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Abstract

In this study we describe a new model of how phonetic knowledge
guides speech production. In the Context Sequence model, target acous-
tic patterns are determined based on selection of previously heard or pro-
duced sounds from a memory store. Since signals in the memory corre-
spond to long stretches of continuous speech, individual speech sounds
always appear in a larger context. A key property of the model is that
the selection of exemplars for production is weighted by the similarity of
the contexts in which they originally occurred to the current production
context. In two simulations based on realistic amplitude envelope data
extracted from a large single-speaker production corpus, we demonstrate
that (1) optimal selection of context-appropriate segment-level exemplars
requires consideration of about 0.5 seconds of context material preceding
and following exemplars, and (2) context-dependent production at this
low level may be responsible for a range of frequency effects that have
previously been assumed to involve word, syllable, and other higher levels
of organization.

1 Introduction

Exemplar-based memory models provide a formal means of testing the notion
that linguistic categories can be effectively described based directly on patterns
in their occurrence during natural language use, and without reference to the
abstract rules, processes and structures that have traditionally been invoked to
explain these patterns. In such models, linguistic categories (such as words,
phonemes, or parts of speech) are typically represented by collections of actual
previously encountered instances of the categories, specified to an arbitrary level
of—often redundant—detail. Identification and production, then, are driven by
direct comparison of items within and between these collections, so that regular-
ities in the detailed surface forms of category exemplars are preserved without
being explicitly specified. Simultaneous simulation of more discrete linguistic
phenomena (like phonetic neutralization) and more gradient ones (like speaker-
or word frequency-dependent sub-phonemic acoustic differences) based on ex-
emplar representation have been taken to suggest that “usage-based” accounts
provide an accurate, parsimonious description of linguistic competence and per-
formance (Bod, 2006, Bybee, 2002, 2006, Foulkes and Docherty, 2005, Hawkins,
2003, Pierrehumbert, 2001, Port, 2007).

Exemplar approaches have shown success at accounting for several key obser-
vations in language production, perception, memory, acquisition and historical
development (Goldinger, 1997, Hay et al., 2003, Johnson, 1997, 2006, Lacerda,
1995, Lively et al., 1993, Pierrehumbert, 2001). A serious limitation of most spe-
cific models formalized so far, though, is that they have generally treated cate-
gories at various levels of organization as separate, independent events and have
generally not considered the fact that speech unfolds in the temporal dimen-
sion, or the effects that temporal context information has on the specification of
individual events. At a phonetic level of description this is especially limiting,
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since the speech signal is characterized by essentially ubiquitous change in the
spectrum over time. If exemplar theory is to provide a comprehensive model
of phonetic knowledge that can be used to study production and perception of
connected speech, then exemplar comparison and selection should reflect this
fact in a meaningful way. In this paper, we demonstrate and quantify the impor-
tance of surrounding context information in specifying segment-level exemplars,
and show that this importance is modulated by the frequency of occurrence of
the context, making estimations based on a large single-speaker corpus. We
also describe a new exemplar-based perception/production model, the Context
Sequence model, that reflects the temporal and the context-dependent nature
of speech, and demonstrate how consideration of context at a local level auto-
matically predicts aspects of production that have previously been attributed
to more abstract, more complex hierarchical organization. First, we motivate
and introduce key properties of the model by reviewing some related findings
from speech perception.

1.1 Context in exemplar-based perception and implicit
normalization

A strength of exemplar accounts of human speech recognition is how they deal
with the inherently multidimensional nature of (proposed) phonetic units such
as segments or features. Since potential cues in the speech signal show wide
and complex patterns of variability across different productions, speakers, etc.,
abstract categories have notoriously defied low-order acoustic or perceptual de-
scriptions. This has led researchers over the years to posit complex normaliza-
tion processes in mapping from acoustic to linguistic representations in order
to account for humans’ apparently effortless recognition. Such normalization
is implicitly predicted by exemplar approaches, where the “overspecification”
of actual productions in memory results in the preservation of predictable pat-
terns during decoding or further production (Johnson, 1997, 2006, Pisoni, 1997).
That is, the use of one type of acoustic cue (such as a formant frequency) in
interpreting—or planning the production of—a sound need not be explicitly
modulated depending on other, co-occurring cues (fundamental frequency or
voice quality, for example), because an effective pattern classification mecha-
nism will take into account the covariance structure with which the different
cues are represented in the language environment. Thus, consideration of in-
formation that would normally be considered irrelevant, or even non-linguistic,
actually provides dimensionality that is necessary for proper interpretation of
phonetic events.

Conspicuously absent in exemplar models developed so far, however, is much
reference to the acoustic contexts in which phonetic events occur. During per-
ception, dimensions along which a segment, for example, must be considered
for successful classification include not only potential cues that occur during
the production of that segment, but also those in the temporal regions adja-
cent to it, as well as the temporal organization of the signal itself (e.g., the
speaking rate). Production and perception of segments are both thoroughly
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context-dependent due to the limited types and rate of change in the config-
uration of the vocal tract that may occur over time and the sensitivity of the
auditory system to contrast and dynamic patterns rather than to absolute mea-
sures (Kluender et al., 2003, Lindblom, 1963, Lindblom and Studdert-Kennedy,
1967). In fact, it is probably fair to say that very little phonetic information at a
segmental time scale is very meaningful outside the context in which it originally
occurred. This problem does not disappear if larger units (such as words) are
taken to be the objects of exemplar-style representation, since context exerts
influences over an extended period of time (Ladefoged and Broadbent, 1957,
Summerfield, 1980, Holt, 2005).

We recently suggested that these facts are consistent with an exemplar ap-
proach to speech perception, but that they imply that context and temporal
order must play a role in exemplar specification and comparison. In a series
of simulations (Wade, 2007, Wade and Möbius, 2007), we proposed that exem-
plars consist of sequences that represent stretches of speech much longer than the
units of interest, perhaps corresponding to entire utterances. These sequences
preserve both local, detailed spectral and amplitude information and the tem-
poral organization of this information.1 Perception, then, involves comparing
newly-encountered patterns, along with their surrounding context material, to
sequences of similar length in memory. From one perspective this is an ex-
treme simplification of the types of cues involved, since dynamic patterns are
represented only indirectly in the temporal adjacency of similar (or critically dif-
fering) configurations. In this way, though, correlations between different types
of spectral information in adjacent regions (like phonetic context effects related
to coarticulation), between different types of spectral information at the same
location (like speaker or gender effects), and between spectral information and
temporal organization (like speaking rate effects) are all potentially accounted
for in the recognition process. Simulating an exemplar memory based on se-
quences from a large, multi-talker speech corpus, we were able to model several
key aspects of humans’ perceptual dependence on context, without reference to
explicit normalization processes.

1.2 Context in production and frequency effects

Since the set of sounds that is produced involves (for the most part) the same
patterns of covariance and redundancy over time that characterize the set of
sounds that are perceived, speech production must similarly take context into
account. Exemplar theory addresses the perception-production link in an intu-
itive way, assuming that production involves a selection from the same store of
acoustic memories that is used during perception (Bybee, 2002, 2006, Goldinger,
1997, Pierrehumbert, 2001). Based on our perception simulation results, we pro-
pose that this memory store is effectively composed of representations of fairly

1In these previous simulations, local information included the values of cues such as for-
mant frequencies at salient landmark locations in the signal (Stevens, 2002) and temporal
information amounted to an encoding of the temporal locations of the landmarks at which
measurements were made.
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long stretches of speech. Individual “exemplars”—that is, portions of such a
representation that might be associated with a category label (for example,
segment, feature, or word)—are stored adjacent, or closely linked, to the con-
texts in which they originally occurred, including neighboring, overlapping, or
encompassing exemplars. Selection of exemplars for production is informed by
this context information. Just as exemplar perception models identify newly
encountered sounds by comparing them with stored members of existing cate-
gories, the basic assumption of the Context Sequence account is that selection
of a stored category exemplar for production is weighted by the similarity of the
exemplar’s original context with the relevant neighboring sounds in the current
production context.

Such a context-dependent selection process might have far-reaching effects.
The simulations described in this paper relate to two classes of observations
concerning the frequency of occurrence of different categories in a language.
It is often reported that very frequent syllables, words, and collocations seem
to take on an “autonomous” status with respect to acoustic variability and
historical change, involving type-specific patterns of variability and a resistance
to generalization. For example, vowels and some consonants are more likely
to be weakened or deleted in more frequent words and phrases (Hooper, 1976,
Bybee, 2001, 2002) than in less frequent contexts. Perhaps relatedly, more
frequent words and syllables are consistently produced faster in speeded tasks
than less frequent ones (Cholin et al., 2006, Jescheniak and Levelt, 1994, Levelt
and Wheeldon, 1994).

Current exemplar-based production models account for the historical acous-
tic patterns almost trivially, since they assume that acoustic mutations are in-
troduced at the level of the individual production, with lenition and other forms
of variability compounding over the course of large numbers of productions (By-
bee, 2001, 2002). The syllable latency results have often been taken (see also
Levelt et al., 1999) to suggest that complete articulatory gestural programs are
memorized for the most frequent syllables but computed online from lower-level
specifications for less frequent ones, requiring more processing and, presumably,
less efficient production. We recently proposed that a closely related multi-level
exemplar-based process may be at work and demonstrated that such a process
could additionally account for observed patterns in syllable length variability.
Schweitzer and Möbius (2004) reported that, in a large single-speaker production
corpus originally designed for unit-selection speech synthesis, relative syllable
length was well predicted by the summed relative lengths of constituent seg-
ments for the most infrequent segments, but much less so for the most frequent
segments. As part of a model designed to account for both syntactic and pho-
netic exemplar-based production, Walsh et al. suggested that selection always
involves a competition between units at neighboring levels of an organizational
hierarchy (Walsh et al., 2007a,b). For example, during speech production an
attempt is first made to select syllable-level exemplars; if the available data at
this level are too sparse, production “drops down” to proceed at the level of
the individual segment instead. Thus, in corpus-based speech synthesis, it is
possible to preserve the forms of entire syllables and words only for the most
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frequent units, since the number of infrequent units would require impossibly
large data sets. In much the same way, the human production system might
rely on complete unit-level information where possible and resort to more local,
constituent-level specification where necessary.

Since different, generally larger-scale patterns of variability are likely to re-
sult from higher-level selection, a multi-level selection process might provide ad-
ditional explanation for the frequency-specific patterns of variability discussed
above (Hooper, 1976, Bybee, 2001, 2002). Although accounts of this sort point
to variability and evolution across productions of entire syllable-level (or word-
level, or collocation-level) units, it might be noted that it is generally the con-
stituent articulations composing these frequent sequences that actually differ
when compared with their counterparts in less frequent sequences. Thus, a
slightly different characterization of the findings is that the variability of these
constituents (segments, for example) is conditioned by the frequency of the
acoustic contexts in which they occur. This is a nontrivial distinction with
respect to the explanatory power of the exemplar selection process. Previous
explanations assume an explicit, hierarchical link between two or more levels
of linguistic structure, and an explicit transfer of information (such as word
frequency or amount of lenition) from a higher to a lower level. While we will
not suggest that higher-level (or greater-length) units do not have a place in
exemplar-based production, this particular explanation seems to import a lot
of structure from traditional linguistic theory, some of which may be unneces-
sary if we already assume—based on empirical data—that exemplar selection is
influenced by (acoustic) context.

Under the right circumstances, a context-based model working exclusively
at a local (e.g., segment) level also predicts that more frequent sequences (such
as syllables) are produced more efficiently and with sequence-specific patterns of
variability or lenition. Where the surrounding context of the segment currently
being produced is very similar to many sequences in memory—for example, in
the middle of a frequent syllable—it should be quick and easy to find a segment-
level exemplar that is appropriate for this context. And since this exemplar will
likely have been originally produced as part of the same syllable that is now
being generated, any previous lenition or other variation will be preserved, and
possibly compounded on, in the new production. Where the syllable context is
rarer, it is less informative as to which segment exemplars are most appropriate
(since it is equally dissimilar to most sequences in memory), so selection will be
less constrained and less efficient, with the eventual output probably tending
more toward the center of the overall segment distribution. Such frequency-
based differences might be thought of (at least in this context) as the emergence
of a competition across hierarchical levels.

In the next sections, we describe the Context Sequence model of exemplar
selection in more detail, and briefly discuss properties of the language environ-
ment that would drive the frequency effects we have just predicted. We then
describe two simulations, based on productions from a large single-speaker cor-
pus, demonstrating quantitatively that (Experiment 1) these patterns do occur
in language and (Experiment 2) they do result in the emergence of syllable-
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level exemplar selection if the proposed model has access only to more local,
segment-level specification and context.

2 A context-based production model

Following previous exemplar accounts (esp. Pierrehumbert, 2001), we view the
production process simply as a selection from a set of remembered tokens, fol-
lowed by a probabilistic degradation process. As described below, the degrada-
tion mechanism implemented here is somewhat abstract and could be thought
of as representing either lenition or adherence to a historical trend in produc-
tion. In reality, a combination of many such processes, as well as more random
sources of variation, probably contribute to produced forms.

In the present study, we model the production of entire utterances, and not
just the selection of unspecified or high-level values related to isolated events.
We propose that there is an iterative process of specification in context, whereby
acoustic information is filled in bit by bit (and generally left-to-right), based on
the evolving production context. In the simulations presented here, specification
and production are modeled exclusively at the segmental “level”. This choice
was motivated more by practical than theoretical concerns. We do not actually
assume that segments or phonemes comprise the primary level (or even one
fully independent level) of selection during human speech production; working
at this level, though, provides for the selection of acoustic information that is—
relative to syllables, words, and phrases—local and highly context-dependent.
Of considerable practical importance for replicating and extending our results,
the segment level is normally the most fine-grained level of labeling found in
speech corpora. In section 5.1 we return to the question of what effect this
choice has on the implications of our findings, and what a more realistic level
of selection might be.

Regardless of position in a word or phrase, production always progresses
at the segment level. For each successive segment in an utterance, a cloud
of segment exemplars is generated and each token is weighted based on the
match between the current production context and the context in which it was
originally produced. An exemplar is selected based on this weighting, degraded
slightly, and produced. Its acoustic properties then become part of the current
production context, on which selection of following segments is based.

2.1 The context-match comparison

Since both preceding and following context seem to be important in characteriz-
ing segments (Mann and Repp, 1980, Miller and Liberman, 1979, Öhman, 1965,
Whalen, 1990), appropriate exemplar selection must take into account context
on both sides of the segment currently being produced. The description above
only straightforwardly accounts for left context (the acoustic specifications of
recently produced segments). Acoustic information to the right of the current
context would have to involve an estimation of what is likely to be produced in
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the future. While such an estimation might well occur, for the purposes of the
current simulations we simplify the situation somewhat, and assume that two
basic types of context information are available: acoustic information (left con-
text, of the type discussed above) and what we will simply refer to as “linguistic”
information, which encodes the identities (category names) of the segments that
will be produced in the following context. The exemplar weighting comparison,
then, involves two parts. The acoustic information that originally preceded an
exemplar is compared (matchA) with the current acoustic context (the sequence
that has just been produced), and the names of the segments that followed the
exemplar are compared (matchL) with the next planned segments in the current
context. The two resulting scores are combined to provide an overall context
match value:

c-match = matchA(target−m . . . target) + matchL(target . . . target + n)

where m and n represent the amount of preceding acoustic information and
following linguistic information to be considered. Figure 1 schematizes this
process for the evaluation of a single existing exemplar of the category [g],
which is currently being produced in the context of the (perhaps never before
uttered) phrase “colorless green ideas”. matchA is calculated by comparing
the just-produced acoustic information to the part of the signal that originally
preceded the [g] being considered (represented in the figure by continuous values
to indicate the detail with which it is likely to be encoded) and matchL comes
from comparing the next planned segments—represented as a binary function
to indicate a more abstract nature (one possible implementation is described
in Experiment 2)—to those that originally followed the [g]. This particular
exemplar provides a fairly good context match, since the vowel-sibilant part of
the acoustic sequence that originally immediately preceded it is similar to the
vowel-sibilant sequence that has just been produced, and the [ôi] sequence that
originally followed it is identical to the next planned segments. Since exemplar
selection is weighted based on the context-match score, this exemplar will be
very likely to be chosen. More generally, tokens that are selected for production
in a given context will tend to be the most appropriate ones—in terms of the
statistics of the language, dialect, speaker, etc.—for that context. As a result,
we hypothesize that configurations of segments relating to very frequent words,
collocations, phrases, etc. may compound variability over repeated context-
appropriate productions in the same way as if these higher levels had been
involved explicitly.

2.2 Measuring the importance of context

If context-weighted selection is to model the speech production process in a
realistic way, a necessary first question is how much context it is actually useful
or appropriate to consider. Perception data suggest that acoustic information
spread over several hundred milliseconds can play a role in determining segment
identity (e.g. Holt and Wade, 2004). However, such results do not provide a
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quantitative estimate of how important the information at a given distance from
the point of the current production context is in determining the appropriate
output at that point. Experiment 1 represents an attempt to estimate this
function for a limited set of contexts.

Figure 2 demonstrates the intuition behind our approach to this estimation.
Suppose that we select one target segment exemplar of a single phoneme cate-
gory from a sequentially organized memory for speech like the one depicted in
Figure 12, where the acoustic characteristics over each segment are represented
simply as a vector of real values with expected mean zero. If we compare the
target segment’s acoustic characteristics with those of every other (analogously
represented) segment in the memory—for example by taking the scalar or dot
product (·) of each pair of vectors:

~v · ~w =
∑

i

vi · wi

We would generally expect that other segments of the same phoneme category
as the target would show greater similarity with it, on average, than exemplars
of other phoneme types. Further assuming (unrealistically) that the acoustic
characteristics of segments of different phoneme types are randomly and inde-
pendently distributed, the target’s average similarity with exemplars of different
phoneme categories would be zero. However, depending on factors including how
the acoustic signal is actually encoded in memory, there would certainly be vari-
ability and probably substantial overlap in the distributions of similarity values
seen between the target segment and other same-category and different-category
segments.

A key assumption of the Context Sequence account is that a meaningful
amount of this variability is predictable given the acoustic characteristics of sur-
rounding segments, due to both local coarticulatory and longer-range context-
specific production patterns. Suppose now that we take not only the target
exemplar, but some of its surrounding context in addition, and compare the
entire (now longer) resulting acoustic vector with the sequences of the same
length centered around, again, all of the other segments in memory. The hypo-
thetical distributions plotted in Figure 2 demonstrate what might happen with
contexts of different types and lengths. First of all, as the size of the context
grows, there would be a general increase in the variance of total similarity val-
ues, since larger vectors are being multiplied and summed. This effect is visible
in all panels of the figure, and completely accounts for the shape of the distribu-
tion of different-category similarity functions shown in the first panel (see figure
caption for details); these sequences have zero average similarity to the target
regardless of how much context considered. Target-category segments, on the
other hand, have greater-than-zero average similarity to the target segment. In
addition, those target-category segments that originally occurred in contexts
similar to that of the actual target will tend to have greater similarity still, and

2More precisely, as A in Figure 1, ignoring the L stream for the moment since we are only
concerned with comparing existing examplars and not planning new ones in Experiment 1.
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the similarity score for these exemplars will increase as context is added, since
the context-to-context portions of the comparison will also be positive. Impor-
tantly, we would also expect differences in the distributions of target-category
similarity values depending on the frequency of the context (the word, etc.) in
which the target exemplar occurs. These differences can be seen in the right
panels of Figure 2. For very frequent contexts, the best similarity scores con-
tinue to increase as more surrounding material is added, since matches of entire
words, phrases, etc. are likely. As the amount of context considered continues to
increase past, say, the word or utterance level, the probability of a good match
(a sequence of similar segments produced at a similar rate) eventually decreases
even for the most frequent contexts, so that even the best similarity functions
level off, continuing to become more variable but not higher on average. For
less frequent contexts, while very local context information might enhance the
match for the most similar exemplars, the match function should level off much
earlier than for frequent contexts.

It is this difference that we predict may drive the frequency effects on lenition
and production latency described above. It seems likely that the exemplar
selection process is mostly driven by the best-matching contexts, since exemplars
originally produced in inappropriate contexts are very unlikely to be selected
unless there are no better matches. Therefore, it is the upper range of the
distributions in Figure 2 (also shown by the dotted lines in the figure) that
are important in predicting frequency-dependent variability patterns. If the
amount of context considered corresponds to about the center of the x-axis in
the panels of Figure 2, then selection of exemplars in frequent contexts will be
informed by the match values, since exemplars with very high c−match scores
will be encountered and dominate the selection process. As a result, another
exemplar that originally occurred in the same context (in the same word, at the
same rate, etc.) will probably be selected. For infrequent contexts, since very
good context matches are much less likely, context-based weighting will have
less influence, resulting in a flatter distribution of segment exemplars to choose
from. In Experiment 1 below, we verify that these overall patterns actually
occur, and attempt to associate them with actual time value estimates (the
x-axis in Figure 2), based on a corpus analysis.

2.3 Representation and comparison of acoustic content

Closely related to the lack of work on temporal and context issues in previous
exemplar models, there has been little focus on a realistic representation of the
speech signal in memory. Words have commonly been represented by constant-
length random vectors (e.g., Goldinger, 1998), and phonemes and smaller units
by one or a few isolated acoustic parameter values (formant frequencies, dura-
tions, etc.) that assume some sort of lower-level analysis or abstraction (John-
son, 1997, 2006, Pierrehumbert, 2001).

In previous simulations (Wade, 2007, Wade and Möbius, 2007), we have
considered sequences of values of the latter type, representing changes in, for
example, fundamental or formant frequencies over time. In the present study,

9



we employ representations that more faithfully encode the speech signal as it
unfolds over time without making specific assumptions about what types of cues
might be extracted or which regions of the signal are the most important. Specif-
ically, we consider the slowly varying amplitude envelopes of the signal across
different frequency bands. There is much ongoing debate about the relative
contributions of this type of information, and of the quickly varying temporal
fine structure related to energy close to bands’ center frequencies, to perception
and memory for speech under different listening conditions (e.g. Lorenzi et al.,
2006, Zeng et al., 2005). However, it is clear that (1) envelope signals represent
information that is present, in various forms, throughout the auditory system
and (2) they contain enough information to construct intelligible, fairly natural-
istic speech when at least nominal spectral resolution (a few frequency bands) is
provided for (Shannon et al., 1995, Loizou et al., 1999). Thus, in addition to be-
ing (relatively) compact and transparent representations, and lacking abstract
dimensions that make assumptions about front-end analysis or estimation from
the signal, envelope signals probably represent at least some of the information
that is actually stored and considered by humans.

We also do not attempt to address in the model or analysis the question of
how the temporal dimension is actually represented in neural terms, since this
issue is currently far from being fully understood (e.g. Mauk and Buonomano,
2004, Eagleman et al., 2005, for recent reviews); we simply assume that signals
are effectively stored as linear time sequences. Similarly, we model the exemplar
comparison process simply as a cross-correlation between two signals. It is not
clear how or whether such an operation is actually performed at a neural level,
but since correlation processes are commonly invoked to account for a range of
auditory phenomena including pitch perception and sound localization (Jeffress,
1948, Licklider, 1951), it seems reasonable to assume some approximation to this
type of comparison.

3 Experiment 1

Experiment 1 estimates the importance of varying amounts of acoustic context
in characterizing segment-level exemplars, by (1) selecting segments from very
frequent and very infrequent contexts in a simulated memory, (2) computing
the acoustic similarity of each of these segments with all of the other segments
in the memory, and (3) measuring changes in the relative similarity of the best
matching sequences as more surrounding context is included in the comparison.
The output of this experiment will be used to specify a duration window for
preceding context in the Context Sequence model that optimizes the selection
of highly similar exemplars during production.

3.1 Acoustic data and memory composition

Acoustic data were envelope signals derived from a corpus of standard German
sentences (Schweitzer et al., 2003, Schweitzer and Möbius, 2004), read by a pro-
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fessional speaker and annotated at segment, syllable, and word levels by forced
alignment with manual checking. The corpus consisted of 2776 utterances sam-
pled at 16 kHz. The envelope extraction process was typical of methods that are
commonly observed to result in intelligible speech when the envelopes are used
to modulate pure tone or band-passed noise signals (e.g. Loizou et al., 1999).3

Utterances from the corpus (excluding preceding and following silence intervals)
were first equated for root mean square amplitude, and then separated into eight
logarithmically spaced frequency bands from 80 to 8000 Hz using 4th-order But-
terworth filters. Amplitude envelopes for each band were estimated using the
Hilbert transform, low-pass filtered at 50 Hz, and downsampled to 100 Hz for
processing efficiency. The resulting dataset represented 12180 s of continuous
speech comprising 107209 segments and 41359 syllables, concatenated in arbi-
trary order to form a single, labeled 8-dimensional (corresponding to the eight
frequency bands) “memory” sequence. Finally, in order that summed cross-
correlation sequences between signals of different lengths would tend to center
around zero (as in Figure 2) and thus be more easily interpreted, the entire
memory sequence was normalized by subtracting the mean in each dimension
(band).

3.2 Procedure

One token each of the 50 most frequent syllables (average frequency 300, s.d.
264) and the 50 least frequent syllables (all frequency 1; taken arbitrarily from
1099 such syllables) in the corpus were first selected at random. From each of
these 100 syllables one segment was then randomly selected. These segments
represent the frequent- and infrequent-context target exemplars discussed in
section 2.2 and pictured in the right panels of Figure 2. The segments them-
selves had approximately equal average type frequency regardless of syllable
context (frequent context: mean segment frequency 5343, s.d. 2843; infrequent
context: 4302, 3540). 2100 probe stimuli were then constructed by taking the
acoustic material corresponding to these 100 segments, plus from 0 to 1000 ms
of preceding and following context material, varied in 50 ms steps.

To estimate similarity scores for target segment-plus-context sequences anal-
ogous to those shown in Figure 2, each probe was then compared acoustically
with the entire memory sequence, as follows. First, a raw match function M the
length of the memory was computed by cross-correlation of the probe envelope
with that of the memory, summed across frequency ranges:

M(tm) =
D∑

d=1

Tp∑
tp=1

probed,tp
memoryd,tp+tm−1

where tm is the sample of the memory under consideration, tp is the sample of the
length-Tp probe, and d is the frequency range (D=8). Then a normalized match

3It was verified that sounds achieved by multiplying similarly band-passed noise signals by
the envelopes used in the study were generally easily recognizable as the intended utterances.
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function Mn was created by adjusting M for overall amplitude in the memory
sequence. This was to reflect the fact that speech events are better defined
by spectrotemporal changes than by static patterns, and more practically to
prevent regions of higher average magnitude from obscuring close matches (for
example, to prevent a relatively weak consonantal sequence from correlating
better with a long stretch of large positive values corresponding to a prominent
stressed vowel than with a very similar version of the same consonant). This
was accomplished by dividing M by a running estimate of local amplitude:
a full-wave rectified version of the original memory sequence, summed across
dimensions and then smoothed with a Tp-length rectangular window,

Mn(tm) =
M(tm)Tp∑D

d=1

∑tm+Tp/2

t=tm−Tp/2 |memoryd,t|

Finally, the maximum match value in the portion of the Mn that corresponded to
each segment in the corpus, Mnmax was recorded as a measure of the similarity
of the probe sequence with the sequence centered around that segment.

For each segment type in the corpus, the top 10% of the resulting maximum
match values corresponding to tokens of that segment were averaged to form
a best-match score for the type. These values, calculated at different context
lengths, are analogous to the “best-match” thick dotted lines shown in Figure 2.
Again, best-match values might be thought of as corresponding to the exemplars
that would typically dominate a selection process during speech production or
a matching process during recognition.

It is important to note that, since match (and best-match) scores always
relate to the maximum correlation value from a sequence the length of the
segment being compared, these values skew in the positive direction and are
greater than zero on average. Since this would result in distributions different
from those shown in Figure 2 (where it was simply assumed that values would
center around zero) and obscure the timing of any frequency-related differences
in the inflections in target-segment match functions like those shown in the
figure, one final transformation was made. A “same-type advantage score” for
each probe sequence was estimated in order to quantify the usefulness of a given
amount of context in characterizing the target segment’s phoneme type while
normalizing for the variability that would be expected for sequences of that
size. This score was calculated by subtracting the average best-match score for
non-target categories from the best-match score of the target category, and then
dividing by the standard deviation of the non-target best-match scores.

3.3 Results and discussion

Figure 3 shows a representative subset (100 randomly selected examples of each
match type) of the match-to-context-size functions Mnmax that resulted from
the analysis. Although, again, values are skewed in the positive direction and
greater than zero on average, the figure seems to demonstrate the main features
of the predictions shown in Figure 2. At the lowest context sizes, the two

12



same-type conditions show better average matches than the different-category
condition. At about 300 ms, the two same-type distributions diverge, with
the low-frequency context leveling off sharply and most of the high-frequency
contexts continuing to increase up to about 0.5 s.

To quantify this effect, the same-type advantage described above is shown
across context sizes in Figure 4. Here it is clear that there is a same-type advan-
tage (indicated by positive values in the figure) regardless of context frequency
that increases for contexts of up to about 0.1 s. As in Figures 2 and 3, this
advantage then levels off for infrequent contexts but continues to increase up to
about 0.5 s for frequent contexts.

Thus, preceding and following context of up to about half a second contin-
ues to provide additional information about the appropriateness of exemplars
in frequent contexts, but only very locally for infrequent contexts. Perhaps in-
terestingly, the short (0.1 s) sequences that characterize low-frequency contexts
are on the order of the average segment length in the corpus, while the longer
context sequences that characterize frequent contexts are closer to a typical
syllable length. This means that, to emulate human performance, the context
model should consider context somewhere between 0.1 and 0.5 s. The next sec-
tion describes a more fully elaborated production model that makes use of this
fact.

4 Experiment 2

Experiment 2 was designed to test whether frequency-of-context effects like
those observed in Experiment 1 could actually drive historical acoustic changes
and differences in production latency. A version of the Context Sequence model
described in Section 2 was constructed to generate segment-level exemplars.
We then observed its production of segments corresponding to a long string
of syllables whose composition and frequency were determined by a grammar
that was external to the production model (i.e., the model only had access to
segment-level information). The exemplar memory on which production was
based consisted of the segments that had been produced so far at a given point
in the simulation. At the beginning of the simulation, segments were produced
based on predefined, default sequences. As the exemplar memory grew, produc-
tion came to rely on the segments that had previously been produced and added
to the memory. Each production involved a subtle systematic distortion of the
exemplar on which it was based, resulting in gradual category change over time.
Of interest was whether patterns of acoustic variability and exemplar selection
emerged that were specific to the frequency of the contexts in which segments
occurred. Our predictions were that, relative to (the same segments in) infre-
quent contexts, segments produced in frequent contexts would (1) be produced
more quickly and efficiently, requiring consideration of fewer exemplars in de-
termining which acoustic forms were appropriate for the current context, (2)
more often involve selection of exemplars that were originally produced in the
same syllable currently being produced, and (3) diverge more quickly over time
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from the original, default forms.

4.1 Acoustic, linguistic data

As in Experiment 1, the acoustic memory sequence consisted of a slowly-varying
multidimensional signal that represented the amplitude envelope of speech across
different frequency ranges. It was not feasible to use actual segments or enve-
lope patterns derived from actual productions in this experiment, however. As
discussed in section 2.2, the effects predicted above generally assume that the
expected similarity of different-type segments is zero. While this might be true
on average within an inventory, the distribution of cross-category similarities
is highly nonuniform and asymmetrical, since there are very similar and very
dissimilar pairs of sounds. Over the wide variety of syllables and syllable se-
quences in a language, effects of these nonlinearities on the selection of specific
segments in specific contexts would be expected to wash out on average, reveal-
ing overall effects of frequency like those seen in Experiment 1. Furthermore,
close examination of selection patterns across groups of similar contexts in an
appropriately large-scale simulation might be enlightening with respect to the
apparent phonotactic and featural relations in a language. Since this experi-
ment was designed to model very slow changes in one set of sounds over time,
though, computational (and data) limitations necessitated simulation of a small
subset of the entire language. For this model, realistic segment-to-segment sim-
ilarity asymmetry resulted in artifacts that were large compared to the patterns
of interest. Therefore, the acoustic properties of (default versions of) segments
in the model were generated using a random process that was closely linked to
patterns observed in the corpus but allowed for a more uniform distribution of
acoustic content. Likewise, to avoid idiosyncrasies related to correlations be-
tween syllable type, content, and position in a word or phrase, syllables were
composed of random segments and selected for production based on an artifi-
cially created probabilistic grammar that approximated a scaled-down version
of a human language.

Twelve unique segments were defined at the beginning of the simulation.
Each segment was a 200 ms, 4-dimensional sequence representing temporal en-
velopes in four logarithmically spaced frequency bands ranging from 80-8000 Hz.
In each dimension, the default envelope for a segment was generated by summing
10 sinusoids with random phase and frequency between 5 and 30 Hz. Individ-
ual frequencies were taken from a probability distribution that was created by
scaling the modulation spectrum of the corpus (estimated from 100 randomly
selected utterances) within this frequency range. Sequences were sampled at
300 Hz and normalized to a total power of 1.0.

These segments were combined at random to form 200 unique three-segment
syllables. During the simulation, production was “planned” at the syllable level,
based on a probabilistic syllable grammar that dictated that about 60 percent
of the productions would involve the four most frequent syllables. This was
intended to represent the fact that the top few percent of syllable types in a
language typically represent a majority of total tokens (Levelt and Wheeldon,
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1994). It was approximated by first randomly generating a 200 × 200 syllable
transition probability matrix and then simply multiplying four of the rows by
73.5 before normalizing the columns to sum to one. In generating the segmental
content of the syllables, a constraint was imposed that each of the segments
occurred exactly once in one of the four frequent syllables. This is critical
in ensuring that any averaged differences in segment productions relating to
syllable frequency are really driven by context and not simply a result of segment
frequency, due to segments themselves occurring more often (or only) in one
syllable type.

As described in section 2.1, the segment context comparisons considered
both left (acoustic) and right (“linguistic”) context information. Linguistic in-
formation (the names of segments to be produced) also took the form of a mul-
tidimensional signal sampled at 300 Hz with segments of 200 ms length. Twelve
dimensions corresponded to the twelve possible segments; a segment name was
encoded by adding a rectangular window the length of the segment and total
power 1.0 in the appropriate location and dimension and setting the signal to
zero elsewhere. Of course, the details of this implementation had no practical
effect on the working of the model in the simulations described here, since each
segment comparison resulted in either a perfect or zero match. However, it was
intended to represent the parallel encoding of abstract (linguistic) and acoustic
information in sequences of a similar type that may be compared in a similar
way. This similarity will be important in further, more realistic simulations
where segment identity and temporal location are represented stochastically.

4.2 Procedure

A sequence of 6000 syllables was specified for production, based on the tran-
sition probabilities defined by the grammar (the first syllable was selected at
random). The model was then prompted to produce the resulting 18000 con-
stituent segments in order. Production by the model progressed at the segment
level (and used only segment-level information) based on selection from previous
productions, in the following manner. Each time a segment was produced, a
cloud of acoustic exemplars was first generated. Starting with the most recent,
each previous production of the target segment was assigned a context-match
score, reflecting how similar the context in which the exemplar was originally
produced (previous acoustic and following linguistic) was to the current produc-
tion context:

c-match(t0, te, na, nl, ne) = exp{
DA∑
d=1

Ad,te−na:te−1 ·Ad,t0−na:t0−1

+
DL∑
d=1

Ld,te+ne:te+ne+nl
· Ld,t0+ne:t0+ne+nl

}
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where Ld,m:n = (Ld,m, . . . , Ld,n)T (and analogously for A); A refers to the
DA-dimensional acoustic memory sequence; L is the DL-dimensional linguistic
sequence; te and t0 are beginning indices of the exemplar under consideration
and the segment currently being produced; na, nl, and ne are the lengths of the
left (acoustic) and right (linguistic) sequences considered and the length of the
target segment. As described above, DA (the number of frequency bands) was
4 and DL (the number of segments) was 12; na and nl were both set to two
segments, or 120 samples (400 ms) of information.

The matching process proceeded in this way until the summed scores of the
tokens considered so far exceeded a constant threshold value. This threshold
was set somewhat arbitrarily to 403 (=exp(1.5*( na + nl))), a value that was
observed to result in substantial numbers of exemplars (more than a dozen) even
in cases where there were very recent close context matches. If the beginning
of the memory was reached before this threshold was met, the original, default
version of the segment was selected. This occurred only near the beginning of
the simulation. Otherwise, an exemplar was selected at random from the cloud,
with probability proportional to its context-match score.

Production involved a systematic degradation of the acoustic content of the
selected exemplar. As with the acoustic material itself, this degradation process
was somewhat arbitrary and abstract, since using, for example, actual coarticu-
lation patterns observed in the database would introduce artifacts related to the
specific patterns introduced. It was intended to represent the types and degree
of distortions that occur in lenition during speech production: amplitude infor-
mation is shifted in time, with an eventual potential loss of the highest frequency
modulations (due to the sampling rate). Most critically, it had the effect that re-
peated distortions resulted in progressively lower similarity (as measured by the
context match function) of a sequence with its original, default version. That is,
the process was unidirectional. This provided a measure of absolute variability
or distortion over time, making it possible to compare patterns across time for
the same segment in different contexts. The distortion consisted of warping the
acoustic pattern for each segment in each dimension slightly to the right (the
choice of direction was completely arbitrary), by adjusting the time scale t:

warp(t) = t× [(1− w) + w
t

ne
]

where w is selected—separately for each dimension—from the positive half of a
normal distribution with mean 0 and standard deviation 0.01, and then resam-
pling the acoustic pattern according to this adjusted scale4. Figure 5 demon-
strates the cumulative effect of multiple applications of the distortion process
on one dimension of one segment used in the simulation.

Following this distortion process, the produced sequence was simply ap-
pended to the end of A, and the linguistic material was appended to the end of

4A cubic spline interpolation method was used to calculate the values for the 60 samples
of the resulting segment representation in each dimension.
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L. Finally, both sequences were multiplied by the constant value 0.999, simulat-
ing the decay of memory over time. The result of this decay was that, all other
things equal, more recent exemplars were preferred over more distant ones.

4.3 Results and discussion

Figures 6-10 summarize the selections made by the model over time. In these
figures, the plotted lines represent raw values for each production, smoothed
by convolution with a hamming window of length 160 (infrequent) or 240 (fre-
quent) consecutive productions, while the x axis represents the actual position
of the production in the simulation.5 In all of the figures, there is a transition
period of about 5000 productions followed by a more stable period where differ-
ences between frequent and infrequent productions can be observed. The initial
period corresponds to a stage where the model had insufficient data to make
productions based on exemplar selection and relied at least part of the time on
the initial, default versions of segments. It might be thought of as representing,
in a limited sense, the period immediately after a sound change (or a sound) is
introduced in a language, but the effects predicted based on exemplar selection
relate mostly to the second, longer period. Critically, none of the productions
ever explicitly referenced the syllable or higher levels of organization related to
the context, and default segments were never used after about the first 5000
productions.

While syllables were not explicitly referenced, though, exemplars were se-
lected as if they were, at least for the four frequent syllables. Figure 6 shows
the proportion of times that the exemplar that was selected for production orig-
inally occurred in the same syllable context as the current production context.
In line with prediction (2) above, segments in frequent syllable productions were
almost always derived from productions in the same syllable context—effectively
resulting in syllable-level productions. These same segments, though, were al-
most never chosen appropriately for context when the context was less frequent.

Figures 7-9 demonstrate three important patterns that are closely related to
this observation. Figure 7 shows the size of the exemplar clouds from which seg-
ments were selected, Figure 8 shows the recency (number of productions back) of
the exemplar that was actually selected, and Figure 9 shows the context-match
value corresponding to the selected exemplar. Frequent syllable contexts tended
to involve smaller clouds (due to higher average context-match scores) that were
dominated by a few relatively recent productions of the same syllable. This can
be thought of as representing quicker, more efficient selection of exemplars in
frequent contexts, since fewer comparisons were required.

As a result, there was a shorter average time between the production of
a segment and its “recycling” by selection in another production in frequent

5This is not identical to smoothing over time, since frequent and infrequent items were
interleaved randomly; however, it demonstrates the critical trends in a more detailed manner
than, for example, binning data into discrete time blocks. The difference in the length of the
smoothing window was required to equate for the typical timing of productions, since frequent
syllables accounted for 50% more of the total productions than infrequent syllables.
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compared to infrequent contexts, allowing the acoustic distortion process to
compound faster for segments in frequent syllables.

The end result of this compounding process is demonstrated in Figure 10,
which shows the similarity (summed dot product) of segment productions with
their original, default forms over time, along with the local variability associated
with this match. As shown in Figure 10, syllables diverge from their default ver-
sions faster, and with somewhat more variability, in frequent than in infrequent
contexts. It is important to remember that the two plots represent productions
of the same six segments in the same average proportions, differing only in the
contexts in which they occurred. Thus, it is possible to approximate the effects
of syllable-level selection simply by taking local acoustic context into account in
a realistic way during segment-level selection, a process that must occur anyway
for proper exemplar selection.

5 General Discussion

It is well known that context is important in characterizing the perception and
production of speech sounds. In this study, we set out to quantify this im-
portance in the context of an exemplar-based production process, estimating
how much acoustic context must be considered in order to select segment-level
tokens that are optimally appropriate for their surroundings (Experiment 1).
Making estimates from a large single-speaker corpus, we found that up to about
1 s of surrounding context (0.5 s preceding and 0.5 s following) was useful in
determining the acoustic shapes of phoneme categories. We then described a
model of how knowledge of typical temporal patterns in speech might guide
production, in which segment exemplars are selected one at a time based on
their appropriateness for the evolving context, and observed (Experiment 2)
that this incremental context-based selection process accounts for observations
that are often assumed to implicate an explicit link between discrete segment
and syllable levels of a linguistic hierarchy. Although there was no reference
to a syllable level in the model’s selection process, segments produced as part
of more frequent syllables were selected more efficiently and gradually took on
context-specific patterns, becoming more variable and more affected by leni-
tion processes than the same segments produced in less frequent contexts. This
demonstrates that observed syllable frequency effects in production do not nec-
essarily imply “the existence of syllabic units” (Cholin et al., 2006). As such,
it provides some support for the notion that usage-based accounts of speech
offer more parsimonious accounts of production than models which require dis-
crete levels such as the syllable, since the additional assumptions required by
the model (like context-dependent selection) are based on empirical observation.
Another important feature of the Context Sequence account is that it provides
some (rather strong and probably overly simplistic) hypotheses about the time
course of phonetic processing that can be tested experimentally. These two
outcomes are discussed further in the following sections.
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5.1 Units, levels and categorization in a memory sequence
model

The results of Experiment 2 highlight the power of usage-based models in gen-
eral, demonstrating that segment-level patterns of co-occurrence can account
for effects usually assumed to require a syllable level. This is not to say that
all linguistic phenomena derive from an acoustic level of analysis; certainly any
efficient processing of the speech signal would require reference to categories
that span more time than a segment, for example. At the same time, by assum-
ing phoneme category labels and the segment level of representation we have
already imported a significant amount of structure from traditional phonologi-
cal theory. Although this was intended as a computational (and explanatory)
convenience, it is important to consider what types of units or levels a memory
sequence account like the one described here would actually require. We do not
have sufficient data to propose a detailed theory, but will suggest that the same
memory sequence might be referenced simultaneously by category labels at dif-
ferent time scales, and that segmentation in general might be more data-driven
than the result of a predefined hierarchy. Some pilot experiments suggest that
a useful segmentation approach may follow straightforwardly from the types of
direct signal envelope comparisons described in Experiment 1. We have consid-
ered match sequences similar to those portrayed in Figures 2 and 3, but where
the total match of a probe sequence with an entire memory is measured as a
function of the length of the sequence as more and more information is added to
its right side. The derivative of such a function can be thought of as a measure
of how likely or predictable each bit of new information is given the preceding
portion of the probe sequence, and its inverse might be considered a measure
of “boundariness,” or how likely each point is to represent a juncture between
functional units with separate category labels. Since transitions between acous-
tic events that occur at traditionally described (word, syllable, phrase, etc.)
boundaries are probably less likely than those occurring within these units (cf
Saffran et al., 1996, 1997, 1998, Hay et al., 2003), we thus considered what type
of segmentation might result from simple acoustic comparisons in context. In a
variety of experiments using both envelope representations like those discussed
here and more symbolic sequences involving phonological features, and con-
sidering data from several different speech corpora, we generally observe that
at least syllable and word boundaries tend to coincide with local maxima in
“boundariness” sequences defined in this way. Further research will be required
to determine whether this type of segmentation, along with a complementary
categorization process, could result in a comprehensive Context Sequence-like
account of phonological, and perhaps higher-level, processes. These results do
suggest, though, that if “holostic gestural scores” are in fact remembered and
used in the production of speech (Levelt and Wheeldon, 1994), such patterns
may not need to reference the syllable, or even the whole word or other units
that have a strictly hierarchical origin (e.g. Levelt et al., 1999). Although they
might often coincide with these levels, their independent status could be driven
by the repeated production of sequences of gestures more generally.
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Also related to the issues of segments and segmentation, the Context Se-
quence model as described here does rely on the presence of categories and
category labels—even if they do not (always) correspond to invariant, tradi-
tionally assumed levels such as the segment or syllable. This of course implies
mechanisms for forming categories and for assigning category labels to newly-
perceived exemplars. It was not necessary to specify such mechanisms in the
simulations described here, since they only involved selection of existing cate-
gories from memory. In providing a framework for taking context into account
during exemplar comparison, though, the Context Sequence account does have
important implications for existing approaches to categorization and learning.
A central question in second language phonetic research, for example, is how
categories from multiple languages that occupy similar or overlapping regions
of acoustic space can be simultaneously maintained (identified and produced
successfully) by language users (e.g. Flege, 1995). The assumption that sounds
are always considered as part of a surrounding context provides a framework for
studying some aspects of this question, and results in some concrete predictions.
The success with which a non-native contrast can be made, for example, should
depend not only on the similarity of the sounds involved to each other and to
native categories and the speaker’s overall proficiency, but also on the speaker’s
exposure to the specific context in which the L2 sound is being presented, and
on the distinctiveness of contexts in which the sounds typically occur from se-
quences in the the speaker’s L1.

5.2 Model parameter settings, context frequency differ-
ences and diffusion

The results of both simulations were generally robust to a range of settings re-
garding stimulus specifications and encoding, parameter values, etc. In Experi-
ment 2 for example, moderate changes in the numbers of syllables and segments,
the match criteria, and the forgetting and warping constants in the model af-
fected the time trajectory of the trends seen in Figures 6-10 in predictable
directions (e.g. larger inventories or less warping caused the patterns to be
stretched in time), but the overall pattern of effects remained the same. One
trend that was surprisingly stable across different settings was the small size
of the frequency-based acoustic divergence and variability effects (as in Figure
10) relative to the other frequency effects observed in Experiment 2. This was
because the effect shown in Figure 10 was an indirect product of the selection of
more recent, more context-appropriate exemplars in frequent syllables and not
a deterministic process. There was substantial “cross-pollination” of segmental
acoustic forms across syllable contexts, mostly from frequent to infrequent con-
texts, causing the divergence from the default form in infrequent contexts (left
panel of Figure 10) to progress much more quickly than it would have if all of the
exemplars had been selected from infrequent original contexts. It was possible
to encourage selection from infrequent contexts for these productions by greatly
increasing the influence of very close context matches (for example by scaling
the context-match score exponentially), which in turn dramatically delayed the
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degradation process for infrequent context since selected exemplars tended to
be very old ones. A model modified in this way seems unappealing, though, for
both theoretical and empirical reasons. First, it makes the model’s reliance on
acoustic rather than syllable context—and the resulting differences in lenition
over time—rather trivial, since it essentially enforces selection at the syllable
level rather than allowing it to emerge from the statistics of a more variable
selection process. Second, observed frequency effects in production, except for
some extremely frequent sequences (e.g. [@̃

�
@̃@̃
�
] for “I do not know,” Hawkins,

2003) that the current data were not intended to represent, are typically rela-
tively small compared to the total range of variation with which segments may
occur. What was observed in the present model might be thought of (in a lim-
ited sense) as something like lexical diffusion, in that alternations introduced
and primarily driven by a subset of (frequent) syllables gradually disseminate
across the syllable inventory. The important difference here is that it is only
local context consideration, and not syllable or word identity, that drives the
acceleration and more generally dictates where changes are more likely or ap-
propriate. In any case, larger simulations with more frequent and infrequent
syllable (and word, etc.) types will have to be considered to determine whether
this could account for diffusion and related processes actually observed in lan-
guage change.

5.3 Other Limitations of the Context Sequence account

Apart from not specifying identification and category-formation processes, the
Context Sequence model as described here is an incomplete account of phonetic
competence in several important respects. First, the simulation in Experiment 2
only addressed the dynamics of how knowledge of the acoustics of speech sounds
influences production, without referencing the actual articulation process. This
was not intended to suggest that phonetic knowledge is primarily acoustic or
auditory in nature (cf, e.g., Diehl and Kluender, 1989, Levelt et al., 1999); it
will be necessary to address how articulatory and motor processes relate to or
are integrated with a selection process like the one we have outlined (Guenther
and Perkell, 2004). A coherent account of these relationships will be necessary
in order to evaluate the Context Sequence selection process more completely,
and will likely require the use of articulatory as well as acoustic corpora.

Similarly, following previous exemplar-based production models (e.g. Pier-
rehumbert, 2001), we have treated acoustic variability related to lenition and
other sources simply as a uni-directional probabilistic distortion of the segmen-
tal acoustic form, ignoring the multiple, interacting sources of this variability
in actual speech production (articulation constraints, social influences, desire
to maintain contrasts, etc. Lindblom (e.g. 1990)). One obvious shortcoming of
this approach is that the repeated application of a distortion process such as
the one depicted in Figure 5 would eventually lead to more and more variable
categories over time. Pierrehumbert (2001) addresses this problem by imple-
menting a category entrenchment mechanism whereby productions are based
on weighted combinations of several existing exemplars rather than a single ex-
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emplar. The addition of such a feature might make the results of Experiment 2
more realistic (i.e. the increased variance over time shown in Figure 10 would be
decelerated while the frequency differences would persist). On the other hand,
a more realistic representation of the constraints on the distortion process itself
(for example, by introducing an additional process that deflects the exemplar
from neighboring categories) might also contribute to the preservation of sharp
category distributions during language change.

Relatedly, we have modeled context effects in production simply as prob-
abilistic selection of exemplars based on context similarity, ignoring the sepa-
rate contributions of mechanical constraints on articulation and more arbitrary,
language-specific patterns of variability in determining “context appropriate-
ness”. While we would be careful not to implicate any model of phonetic
knowledge in describing effects that are readily explained by physical mech-
anisms (e.g., Browman and Goldstein, 1992), it may not be interesting or even
possible to separate these different influences in specifying the acoustic output,
since they work and probably evolved in parallel. At the very least, it is read-
ily observable that languages differ in the types and degree of—and perceptual
compensation for—coarticulation (Beddor et al., 2002). Thus, while some as-
pects of context-dependence are certainly deterministic, phonetic knowledge of
the type modeled here is necessary to determine which processes lead to actual
language change.

Finally, one dimension of the speech signal that is often discussed as “in-
dexical” information very likely to be stored in detail is fundamental frequency
(Goldinger, 1996). Since the envelope-based acoustic representations consid-
ered here do not encode this property (or many others), it could certainly be
criticized as not including all of the acoustic details that are needed to specify
phonetic exemplars. This probably had little effect on the simulations described
here, since they were mostly concerned with productions of a single speaker, but
it is almost certain that f0 and other, fine structure information play a role in
detailed memory for speech.
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(2003). Restricted unlimited domain synthesis. In Proceedings of Eurospeech-
2003 (Geneva), pages 1321–1324.

25
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6 Figure captions

Figure 1. Determination of the context-match value by which a single segment
exemplar is weighted for selection during speech production. The appropriate
shape of the [g] in the phrase “colorless green ideas” currently being produced
(center) is being estimated by comparing the just-produced acoustic context
matchA and planned immediately following linguistic context matchL with the
acoustic information A preceding, and linguistic information L following one
exemplar of [g] (circled) in memory.
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Figure 2. Hypothetical distributions of similarity between arbitrary segment
sequences in a temporally ordered acoustic memory with the sequence centered
around a given target segment, depending on the segment category and the fre-
quency of occurrence of its surrounding context as described in Section 2. The
x axis gives the size of the context in segments. For example, a context size of
4 corresponds to 2 segments before and 2 segments after the probe. The y axis
shows the cumulative similarity, the summed product of pairs of vectors with
zero mean and variance. Different phoneme type comparisons (left panel) repre-
sent similarity between independently selected vectors, while for same phoneme
type comparisons (right panels) the portions corresponding to the target seg-
ment were identical between the two vectors. For same-category vector pairs
with frequent contexts (middle panel), values corresponding to an additional
five segments adjacent to the target were held identical. The shaded areas rep-
resent expected 20th and 80th percentiles in the similarity score distribution;
the dotted lines show the 90th percentile, representing matches that would likely
dominate a selection process.

Figure 3. Sample match functions from Experiment 1. The x axis gives the
size of the context in seconds. For example, a context size of 0.4 seconds corre-
sponds to 0.2 seconds before and 0.2 seconds after the probe. The y axis (scale
is arbitrary since it depends on the scaling of the signals in memory) represents
Mnmax scores (see Section 3.2). As in Figure 2, the left panel represents com-
parison across phoneme types and the right panels show same-phoneme-type for
(frequent- and infrequent-context) comparisons. Thin gray lines represent indi-
vidual match curves for arbitrarily selected tokens, and the dotted line shows
the mean of the top 10% of matches for each segment.

Figure 4. The same-type match advantage (with standard errors reflecting
the 50 items of each type considered) at different context sizes

Figure 5. Sample segment envelope (see text) in default form, after applica-
tions of time-warping distortion.

Figure 6. Proportion of exemplars that were selected from memory sequences
involving the same syllable currently under production.

Figure 7. Size of the exemplar cloud (number of segments) considered for
selection.

Figure 8. Age of selected exemplars at the time of production.
Figure 9. Absolute context-match value corresponding to selected exemplars.
Figure 10. Correlation of produced segments with the original default ver-

sions over time (left) and variance of this measure (right) over a window of 80
(infrequent) or 120 (frequent) productions. Variance was computed normalizing
by the sample size (80 or 120), n, rather than n − 1, so that the overall value
was not affected by the different window sizes.
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