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Abstract

In the last ten years or so, exemplar the-
ory has enjoyed much growth in the field
of phonetics. More recently, attempts have
been made to apply exemplar theory to syn-
tactic phenomena. Thus far, the issue of
unifying phonetic and syntactic exemplar-
theoretic models has not been addressed.
This paper presents a single over-arching
exemplar-based model of constituent inter-
actions across both linguistic domains which
represents a significant first step towards a
unified account of exemplar theory. Our
simulations for one phonetic and two syn-
tactic phenomena provide insights into how
a unified account can be achieved. In ad-
dition, the phenomena we investigate shed
light on the role of prototypes in exemplar
theory and on whether exemplar clouds are
defined by a fixed radius or by a fixed num-
ber of nearest neighbors.

1 Introduction

Exemplar-theoretic models are among the most suc-
cessful in explaining human categorization (Nosof-
sky, 1986; Nosofsky and Zaki, 2002). There is
also an increasing body of work applying exemplar-
theoretic models to phonetic phenomena (Goldinger,
1997; Johnson, 1997). Recent research in speech
perception has provided considerable evidence in-
dicating that the perception process is partly fa-
cilitated by accessing previously stored exemplars
rich in phonetic detail. That is, speakers accumu-
late exemplars over time and compare input stimuli

against them. Exemplars are categorized into clouds
of memory traces with similar traces lying close to
each other while dissimilar traces are more distant.
Exemplar theorists posit that language comprehen-
sion and production are achieved via operations on
these stored traces. Thus, when a new exemplar is
encountered it is classified on the basis of its simi-
larity to previously stored exemplars.

The appeal of exemplar models is that they ex-
plain a number of phenomena that can pose prob-
lems for more abstractionist models. These phenom-
ena include the detailed episodic memory of linguis-
tic events that humans retain; the gradual change of
categories in one speaker (as opposed to the speech
community) in historical language change (Pierre-
humbert, 2001); the plasticity of phonological cate-
gories (Norris et al., 2003) and frequency effects in
phonetics (Jurafsky et al., 2001) and syntax (Bybee,
2006).

Our main contribution in this paper is that we
present a unified exemplar model that explains pho-
netic as well as syntactic phenomena. The key in-
novation of the model is that it explicitly formal-
izes the relationship between exemplars on thecon-
stituent level and exemplars on what we call the
unit level. Constituents are segments (e.g. conso-
nants and vowels) in phonetics, and words in syntax.
Units are syllables in phonetics, and phrases or sen-
tences in syntax. Our simple hypothesis is that there
is a competition between the submodel of the con-
stituent level and the submodel of the unit level and
that the unit submodel “wins” if the unit exemplar
receives enough activation. A similar relationship
between constituents and units holds in other mod-



els (e.g. Adaptive Resonance Theory (Grossberg,
2003)), but to our knowledge the model we present
here is the first that explicitly models constituency
in exemplar theory.

It is also worth noting that our competition model
is in keeping with dual-route theories of speech en-
coding where linguistic events frequently encoun-
tered by speakers are processed in a different man-
ner to those which occur infrequently (Levelt and
Wheeldon, 1994). In essence, a direct-route produc-
tion corresponds to the production of a stored plan
(e.g. a stored syllable plan in a mental syllabary)
and an indirect route corresponds to a production-
via-assembly mechanism. The intuition here is that
direct-route encoding represents intelligent storage
of high frequency forms and is likely to facilitate
efficient error free production. Empirical evidence
for a dual-route hypothesis comes from differences
in duration between high and low frequency speech
forms, with high frequency forms having shorter du-
rations than lower frequency cognates (Varley and
Whiteside, 1998).

We will show that this simple competition model
explains three different phenomena. The first phe-
nomenon is variation in syllable duration, a phonetic
phenomenon. The other two phenomena are syntac-
tic: the grammaticalization ofgoing to in English
and the emergence of the notion of grammaticality
in child language acquisition. Up to now little work
has been carried out on formal exemplar-based syn-
tactic models as it was unclear how infinite produc-
tivity could be achieved (but see Section 6).

One of the important theoretical questions in ex-
emplar theory concerns the status of prototypes,
where a prototype represents an extant exemplar, or
an exemplar representation, which holds a special
status of being indicative of the category. It has of-
ten been argued that a purely exemplar-theoretic ac-
count, i.e. one where prototypes are not employed,
fails to explain a number of observations in human
categorization (e.g., during early learning of a cat-
egory, (Smith et al., 1997)). The model proposed
here is strictly exemplar-theoretic without any pro-
totype component. We will show that for the three
phenomena that we are concerned with, prototypes
are not needed.

Finally, we address in this paper how exemplar
clouds are formed. An exemplar cloud can be de-

fined as either thek nearest neighbors around a stim-
ulus or as all exemplars that have a distance of at
most d from the stimulus, wherek and d are pa-
rameters. We refer to these two types of exemplar
cloud asnearest-neighbor andradius-based. We ar-
gue that for the two syntactic phenomena we con-
sider, radius-based exemplar clouds are needed.

The paper is structured as follows. Section 2 in-
troduces the unified exemplar-theoretic model. In
Section 3, we use the unified model to explain vari-
ation in syllable duration in phonetics. In Section 4,
we model the grammaticalization ofgoing to as a
future auxiliary in English. Section 5 applies the
model to the acquisition of grammaticality. Sec-
tion 6 discusses our experimental results and related
work and Section 7 offers some future directions.

2 Exemplar-theoretic model

The architecture of the unified model is shown in
Figure 1. The model has five components:

• A generation/perception component. This
component generates (possibly underspecified)
unit exemplars that serve as stimuli for the
model. It is is either instantiated by a speaker
different from the one that we are modeling (as
when grammaticality judgments are modeled)
or as the part of the cognitive system that deter-
mines which words or phrases are to be gener-
ated next. The unit exemplarbig is an example
for the latter case in the figure.

• An exemplar model on the unit level. The
unit exemplar model retrieves all exemplars
that are within a distance of at mostdu from
the stimulus. If the activation the stimulus re-
ceives is above a threshold, then inference will
be based on this unit exemplar cloud.

• An exemplar model on the constituent level.
Operating in parallel with the unit level exem-
plar model, for each constituent of the stimulus,
the constituent exemplar model retrieves all ex-
emplars that are within a distance of at most
dc from that constituent. If the stimulus does
not receive sufficient activation in the unit ex-
emplar model, then inference is based on the
resulting constituent exemplar clouds.



syllable duration grammaticalization grammaticality

stimuli syllable to be produced phrase (in perception) phrase (in perception)
constituents segments words words
constituent representation acoustics, duration word representation, left context, right context, tense
similarity of constituents sum of similarities of the components of the representation
units syllables phrases phrases
unit representation sequence of constituents
similarity of units sum of similarities of the constituents of the units
exemplar-based inference duration of syllable future tense grammaticality of novel phrase

Table 1: Components of the unified exemplar-theoretic model.

• An inference component. The inference com-
ponent takes an exemplar cloud and infers a
property of the stimulus from its nearest neigh-
bors in the exemplar database. For example,
the duration of a syllable is computed as the av-
erage duration of the members of its exemplar
cloud.

• Parser and composer(not shown in the fig-
ure). Implicit in this model is a mechanism that
parses a unit into its constituents and composes
a sequence of constituents into a unit. This
component is different for each of the three in-
stantiations of the model. For example, the du-
ration of a unit is equal to the sum of the dura-
tions of its constituents. The tense of a phrase
of the form going to walk is the tense of the
constituent wordgoing.

Table 1 shows how the unified model is instanti-
ated in the phonetic and in the two syntactic models.
The following sections describe these instantiations
in more detail.

Our methodology in this paper is to model the
input data in a particular linguistic scenario (artic-
ulation, language change or language acquisition),
present the model in Figure 1 with these input data,
and then compare the predictions of the model with
the outcome that was observed in the linguistic sce-
nario.

3 Variation of syllable duration

In an exemplar model of speech production, ex-
emplars serve as targets or plans of articulation.
Schweitzer and Möbius (Schweitzer and Möbius,
2004) note that speakers should have a significant

number of exemplars for high frequency syllables,
which would then act as a production target region,
and a small or negligible number of exemplars for
low frequency syllables. Consequently they argue
that low frequency syllables would have to be com-
puted online from exemplars of their constituents.
They predicted, and observed, greater variation in
duration for frequent syllables than for infrequent
syllables.1 The first simulation tests whether we can
reproduce these experimental findings.

Assumptions. The model is based on two as-
sumptions. First, we assume that syllables have a
wide range of different frequencies, with frequent
syllables being several orders of magnitude more
frequent than infrequent syllables. For the experi-
ment, we choose a factor of 100, which we found to
be not uncommon in previous work (Müller et al.,
2000; Müller, 2002).

Secondly, previous resarch has shown that a sig-
nificant part of the variation in syllable durations can
be explained by variation in the duration of their
constituent segments (van Santen and Shih, 2000).
Our interpretation of this finding is that, unless a syl-
lable is produced as a whole (in the way suggested
by Schweitzer and Möbius’s model for frequent syl-
lables), a syllable’s duration is closely approximated
by the sum of the durations of its constituent seg-
ments.

Stimuli. Stimuli were syllables of the form CVC

1Note that Schweitzer and Möbius (2004) found that z-
scores of frequent syllable durations were more variable than
z-scores of infrequent syllable durations. We interpret this here
to mean that frequent syllables are more variable in duration
than infrequent syllables. We are currently conducting further
analysis of their data to confirm the validity of this interpreta-
tion.



Figure 1: Architecture of the unified model. Example: The exemplar-theoretic inference process starts with
the desire to articulate the wordbig. The exemplar cloud ofbig is computed in the unit (in this case: syllable)
database. An exemplar cloud for each of the segments ofbig is also computed in the constituent (in this
case: segment) database. The desired inference (in this case: duration) is then computed on the exemplar
cloud(s) that were chosen based on greatest activation (unit vs. constituent).

where C was one of five consonants and V one of
five vowels (for a total of 125 syllables). For each
segment (phone) the acoustic properties are mod-
eled as a randomly generated two-dimensional vec-
tor, and the duration value stored in a single dimen-
sion. The similarity of two segments or constituents
was computed as the sum of the similarities of their
acoustic vectors and their durations. For vector sim-
ilarity, we employed the cosine, for duration similar-
ity an exponential transformation of difference:

sim(~v, ~w) =

∑

i viwi
√

∑

i v
2
i

√

∑

i w
2
i

sim(x, y) = e−α(|x−y|)

wherex andy are durations andα = 0.05. α was
chosen to give good sensitivity for typical lengths
of consonants and vowels. Durations of syllables
in the seed set were chosen to be 280 ms (but see
Section 7), distributed in a ratio of 1:2:1 over the
three constituents CVC. These numbers were chosen
because 70 ms is a typical duration for a consonant
and 140 ms is a typical duration for a vowel. The 125
syllables types were randomly assigned to either the
frequent or the infrequent subclass.

Procedure. The unit exemplar database was
seeded with 500 syllables. In all instantiations of
the model, when a unit is added to the unit database,
its constituents are simultaneously added to the con-
stituent database.

We then ran 5000 iterations of a production-
perception loop. Each iteration consists of randomly
picking one of the 125 syllable types. If the type
is rare, then with with probability 0.99, it is dis-
carded and a new syllable type is generated. For
the constituents of frequent syllables and infrequent
syllables that survive the elimination step, acoustic
vectors are generated (slightly perturbed, using uni-
form noise, from the canonical vector of a conso-
nant or vowel to reflect variation in (planned) artic-
ulation). We then retrieve the syllable’s and con-
stituents’ nearest neighbors in the unit and con-
stituent databases respectively, within a fixed radius.
If activation in the unit database is below the thresh-
old θ1 (i.e., there are fewer thanθ1 exemplars in the
cloud), then the unit cloud is discarded, and the three
neighborhoods in the constituent database are em-
ployed instead. The target duration of an exemplar
is inferred to be the average duration of the mem-
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Figure 2: Experimental results for variation of sylla-
ble duration. Infrequent syllables (dashed line) have
lower variability in duration than frequent syllables
(solid line).

bers of its cloud. Finally, random noise proportional
to the computed duration is added. The choice of the
radius parameters and ofθ1 will be discussed below.

After the syllable with the inferred duration has
been produced, it is added to the exemplar database.
This part of the procedure models a production-
perception loop, either on the individual or the com-
munity level: every produced exemplar becomes a
perceived exemplar after its production.

The final phase of the procedure consists of prob-
ing the model, in an identical manner to the initial
5000 iterations, with 10 syllables of each of the 125
syllable types. The standard deviation for the syl-
lable type is then computed on just this sample of
10 per syllable type. In the probing phase, sylla-
bles and their units are deleted after each probing
to make sure that infrequent syllables do not change
their status to frequent in this phase.

Results. Figure 2 is a cumulative histogram of
10 runs of the above experiment, corresponding to
1250 standard deviations. The model successfully
simulates the finding of Schweitzer and Möbius
(Schweitzer and Möbius, 2004): frequent syllables
are more variable in duration than infrequent sylla-

bles. This result was significant (p < 0.001, Welch
Two Sample t-test on 634 rare and 616 frequent syl-
lables).

The difference in variation arises from the inter-
action between the two submodels. Frequent sylla-
bles have enough density, so that their duration is
computed in the unit model, with noise added that
is proportional to the length of the syllable. In-
frequent syllables are compositions of constituents
that are computed in the constituent model, each
with independent noise. Therefore, the noise com-
ponents often cancel out. Over many iterations of
the production-perception loop, frequent syllables
become more variable in duration whereas the vari-
ability of infrequent syllables does not change much.

4 Grammaticalization of going to

Starting in the 17th century, the constructiongoing
to was grammaticalized in its use as a form of future
tense. We chose to model this phenomenon because
it is often used as a prototypical example of the role
frequency plays in language change.

One hypothesis is that this grammaticalization
was caused by the temporary rise in frequency of
phrases likemoving to do with the connotation of
intention and future (wheremoving is any motion
verb) (Tabor, 1994; Bybee, 2006). Additional facts
about the English of the 17th century (and today’s
English) are thatto go is the most frequently used
motion verb and that there are many more literal
uses of motion verbs (motion to a location or to an
object:went to London) than “verbal” uses likerun-
ning to meet. We will show presently that based on
these three assumptions, the unified model predicts
the grammaticalization ofgoing to as a future tense.
We begin by motivating the representation of words
in the unified model.

Representation of words.The similar syntactic
behavior of two nouns likecow and hen is not di-
rectly apparent from their pronunciation or seman-
tics. But an exemplar-theoretic account of syntac-
tic behavior requires a similarity metric wherecow
andhen are similar. Building on the ideas described
by Schütze (1995), we define left-context and right-
context components of the representation of a given
focus word, where the left (right) context consists of
a probability distribution over all words that occur



to the left (right) of the focus word and the dimen-
sionality of the vector for each word is dependent
on the number of distinct neighbors (left and right).
For example, if we have experiencedtake cow twice
and drop cow once, then the left context distribu-
tion of cow is P (take) = 2/3, P (drop) = 1/3. The
similarity of two left context distributions can then
be computed from the Jensen-Shannon divergence
(which we again transform into a similarity using
exp(−αx), here:α = 5):

0.5(DKL(P ||
P + Q

2
) + DKL(Q||

P + Q

2
))

whereP andQ are the probability distributions of
the left contexts of words 1 and 2, respectively, and
DKL is the Kullback-Leibler divergence (and anal-
ogously for the right contexts of two words). We do
not use KL divergence directly as a distance measure
because it is asymmetric and undefined if there are
words that do not occur in one of the two contexts
(because of zero probability values).

The intuition behind this representation of words
is that we remember the typical left and right con-
texts of words. Two left (or right) contexts are sim-
ilar to the extent that the distributions of words oc-
curring in them are similar.

Future and motion are represented as two different
four-dimensional vectors (as before, noise is added
each time a tense or motion vector is generated to re-
flect slight contextual differences). Finally, the word
itself is also represented as a four-dimensional vec-
tor. The similarity of two words is then computed
as the sum of the similarities of the four compo-
nents just enumerated: left context, right context,
future/motion, and word.

Stimuli. In this simulation, five different con-
structions were presented to the model. We give
an example for each:going to fetch, going to Pe-
ter, walking to fetch, walking to Peter, and Peter
fetch(es). Sentences of typegoing to fetch andwalk-
ing to fetch are either generated as future sentences
or as motion sentences. There were four moving
verbs likewalking in addition togoing, five differ-
ent non-moving verbs likefetch and five different
nouns (objects or locations) likePeter. To model
the three observations of historical English outlined
above,going was as frequent as the other four mov-
ing verbs combined; 75% ofwalking/going to fetch
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Figure 3: Experimental results for grammaticaliza-
tion of going to. Histogram for strength of future
tense in exemplar cloud for sentence typesgoing to
fetch (solid), walking to fetch (dashed) andgoing to
Peter (dotted).

sentences were generated with future, the rest with
motion; and sentences of typewalking/going to Pe-
ter were always generated with motion and twice as
likely aswalking/going to fetch sentences.

Procedure. 2000 sentences were generated ac-
cording to the distribution described. Left and right
context vectors for each word were computed for
these 2000 sentences. The model was then presented
with 30 sentences each of typesgoing to fetch, walk-
ing to fetch, and going to Peter. If activation of
the unit exemplar cloud was high enough, the preva-
lence of future tense was computed as the percent-
age of phrases in the unit exemplar cloud that were
in future tense. Otherwise the prevalence was com-
puted on the constituent exemplar cloud of the verb
(walking, going etc).

Results. Figure 3 shows cumulative histograms
for 10 runs. We assume a suitable competitive be-
havior between motion and future, so that only the
more strongly activated alternative survives. Thus
a percentage of 60% would correspond to future, a
percentage of 40% to motion.

In 99.3% of cases the future tense was not in-



ferred forgoing to Peter sentences (future inference
only occurred with activations in excess of 0.5, and
96.3% of the activations which were less than or
equal to 0.5 were 0). Forwalking to fetch sentences
the prevalence of future uses was consistently be-
low 40%, forgoing to fetch consistently above 60%.
Thus, the model correctly predicts the three key phe-
nomena that occurred in the grammaticalization of
going to: (i) going to fetch is grammaticalized as fu-
ture tense; (ii) the other moving verbs are not gram-
maticalized and instead retain their original motion
sense; and (iii) sentences of typegoing to Peter also
retain their original motion sense.

The basic mechanism responsible for the simula-
tion result is again the competition between the two
levels. Sentences of typegoing to fetch have dense
exemplar clouds due to their frequency and are pro-
cessed on the unit level. Sentences of typerunning
to fetch have sparse exemplar clouds due to their in-
frequency and are processed on the constituent level
where there is no prevalence of future uses. Sen-
tences of typegoing to Peter are not similar on the
unit level togoing to fetch because of the different
left and right contexts of (proper) nouns likePeter
and verbs likefetch.

5 Grammaticality judgements

One of the basic tasks children master when acquir-
ing a language is to distinguish between grammati-
cal and ungrammatical sentences. Rote learning is
no help in judging grammaticality because of the
productivity of language. In this section, we show
that grammaticality judgments in the unified model
can be formalized as activation of a sentence as a
unit. The reasoning is that when, on the level of
syntax, a sentence does not give rise to enough acti-
vation as a unit, but is represented by an activation
pattern of separate words, then it is perceived as un-
grammatical.

We restrict our model to a subset of three-word
sentences in the early stages of language acquisi-
tion. In particular, we do not attempt to model the
acquisition of recursive phenomena (as, e.g., (Klein
and Manning, 2004) do). While there have been
many previous models of syntax acquisition, none
has been exemplar-theoretic, to our knowledge.

It is also important to point out that the acquisi-

tion of three-word sentences is trivial for a system
that has full knowledge of syntactic categories. If
after a few hundred stimuli, only subject-verb-object
sentences have been observed and no subject-object-
verb sentences, then rote learning is sufficient to pre-
dict grammaticality for new utterances correctly.

However, the acquisition of syntactic categories
goes hand in hand with the acquisition of grammat-
icality in child language acquisition. A complete
model needs to account for the parallel acquisition
of both without assuming the prior existence of ei-
ther. Our model provides such an explanation and
does so within an exemplar-theoretic framework.

Stimuli. Using 5 different verbs and 5 different
nouns, 25 sentence types of the formI verb noun
(e.g,I love coffee) were generated and randomly as-
signed to the subclasses attested and unattested. In
addition, 25 ungrammatical types of the formI cof-
fee love were also generated. The same represen-
tation for words as in the previous experiment was
used.

Procedure. In 1000 iterations, an “attested”
grammatical sentence was generated and stored in
the model. No ungrammatical and no unattested sen-
tences were stored. An instance of each of the 25
grammatical and of the 25 ungrammatical sentences
was then presented to the model.

Results. Figure 4 shows cumulative histograms
for 10 runs. While unattested grammatical sentences
receive slightly lower activation than attested sen-
tences, they clearly are close to the distribution of
grammatical sentences. In contrast, no ungrammati-
cal sentence received any activation on the unit level.
Thus, the model distinguishes grammatical (activa-
tion > 0) and ungrammatical sentences (activation
= 0) with 100% accuracy.

The simulation successfully models the acquisi-
tion of grammaticality of three-word sentences be-
cause (i) attested and unattested sentences have very
similar representations due to similar left and right
contexts and (ii) ungrammatical sentences are dis-
similar to grammatical sentences due to different left
and right contexts. An example for the latter is that
when comparingI love coffee with I tea drink, the
left context oflove (containing the subjectI) is very
different from the left context oftea (consisting of
verbs likelove, drink andmake). Although the learn-
ing taking place here is with respect to a small subset
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Figure 4: Experimental results for grammaticality
judgments. Attested sentences (solid line) receive
slightly higher activations than unattested grammat-
ical sentences (dotted line). All 250 ungrammatical
sentences in the 10 runs received an activation of 0
(not shown).

of English, generalising to larger left and rights con-
texts should not prove problematic. In addition it is
important to note that, as with the previous two ex-
periments, the same model of unit and constituent
interaction is employed here.

6 Discussion

6.1 Abstractionist models

We have presented an exemplar-theoretic model that
makes correct predictions for three linguistic phe-
nomena. It is noteworthy that the model achieves
this without prototypes or any explicit abstraction
mechanism. At least for the three phenomena in-
vestigated here, a simple exemplar model without
prototypes seems to be sufficient. Note, in partic-
ular, that Abbot-Smith and Tomasello (2006) ex-
press doubts that a pure exemplar-theoretic model
can account for grammaticality judgments in early
child language acquisition. With respect to exem-
plar models they hold the view that each compre-
hension of an exemplar must, minimally, result in
a change in its representation (even if this is a sim-

ple recording of frequency). Furthermore, they also
propose that frequent summing over mutual similar-
ities of a particular cloud of exemplars is “highly
likely” to result in a permanent modification to the
representation which is “in some way equivalent to
the formation of some kind of more abstract repre-
sentation” (Abbot-Smith and Tomasello, 2006). In
other words, the hybrid categorization model which
they propose allows for exemplar learning and reten-
tion but also offers an abstraction mechanism where
a more abstract schema is somehow encoded in the
summed similarities. However, while the compre-
hension of an exemplar might strengthen the acti-
vation of an exemplar cloud as a whole, this does
not necessarily entail that the exemplar representa-
tions themselves have to change. Indeed, the model
presented here illustrates accurate syntactic acquisi-
tion without the need for any modification of stored
exemplars nor any form of more abstract represen-
tation. That is novel stimuli are correctly catego-
rized through direct comparison with extant exem-
plars. Thus, for the threedisparate phenomena ex-
amined above, exemplar theory appears to provide
an adequate account. While it could perhaps be ar-
gued that some form of abstraction is implicitly en-
coded in the summed similarities in our model, there
is certainly no explicit abstraction component.

6.2 Radius-based vs. nearest-neighbor models

In both production and comprehension, exemplar-
theoretic models infer the property of a stimulus
from the properties of exemplars that are similar to
the stimulus. A fundamental question is therefore
how the set of relevant similar exemplars is to be
computed. This set can be either defined as those
exemplars that are within a fixed radiusd (radius-
based model) or as the set of thek nearest neighbors
(nearest-neighbor model) whered andk are param-
eters.

We can regard the degree of activation (or reso-
nance) a stimulus receives as part of the inference
process. Activation is high if many similar exem-
plars exist. It is low if the most similar examplars
are distance or if there are only a few highly similar
exemplars. Radius-based models support a simple
definition of activation: the number of exemplars in
the relevant exemplar cloud (that is, all exemplars
that are at a distance of at mostd from the stimulus).



It is more difficult to define activation in a nearest-
neighbor model since, by definition, there are always
k nearest neighbors. One could attempt to derive
a measure of activation by weighting neighbors ac-
cording to similarity. However, the resulting model
would not be a true nearest-neighbor model, but a
hybrid that would need to specify which distances
are still considered close enough to give rise to high
weights.

The notion of activation in a radius-based model
is crucial for all three simulations presented in this
paper. In the phonetic model, even an infrequent
syllable hask nearest neighbors. Thus, when mak-
ing the decision as to whether there is enough ac-
tivation for the syllable to be produced by the unit
model, it would not be clear how to distinguish fre-
quent and infrequent syllables. In contrast, the dis-
tinction is straightforward in the radius-based model
we presented. Similarly, the difference between
the grammaticalization ofgoing to fetch vs. non-
grammaticalization ofwalking to fetch requires the
same notion of activation: The former neighbor-
hoods are “denser” because of the high frequency
of “go” compared to “walk. Finally, in the case
of grammaticality, even ungrammatical sentences
have nearest neighbors (albeit neighbors that are far
away). Again, it is not clear how grammaticality
judgments could be modeled with nearest-neighbor
clouds.

In our opinion, the experiments show conclu-
sively that neighborhoods in exemplar theory must
be radius-based as opposed to nearest-neighbor. Pre-
vious arguments in favor of nearest-neighbor clouds
were based on difficulties found in implementing
fixed-radius models (Pierrehumbert, 2001) and not
on any fundamental reasons.

6.3 Multi-level models

One challenge for exemplar theory is to explain how
exemplars of constituents interact with exemplars of
compositions of constituents into larger units. Seg-
ments and words on the one hand, and syllables and
phrases on the other hand, each give rise to exemplar
clouds at different levels. One of the key properties
of language is the interaction of such units at dif-
ferent levels. We believe that we have provided the
first exemplar-theoretic model that explicitly mod-
els constituency, either at the level of phonetics or

syntax. Furthermore, our research represents a first
step towards placing syntactic exemplar theory on a
more formal footing with explicit statements of the
assumptions of the model and the ability to test them
against data.

Up to now, the majority of exemplar-theoretic
work on syntax has been informal (e.g., (Abbot-
Smith and Tomasello, 2006; Bybee, 2006)). How-
ever, Bod (2006) has recently argued that data-
oriented parsing (DOP) is an exemplar model. There
are significant differences, however, between DOP
and standard exemplar theory. In particular, the ex-
emplar cloud in DOP is a superset of the set of all
sentences that have one or more words in common
with the stimulus. No notion of similarity between
the stimulus and one of the members of its exem-
plar cloud is defined. Hence, DOP appears to lack
features which are central to most exemplar models.
To its credit, however, no formal exemplar model
offers such a full exemplar-based account of gram-
matical productivity as DOP provides. We antici-
pate that when current informal models (e.g. those
of Bybee (2006) and Abbot-Smith (2006)) are for-
malized, much progress will be made because im-
plicit assumptions will become explicit, and predic-
tions testable against real data.

7 Future Work

One aspect of the work we have presented here
which could benefit from further examination is the
manual selection of the parametersd (the radii of the
exemplar neighborhoods) and the thresholdsθ (the
activation thresholds below which the constituent
level is chosen). Obviously, the performance of the
model depends on the values of these parameters. If
the radius in the grammaticality model is too large,
then even ungrammatical sentences will be judged
grammatical (assuming a sufficiently smallθ). How-
ever, we believe that these parameters can be esti-
mated from the distribution of exemplars. For exam-
ple, the distances of ungrammatical sentences from
the nearest neighbor are much larger than those of
grammatical sentences. We are currently exploring
density estimation as one possible solution to this
problem. In addition, although the syllable data here
are simulated, parallel work with this model, em-
ploying the Schweitzer and Möbius (2004) corpus,



has yielded z-score results in keeping with their find-
ings.
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based production of prosody: Evidence from segment
and syllable durations. InProc. of the Speech Prosody
Conference, pages 459–462.

J. David Smith, Morgan J. Murray, and John Paul Minda.
1997. Straight talk about linear separability.Journal
of Experimental Psychology: Learning, Memory, and
Cognition, 23:659–680.

Whitney Tabor. 1994.Syntactic Innovation: A Connec-
tionist Model. Ph.D. thesis, Stanford University.

Jan P. H. van Santen and Chilin Shih. 2000. Supraseg-
mental and segmental timing models in Mandarin Chi-
nese and American English.Journal of the Acoustical
Society of America, 107(2):1012–1026.

Rosemary A. Varley and Sandra P. Whiteside. 1998. Evi-
dence of dual-route phonetic encoding from apraxia of
speech: Implications from phonetic encoding models.
In Proceedings of the 5th International Conference on
Spoken Language Processing (Sydney), pages 3063–
3066.


