Denhiére, 2006). Toutanova et al. (2004) founthe German Research Council (DFG, Grant SFB
that their graph model of predicate argument strucZ32). We thank K. Rothenhausler, H. Schmid and
ture deteriorated after a small number of iterationthe reviewers for their valuable comments.
of the random walk, similar to our findings.
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