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Abstract

In the last ten years or so, exemplar the-
ory has enjoyed much growth in the field
of phonetics. More recently, attempts have
been made to apply exemplar theory to syn-
tactic phenomena. Thus far, the issue of
unifying phonetic and syntactic exemplar-

theoretic models has not been addressed.

This paper presents a single over-arching
exemplar-based model of constituent inter-
actions across both linguistic domains which
represents a significant first step towards a
unified account of exemplar theory. Our

simulations for one phonetic and two syn-

tactic phenomena provide insights into how
a unified account can be achieved. In ad-
dition, the phenomena we investigate shed
light on the role of prototypes in exemplar

theory and on whether exemplar clouds are
defined by a fixed radius or by a fixed num-

ber of nearest neighbors.

Introduction

against them. Exemplars are categorized into clouds
of memory traces with similar traces lying close to
each other while dissimilar traces are more distant.
Exemplar theorists posit that language comprehen-
sion and production are achieved via operations on
these stored traces. Thus, when a new exemplar is
encountered it is classified on the basis of its simi-
larity to previously stored exemplars.

The appeal of exemplar models is that they ex-
plain a number of phenomena that can pose prob-
lems for more abstractionist models. These phenom-
ena include the detailed episodic memory of linguis-
tic events that humans retain; the gradual change of
categories in one speaker (as opposed to the speech
community) in historical language change (Pierre-
humbert, 2001); the plasticity of phonological cate-
gories (Norris et al., 2003) and frequency effects in
phonetics (Jurafsky et al., 2001) and syntax (Bybee,
2006).

Our main contribution in this paper is that we
present a unified exemplar model that explains pho-
netic as well as syntactic phenomena. The key in-
novation of the model is that it explicitly formal-

Exemplar-theoretic models are among the most suizes the relationship between exemplars ondbre
cessful in explaining human categorization (Nosofstituent level and exemplars on what we call the
sky, 1986; Nosofsky and Zaki, 2002). There iaunit level. Constituents are segments (e.g. conso-
also an increasing body of work applying exemplarnants and vowels) in phonetics, and words in syntax.
theoretic models to phonetic phenomena (Goldingenits are syllables in phonetics, and phrases or sen-
1997; Johnson, 1997). Recent research in speetdnces in syntax. Our simple hypothesis is that there
perception has provided considerable evidence iis a competition between the submodel of the con-
dicating that the perception process is partly fastituent level and the submodel of the unit level and
cilitated by accessing previously stored exemplarthat the unit submodel “wins” if the unit exemplar
rich in phonetic detail. That is, speakers accumueceives enough activation. A similar relationship
late exemplars over time and compare input stimuletween constituents and units holds in other mod-



els (e.g. Adaptive Resonance Theory (Grossberfined as either thé nearest neighbors around a stim-
2003)), but to our knowledge the model we presentlus or as all exemplars that have a distance of at
here is the first that explicity models constituencymostd from the stimulus, wheré: and d are pa-
in exemplar theory. rameters. We refer to these two types of exemplar
It is also worth noting that our competition modelcloud asnearest-neighbor andradius-based. We ar-
is in keeping with dual-route theories of speech engue that for the two syntactic phenomena we con-
coding where linguistic events frequently encounsider, radius-based exemplar clouds are needed.
tered by speakers are processed in a different man-The paper is structured as follows. Section 2 in-
ner to those which occur infrequently (Levelt androduces the unified exemplar-theoretic model. In
Wheeldon, 1994). In essence, a direct-route produSection 3, we use the unified model to explain vari-
tion corresponds to the production of a stored plaation in syllable duration in phonetics. In Section 4,
(e.g. a stored syllable plan in a mental syllabaryjve model the grammaticalization gbing to as a
and an indirect route corresponds to a productiorfuture auxiliary in English. Section 5 applies the
via-assembly mechanism. The intuition here is thahodel to the acquisition of grammaticality. Sec-
direct-route encoding represents intelligent storaggon 6 discusses our experimental results and related

of high frequency forms and is likely to facilitate work and Section 7 offers some future directions.

efficient error free production. Empirical evidence

for a dual-route hypothesis comes from difference® Exemplar-theoretic model
in duration between high and low frequency speec,
n curat 9 W irequency sp 1ilhe architecture of the unified model is shown in

forms, with high frequency forms having shorter du-
rations than lower frequency cognates (Varley an
Whiteside, 1998).

We will show that this simple competition model
explains three different phenomena. The first phe-
nomenon is variation in syllable duration, a phonetic
phenomenon. The other two phenomena are syntac-
tic: the grammaticalization ofjoing to in English
and the emergence of the notion of grammaticality
in child language acquisition. Up to now little work
has been carried out on formal exemplar-based syn-
tactic models as it was unclear how infinite produc-
tivity could be achieved (but see Section 6).

One of the important theoretical questions in ex- 4
emplar theory concerns the status of prototypes,
where a prototype represents an extant exemplar, or
an exemplar representation, which holds a special
status of being indicative of the category. It has of-
ten been argued that a purely exemplar-theoretic ac-
count, i.e. one where prototypes are not employed,
fails to explain a number of observations in human e
categorization (e.g., during early learning of a cat-
egory, (Smith et al., 1997)). The model proposed
here is strictly exemplar-theoretic without any pro-
totype component. We will show that for the three
phenomena that we are concerned with, prototypes
are not needed.

Finally, we address in this paper how exemplar
clouds are formed. An exemplar cloud can be de-

gigure 1. The model has five components:

A generation/perception component This
component generates (possibly underspecified)
unit exemplars that serve as stimuli for the
model. It is is either instantiated by a speaker
different from the one that we are modeling (as
when grammaticality judgments are modeled)
or as the part of the cognitive system that deter-
mines which words or phrases are to be gener-
ated next. The unit exemplarg is an example
for the latter case in the figure.

An exemplar model on the unit level The
unit exemplar model retrieves all exemplars
that are within a distance of at mag} from
the stimulus. If the activation the stimulus re-
ceives is above a threshold, then inference will
be based on this unit exemplar cloud.

An exemplar model on the constituent level
Operating in parallel with the unit level exem-
plar model, for each constituent of the stimulus,
the constituent exemplar model retrieves all ex-
emplars that are within a distance of at most
d. from that constituent. If the stimulus does
not receive sufficient activation in the unit ex-
emplar model, then inference is based on the
resulting constituent exemplar clouds.



| syllable duration | grammaticalization | grammaticality

stimuli syllable to be produced phrase (in perception) phrase (in perception)
constituents segments words words

constituent representation acoustics, duration word representation, left context, right context, tense
similarity of constituents sum of similarities of the components of the representation

units syllables | phrases | phrases

unit representation sequence of constituents

similarity of units sum of similarities of the constituents of the units
exemplar-based inferencg duration of syllable \ future tense | grammaticality of novel phrase

Table 1: Components of the unified exemplar-theoretic model

¢ Aninference component The inference com- number of exemplars for high frequency syllables,
ponent takes an exemplar cloud and infers which would then act as a production target region,
property of the stimulus from its nearest neigh-and a small or negligible number of exemplars for
bors in the exemplar database. For exampléow frequency syllables. Consequently they argue
the duration of a syllable is computed as the avthat low frequency syllables would have to be com-
erage duration of the members of its exemplaputed online from exemplars of their constituents.
cloud. They predicted, and observed, greater variation in

) ~ duration for frequent syllables than for infrequent

o Parser and composer(not shown in the fig- gyjiaplest The first simulation tests whether we can

ure). Implicit in this model is a mechanism thatreproduce these experimental findings.

parses a unit into its constituents and composes Assumptions. The model is based on two as-

?o?r:aqgsgr?f' Og_ggn;r:;tl;sn;é?gf ?hgr:g'ee-r_?:%umptions. First, we assume that syllables have a
P IS aimrer ' ree Nvide range of different frequencies, with frequent

s;ztrl]aélfozs Icq)_ftt_heemo:letlc.) chZr ex;rr:)p;lfh,ethde (rj:éyllables being several orders of magnitude more
ratl auntis qu su u frequent than infrequent syllables. For the experi-
tions of its constituents. The tense of a phras

£ the form aoina to walk is the ten £ th ﬁwent, we choose a factor of 100, which we found to
0 (ta't 0 i going to s the tense ot e e not uncommon in previous work (Mller et al.,
constituent wordjoing. 2000: Miller, 2002).

Table 1 shows how the unified model is instanti- Secondly, previous resarch has shown that a sig-
ated in the phonetic and in the two syntactic modelgiificant part of the variation in syllable durations can
The following sections describe these instantiationge explained by variation in the duration of their
in more detail. constituent segments (van Santen and Shih, 2000).

Our methodology in this paper is to model theOur interpretation of this finding is that, unless a syl-
input data in a particular linguistic scenario (artic-lable is produced as a whole (in the way suggested
ulation, language change or language acquisitionpy Schweitzer and Mobius’s model for frequent syl-
present the model in Figure 1 with these input datdables), a syllable’s duration is closely approximated
and then compare the predictions of the model withy the sum of the durations of its constituent seg-
the outcome that was observed in the linguistic scénents.
nario. Stimuli. Stimuli were syllables of the form CVC

3 Variation of syllable duration !Note that Schweitzer and Mobius (2004) found that z-
. scores of frequent syllable durations were more variabée th
In an exemplar model of speech production, exz-scores of infrequent syllable durations. We interprét tere

emplars serve as targets or plans of articulatiorio mean that frequent syllables are more variable in dumatio

. s . .., . _than infrequent syllables. We are currently conductinghfer
Schweitzer and Mdbius (Schweitzer and IVIOb'usanalysis of their data to confirm the validity of this intezfa-

2004) note that speakers should have a significatn.



‘ Generation / Perception

Unit exemplar
e.g. big
Unit Model /
‘Unit Act > Threshold‘ ‘Unit Act. < Threshold‘ £anstitient Model

Constituent Acts.

‘ Inference on Unit ‘ ‘Inference on Constituents‘

Figure 1: Architecture of the unified model. Example: Theragtar-theoretic inference process starts with
the desire to articulate the wobiy. The exemplar cloud djig is computed in the unit (in this case: syllable)
database. An exemplar cloud for each of the segmenkigos also computed in the constituent (in this
case: segment) database. The desired inference (in thds dasation) is then computed on the exemplar
cloud(s) that were chosen based on greatest activationvingonstituent).

where C was one of five consonants and V one of Procedure. The unit exemplar database was
five vowels (for a total of 125 syllables). For eachseeded with 500 syllables. In all instantiations of
segment (phone) the acoustic properties are mothe model, when a unit is added to the unit database,
eled as a randomly generated two-dimensional veis constituents are simultaneously added to the con-
tor, and the duration value stored in a single dimenstituent database.
sion. The similarity of two segments or constituents
was computed as the sum of the similarities of their We then ran 5000 iterations of a production-
acoustic vectors and their durations. For vector sinperception loop. Each iteration consists of randomly
ilarity, we employed the cosine, for duration similar-picking one of the 125 syllable types. If the type
ity an exponential transformation of difference: is rare, then with with probability 0.99, it is dis-
carded and a new syllable type is generated. For
2 Viw; . .
—_— the constituents of frequent syllables and infrequent
\/ 22 U?\/ > wi syllables that survive the elimination step, acoustic
vectors are generated (slightly perturbed, using uni-
form noise, from the canonical vector of a conso-
wherez andy are durations and = 0.05. o was nant or vowel to reflect variation in (planned) artic-
chosen to give good sensitivity for typical lengthsulation). We then retrieve the syllable’s and con-
of consonants and vowels. Durations of syllablestituents’ nearest neighbors in the unit and con-
in the seed set were chosen to be 280 ms (but ssttuent databases respectively, within a fixed radius.
Section 7), distributed in a ratio of 1:2:1 over thelf activation in the unit database is below the thresh-
three constituents CVC. These numbers were choseld 6, (i.e., there are fewer thaty exemplars in the
because 70 ms is a typical duration for a consonawtoud), then the unit cloud is discarded, and the three
and 140 ms s atypical duration for a vowel. The 12%eighborhoods in the constituent database are em-
syllables types were randomly assigned to either thaoyed instead. The target duration of an exemplar
frequent or the infrequent subclass. is inferred to be the average duration of the mem-

sim(v, ) =

sim(z, y) = e~ (z=vD



bles. This result was significant < 0.001, Welch
Two Sample t-test on 634 rare and 616 frequent syl-
lables).

The difference in variation arises from the inter-
action between the two submodels. Frequent sylla-
bles have enough density, so that their duration is
computed in the unit model, with noise added that
is proportional to the length of the syllable. In-
frequent syllables are compositions of constituents
that are computed in the constituent model, each
with independent noise. Therefore, the noise com-
ponents often cancel out. Over many iterations of
the production-perception loop, frequent syllables
become more variable in duration whereas the vari-
ability of infrequent syllables does not change much.

150 200 250
1 1 1

number of syllable types
100
|

standard deviation in ms

4 Grammaticalization of going to

Figure 2: Experimental results for variation of sylla-Starting in the 17th century, the constructigoing

ble duration. Infrequent syllables (dashed line) havg) was grammaticalized in its use as a form of future

lower variability in duration than frequent Synab|EStense_ We chose to model this phenomenon because

(solid line). it is often used as a prototypical example of the role
frequency plays in language change.

bers of its cloud. Finally, random noise proportional One hypothesis is that this grammaticalization

to the computed duration is added. The choice of thWas caused by the temporary rise in frequency of

) : ) ehrases likemoving to do with the connotation of
radius parameters and éf will be discussed below. p . 9 - .
intention and future (wherenoving is any motion

After the syllable with the inferred duration hasverb) (Tabor, 1994: Bybee, 2006). Additional facts
been produced, it is added to the exemplar databasg,,t the English of the 17th century (and today’s
This part of the procedure models a productionEng"Sh) are thato go is the most frequently used
perception loop, either on the individual or the coMygtion verb and that there are many more literal
munity level: every produced exemplar becomes gses of motion verbs (motion to a location or to an
perceived exemplar after its production. object: went to London) than “verbal” uses likeun-

The final phase of the procedure consists of prolning to meet. We will show presently that based on
ing the model, in an identical manner to the initiakhese three assumptions, the unified model predicts
5000 iterations, with 10 syllables of each of the 12%he grammaticalization ajoing to as a future tense.
syllable types. The standard deviation for the sylwe begin by motivating the representation of words
lable type is then computed on just this sample dh the unified model.

10 per syllable type. In the probing phase, sylla- Representation of words. The similar syntactic
bles and their units are deleted after each probingehavior of two nouns likeow and hen is not di-
to make sure that infrequent Sy”ables do not Cnang@cﬂy apparent from their pronunciation or seman-
their status to frequent in this phase. tics. But an exemplar-theoretic account of syntac-

Results. Figure 2 is a cumulative histogram of tic behavior requires a similarity metric whecew
10 runs of the above experiment, corresponding tandhen are similar. Building on the ideas described
1250 standard deviations. The model successfullyy Schitze (1995), we define left-context and right-
simulates the finding of Schweitzer and Mobiuscontext components of the representation of a given
(Schweitzer and Mobius, 2004): frequent syllablesocus word, where the left (right) context consists of
are more variable in duration than infrequent syllaa probability distribution over all words that occur



to the left (right) of the focus word and the dimen-
sionality of the vector for each word is dependent
on the number of distinct neighbors (left and right). & |
For example, if we have experienctake cow twice
and drop cow once, then the left context distribu-
tion of cow is P(take) = 2/3, P(drop) = 1/3. The
similarity of two left context distributions can then §
be computed from the Jensen-Shannon divergen@;e
(which we again transform into a similarity usings - | a
exp(—ax), here:a = 5): 2

P+Q
2

250

150 200

numb

100
1

P+Q

0.5(Dgr(P|| 5

)+ Drr(Ql

)

where P and @ are the probability distributions of  _ | | | . o o o 0 teei00--

the left contexts of words 1 and 2, respectively, and " o o o o 5
Dy, is the Kullback-Leibler divergence (and anal-

ogously for the right contexts of two words). We do

not use KL divergence directly as a distance measure

because it is asymmetric and undefined if there afg9ure 3: Experimental results for grammaticaliza-

words that do not occur in one of the two contextd!o" Of, going to. Histogram for strength o_f future
(because of zero probability values). tense in exemplar cloud for sentence tygesg to

The intuition behind this representation of wordd®ch (solid), walking to feich (dashed) angoing to

is that we remember the typical left and right conFeter (dotted).

texts of words. Two left (or right) contexts are sim-

ilar FO the extent that_ the distributions of words OC'sentences were generated with future, the rest with
curring in them are similar.

. . motion; and sentences of typelking/going to Pe-
Future and motion are represented as two d|ffereni were always generated with motion and twice as

50
|

<

4
%

percent of future utterances in exemplar cloud

. . . t
four—dl.mensuonal vector§ (as beforg, noise is addq ely aswalking/going to fetch sentences.
each time a tense or motion vector is generated to re-

flect slight contextual differences). Finally, the word F;rpcedurﬁ. gQOQbsgntegces _vt\)/e;e gefr:era(tjeq ac'
itself is also represented as a four-dimensional vegording to the distribution described. Left and right

tor. The similarity of two words is then computedcomeXt vectors for each word were computed for

as the sum of the similarities of the four compo-these 2000 sentences. The model was then presented

nents just enumerated: left context, right contexﬁ{Vith 30 sentences gach of typgtsng to fe.tch,lwalk-
future/motion. and word. ing to fetch, and going to Peter. If activation of

Stimuli. In this simulation, five different con- the unit exemplar cloud was high enough, the preva-
structions were presented to the model. We givl‘?nce of future t_ense was computed as the percent-
an example for eachgoing to fetch, going to Pe- age of phrases in the u_nlt exemplar cloud that were
ter, walking to fetch, walking to Peter, and Peter in future tense. Otherwise the prevalence was com-

fetch(es). Sentences of typgoing to fetch andwalk- puteq on thg constituent exemplar cloud of the verb
ing to fetch are either generated as future sentence(¥,"al king, going efc).

or as motion sentences. There were four moving Results. Figure 3 shows cumulative histograms
verbs likewalking in addition togoing, five differ- for 10 runs. We assume a suitable competitive be-
ent non-moving verbs likdetch and five different havior between motion and future, so that only the
nouns (objects or locations) likBeter. To model Mmore strongly activated alternative survives. Thus
the three observations of historical English outlined percentage of 60% would correspond to future, a
above,going was as frequent as the other four movPercentage of 40% to motion.

ing verbs combined; 75% afialking/going to fetch In 99.3% of cases the future tense was not in-



ferred forgoing to Peter sentences (future inferencetion of three-word sentences is trivial for a system
only occurred with activations in excess of 0.5, andhat has full knowledge of syntactic categories. If
96.3% of the activations which were less than oafter a few hundred stimuli, only subject-verb-object
equal to 0.5 were 0). Favalking to fetch sentences sentences have been observed and no subject-object-
the prevalence of future uses was consistently be&erb sentences, then rote learning is sufficient to pre-
low 40%, forgoing to fetch consistently above 60%. dict grammaticality for new utterances correctly.
Thus, the model correctly predicts the three key phe- However, the acquisition of syntactic categories
nomena that occurred in the grammaticalization ooes hand in hand with the acquisition of grammat-
going to: (i) going to fetch is grammaticalized as fu- icality in child language acquisition. A complete
ture tense; (ii) the other moving verbs are not grammodel needs to account for the parallel acquisition
maticalized and instead retain their original motiorof both without assuming the prior existence of ei-
sense; and (iii) sentences of tygaing to Peter also ther. Our model provides such an explanation and
retain their original motion sense. does so within an exemplar-theoretic framework.
The basic mechanism responsible for the simula- Stimuli. Using 5 different verbs and 5 different
tion result is again the competition between the twaouns, 25 sentence types of the fotmerb noun
levels. Sentences of tymming to fetch have dense (€.g,l love coffee) were generated and randomly as-
exemplar clouds due to their frequency and are presigned to the subclasses attested and unattested. In
cessed on the unit level. Sentences of tymening  addition, 25 ungrammatical types of the foimoof-
to fetch have sparse exemplar clouds due to their irfee love were also generated. The same represen-
frequency and are processed on the constituent leviglion for words as in the previous experiment was
where there is no prevalence of future uses. Semsed.
tences of typeyoing to Peter are not similar on the  Procedure. In 1000 iterations, an “attested”
unit level togoing to fetch because of the different grammatical sentence was generated and stored in
left and right contexts of (proper) nouns lilketer  the model. No ungrammatical and no unattested sen-

and verbs likeetch. tences were stored. An instance of each of the 25
grammatical and of the 25 ungrammatical sentences
5 Grammaticality judgements was then presented to the model.

Results. Figure 4 shows cumulative histograms

One of the basic tasks children master when acquifor 10 runs. While unattested grammatical sentences
ing a language is to distinguish between grammatteceive slightly lower activation than attested sen-
cal and ungrammatical sentences. Rote learning fgnces, they clearly are close to the distribution of
no help in judging grammaticality because of theyrammatical sentences. In contrast, no ungrammati-
productivity of language. In this section, we showcal sentence received any activation on the unit level.
that grammaticality judgments in the unified modefrhus, the model distinguishes grammatical (activa-
can be formalized as activation of a sentence astign > 0) and ungrammatical sentences (activation
unit. The reasoning is that when, on the level of () with 100% accuracy.
syntax, a sentence does not give rise to enough acti-The simulation successfully models the acquisi-
vation as a unit, but is represented by an activatiofion of grammaticality of three-word sentences be-
pattern of separate words, then it is perceived as UBause (i) attested and unattested sentences have very
grammatical. similar representations due to similar left and right

We restrict our model to a subset of three-wordtontexts and (ii) ungrammatical sentences are dis-
sentences in the early stages of language acquisimilar to grammatical sentences due to different left
tion. In particular, we do not attempt to model theand right contexts. An example for the latter is that
acquisition of recursive phenomena (as, e.g., (Kleiwhen comparing love coffee with | tea drink, the
and Manning, 2004) do). While there have beereft context oflove (containing the subjedy is very
many previous models of syntax acquisition, nonglifferent from the left context ofea (consisting of
has been exemplar-theoretic, to our knowledge.  verbs likelove, drink andmake). Although the learn-

It is also important to point out that the acquisi-ing taking place here is with respect to a small subset



ple recording of frequency). Furthermore, they also
propose that frequent summing over mutual similar-
ities of a particular cloud of exemplars is “highly
likely” to result in a permanent modification to the
representation which is “in some way equivalent to
the formation of some kind of more abstract repre-
sentation” (Abbot-Smith and Tomasello, 2006). In
other words, the hybrid categorization model which
they propose allows for exemplar learning and reten-
tion but also offers an abstraction mechanism where
a more abstract schema is somehow encoded in the
summed similarities. However, while the compre-
hension of an exemplar might strengthen the acti-
vation of an exemplar cloud as a whole, this does
: B B o oo not necessarily entail that the exemplar representa-
tions themselves have to change. Indeed, the model
presented here illustrates accurate syntactic acquisi-
tion without the need for any modification of stored

Figure 4: Experimental results for grammaticalitygyempjars nor any form of more abstract represen-
judgments. Attested sentences (solid line) receM@yiqn  That is novel stimuli are correctly catego-

slightly higher activations than unattested grammat;, e through direct comparison with extant exem-
ical sentent_:es (dotted line). A_II 250 ungrgmr_nanca{)'arsl Thus, for the thredisparate phenomena ex-
sentences in the 10 runs received an activation Ofegnined above, exemplar theory appears to provide
(not shown). an adequate account. While it could perhaps be ar-
gued that some form of abstraction is implicitly en-
of English, generalising to larger left and rights concoded in the summed similarities in our model, there
texts should not prove problematic. In addition it igS certainly no explicit abstraction component.
important to note that, as with the previous two ex-

periments, the same model of unit and constituerlt?  Radius-based vs. nearest-neighbor models

30 40
1 1

number of utterances
20
|

activation

interaction is employed here. In both production and comprehension, exemplar-
theoretic models infer the property of a stimulus
6 Discussion from the properties of exemplars that are similar to

the stimulus. A fundamental question is therefore
how the set of relevant similar exemplars is to be
We have presented an exemplar-theoretic model thedmputed. This set can be either defined as those
makes correct predictions for three linguistic pheexemplars that are within a fixed radids(radius-
nomena. It is noteworthy that the model achievebased model) or as the set of theearest neighbors
this without prototypes or any explicit abstraction(nearest-neighbor model) whedeand% are param-
mechanism. At least for the three phenomena ireters.

vestigated here, a simple exemplar model without We can regard the degree of activation (or reso-
prototypes seems to be sufficient. Note, in particrance) a stimulus receives as part of the inference
ular, that Abbot-Smith and Tomasello (2006) exprocess. Activation is high if many similar exem-
press doubts that a pure exemplar-theoretic modplars exist. It is low if the most similar examplars
can account for grammaticality judgments in earlyare distance or if there are only a few highly similar
child language acquisition. With respect to exemexemplars. Radius-based models support a simple
plar models they hold the view that each compredefinition of activation: the number of exemplars in
hension of an exemplar must, minimally, result irnthe relevant exemplar cloud (that is, all exemplars
a change in its representation (even if this is a sinthat are at a distance of at masfrom the stimulus).

6.1 Abstractionist models



It is more difficult to define activation in a nearest-syntax. Furthermore, our research represents a first
neighbor model since, by definition, there are alwaystep towards placing syntactic exemplar theory on a
k nearest neighbors. One could attempt to derivaore formal footing with explicit statements of the
a measure of activation by weighting neighbors acassumptions of the model and the ability to test them
cording to similarity. However, the resulting modelagainst data.

would not be a true nearest-neighbor model, but a Up to now, the majority of exemplar-theoretic
hybrid that would need to specify which distancesvork on syntax has been informal (e.g., (Abbot-
are still considered close enough to give rise to higgmith and Tomasello, 2006; Bybee, 2006)). How-
weights. ever, Bod (2006) has recently argued that data-

The notion of activation in a radius-based modebriented parsing (DOP) is an exemplar model. There
is crucial for all three simulations presented in thisare significant differences, however, between DOP
paper. In the phonetic model, even an infrequenind standard exemplar theory. In particular, the ex-
syllable hast nearest neighbors. Thus, when makemplar cloud in DOP is a superset of the set of all
ing the decision as to whether there is enough agentences that have one or more words in common
tivation for the syllable to be produced by the unitwith the stimulus. No notion of similarity between
model, it would not be clear how to distinguish fre-the stimulus and one of the members of its exem-
quent and infrequent syllables. In contrast, the diglar cloud is defined. Hence, DOP appears to lack
tinction is straightforward in the radius-based modefeatures which are central to most exemplar models.
we presented. Similarly, the difference betweero its credit, however, no formal exemplar model
the grammaticalization ofoing to fetch vs. non- offers such a full exemplar-based account of gram-
grammaticalization ofvalking to fetch requires the matical productivity as DOP provides. We antici-
same notion of activation: The former neighborpate that when current informal models (e.g. those
hoods are “denser” because of the high frequenayf Bybee (2006) and Abbot-Smith (2006)) are for-
of “go” compared to “walk. Finally, in the case malized, much progress will be made because im-
of grammaticality, even ungrammatical sentenceglicit assumptions will become explicit, and predic-
have nearest neighbors (albeit neighbors that are faons testable against real data.
away). Again, it is not clear how grammaticality
judgments could be modeled with nearest-neighbor  Fyture Work
clouds.

In our opinion, the experiments show conclu-One aspect of the work we have presented here
sively that neighborhoods in exemplar theory musivhich could benefit from further examination is the
be radius-based as opposed to nearest-neighbor. Prenual selection of the parametdréhe radii of the
vious arguments in favor of nearest-neighbor cloudexemplar neighborhoods) and the threshaldshe
were based on difficulties found in implementingactivation thresholds below which the constituent
fixed-radius models (Pierrehumbert, 2001) and ndéevel is chosen). Obviously, the performance of the
on any fundamental reasons. model depends on the values of these parameters. If
the radius in the grammaticality model is too large,
then even ungrammatical sentences will be judged
One challenge for exemplar theory is to explain hovgrammatical (assuming a sufficiently sm@ll How-
exemplars of constituents interact with exemplars afver, we believe that these parameters can be esti-
compositions of constituents into larger units. Segmnated from the distribution of exemplars. For exam-
ments and words on the one hand, and syllables aptk, the distances of ungrammatical sentences from
phrases on the other hand, each give rise to exemplhe nearest neighbor are much larger than those of
clouds at different levels. One of the key propertiegrammatical sentences. We are currently exploring
of language is the interaction of such units at difdensity estimation as one possible solution to this
ferent levels. We believe that we have provided thproblem. In addition, although the syllable data here
first exemplar-theoretic model that explicitly mod-are simulated, parallel work with this model, em-
els constituency, either at the level of phonetics gploying the Schweitzer and Mobius (2004) corpus,

6.3 Multi-level models



has yielded z-score results in keeping with their findbennis Norris, James M. McQueen, and Anne Cutler.
ings. 2003. Perceptual learning in speedBiognitive Psy-
chology, 47(2):204-238.
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