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1 A part of the conceptual background theory,
concerned with time, space and motion

1.1 Time as a Newtonian-Kantian Category

The basic conception of time as it is manifest in human language and co-
gnition is that of an ordered medium. We will assume that this medium is
conceived as absolute (in the sense of Newton as against Leibniz) and as line-
ar in both directions (the direction of the future as well as that of the past). !
We will assume therefore that time consists of a linear ordered medium ( T,<
) , consisting of a set T of temporal instants and an ‘earlier-later’ relation <
between them. Linearity of the relation < can be secured by means of the
following axioms:

Tt is often contended that time is not linear in the direction of the future inasmuch
the future is ‘open’: while things could not have been as they actually were, the future can
still develop in more than one way; partly the way it will go depends on our own decisions.
Although we believe that this is true - at the very least it is a fundamental aspect of the
way in which people view the future - we do not think that this is to be understood as a
conceptual commitment to ‘branching time’, and thus to the non-linearity of time. Rather,
the conception is better understood as involving a sheaf of possible futures, one of which
will, given the way in which things will turn out, reveal itself as the real future. It is to the
time of this continuation of the actual world into the future that we think as ‘the future’.
(In fact. for all we know the structure of time of other, possible but non-actual futures
may be identical with the structure of time in the actual future, but this is an additional
assumption, stronger than the assumption that in each possible world the order of time
is linear, whihc leaves open the possibility that different worlds might determine distinct
linear orders.)
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In the everyday conceptualisation of time, periods play a crucial role
as well. We will assume that all limited periods have temporal boundaries,
which are instants from T. This means that each bounded interval can be
represented by means of pair (t,t") of instants from T, with t < t’. The
order-based relationship between periods is more complicated than the order
relation between instants. We can distinguish between complete precedence
< ((b,t71) < (bo,t2) i t'1 < t2 ), overlap O ( (t1,t'1) O (to,t2) iff t1 <
to < t’; < t’y or conversely), inclusion C ( (t1,t'1) C (to,t’e) iff to < t <ty
< t’y), identity = ( (t1,t'1) = (to,t’2) iff t; = t’; & to = t’s), etc. There are
a total of 13 mutually exclusive relations of this type, known as the ‘Allen
relations’.

The logical relations between the Allen relations (and others, such as
inclusion, which isn’t one of the Allen relations because C is different from
=, yet does not exclude it), can be derived from the definitions in terms
of <. Alternatively one could take the periods of time and some or all of
the Allen relations as primitive relations, with axioms capturing their logical
properties directly, and then define the notion of an instant in terms of the
basic notion of a period. (It is known that one can take the notion of a period
and the relations of complete precedence < and overlap () between periods
as primitives. We can define instants as maximal sets of pairwise overlapping
events and an ordering relation between them by:

(i) a set S of periods is an instant iffy.

(a) for any two periods p, p’ € S, p O p’ and
(b) if p is such that for all p’ € S p O p’, then p € S.
(ii)) S < S’ iff there are p € S, p’ € S’ such that p < p’

On the basis of axioms which capture the properties which < and () have
when periods are identified with intervals (t,t’), and < and () are defined
as indicated, then < can be shown to have the properties of a linear order.
Moreover, the underlying periods can now be identified with pairs (S,S’) of
instants of the kind just defined, with S < S’.

The axioms for < and () mentioned above are the fol.2)lowing:
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We leave it open which temporal entities should be considered basic -
the instants, the periods or both. We also leave open whether time should be
assumed to have further properties, e.g. whether the temporal order should be
assumed to be dense - between any two instants there is a third - or whether
it is order complete - if an infinite set of instants has an upper bound then it
has a smallest upper bound. We will return to these questions when we come
to the conceptualisation of motion.

Besides the topological properties and relations of time, metric properties,
which have to do with how long a period is or how far in time to instants or
periods are removed from each other, are important too. All human beings
have a sense of how long things last, something that they can assess in terms
of the regularities of night and day, of their own heart beat or breathing and
thousands of other ‘regular’ processes. In many cultures this basic intuition
has been reinforced by more or less sophisticated calendars, which partition
the intervals between regularly returning events (such as day break or the day
of shortest length) in equal portions - weeks, days, hours, etc. Most calendars
are fairly complex. This is true also of the Gregorian calendar, which, with
small adjustments, is the one used by us. In addition we now dispose of
a large variety of different ‘clocks’, devices for measuring the duration of
periods, based on any one of a large number of mutually periodic physical
processes. (The quartz watch was the first great technological breakthrough
in the direction of cheap, miniaturised information processing.)

All that matters in this connection is that (i) we have a deeply ingrained
sense of temporal duration; (ii) this manifests itself in our regular use of a
number of calendar concepts such as days, months, years, etc,; and (iii) we
measure time in terms of various units (such as days, hours, minutes, seconds,
years, siderial years, etc. Any one of these units is convertible into any of the
others, so we could dispense with all but one. But in actual practice the range
of different units seems natural, and it would be awkward to reduce all of
them to one.

An explicit axiomatisation of all the metrical and calendar knowledge
that is available to a normal adult of the Western world is a tedious business.
Details can be found in various places. See e.g. [Kamp/Schiehlen:2002|.

We will need to distinguish time points and temporal intervals from each
other and from ontological categories which we will introduce as we go along.
We use the 1-place predicate ‘TP’ to describe the sort of temporal instants
and ‘TT to describe the sort of temporal intervals. It will be convenient to



treat the instants as intervals of a special kind (which is distinguished by the
fact that beginning and end coincide. Also, we introduce the assumption that
each bounded interval has both a lower bound and an upper bound and that
all intervals with these same bounds coincide with it. In addition, intervals
can be infinite in either or both directions. If they are, then they temporally
include all intervals which are bounded in the direction in question. To ex-
press these general assumptions axiomatically we need two place predicates
expressing relations between intervals and points, LB for ‘lower bound’ and
UB for ‘upper bound’, and the relation C of temporal inclusion. LB and UB
are partial functions in their second arguments

TO.1 TP(x) — TI(x)

TO.2 (LB(xy) & UB(xy)) — (T I(X) & TP(y))

TO.3 (LB(x,y) & LB(x,z)) =y

TO.4 (UB(x,y) & UB(x,z)) —) y =

TO.5 TP(x) — (LB(x,x) & UB(x,x ))

TO.6 (- (Fy)LB(xy) & = (Fy)UB(x,y)) = (¥ 2)(TI(z) = 2z C x)

TO.7 (- (3y)LB(x,y) & UB(x,u)) — (Vz)((TI(z) & UB(z,u) — z C x)
TO.8 (- (Jy)UB(x ,y) & LB(x,u)) — (Vz)((T1(z) & LB(z,u) — z C x)
TO.9 (= (Jy)LB(x,y) & UB(x,u)) & = (Jy)LB(z,y) & UB(Z u)) > x =12
TO.10 (= (3y)UB(x,y) & LB(x,u)) & = (Jy)UB(z,y) & LB(z,u)) - x = z
TO.11 (LB(x,v) & UB(x,u)) & LB(z,v) & UB(z,u)) = x =z

N.B. 1. These axioms may become derivable from other axioms when a
particular development of the systems of temporal instants and intervals is
chosen (e.g. one which develops one category out of the other, along the lines
briefly sketched above).

N.B. 2. Usually the sorts which we will introduce below will be disjoint
from the sort of temporal intervals, as well as from each other. We will always
need axioms which make these mutual exclusions explicit. Thus we need an
axiom like GO.1 below to state that temporal intervals are distinct from
spatial directions (using ‘Dir’ for the sort of directions).

GO.1 TI(x) — — Dir(x)

(‘GO’ stands for ‘general ontology’)

In the sequel we will not bother to state these exclusion axioms explicitly.
Nevertheless, it should be kept in mind that with each new sortal predicate
a whole batch of such axioms gets added to our axiomatic system.



1.2 Space

Our conception of space is different from that of time in several ways. First, it
is not absolute in the way that time is. It is part of our conception of time that
the temporal structure with which we are dealing is always the same. Even if
the given context may focus our attention on a particular portion of time or
suggest a certain granularity with which that part of time is considered, we
are always dealing with the same, one-dimensional temporal ordering. The
structures which function as our conceptions of space in different context vary
more significantly. This is connected with the fact that conceptual space is
not one- but three-dimensional.

As we saw in our discussion of PPS (primary perceptual space), one of the
axes in terms of which space gets coordinated is always the same. This is the
VERTICAL, a vector which points in the opposite direction of Gravity. With
the VERTICAL comes what we will call the HRIZONTAL, a plane which is
orthogonal to it. The two remaining axes that make up any given coordination
must lie within this plane, but their choice will vary from context to context.
We already saw that in a context in which an observer describes the position
or the dimensions of an object that is at rest at some distance from him in a
horizontal direction, the horizontal axes are (i) OBS, the axis which goes from
the observer to the object, and (ii) TRANS, an axis which is perpendicular.
The direction of this last axis is perhaps not intrinsic, but an orientation can
be fixed through its relation to the other two (by the cork screw rule). It is
this what fixes the directions RIGHT and LEFT in such a context: We can
tell what is to the right of the observed object and what is to its left because
these directions are fixed by what is ‘up’(the direction in which our head is
pointing when we are in a normal position) and the direction of observation
OBS. We will assume here that TRANS has a direction and that it points
towards the right.

There is a further respect in which context determines the coordination
of PPS. Coordination does not only require a triple of mutually orthogonal
vectors, it also requires an origin. In the simplest case of an observer des-
cribing an object at rest, it is the observer himself who provides the origin
O. Exactly where O is to be located with respect to the observer’s body -
whether at his feet,in the center of his head, or in the middle between his
eyes - may not be determinable, and in fact there is no need to cut the cake
this finely. For simplicity we take O to be at the observer’s feet. This choice
means that VERT is the vector which starts at the observer’s feet and points
straight up. HOR will be the unique plane orthogonal to VERT which con-
tains O, and HOR and TRANS with the orientations described above which
equally begin at O.



In our discussion of position verbs and dimensional adjectives we also
saw that many objects come with an intrinsic coordination of their own.
This coordination could be partial or complete. First, objects come with a
conceptualisation according to which they are either 1-, 2- or 3- dimensional.
One-dimensional objects - pieces of rope, wire or thread, sticks, worms, the
stripes on your pyjamas, etc. - always have an axis - this is just their one
dimension. Note that we are here dealing with a slightly different notion of
‘axis’ since a fixed orientation is generally missing. (For some one-dimensional
objects, such as walking sticks and (perhaps) worms, a direction is given by
functional considerations, but in general there is no well-defined distinction
between one end of the object and the other. We will continue our earlier
practice of using the word vector for what has orientation as well as direction
- so that VERT, OBS and TRANS are all vectors. We will use the word axis
to refer to directions without orientation - to that, in other words which a
given vector shares with the one which points in the opposite ‘direction’ (as
the term goes ? ).

As we have seen, with two- and three-dimensional objects there may but
need not be intrinsic axes. Two-dimensional objects which don’t have intrinsic
axes are discs and square tiles, examples of two- dimensional objects which
do are shelves and surf boards. Of course, when a 2-dimensional object has
an intrinsic axis, then it automatically has two, the one given and a second
which is perpendicular to it.

With 2-dimensional objects functional properties sometimes determine
not just an axis, but a vector. (A surf board has a front end and a rear, some
shelves have a front (which has been made to look nice) and an opposite
(which has been left rough because it won’t show) or their front is determined
by how they have been put into the book case or wardrobe of which they are
part)

Three-dimensional objects were the category on which we spent most of
our attention in our previous discussion of intrinsic axes and vectors. With
such objects it is possible for coordination to be partial, as with a cylinder
or a square tower without a clearly marked front.

A central assumption of our analysis of position verbs and of (our presen-
tation of) Lang’s theory, s. [Lang:1989| of dimension adjectives was that we
only considered objects whose intrinsic axes or vectors were parallel to one of
the vectors of PPS. That is we have been working within a much simplified
conception of spatial orientation, in which the only directional relations are

2Here, the terminology for which we have opted is at odds with ordinary parlance. In
fact, when there is no danger of confusion, we will occasionally deviate form this termino-
logical convention in the interest of more colloquial formulations



parallelism ( || ) and orthogonality (). This assumption (which is equally
prominent in Lang’s work) reflects a fundamental thesis, viz. that the limi-
ted system of geometry that is afforded by these two relations constitutes a
cognitively and lexically important subsystem of a fuller conceptualisation
of space in which there is full range of orientations. (That is: infinitely many
orientations, instead of the total of 6 in the limited subsystem). We belie-
ve that this subsystem also plays an important role in connection with the
conceptualisation of motion and its lexicalisations.
Given the importance of this principle, let us give it a name:

(POSC) ( = the Primacy of Orthogonality in Spatial Conceptua-
lisation)

Spatial orientations are perceived as much as possible in such a
way that all relevant directions are parallel to one of the axes of
PPS.

The way in which POSC manifests itself is our tendency to conceptualise
directions that do not neatly fit the limitations of the limited subsystem
of POSC as deviations from the norm that subsystem imposes. Thus a one
dimensional object whose axis make not too large an angle with VERT will
be conceived as an imperfect case of pointing up (and thus of standing), and
when an observer is looking at a house from a position such that it doesn’t
present its front to the observer exactly at right angles to the direction of
vision, he will try the case nevertheless as if the angle was 90°.

To repeat, POSC should not be understood as implying that no other
conceptualisation is possible. When intrinsic axes are at an angle of about
45° with the axes of PPS, then acknowledging incompatibility with the possi-
bilities of conceptualisation will become a virtual necessity. And besides there
are lots of situations where even smaller deviations form the orthogonal norm
are vital and where the richer, full conceptualisation of space is accordingly
brought into play. Moreover, language readily follows suit in such cases by of-
fering a vocabulary attuned to this richer set of spatial discriminations which
the full conceptualisation makes available. But there is nevertheless an im-
portant distinction between this vocabulary and the lexicalisations (through
verbs, adjectives and prepositions) with which we are primarily concerned
here.

We begin our formalisation of the subsystem of POSC by just considering
one type of spatial entities, viz. directions and the two relations between them
which we admit, viz || and L. Let D be the set of directions.
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Of these axioms D.1 - D.7 are generally valid. D.8 reflects the Euclidean 3-
dimensionality of space. (‘(3!d”)’ is the usual abbreviation for ‘there exists
exactly one’.). D.9 expresses the special limitations of POSC.

1.2.1 Thm
Orth(dl,dQ,dg) &d L d; &d L do —»d || d3
(Here ‘Orth(dl,dg,dg)’ is short for ‘dl 1 dg & d1 1 d3 & dg 1 dg,)

1.3
1.3.1

We now enlarge the ontology by introducing orientations, together with the
notion of alignment, represented by the 2-place predicate Align. To be able
to distinguish orientations from directions we introduce the predicate Ori
for the set of orientations and the predicate Dir for the set of directions.
Alignment means that two orientations point in the same direction. So ali-
gnment entails parallelism, but not conversely. The axioms D.1- D.7 are now
to be understood as pertaining to directions and orientations together. D.8
and D.9 hold for directions but not for orientations. So they will have to be
restated as in D8 and D9’

D.8’ Dir(d) & Dir(d’) & dL &’ — (3! d”)(Dir(d”) & d”L d & d"L ")
D.9’ Dir(d) & Dir(d’) — (d || &’ vd L d’)

Warning! Such extensions of structural properties of relation like || and
L will be necessary repeatedly as we extend our ontology further. Thus they
will also apply to lines, vectors and line segments. We will not always be
explicit in this first introduction about these extensions. In the final version
of the entire axiomatic theory they will be made fully explicit.

8



0.1 Align(0,0’) — Ori(o) & Ori(0’)

0.2 Ori(o) — Align(0,0)

0.3 Align(o,0’) — Align(o’,0)

O 4 Align(o,0’) » o || o

5 (Ori(o) & Ori(0’) & Ori(0”) & o || 0’ & o || 0” & — Align(o,0’) & —
)

Ahgn( 0”)) — Align(0’,0”)

0.6 OI‘l(O — (3! d)(Dlr( )& d | o)

0.7 Dir(d) — (3 )( 0’)(Ori(0) & Ori(0’) & o || d & o’ || d & — Align(o,0)
& Vo) (0" ][d—=(0"=0V 0" =0))

1.4 Points, lines and vectors

Next we introduce points, lines and vectors. The idea is that for each direction
d and each point p there is a line 1 parallel to d going through p and, similarly,
for each orientation o and each point p there is a vector v aligned with o and
going through p. Conversely for each line there is a parallel direction and
for each vector an aligned orientation. Parallel lines which go through the
same point p are identical, and so are aligned vectors going through p. We
introduce the predicates Poi, Lin and Vec for these three new categories,
together with a predicate Inc which holds between (i) points and (ii) lines or
vectors. Finally, we add the intuitive assumption that if two lines or vectors
are parallel, then they have no point in common. All this is stated in the
following axioms. First, we need to extend the relevant axioms about || and
L to lines and vectors. That is, D.1 - D.7 now hold for the union of the sets
Dir, Ori, Lin and Vec. Also, the relevant axioms for Align, O.1 - O.4, are now
adopted for the union of Ori and Vec. This means that everywhere in these
axioms ‘Ori’ is to be replaced by ‘Ori v Vec’. Thus O.1 now becomes:

0’.1 Align(x,x’) — ((Ori(x) v Vec(x) & (Ori(x’) v Vec(x")))

Moreover we need the following new axioms:

P.1 Inc(p,x) — Poi(p) & (Lin(x) v Vec(x))

P.2 Dir(d) & Poi(p) — (3 1)(Lin(l) & Inc(p,l) & 1| d)

P.3 Ori(o) & Poi(p) — (3 v)(Vec(v) & Inc(p,v) & Align(v,0))
P.4 Lin(l) — (3 d)(

Dir(d)) & d || 1)
P.5 Vec(v) — (3 0)(Ori(o)) & Align(o,v))
P.6 Inc(p,)) & Inc(p,l) & 1| 1" =1 =1
P 7 Inc(p,v) & Inc(p,v’) & Align(v,v’) - v =1V’
8 (Lin(x) v Vec(x)) & (Lin(x’) v Vec(x))) & x || x» = = (3 p)(Poi(p) &
Inc(p,x) & Inc(p,x’))



The concepts of direction and orientation are often treated as abstractions
in the sense that any two parallel directions are identical, and likewise any
two aligned orientations. If we adopt these principles, then we can derive that
there are at most 3 directions and at most 6 orientations.

A1 Dir(d) & Dir(d’) & d || d = d = d’
A.2 Ori(o) & Ori(0’) & Align(0,0’) — 0 = 0o’

Exercise: Show from the axioms given that the number of distinct direc-
tions is less than or equal than 3 and the number of distinct orientations is
less than or equal to 6.

To make sure that the total number of directions is exactly three and the
number of orientations is exactly six, we need to make sure that there are
enough ‘dimensions’. This is guaranteed by the following existence axiom for
PPS:

PPS

Vec(VERT) & Vec(OBS) & Vec(TRANS) & Poi(O) &

VERT L OBS & VERT L TRANS & OBS_L TRANS & Inc(O,VERT)
& Inc(O,0BS) & Inc(O,TRANS)

We saw that it is an important feature of PPS that the VERT is always gi-
ven and with it the notion of a plane perpendicular to it, the HORIZONTAL.
Here too it would be natural to distinguish between the abstract concept of
such a plane and the idea of a particular plane which intersects VERT at
some particular point, just as we have distinguished between directions and
lines and between orientations and vectors. However, we will make a little
saving on notions at this point by only introducing the concrete planes. We
introduce the predicate Pla for this purpose. For the time being the assump-
tions we make about planes are

(i) that each plane contains at least one line and, moreover, will
contain for each line it contains also a line orthogonal to that line;
and

(ii) that there is a relation of orthogonality between planes and
lines, with the properties that

(a) two lines that are orthogonal to the same plane are parallel,
and
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(b) two planes that are orthogonal to the same line are parallel
(in that they do not contain a common line);

Finally we assume that

(iii) through each line 1 and point p on | there is a plane which
contains p and is orthogonal to 1.

Note that (iii) entails among other things that for each point p on VERT
there is a plane containing p and orthogonal to VERT.

We use the predicate ‘Con’ for the containment relation between planes
and lines/vectors, and extend the use of the symbol L to describe the relation
of orthogonality between planes on the one hand and directions, orientations,
lines and vectors on the other. We also extend the use of Inc to include the
case where a point lies in a plane.

Special care is needed in connection with parallelism. Planes can be par-
allel to each other just like lines and their ilk can be. And within the domain
of planes parallelism is an equivalence relation and it excludes L. so far so
good. But there is a problem when it comes to parallelism between planes
and lines. A plane f can be parallel to two lines 1 and I’ without this entailing
that 1 is parallel to 1’. The simplest way to get out of this difficulty is to
extend the range of || to include cases where the two arguments are both
planes and to introduce a new predicate for the parallelism relation between
planes and lines, for which we introduce the predicate ‘||p,I’. In this way we
can retain the structural properties of (||,L).

We will state separately the property of planes which is analogous to P8:
two parallel planes do not have a point in common. Moreover we assume that
if a plane f and a line | are parallel, then there is a plane f’ containing 1 which
is parallel to f. To infer from this that no plane shares a point with any line
parallel to it, we need also the intuitively trivial principle that if a plane f
contains a line | and a point p lies on 1, then it also lies in f. And. lastly, we
want the principle that if two planes are not parallel then they have a line
in common.

P11 Pla(f) — ((31)(Lin(l) & Con(£1)) & (¥1)(Lin(1) & Con(f,]) — (3
I')(Lin(1’) & Con(£,])) & I'L 1)))

P1.2 (Pla(f) & Lin(1) & f1 1 & Lin(I') & L 1) > 1| I
P13 (Lin(l) & Pla(f) & fL 1& Pla(f’) & 'L 1& £ # £ ) — = ( 3 1)(Lin(1")

& Con(t)]') & Con(f’l"))
P1.4 Poi(p) — (3 £)(Pla(f) & Inc(p,f) & f L VERT)

11



PL5 (Pla(f) & Pla(f’) & f || f” & £ # £' ) — = (3 p)(Poi(p) & Inc(p,f) &
Inc(p,f’))

Pl.6p(Pla( f) & Lin(l) & f ||f11) — (3 1f")(Pla(f’) & Con(f]l) & £’ || f)

P17 (Pla(f) & Lin(l) & Poi(p) & Con(f]) & Inc(p,l))— Inc(p,f)

P1.8 (Pla(f) & Pla(f’) & = (f || )))— — (3 1)(Lin(l) & Con(f,l) & Con(f’,1))

Of particular conceptual importance is the horizontal plane. However, as
it stands ‘the horizontal plane’ is a misuse of the terms introduced. For there
isn’t just one horizontal plane, but as many as there are distinct points on
any line parallel to VERT. In order to be able to speak of ‘the horizontal‘,
we must introduce a spatial category which stands to planes in the same
way that directions stand to lines. We haven’t been able to find a good word
for this category. We propose, for lack of something more pleasing, ‘plane
direction’, and use the predicate ‘Pld’ to represent it in our formalisation.
The axioms which link this notion to those already introduced resemble the
earlier ones for lines and directions.

Pld.1 Pla(f) — (3 g)(Pld(g) & g || f)
P1d.2 (Pld(g) & Poi(p))— (3 'f)(Pla(f) & INC(p,f) & f || g)
P1d.3 (Pld(g) & Pld(h))— g=h
We can now speak of the unique plane direction orthogonal to VERT.
We will refer to it as the Horizontal ad use the individual constant HOR to

denote it. Its fundamental properties - that of being a plane direction and of
being orthogonal to VERT - are given in ‘HOR’.

HOR. PId(HOR) & HOR L VERT

In connection with PPS there is also a particular plane parallel to HOR
which is important. This is the plane going through the Origin of PPS. we
call it ‘GROUND’ and use the individual constant GRO. Evidently, it will
contain the axes OBS and TRANS.

GRO. Pla(GRO) & GRO || HOR & INC(O,GRO)

As a check on our axioms it should be verifiable that the following is now
derivable:

Con(HOR, OBS) & Con(HOR,TRANS)

12



For what will be needed in the next section we also need the notion of
a (finite)line segment (Lis) and that of the length of a line segment. Line
segments are determined by (i) a line and (ii) a pair of points on that line.
We assume that each such combination determines a unique line segment.
The easiest way to make this explicit is to introduce a 4-place predicate
LS, which holds between a line two distinct points and a line segment. The
corresponding axioms are obvious:

LS.1 LS(x,y,z,u) — (Lin(x) & Poi(y) & Poi(z) & y # z & Lis(u))
LS.2 (Lin(x) & Poi(y) & Poi(z) & y # z) — (3 u)(Lis(u) & LS(x,y,z,u) &
(Vv)(Lis(v) & LS(x,y,z,v) = v = u)))

1.4.1

Note that while we have now fixed the number of possible directions and
orientations, we have only given lower bounds to the number of lines and
vectors. This is because we said nothing about the number of points. So
far we have only said that for each PPS there is a point O which serves as
origin for its coordinate system. However, we will introduce further existence
assumptions about points as part of the assumptions we will make about the
next set of notions, those of a material object, of an object boundary and of
a spatial region.

We need predicates to distinguish these sorts from those already introdu-
ced and from each other. To this end we introduce three 1-place predicates:
MO for ‘material object’, OB for ‘object boundary’ and SR for ‘spatial re-
gion’. That they define distinct sorts is given by the following list of axioms

First the notion of a (material) object We already noted that objects
can be conceived as being of either 1, 2 or 3 dimensions. To formalise this
distinction, we introduce three further 1-place predicates, ‘1-D’, ‘2-D’ and
‘3-D’, with the obvious interpretations. The following axioms say that each
material objects is conceived as either 1-, 2- or 3-dimensional, and that these
three possibilities exclude each other.

MO. 1 MO(x) — (1-D(x) v 2-D(x) v 3-D(x))
MO. 2 (1-D(x) — = 2-D(x)) & (1-D(x) — - 2-D(x)) & (1-D(x) = ~
3-D(x)) & 3-D(x)) & (2-D(x) — — 3-D(x))

It is important to stress that the distinction between 1—, 2— or 3-

dimensionality is a matter of conceptualisation within a certain type of con-
text. All material objects allow for a basic conception as three-dimensional
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— to be a material object is to consist of matter, and matter implies exten-
sion in the sense that it must occupy a certain volume; and volume entails
3 dimensions. In fact, if it wasn’t possible to think of a coin or a board —
typical examples of objects which we tend to think of as two-dimensional
for the sake of ascription of dimensional properties — as at the same time
3-dimensional as well, we couldn’t conceive of them as standing on their side,
but that is precisely one of the possible positions to which descriptions by
means of dimensional adjectives can apply and in which their conception as
2-dimensional objects is therefore relevant. The predicates ‘1-D’ and ‘2-D’
are to be understood with this in mind. They do exclude ‘3-D’, but do not
assert that their arguments are three-dimensional in the sense in which every
material object must be.

We already noted that some material objects come with intrinsic directi-
ons or orientations. These can either be determined by shape or by function.
We assume that they can be described in terms of orthogonal coordinate
systems that are in some way intrinsic to the objects. The axes of these coor-
dinate systems are either mere directions (as we have called them), or they
come with an orientation. The coordinate axes determined by geometrical
shape are always mere directions, those determined by the object’s function
are usually orientations.

N.B. it appears to be a matter of decision whether to identify the axes of
a coordinate system intrinsically related to a material object as directions/
orientations or as lines/vectors. We have adopted the former option here.
The reason will become clear below.

We start with geometrically determined coordinate systems. To describe
these we need five three 2-place predicates, ‘MAX’, ‘MIN’, ‘INT’. Of these
MAX and MIN only apply in addition to to directions; INT can apply also
to planes. Finally, the second arguments of MAX, MIN, INT are always
orthogonal to each other. This gives us as general axioms:

GD.1 (MAX(x,y) v MIN(x,y)) — (MO(x) & Dir(y))

GD.2 INT(x,y) = (MO(x) & (Dir(y) v Pla(y)))
GD.3 (MAX(x,y) & MIN(x,z)) -y L z

GD.4 (MAX(x,y) & INT(x,2)) >y L z

GD.5 (MIN(x,y) & INT(x,2)) = y L z

i. 1-dimensional objects. As we have seen, al-dimensional object always
determines one axis, and this one qualifies as MAX:

GD.6 MO(x) & 1-D(x) — ((3 d)MAX(x,d) & Dir(d)) & — (3d’)MIN(x,d’)
& — (3d")(INT(x,d"))
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ii. 2-dimensional objects. A 2-dimensional object may have an intrinsic
axis. If it does, then there are always two, and one of them will play the role
of MAX and the other that of MIN. A 2-dimensional object which does not
have an intrinsic axis is taken to determine a plane (that in which, intuitively,
the object lies).

GD.7 (MO(x) & 2-D(x) & ((Jy)(MAX(x,y) v MIN(x,y))) —
(3 )MAX(x,d") & (dF”)(MIN(x,d”) & —(3y)(INT(x,y))

Also each 2-dimensional object determines a plane. We will assume that
this plane is fully determined by the object at any particular time: the orien-
tation of the object in PPS determines the plane’s direction in PPS. Further-
more, the plane is assumed to go through any point belonging to the object
(and it is assumed that with a 2-dimensional object all thes points lie in the
same plane, so that it doesn’t matter which point one chooses to identify
the plane we want). We assume a 2-place predicate PL to express this: If y
is 2-dimensional, then there is a plane y such that PL(x,y). Moreover, we
assume that if x does not have an intrinsic coordination, then this plane acts
as INT.

GD.8 PL(x, y) — Pla(y)
GD.9 (MO(x) & 2-D(x)) — (y)( PL(x,y) & (= (3 z)( MAX(x,z) —
INT(x,y)))

Summarising, from the present point of view 2-dimensional objects come
in two categories, those for which MAX and MIN are defined and those for
which they are not.

iii. 3-dimensional objects. With 3-dimensional objects there are three
different cases to be considered in which we find something like a geometri-
cally intrinsic coordinate system. The first case is exemplified by objects such
as a typical brick, the surface of which consists of faces which are at right
angles to each other and where the dimensions of the edges which bound the
faces are clearly distinct. E.g. the dimensions of a brick might be 20 cm x 10
cm x 5 cm. Such an object x is conceived as determining three orthogonal
axes, which are parallel to the different edges (of which there are twelve,
representing three different directions between them). Once again the axes
are distinguished by the lengths of the edges to which they are parallel. We
denote the axis (i.e. direction) of the longest edges as MAX(x), the axis of
the shortest edges as MIN(x) and the axis of the edges of intermediate size
as INT(x).
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The second type of 3-dimensional object is exemplified by a longish cy-
linder (such as a biscuit tin) or a tall speaker box with a square ground
plan. (The assumption about these objects is that they are much taller than
they are ‘wide’, e.g. the height of the cylinder should significantly exceed the
radius of its cross section, and similarly for the box.) Here only one axis is
intrinsically determined. With the cylinder it is what is usually called the
axis of the cylinder (i.e. the direction which is perpendicular to the circular
cross section of the cylinder), with the speaker box it is the direction of the
longest edges. This axis is in both cases denoted as MAX(x). Apart from
their intrinsically determined axes MAX(x) all that these objects give us is a
plane perpendicular to this axis - the plane of the ground plan in the case of
the speaker box and that of the circular cross section in the case of the tin.
This plane is denoted as INT(x).

The third type is very much like the second except that now the one
intrinsically determined axis is shorter, not longer, than the dimensions of
the cross section to which it is perpendicular. Typical examples are a coin, or
a tile that is, say, square or hexagonal in shape. (Such objects can normally
also be conceived as 2-dimensional, but the possibility of conceiving them as
3-dimensional, where their ‘thickness’ becomes part of the conceptualisation,
exists as well. It is from this second perspective that they are being considered
here.) In this case we describe the intrinsic axis as MIN(x), while the plane
perpendicular to it is once more described as INT(x).

Note that the second and third types of 3-dimensional objects can be seen
as partially determining a coordinate system: One axis is fixed, but in the
plane perpendicular to it two orthogonal axes can still be chosen more or less
ad libitum. Only such a choice will complete the coordinate system.

Besides these 3-dimensional objects, which determine full or partial coor-
dinate systems, there are also those which do not single out any direction.
The paradigm of this case is any object in the shape of a ball, like a football
or an orange. Another type of example is constituted by objects that are the
shape of a cube, e.g. a die. Here any direction is as good as any other. For
such objects x MAX, MIN and INT are all undefined.

In this classification we have restricted attention to objects of quite spe-
cial shapes. Such shapes are of course idealisations, some objects fit them
very closely, others reasonably well and there are also many which have to
undergo some procrustean adjustments before they can be regarded as legi-
timate representatives of the paradigm. We believe that this concentration
on idealised ‘Gestalts’ reflects an important aspect of human cognition - that
when it comes to describing objects with the use of certain terms the observer
forces them into one of these spatial schemata if that is at all possible, even if
they are perfectly capable of perceiving all sorts of ways in which the object
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deviates from the chosen schema (e.g. in connection with how to pick it up,
put it down, fit it into a given space etc.) An example in point are objects
of an elliptical shape (e.g. an old-fashioned snuff box). If the dimensions of
such an object cooperate, then it will be conceived according to the schema
of the brick, with a fully determined coordinate system, two axis of which
are the axes (in the standard geometrical sense) of the elliptical cross section
and the third perpendicular to them.

N.B. there are shapes which are not, we believe, conceptually reduced
to those of the examples we have so far mentioned. As far as we can see
most (and perhaps all) of these won’t be describable in the special terms for
which the framework that we are in the process of developing is intended to
account. An example is a pyramid with square base. Pyramids fall outside
our limited frame in which all angles are either 0° or 90°, as the obliqueness
of the sides of the pyramid is an essential part of the concept. Nevertheless
some of the NL terms which the present framework wants to explain are
applied also to objects the shape of pyramids, so a further extension of what
is being developed here will be required at some point. The remainder of this
remark is meant just as an indication of the complexities that are still in
store for us.

It seems to us that objects which have the shape of pyramids are typically
conceived as such, and not as distortions of some other Gestalt schema. And
furthermore that it is part of this conception that the object comes with
an intrinsically defined top (the vertex opposite the square face), and hence
with an intrinsic axis, defined by the vector which goes through the top and is
perpendicular to the square base, while pointing from the base to the top. If
this is correct, then what we have here is a geometrically defined coordinate
axis with an orientation as well as a direction. Besides this axis we only have
the plane orthogonal to it (i.e. the plane of the square base).

The classification in terms of MAX, MIN, INT does not apply to pyra-
mids, and we refrain from introducing additional notions into our represen-
tation language which would make it possible to include objects of this shape
in our formal treatment of dimension descriptions which will be given below.
In any case, the case of a four-sided pyramid was meant as just one example
from a domain which we have not explored and of which we have no way of
estimating either its size or the extent of its complexity.

Once more a summary. There are four categories of 3-dimensional ob-
jects: (i) those for which MAX, MIN and INT are all defined, (ii) those for
which MAX and INT are defined, but MIN is not (and for which INT is a
plane rather than a direction), (iii) those for which MIN and INT are defined,
but MAX is not, and finally (iv) those for which none of these magnitudes
are defined.
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For 3-dimensional objects we follow Lang in sometimes using the notation
(a(x), b(x), c(x)) to denote the three axes (MAX(x), INT(x), MIN(x)) in case
all three are defined; (a(x), (b,c)(x)) for objects which have just MAX and
INT, and (a,b)(x), c(x)) for those which have INT and MIN. Also for 2-
dimensonal objects with MAX and MIN we write (a(x), ¢(x)). The single
axis of a 1-dimensional object x will also be characterised as a(x).

Functional characterisations Many objects come with one of more func-
tional orientations, which have to do with the natural position that the object
should occupy in order to function in the way it is intended. On the one hand
we find this with orgnisms. Human beings have three orientations, one poin-
ting from the feet to the head, denoted by verty,,(x) one pointing from the
back to the chest, denoted as front s, (x) and a third one, going from the left
side of the person’s body to its right side, this axis we denote as leftr ,,, (x).
The subscripts ‘fun’ will often be omitted. Arguably there are also 1— and
2—dimensional organisms, e.g. worms and flatfish. These two have functio-
nally determined axes. For the (1-dimensional) worm the one axis is that
which points from its tail to its head (we are assuming that this is well-
defined), and for a flat fish there are two, one going from tail to head and
one going from left to right (when the fish is right side up). We denote the
first of these two as fronty,, and the third as leftrs,,(x). An example of a
3-dimensional organism where there is only a partial determination is a tree.
Here vert s, (x) is defined, but no other axes.

Note that in all these cases we are e dealing with orientations and not just
with directions. This is a general feature of functionally determined axes.

Equally common are functional axes for artefacts. An example of a 1-
dimensional artefact with an orientation would be a walking stick (with a
clearly marked knob at the top or a metal reinforcement at the bottom). He-
re vertfun(x) is the orientation pointing from bottom to top. A 2-dimensional
artefact such a painting has (with marginal exceptions) an intended orien-
tation (which makes it possible for instance to say of a painting that it is
hanging upside down. The orientation going from the bottom to the top is
again verts,, (x). In addition there is a second axis going from left to right,
denoted as leftr f,, (x).

For 3-dimensional objects there is sometimes a full, sometimes a partial
functionally defined coordinate system. An example of the first is a wardrobe
or a house, which have a functionally defined top as well as a functionally de-
fined front. This makes wardrobes and houses, from the present perspective,
like people. An example of a 3-dimensonal artefact with a partial functional
coordinate system would be a tower, a bisquit tin or a dinner plate. Here
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only vert p,, (x) is defined. All such objects are like trees.

Many objects, including the majority of these which have just been men-
tioned, have geometrically determined directions as well as functionally deter-
mined orientations. Typically, and as assumed in the present conceptualisa-
tion, for any pair of a functionally and a geometrically determined direction
the two will either be parallel or orthogonal. As we have seen, the use of
the position verbs liegen and stehen is determined in part by these relations
between the functional and geometrical axes of the object.

1.5 Regions of space.

The quasi-Newtonian container conception of time and space (the latter in
the sense of PPS!) which has been adopted here naturally carries with it the
idea that every material object occupies at any particular time a certain re-
gion of space. In principle it is possible - and sometimes it will be necessary -
to refer to the region an object has occupied after it has moved to a different
place. Moreover, the semantic analysis of locative and directional preposi-
tions (such as German in, neben, vor, hinter, tber, ..., either with Dative
(locative) or Accusative (directional)) involves regions of space which need
not be occupied by any material object. so we need regions of space. Just
like material objects these come in three categories, 1-, 2- and 3-dimensional.
(The domain of application of the predicates 1-D, 2-D and 3-D is accordingly
extended.) We use the predicate Reg to refer to regions.

For the time being only three relations pertaining to regions will be rele-
vant, that of a region being the one occupied by a material object or by some
well-defined part of it, and the relations of spatial inclusion and spatial over-
lap. We use the predicates ‘Occ’, ‘C’ and ‘O’ to denote these three relations.
(‘C’” and ‘O’ are thereby extended from the temporal to the spatial domain,
but with the understanding that these relations either hold between two enti-
ties which are both temporal intervals or two which are both regions of space.
The structural properties of (C , (O ) are transferred from the temporal to
the spatial domain. These are: C is reflexive, antisymmetric and transitive;
QO is reflexive and symmetric; and C entails (O . (We won’t bother now to
state the axioms which make this explicit, but leave them as an exercise.) As
far as the the relation Occ is concerned, we assume that the dimensionality
of the material object is reflected in that of the region is occupies.

R.1 Reg(r)— (1-D(r) v 2-D(r) v 3-D(r))

R.2 MO(x)— (3! r)(Reg(r) & Occ(x,r))

R.3 Oce(x,r) = ((1-D(x) +» 1-D(1)) & (2-D(x) <> 2-D(1)) & (3-
D(x) <> 3-D(r)))
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N.B. we may find the necessity later on to make further assumptions, e.g.
that for any two overlapping regions there is a region which is included in
both. We will introduce the corresponding axioms if and when required.

1.6 Boundaries of Objects and Regions

First, the notion of the surface of an object. Here we will distinguish between
two closely related notions, (i) what we will call the surface of the object, and
(ii) its skin. Surfaces are part of PPS (within which the object will occupy
some particular region at any one time). The skin of an object is a material
part of the object. So it moves with the object when the object moves, unlike
its surface (in the somewhat technical sense in which that term is used here),
which the object will ‘leave behind’ when it moves within PPS (except in
the special situation of an object rotating with one of its symmetry axes as
pivot. (cf. the rotation of a ball which remains in the same location during its
rotation). At any time the surface of an object is the region which is occupied
at that time by its skin.

We make the obvious assumption that both skins and surfaces are 2-
dimensional. Further, we distinguish between the surfaces and skins of 3-
dimensional objects and 2-dimensional objects. The skin of a 3-dimensional
object has the topology of a sphere (i.e. it can be obtained from a sphere
by a topological transformation); and the same is true of the surface of any
3-dimensional object. One consequence of this which is important for our
concerns is that skins and surfaces have an inside and an outside, and that
the only way to get from the outside to the inside or conversely, is to pass
through the surface (i.e any line segment which goes through at least one
point belonging to the outside and through at least one point belonging to
the inside will have at least one point in common with the skin or surface.
The object itself fills its skin completely, i.e. every point of the skin and every
point inside the skin is a point of the object and conversely).

2-dimensional objects are conceived as being identical with their own
skin. Thus the skin of a 2-dimensional object is also 2-dimensional and the
same is true (as it should be; see R.3!) for the corresponding surface. The
skins and surfaces of 2-dimensional objects differ topologically from those of
3-dimensional objects. Topologically the surface of a 2-dimensional object is
what topologists call a disc: There is no distinction here between inside and
outside; for any two points that do not lie on the skin or surface there is a
curve connecting them which does not go through the surface.

We introduce ‘Ball-like’ and ‘Disc-like’ as predicates of 2-dimensional re-
gions, and ‘Ins’ and ‘Outs’ as predicates which assign an inside region and
an outside region to each 2-dimensional region s which satisfies ‘Ball-like’.
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These regions neither overlap with each other nor with s, and together the
three exhaust all of space in the sense that any region which includes all of
them will include any other region. Since each 3-dimensional object x will
have a ball-like region for its surface, it determines an inside and an outside.
We can approximate the statement that the region r it occpies is the ‘sum]
of its inside and its surface, by saying that r includes both and is included in
every region that includes both.

Disk-like surfaces do not have either an inside or an outside. Con-
sequently, 2-dimensional objects don’t either.

Sk.1 (MO(x) & (2-D(x) v 3-D(x))) — (3! y) Skin(y,x)
Sk.2 Skin(y,x) = (MO(x) & MO(y) & 2-D(y))
Sk.3 (Skin(y,x) & 2-D(x))— y = x

Sk.4 Surf(r,x) <> (3 !y) (Skin(y,x) & Occ(y,r))

Sk.5 (Surf(r,x) & 3-D(x)— Ball-like(r)

Sk.6 (Surf(r,x) & 2-D(x)— Disc-like(r)

Sk.7 Ball-like(s) — ((3! r1)(3! r2) (Ins(rl,s) & Outs(r2,s) & = (r1 O 1r2) &
S (r1 Os) &= (r20s) & (V1) (V1) ((Reg(r’) Reg(r”) &rl1 Cr’ & r2 C 1’
&sCr)—r1" Cr'))

Sk.8 Disc-like(s) — (= (3! r1)Ins(rl,s) & — (3 ! r2) Outs(r2,s))

Bounded two-dimensional objects do not only have surfaces, but also
a contours. In mathematical terms such a contour is a closed curve, a 1-
dimensional region with the topology of a circle. Within any two-dimensional
region which includes a given bounded region x, the contour of x defines
an inside and an outside, in much the same way as the surfaces of three-
dimensional objects. This will be relevant later especially for the case of
flat regions x (i.e. regions x which are included in a plane). In addition to
contours a 2-dimensional material object will also have a rim, which stands
to its contour in the same relation as the skin of a 3-dimensional object to
stands to its surface: The rim is a material part of the object and travels with
it wherever it goes, whereas the contour stays behind. We will use 2-place
predicates CONT and RIM to refer to the contour and rim of a 2-dimensional
object. [Axioms follow later.]

1-dimensional objects do not have a skin or surface. Nor do they
have a contour or rim.

What is true of 3-, and 2-dimensional material objects is partly true of
bounded 3- and 2-dimensional regions of space. They too have surfaces and
contours, though, of course, being immaterial themselves they do not have
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skins or rims. The axioms for the surfaces and contours of regions are in
essence like those for the surfaces and contours of objects, (except that we
now need axioms that associate surfaces and contours with the regions whose
surfaces and contours they are, rather than specifying this via the skin or
rim, as we have been doing for the surfaces and contours of material objects.)
[Again, the axioms will have to wait.]

1.6.1 Edges, faces and vertices

Every 3-dimensional object, we saw, has a skin. For some 3-dimensional the
skin can be further decomposed into parts which are separated from each
other by ‘edges’. Edges are line-segment-like entities which are part of the
object’s skin. Moreover, in many instances where an object has edges, the
parts of the skin which are bound by those edges are of a special kind,
called faces. This is true in particular for many of those objects which are
paradigms of objects with geometrically determined coordinate systems, such
as, for instance, a brick. Let us use the technical term block to refer to such
objects. The faces of a block are always bounded parts of planes, and thus
are flat. Each such face is bounded by two edges. Each of these edges will
meet two other edges that bound the same face. The points at which two
edges meet are called the vertices of the object. We assume that each of the
vertices belongs to the skin of the object.

These decisions entail that we must be able to speak of the dimensionality
of the parts of material objects: The concepts just introduced make it clear
that 3-dimensional objects have besides 2-dimensional parts (skins and faces)
also 1-dimensional parts (edges) and 0I-dimensional parts (vertices).

In order to be able to talk about the new concepts, we introduce the new
1-place predicate BLOCK, as well as three new 2-place predicates, VERTEX,
EDGE and FACE. ‘EDGE(y,x)’ means that y is an edge of x, and likewise
for ‘FACE(y,x)’ and ‘VERTEX(y,x)’.

Our first axioms say that vertices of an object x are 0-dimensional parts
of x; that for each vertex there exists a point which the vertex occupies; that
edges of x are 1-dimensional parts of x; that faces of x are 2-dimensional
parts of x; and that faces are flat - that is, a face occupies a 2-dimensional
region which is part of a plane. To express the last axiom we extend the use
of the predicate Occ and that of the mereological part relation C.

VEF.1 VERTEX(y,x)— (0-D(y) & y C x)

VEF.2 EDGE(y,x)— (1-D(y) & y C x)

VEF.3 FACE(y,x)— (2-D(y) & y C x & (3 f)(Pla(f) & y C {))
VEF.4 VERTEX(y,x)— (3 p)(Poi(p) & Occ(y,p)))
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VEF.5 EDGE(y,x)— (3 r)(1-D(r) & Occ(y,r)))
VEF.6 FACE(y,x)— (3 r)(2-D(r) & Occ(y,r)))

The next axioms describe a block as having a surface consisting of 6 faces,
with each face bounded by 4 straight edges (i.e. by 4 edges which are line
segments), each edge bounded by two vertices and each vertex the end point
of two meeting edges.

VEF.7 (BLOCK(x) & EDGE(z,x))— (3 p)(»')( v)(3 v')(Poi(p) & Poi(p’) &
VERTEX(v,x) & VERTEX(v',x) & Occ(v,p) & Occ(v’,p’) & Occ(z,|p,p’]))
VEF.8 BLOCK(x)— ((3 6!y)FACE(y,x) & (V) (V s)(( KIN(s,x) & 0-D(r)
&1 Cs) = (Fy)FACE(yx) & r Cy))

VEF.9 (BLOCK(x) & FACE(y,x)) — (3 4!z)(EDGE(z,x) & RIM(z,y)) & (V
r)(V s)((RIM(s,y) & 0-D(r) & r C s)— (3 y)(EDGE(z,x) & & RIM(z,y)& r
Cy))

VEF.10 (BLOCK(x) & VERTEX(u,x))— (3 2!z)(EDGE(z,x) & u C z)

[Question: Can some of these facts be deduced from others together with
the axioms given before?|

N.B. We saw that every material object must be conceivable as 3-dimensional
in some way. And seen in this way, every object has a skin, those which we
have discussed as coming with a 1- or 2-dimensional conceptualisation as well
as those whose conceptualisation is as 3-dimensional. However, we are here
concerned only with objects under a given conceptualisation. Dimensionality
is part of this conceptualisation. And when an object is conceived as 1- or
2-dimensional, this means that one is abstracting away from, among other
things, its skin. So for us the skin of x will be defined only if x conceived as
3-dimensional.

For the time being we will not do much with these new concepts. We
confine ourselves to introducing some of the necessary predicates, but intere-
sting axioms concerning them will not be given until later. The predicates we
will introduce here are: (i) a 1-pl predicate SUR, for the sort of 2-dimensional
surfaces; (ii) a 2-pl predicate SKI which associates with each 3-dimensional
object its skin. The skin always belongs to the sort defined by SUR. (We will
also introduce predicates for the inside and the outside determined by a skin.
But this involves the notion of a spatial region and will have to wait until 3.
below.)
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2 Entries for Adjectives, Degree Adjectives and
Length Adjectives.

1 There is no uniform scheme for the lexical entries of adjectives. Some
adjectives, such as last and alleged (letzt and mutmaplich) are operators
on predicates and must be represented as such. however, the vast majority
are predicates of some kind, which express a predication of the sentence
subject when they occur as complements to copulas, and predications of the
referential argument of the governing noun when they occur in prenominal
position. The entries for the latter will have the general form given in (1)

(1)

adjective 77
X
Selectional Restrictions

Application Conditions

Semantic Representation

Here, x is the referential argument of the adjectival predicate, i.e. the thing
of which the adjective predicates something; the question marks to the right
indicate that the adjective may have additional, non-referential arguments, as
we find with related to or acquainted with. The ‘Application Conditions’ are
a rubric which we have not yet encountered in our sample entries but which
we will find we need for the dimension adjectives which are our target here
(and which also belong to the general category of predicational adjectives).

2. Many predicational adjectives are degree adjectives. This shows in their
being modifiable by adverbs such as very, quite, somewhat and the like (sehr,
etwas, ziemlich, ..) and with some of them also by certain measure phrases,
such as 20 cm. It has been argued, and by now more or less conclusively,
that degree adjectives have an argument slot for the degree to which they
apply to a given object. In other words, the adjective relates its referential
argument x to a degree. In a sentence like (2)

(2) Der Stock ist 70 cm lang.

the relation is between the stick and a certain length (or ‘quantity of
length’), which is denoted by the phrase 70 c¢m.) 70 cm is an example of a
measure phrase. Measure phrases consist of (i) an number expression, which
is used to refer to a real number, and (ii) a name for a unit of measure-
ment. Units of measurement are associated with a certain magnitude, such
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as length, volume, temperature, weight, etc. Magnitudes are functions from
certain kinds of entities (material objects, distances in space, temporal in-
tervals, events) to certain quantities, functions which map each entity for
which they are defined to the quantity which the given entity possesses (of
the magnitude in question). Magnitudes can be measured, with greater or
lesser precision or accuracy. For the magnitude that will be our concern here,
length, there exists a variety of mutually consistent, extremely precise and
reliable measurement procedures. For length more than for any other ma-
gnitude this makes it reasonable to adopt the idealisation that the entities
which have length have quantifies of length that allow for unique mapping
into the set of real numbers, once a ’size standard’, or unit of measurement
is chosen, which maps some particular entity onto the real number 1. For
length, as for many other magnitudes, it is proved useful to make use of
a range of different units of measurement (rather than a single one, which
would be enough in principle). Units of measurement for the same magnitu-
de come with conversion rates, determined by th numbers which they assign
to any one entity. (e.g. 1 kilometer = 1000 meters = 100.000 c¢m). For our
purposes it will be convenient to identify the quantities of a given magnitude
with functions which map each unit of measurement for the given magnitude
to the real number which measures the given quantity in terms of that unit.
Thus, if we were to consider just the units ‘cm’ and ‘m’ as units of measure-
ment for length, then some particular length (e.g. that of a certain metal bar,
or of the distance between two points in space) would be identified with the
function whose domain is cm,m and which maps each of these to the number
representing the given length in terms of the given unit. For instance, the
given length might be the function which maps the unit ‘cm’ to the number
175,7 and the unit ‘m’ to the number 1,757; in other terms, the length would
be the set of pairs { <cm,175,7>, <m,1,757> }.

Certain adjectives which are associated with magnitudes in the sense that
they act as predicates of entities by expressing more directly properties of
the quantities which this magnitude assigns to the entity. It is part of the
semantics of such adjectives which magnitude they are connected with - this
is what distinguishes between e.g. long, heavy, warm (lang, schwer, warm),
which are connected with length, weight and temperature, respectively. But
for one and the same magnitude there is often more than one adjective.
For instance, connected with weight we have heavy and its antonym light
(schwer and leicht). Length is a magnitude of special importance to us,
and moreover, the significance of quantities of length varies considerably
between different kinds of contexts in which the issue of length may arise.
It is probably for this reason that for length we find an unusually large
set of different adjectives which are all associated with this one magnitude.
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These are the so-called dimensional adjectives (Dimensionsadjektive) studied
in detail by Lang: lang, breit, dick, hoch, tief, weit, (together with various
antonyms, like kurz, schmal, eng, flach, which we will ignore for the time
being).

These adjectives are exceptional among other things in that they allow for
argument phrases denoting degrees, i.e. for measure phrases as arguments.
Therefore, one of the matters which we will have to sort out in order to
find an adequate way of representing. the sentences on which much of Lang’s
study concentrates - e.g. Der Ziegelstein ist 24 cm lang, 11 ¢cm breit und 7
cm dick. (This matter, fortunately is not hard.) It also mens that the entries
for dimensional adjectives will all have the form given in (3). (As usual, the
parentheses around the degree argument phrase indicate that the argument
is syntactically optional).)

adjective ( measure phrase)
X d
Selectional Restrictions

Application Conditions

Semantic Representation:

The Selectional Restrictions for dimensional adjectives vary. lang is ex-
ceptional in that it can be used in general for bounded 1-dimensional regions
of space (such as, among them, line segments), and 1-dimensional objects
occupying them. (In this respect, though not in all others, long is like lang.)
In addition to 1-dimensional regions and objects, lang is also applicable to 2-
and 3-dimensional regions and objects, though in these cases it is always in
virtue of some line segment or segments associated with the object or region
that lang is applicable to its overt argument: the argument satisfies the given
predication insofar as the selected line segment does (or segments do). In
this respect the other dimensional adjectives are like lang, even though they
cannot be applied to 1-dimensional objects or regions (or, in a few cases, only
in special contexts; cf. weit).

The real problem which the dimensional adjectives present is how the
relevant line segment or segments associated with a 2- or 3-dimensional ar-
gument are determined. This is a notoriously complicated matter. as a first
step in the direction of a solution we recall the following from our earlier
discussion.
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a Many 2-dimensional and 3-dimensional objects come with intrinsically
determined axes. (Along any such axis the object will have a certain length,
viz. the maximal length of any line segment parallel to the given axis whose
end points are on the surface of the object.) These axes an be determined
either by the intrinsic geometry of the object (e.g. block, cylinder), or by the
object’s function (book), or by an intrinsic orientation in space (tree); often
the intrinsic orientation is also related to function (wardrobe, vase). Geome-
trically determined axes are always directions, functionally or orientationally
determined axes are orientations.

b . There are (at least) three strategies for describing the dimensions of
objects to which the Observer-Describer stands in a certain spatial relation.
We have considered this problem so far only in connection with situations
in which the object and the observer occupy a single horizontal plane, and
will stick with this restriction for the time being. In such situations, we saw,
the relation between object and observer determines a full coordination of
Primary Perceptual Space (PPS). We will refer to the three strategies as
Dimension Description Strategies, or DDs. For the individual strategies we
(almost) adopt Lang’s terminology: We have (i) the Intrinsic Dimension
Description Strategy (IDDS), (ii) the Orientational Dimension Description
Strategy (ODDS) and (iii) the Perspectival Dimension Description Strategy
(PDDS). IDDS describes the object with adjectives determined solely by its
intrinsic axes, ODDS and PDDS do so by taking the position of the object
in PPS into account. The latter two differ in that PDS choses its adjectives
exclusively in terms of the orientation of the line segments an adjective is used
to describe in PPs. ODDS does this only with regard to the two directions
that lie in the plane of the face of the object the observer can see, but uses
a different strategy for the dimension of the object in the directions of the
observer axis OBS.

Each of the DDSs defines, for any pair consisting of an object x with cer-
tain intrinsic properties and an observer O who stands in a given (horizontal)
orientation relation to the object, a correlation of adjectives with the diffe-
rent dimensions of x. More precisely, for each DDS ?DDS, ?DDS(x,0) is a
function which maps each of the three dimensions of the object x (identified
in terms of being parallel to the coordinate axis determined by the relation
between x and O) to the adjective A that is to be used to describe that
dimension according to ?DDS.

Given these functions we can then formulate the application conditions
and semantic representation for a dimension adjective A. In particular, the
semantic representation is to say that given any observer O positioned so-
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mewhere in the same horizontal plane as x and any one of three DDSs, the
adjective A predicates of x that g (the degree argument of A is equal to the
length of that direction of x in that direction d such that ?DDS(x,0)(d) =
A. More formally, the semantic representation of the entry for the adjective
will be:

A 7DDS.A O.(length((Td)(?DDS(x,0)(d) = A) = g)

The application conditions - which state when the adjective can be used
at all given the intrinsic properties of x, the position of O and the choice of
DDS, simply amount to A being in the range of the function A\.?DDS(x,0)(d):
If A is not in the range of this function, then A cannot be used to describe
the given x in the context which O and the given choice of DDS provide.
Formally:

A?DDS.A. O (3 d)(?DDS(x,0)(d) = A)

If we know the function ?DDS, then this will tell us which dimensional
adjective is to be used to describe each of the dimensions of an object x
with given intrinsic properties by an observer O in a given position vis-a-
vis x who chooses this DDS. Conversely, the use of certain adjectives in the
description of the dimensions of x, in combination with the specification of
these dimensions (in particular, explicit numerical specifications, as in 20 c¢m
lang, etc.) should enable us to draw inferences about the intrinsic properties
and /or about the way in which it is presents itself to the describer.

2.0.2

The real problem which the dimensional adjectives present is how the relevant
line segment or segments associated with a 2- or 3-dimensional argument are
determined. This is a notoriously complicated matter. As a first step in the
direction of a solution we recall the following from our earlier discussion.

a Many 2-dimensional and 3-dimensional objects come with intrinsically
determined axes. (Along any such axis the object will have a certain length,
viz. the maximal length of any line segment parallel to the given axis whose
end points are on the surface of the object.) These axes an be determined
either by the intrinsic geometry of the object (e.g. block, cylinder), or by the
object’s function (book), or by an intrinsic orientation in space (tree); often
the intrinsic orientation is also related to function (wardrobe, vase). Geome-
trically determined axes are always directions, functionally or orientationally
determined axes are orientations.
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b. There are (at least) four strategies for describing the dimensions of ob-
jects to which the Observer-Describer stands in a certain spatial relation.
We have considered this problem so far only in connection with situations
in which the object and the observer occupy a single horizontal plane, and
will stick with this restriction for the time being. In such situations, we
saw, the relation between object and observer determines a full coordinati-
on of Primary Perceptual Space (PPS). We will refer to the four strategies
as Dimension Description Strategies, or DDSs. We have (i) the Intrinsic
Dimension Description Strategy (IDDS), (ii) two Orientational Dimension
Description Strategies , the Horizontal Orientational Dimension Descripti-
on Strategy (HODDS) and the Vertical Orientational Dimension Description
Strategiy (VODDS), and (iii) the Perspectival Dimension Description Strat-
egy (PDDS).

Each of the DDSs defines, for any pair consisting of an object x with
certain intrinsic properties and an observer O who stands in a given (ho-
rizontal) orientation relation to the object, a correlation of adjectives with
the different dimensions of x. Informally speaking, the strategies differ as
follows. IDDS describes the object with the help of adjectives that are de-
termined solely by its intrinsic axes, while the other three strategies all take
the current position of the object in PPS into account, making the choice
of adjective to describe a dimension of the object dependent on the current
orientation of that dimension within PPS. The three differ in precisely how
they do this. PDDS provides adjectives for all three dimensions in terms of
PPS orientation, for HODDS and VODDS this is so for only two dimensions
out of three; with HODDS these form a vertical plane (facing the Observer
when he looks at the object in a horizontal direction, and with VODDS they
form the horizontal plane which faces an observer when he looks at the object
from above.

Formally, each DDS ?DDS is a function which assigns adjectives to the
three dimensions of an object x that are to be used by an observer O who
describes x looking at it from a certain position. The combination of x and
O determines a (particular coordination of) PPS, which we will denote as
PPS(x,0). In general the choices which a given strategy 7DDS provides is a
function of (i) the intrinsic properties of x, and (ii) PPS(x,0). We denote this
function as 7DDS(x,0), with x doing double duty as it were, with one duty
that of providing its intrinsic properties and the other that of determining,
through its relation to O, a particular PPS.

Suppose that PPS is given and that the object is placed within it in
one of the positions that our conceptualisation permits. This presupposes
that each of the intrinsic axes and planes of x is parallel to some axis of
PPS or to a plane determined by two of its axes. For instance, the three
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axes of a block-shaped object will each be parallel to one of the PPS axes
VERT, OBS and TRANS. So in this case we have six different positions for
x, depending on how the dimensions of the object line up with the PPS axes.
Thus the longest axis max(x) can be parallel with (i) TRANS, (ii) OBS and
(iii) VERT, and for each of these three possibilities there is a further binary
option, concerning the remaining two dimensions of x. e.g. in case (i), the
shortest axis min(x) could be either parallel with VERT or with OBS, etc.
For a second example, consider an object the shape of a cylinder. Here there
are three positional possibilities, given by the orientation of the intrinsic axis
of x, which, once again, can be (i) || TRANS, (ii) || OBS and (iii) || VERT.
The orientation of the plane of the cross sections of the cylinder in PPS (i.e.
of the plane orthogonal to the cylinder’s axis) is then automatically fixed as
well. (In case (i) it is the plane spanned by OBS and VERT, and so forth.)

With objects that have functionally determined axes, such as a wardrobe,
the question of how the object is positioned in PPS is a little more complica-
ted, since orientation (in the technical sense in which the term is used here)
now plays a role too. Thus a wardrobe can be put upside down. For a block
without functionally determined dimensions (e.g a brick) the notion of being
upside down doesn’t make sense. When I rotate a brick over an angle of 180°,
then it will be in a position which in present terms, is indistinguishable from
the starting position. With a wardrobe this is never so, irrespective in which
direction the rotation is performed.

We have been talking about the ‘dimensions’ of an object x without saying
clearly what we mean by this term. In fact, common usage of the word
dimension does not seem to force a fully determined concept upon us as its
denotation. The sense in which we want to use it here is one which involves
both a direction and a length. In this respect dimensions are much like line
segments. But they aren’t quite, for as a rule there isn’t any one particular
line segment with which a certain dimension of an object x could be identified.

To say what we mean by the dimensions of an object x, let us assume
that x occupies a certain position in space and that d is a given direction.
then any line | parallel to d will intersect the surface of x in two places.
The intersection points determine some line segment with a given length.
Let Dim(x.d) be the length of the longest line segment thus determined. The
dimensions of an object x are the lengths of x in certain directions which are
singled out in some special way. With a block these are the directions of the
block’s edges, with an object the shape of a cylinder they are: (i) the axis of
the cylinder and (ii) any direction within its (circular) cross-section, and so
on. Note that the line segments determined by the intersection points of the
surface of a block with lines parallel to one of the distinguished directions (i.e.
the direction of one of the block’s edges) will all have the same length. Thus
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there is no uniquely determined line segment in this case, but the dimension
in this direction is well-defined.

An explicit definition of the different DDSs presupposes, we have seen, a
characterisation of the relevant types of objects. Thus we must assume that
there is a function DDT (for ‘Dimensional Description Type’) which assigns
each object x its relevant type. DDT must play a part in particular in the
lexical entries for the nouns which lexicalise the relevant features. This is true
in particular for nouns whose instances have functonally determined intrinsic
coordinations, such as Schrank, Buch, Grabstein, Truhe, Baum, Turm, etc.
(More problematic is the mater of lexical specification for a noun such as
Ziegelstein (brick). Is it an intrinsic feature of bricks that their dimensions
in the three orthogonal directions are significantly different, unusual.) We
adopt Lang’s notation for the different DDTs. For block-like 3-D objects this
consists of a 2 x 3 matrix, with the geometrically determined selections in
the top row and the functionally determined ones in the bottom row. Thus
for a brick, which has only geometrically determined dimensions we get:

<a, : c >

b
) 0~

In addition we need to know that the object is not hollow. For then and
only then, we assume, can the shortest dimension of the object be described
as dick. We simply add this as an extra feature to the DDT of the object,
either in the abridged form ‘—hollow’, used below or in the standard predicate
logic form ‘hollow(x)’. So the DDT for a prototypical brick is as in (5)

(5) < a, b, c >
<0, 0, 0> — hollow

Smilarly for a block with a square diameter but where the third dimension
(L to the square cross-section) is longer than the edges of the cross-section,
we get (6)

<a, (b, c)>
© 0. 0= hollow

and for a square tile (=Ziegel) (7)

< (a, b), c)>
@ 0 0~ hollow

Let us also look at three objects with functionally determined dimensi-
ons. The first is a wardrobe, where the height is greater than its horizontal
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dimensions, and the second a sideboard, which is like a wardrobe except that
its height is in between its width and its depth. The third is a rectengular
trash can (i.e. one with a rectengular cross section and where the dimensions
of this cross-section are notably smaller than its height). For these we get
(8), (9) and (10), respectively.

(8) <a, b, c >
<vert, trans, obs > hollow
() <a, b, c >
<vert, trans, obs > + hollow
<a, b, c >
(10) <vert,  trans, obs > + hollow
obs

Let us suppose that we have a complete definition of:

(a) which DDSs are applicable to which types of objects (i.e. for
which x ?DDS(x,0) is defined);

and

(b) in case ?DDS(x,0) is defined, what this function is.

This definition, together with a way of determing the different kinds of ob-
jects to which the DDSs apply, gives us one way in which we can complete the
lexical entries for dimensional adjectives: Under the adjective’s Application
Conditions we list the possible strategies which are applicable to the predi-
cation bearer x and have the given adjective in their range. And we use as
semantic representation a formula which says that, given the kind of object
X is, its position in PPS and the DDS chosen, the degree argument g of the
adjective is the (uniquely determined) dimension D of x in the selected di-
rection d which the given DDS maps onto the adjective. So we get as general
form for the entry of such an adjective

(11)

adjective (measure- phrase)

X g
Selectional Material ob- | quantity of length(g)
Restrictions ject(x) or spatial

region(x)
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Application Conditions:

The set of pairs ( 7DDS,0 ) of a DDS ?DDS and an observer position O
vis-avis x such that adjective occurs in the range of ?DDS(x,0):
{<?DDS,0>: adjective € Ran(?DDS(x,0)) }

Semantic Representation:

The propositional function which maps each of the pairs <?DDS,0> onto
true or false, depending whether the dimension Dim(d) such that
?DDS(x,0)(d) = adjective is equal to the degree argument g of adjective:
A<?DDS, O>. Dim(x, (¢ d)(?DDS(x,0)(d) = adjective)) = g

Note that in this form the lexical entry for a dimensional adjective is
immediately usefull primarily for purposes of language generation: When an
observer O wants to describe the dimensions of an object from the particular
angle from which it is viewed and O chooses a certain strategy (which is
compatible with the intrinsic features of the object and his given view point),
then the definition of the chosen strategy (still to be specified below) will give
him, when it is applied to the object in question and the PPS determined by
the viewpoint, for each of the relevant dimensions of x the adjective that is
to be used to describe that dimension.

In the context of interpretation, on the other hand, (11) does not seem
to be in a directly usable form, even if in principle it tells the interpreter
everything that he needs. More directly useful to him are rules which tell him,
for any one adjective, which dimensions of the object (as it presents itself to
him) it could be used to describe, and what a particular interpretation of the
adjective, according to which it is taken to describe a certain dimension of the
object in question, implies about the strategy which the describer has used,
and therewith also about the possible interpretations of the other adjectives
that occur in conjunction with the first one. In particular, the description
chosen by the observer should, when combined with information about the
kind of the described object (brick, book, tower, etc) in some cases allow for
inferences concerning the position in which the object presents itself to the
observer. (Our own limited experience suggests that people find it quite hard
to draw such inferences. This might be an indication that the information
about dimensional adjectives which is of our concern here is represented in
the human lexicon in a primarily generation-oriented form.)

In the remainder of this section we define the different DDSs. Once these
have been given, we thereby have given lexical entries for each of the ad-
jectives we have been looking at here (at least, as regards their use in the
descriptions of the dimensions of objects that allow for the schematisation we
have been assuming): All that needs to be done is to substitute in (11) the
particular adjective (lang, hoch, etc.) for the schematic designator Adjective.
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In the next section we will formulate ‘interpretation friendly’ principles
concerning the meaning and use of the dimension adjectives. These will be
consequences (‘theorems’) of the entries given in this section.

2.0.3 Definition of the DDSs.

Definition of the DDSs.
Before we give the actual definitions we first state some general principles:

1.

Every function ?DDS(x,0) is 1-1

(No adjective may be used twice in a single dimension description.)

. IDDS ignores the current position of x and a fortiori its relationship to

0.

(So IDDS(x,0) would be more properly written as IDDS(x); we keep
the former notation just for reasons of uniformity.)

. PDDS describes all dimensions of x in terms of their relations to PPS.

Thus PDDS(x,0)(d) is specified only by whether d is parallel to VERT,
to OBS or to TRANS.

. HODDS and VODDS provide perspectival specifications for two of the

three dimensions of x., while leaving the third dimension to be specified
by intrinsic considerations.

With HODDS the first two dimensions lie in the vertical face of x facing
an Observer looking at x from a horizontal direction.

With VODDS the first two dimensions lie in the horizontal face of x
which faces an Observer who looks at x from above. (An additional
constraint on VODDS is that the longest dimension of x must lie in
this horizontal plane.)

. Functional specifications always override both geometrical specificati-

ons and perspectival specifications. More precisely, when one dimension
d of an object x is functionally distinguished in a certain way and the
adjective corresponding to that way is A, then A may not be used to
describe that or any other dimension of x on other grounds.

The specification of functionally determine dimensions is rigid in the
sense that each functional feature specifies a unique adjective once and
for all. The specification is as follows:
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(12) vert = hoch;
trans=- breit;
sub= dick;
obs= tief.

6. There is also a fixed assign of adjectives to the geometrical features
MAX, MIN, INT (or - in the alternative Lang notation we have adopted
in the lexical specifications of nouns such as Ziegelstein, etc. - a,b,c. It
is:

(13) MAX/a= lang;
INT /b= breit;
MIN /c= dick, provided the object has the feature -hollow, unde-
fined otherwise.

As far as objects are concerned which are conceived as 3-D and as having
three functionally or geometrically distinct dimensions, we are now in a po-
sition to define when a strategy is applicable to an object and, in case it is
applicable, what adjectives it returns as values when applied to the different
dimensions of the object. We begin by considering objects that are not ani-
mals. The adjectives used to describe the dimensions of organisms differ in
some instances and will be considered below.

IDDS IDDS is applicable to all objects with three distinguishable dimensi-
ons. We distinguish three cases: (a) the dimensions are determined exclusively
in geometrical terms (brick); (b) they are exclusively determined in functio-
nal terms (wardrobe, sideboard, book, tombstone, drawer); (c) one dimension
is determined functionally and the other two are distinguished geometrically
(mail tray, chocolate box).

For case (a) we get as values the adjectives specified in 6. for the geome-
trically determined features of the object.

(Note that according to 6. we don’t get a complete assignment when an
object with purely geometrically determined axes is conceived as hollow, for
in that case there is no adjective for the shortest dimension c. It is not easy to
test this prediction, as objects of the relevant kinds seem hard to come by. It
is possible that this is a place where our proposals will have to be adjusted.)

For case (b) we get the adjectives that are specified in 5. for each of the
object’s functionally determined features.

For case (c) we get:

(i) the adjective specified in 5. for the functionally specified fea-
ture.
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(In our current experience this is (almost?) always vert, and thus
the corresponding adjective is hoch.)

(ii) The adjectives specified in 6. for the two remaining geometri-
cally determined features.

PDDS This strategy is defined only for objects whose dimensions are geo-
metrically but not functionally determined (brick, cf. Lang). The specifica-
tions are similar to those for objects with functionally determined intrinsic
coordinations:: if d1, d2 and d3 are the dimensions of the object which are
parallel to the axes VERT, TRANS and OBS (of the given PPS defined by
x and O), respectively, then the corresponding adjectives are:

(14) d1= hoch;
d2= breit;
d3= tief.

HODDS This strategy is applicable only when the following conditions are
satisfied:

(i) the dimension of the object that is parallel to OBS is intrinsi-
cically determined (either functionally or geometrically), and the
feature distinguishing this dimension determines an adjective ac-
cording to 5. or 6. (The last qualification is necessary because of
our assumption that MIN=- dick presupposes -hollow.)

(ii) If a dimension d that is parallel to the face of the object which
is facing O (i.e either d || VERT or d || TRANS), and d is int-
rinsically distinguished by a functional feature, then this feature
must be ‘consistent with the current orientation of the object’, so
that the functional feature and the perspectival characterization
according to the object’s current position (see PDDS) assign the
same adjective. This boils down to the following:

a.If d || VERT and d is distinguished by a functional feature
then this feature must be vert.

b. If d || TRANS and d is distinguished by a functional
feature then this feature must be trans.

c. A further constraint on the applicability of HODDS is
that the resulting assignment, according to the definition below,
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is 1-1. Some cases that have not yet been ruled out by a. and b.
will fail because of this further constraint.

(Exercise: find examples of objects for which this is the case!)
When conditions a. and .b. are fulfilled, and pending fulfilment of condi-

tion c., HODDS(x,0) gives the following assignments. Let d1 || VERT, d2 ||
TRANS, d3 || OBS. Then

d1= hoch;

d2=> breit;

d3= Ad;j. where either
a. d3 is distinguished by an intrinsic functional fea-
ture f and f= Adj according to 5, or
b. d3 is only distinguished by an intrinsic geome-
trical feature g and g = Adj according to 6.

VODDS

This strategy is applicable only to objects which have a dimension that is
geometrically distinguished as MAX, and whose current position is such that
the dimensions geometrically distinguished as MAX and INT are both hori-
zontal. Moreover, these dimensions should not be determined by functionally
intrinsic features.

In addition we have in this case the same constraint as for HODDS: the
specified assignment must be 1-1.

If these conditions are fulfilled, then VODDS assigns the following adjec-
tives. Let d1, d2, d3 be the dimensions of x characterised by. d1 = MAX(x),
d2 = INT(x) and d3 || VERT. Then:

d1= lang;
d2=> breit;
d3= Adj. where for Adj. there exist one or two possibilities: either

a. Adj = hoch or
b. d3 is distinguished by an intrinsic functional feature

f and
f= Adj according to 5.

Note that this allows in principle for two adjectives to describe d3. Always
available is hoch. And in the case where d3 is functionally distinguished by
obs, then an alternative possibility is tief.

Tomb stones Lang ([ref. to table] mentions (assuming we read him cor-
rectly) one exception to the principle that the choice of a functionally deter-
mined dimensional adjective always has preference over one determined in
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some other way. (This principle, we saw, entails that for objects with comple-
te functionally determined coordinate systems the only description strategy
available is that which assigns adjectives according to (12); thus it ignores the
current position of the object and, by implication, its spatial relation to the
observer.) The exception concerns tomb stones. Tomb stones have, like books,
functionally determined coordinate systems which are ‘inscription-based’: In
a typical tomb stone there is just one side which bears an inscription. This
is the tomb stone’s front side. Moreover, the front side gets an intrinsic coor-
dination from the inscription it bears, since descriptions define what is up
and what is down, as well as what is left and what is right. (Actually just
one of these specification would have sufficed.) There are still several types
of tomb stones to be distinguished, first in terms of their dimensions, and
second in terms of their canonical positions. The two ‘Gestalt types’ of tomb
stones distinguished by Lang are those which can be represented as in (15)
and (16):

<a, b, c >

(15) < , -hollow >
<vert , trans,  sub >
< a , b , C >

(16) < , ~hollow>
< trans, vert, sub >

In addition, there probably also exist square tomb stones, which could be
represented as in (17), though in our own experience such stones are fairly
rare and we would be inclined to argue that they are untypical.

< (a ,b) , C >
(17 < , ~hollow>
<vert , trans , sub >

(For the use of parentheses see below).)

The canonical position of a tomb stone can be upright or else lying flat,
either on top of the grave, or embedded in the ground. (The ‘Forest Lawn’
design!) For each of these cases the other position will be perceived as non-
canonical: A tomb stone that is meant to be up right can have fallen over,
or it can be lying, waiting to be put up right on the grave for which it is
intended. Similarly, a tomb stone which is intended to mark the tomb for
which it has been cut in a lying position may stand upright in the stone
cutter’s yard or in the cemetary before it is properly installed.
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As a matter of fact it does not seem to matter very much whether the
current position which the stone is to be regarded as its canonical one or
not. In either case we find that there are no options for describing the stone’s
vert dimension when the stone is standing; in that case the only adjective
that can be used to describe this dimension is hoch. But when the stone is
lying, then - and it is here that we encounter the deviation from what has
been stipulated in our definition of the DDSs above - we can describe this
dimension not only with the help of hoch but also with that of lang.

The case is intriguing insofar as it requires us to make a further distincti-
on that is important in connection with objects with functionally determined
dimensions. We have seen in our discussion of the position verbs liegen and
stehen that under certain conditions the observer can abstract form the ob-
ject’s function, and thereby avail himself of options which would not have
been available otherwise. (Our example was that of a Teller (plate) which
steht on the table that has been set for dinner, but liegt on the floor, wher
it occupies a place which has nothing to do with its function, and where
presumably it should not be.) Such an abstraction from the object’s functio-
nal dimension determinations seems to be possible also in the case of tomb
stones. This makes the tomb stone into something that behaves - as far as
dimension descriptions go - like a brick. In the case where the tomb stone
is viewed from above (which would naturally be if it was lying flat, whether
or not that is perceived to be its canonical position), then VODDS would
assign it the dimensional adjectives given in (18), provided its shape is as in
(15) or (16):

(18) a = llang; b = breit; ¢ = hoch/dick.

Moreover, the first of the two possibilities in (18) is also assigned by HODDS,
though we suspect that this is not a very likely strategy to be applied to lying
tomb stones.

As this discussion shows, the descriptions which —if we read Lang cor-
rectly — he maintains are available for lying tomb stones (those given in (15))
could be the result of a number of distinct strategies (involving choice of a
DDS and possibly abstracting from the object’s functional determinations) ,
and we do not know at this point which of those possibilities should be held
responsible for the descriptive options which apparently exist.

We have dwelt on this case not so much out of an excessive interest in
tomb stones, but because it is a case that according to the data mentioned by
Lang seems to behave in a more complicated way than our fairly streamlined
definitions of the DDSs allow for, and at the same time as a warning that
expceptions to the possibilities which our DSs specify may well arise also
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in connection with other types of objects than those which we have so far
managed to consider.

Next we turn to 3-D objects where only one dimension is distinguished
(either functionally or geometrically or both).® We consider three cases, repre-
sented in Lang-notation as (i) <a,(b,c)>, (ii) <(a,b),c>, and (iii) <(a,b,c)>,
respectively. (Recall: <a,(b,c)> represents the schema of a ‘generalised cy-
lindrical’ * object in which one dimension, a, is longer than any dimension
lying within the cross section perpendicular to this two while there is no si-
gnificant difference in size between the dimensions that lie within this cross
section; <(a,b),c> represents the schema of a rectangular object in which one
dimension, c, is shorter than those lying in the perpendicular cross section
while there is no significant difference in size between those; and <(a,b,c)>
represents the schema of an object in which all dimensions are of the same
size (e.g. a cube or a ball).

On our understanding of Lang’s use of the notational scheme instantiated
by (i), (ii) and (iii) above, they are meant to apply not only to objects that
have six orthogonal faces (which is what we have been assuming up to this
point) but also to objects that are conceptualised as cylinders, with one
distinguished ‘main’ axis, while the cross sections of the object perpendicular
to that axis are ‘regular’ 2-dimensional figures of a large variety. One such
regular figure is a square, and objects of types (i) and (ii) with that kind
of cross section fall within the purview of our earlier discussions insofar as
they are the shape of blocks. But there are many other possibilities for the
regular cross-section as well: a regular triangle, a regular petagon, a regular
hexagon, etc. and, in the limit, a circle.

The case where the cross section is a square, however, is special in that
this seems to be the only cross section shape where objects falling under the
schemata (i), (ii) and (iii) above can receive a 3-dimensional description (i.e.
one of the form ‘x units Al, y units A2 and z units A3’)

3When an object has a complete functionally determined coordinate system, then the
functionally determined specifications given in (5) apply also when its shape is like in (i),
(ii), (iii) above. (For instance, a ward robe whose dimensions are, say, 180cm x 65 cm x 65
cm will be described as: 180 c¢m hoch, 65 c¢m breit und (ebenfalls) 65 cm tief. As we will
see below this is different for organisms.

4By a generalised cylindrical shape we understand a 3-dimensional shape which has
one main axis and for which the cross sections perpendicular to that axis are regular two
dimensional figures i.e. either a circle (this is the case of an actual cylinder), an equilateral
triangle, a square or a regular polygon with 5 or more sides. (Strictly speaking the notion
ought to be extended so that it covers additional cross-section shapes, e.g. by allowing
cross sections which are like regular polygons except that the sides are not straight but
slightly convex or concave. Wee won’t bother with these subtleties here. however.)
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In fact, block-shaped objects satisfying the three schemata (i), (ii), (iii)
behave to some extent like objects with three distinguishable orthogonal
dimensions. The only difference is that the adjective dick cannot be used to
characterise any of the dimensions of an object satisfying schema <a, (b,c)>
and lang cannot be used to describe any dimension of an object satisfying
<(a,b) ,c)>. In the first case the reason is that ithe principle governing the
use of dick is that it should to be used to describe the shortest dimension,
but there is no such dimension in this case. (There are only dimensions that
are among the shortest!) The same consideration blocks the use of lang in
relation to objects satisfying <(a,b) ,c)>.

This restriction entails that objects in which there is no functional de-
termination of any axis and which satisfy either schema (i) or schema (ii)
are not within the scope of IDDS, as the adjectives dick (in the case of such
objects satisfying (i)) and lang (in the case of those satisfying (ii)) are not
available. On the other hand both these types of objects are amenable to
PDDS. This is also true, moreover, of objects of shape <(a,b,c)>. Moreover,
HODDS and/or VODDS can be applied to certain positions (vis-a-vis O),
others being excluded because of the restrictions mentioned above.

Exercise: Determine which positions of objects satisfying the sche-
mata (i), (ii), (iii), respectively, allow for application of HODDS
and/or VODDS according to what has been said here, and com-
pare these results with your own judgements.

For objects satisfying the schemes (i) and (ii) for which the cross section
is not a square, dimensional description takes a different form, involving at
most two clauses instead of three. For instance, a round tower would be
described as, say,

(19) 20 Meter hoch und 7 Meter dick.

Such descriptions leave us uncertain whether the conception that gives rise
to them should be regarded as that of a 3-D or of a 2-D object. What we are
seeing here is surely something different from the 2-dimensional conception
that we have of such objects as floor boards, bill boards, blackboards, pictu-
res, mirrors, walls, curtains or skins. The obvious difference is that the clause
7 Meter dick in (19) is understood as the dimension along just any one of the
many possible coordinate axes for the tower’s cross section‘. Compare this
with the description of a board given in (20)

(20) 120 cm lang und 30 cm breit
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where both clauses refer to a particular, fixed dimension, each determined
by one of the two pairs of parallel edges. In order to distinguish the object
conception at issue here both from the genuinely 2-D conception exemplified
by boards and from the full 3-D conceptions considered up to now, we will
refer to it and to the objects thus conceived as ‘1-2’. In our representation
formalism we will use the predicate ‘14+-2-D’ to refer to objects conceived
in this way. (This choice closely reflects Lang’s schematic notation for these
cases.)

We have phrased our explication of the predicate ‘1+2-D’ in this way
because certain objects can be conceived as ‘14+2-D’, but do not have to.
This is true in particular of block-like objects with two equal sides, such as
a piece of wooden beam with a square cross section. Consider for instance
piece has the dimensions 20 cm x 7 cm x 7 ¢cm. On the one hand it can be
described as having three dimensions - e.g., using PDDS, as in (21.i) (21.a)

(21) a. 20 c¢m hoch, 7 cm breit und 7 cm tief.

b. 20 ¢cm lang und 7 cm dick.
But we can also describe it as in (21.b). In this last description the second
clause refers to the cross section as a whole. We believe that in such cases,

where the cross section is square, the thickness is measured as the length of
an edge of the cross section.’

5 How firm speakers are on this point we do not know. There may well be some uncer-
tainty as to how one should proceed with objects whose cross section is some other regular
polygon as well (e.g. those where the cross section is a regular triangle, as with the wrapper
of a Toblerone bar.) the only fully uncontroversial case is that where the cross section is
a disc, then thickness is given as the size of the disc’s diameter. The predicament that
the non-circular cross sections present is related to the following sense in which two-clause
descriptions of ‘14+2-D’ objects can be seen as descriptions of something two-dimensional.
We might see such a description as applying to the silhouet which the object presents to
the observer. In this context the clause pertaining to the size of the cross section becomes
an assessment of the linear projection of the cross-section onto the transversal plane (de-
termined by VERT and TRANS of the given PPS). If we assume, consistently with our
general approach, that the main axis of the object lies within the transversal plane and
the object is a cylinder (i.e. its cross secton is a disc), then the size of this projection won’t
change irrespective of how the object is presented . (In particular it will be invariant when
the objct is rotated around its main axis.) But when the cross section is a polygon this is
not so. for instance, with a square cross section the size of the projection varies between
a and .a, where a is the length of the sides of the cross section. We suspect that when
people talk about the thickness of a generalised cylinder, there is an implication that the
size which they give for it is the length of the projection just described, and thus that they
presuppose that this projection is invariant under rotations of the indicated sort. When
the cross section is not of cricular shape, then this presupposition is violated and the best
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To repete, for ‘generalised cylinders’ with a square cross section there
are the two descriptive options just mentioned, one reflecting its conception
as 3-D object and the other ts conception as 1+42-D. But in all other cases
(i.e. where the cross section has a different shape) only the second, ‘two-
dimensional‘ option appears to be available. This is true not only for a round
tower, but also (with the reservations expressed in the last foot note) for a
Toblerone wrapper, an octogonal baptismal font, etc etc.

What are the options for describing objects that are conceived as 1+2-D?
So far we have only spoken of those which have no functionally determined
dimensions, but even for those our remarks about what combinations of ad-
jectives are possible have so far only been incidental. first objects for which
the main axis is longer than the ‘diameter of the cross section. Such objects
are characterised as in (22)

<a, (b, c) >
(22) < , +/-hollow>
<0, 0, 0>

Before we describe the possible description strategies for opbjects of this
type, first a principle which holds egenrally for 1+-2-D objects. The dinmensi-
on of a cross section indicated in Lang-notation as (b,c) can be described as
dick if the object has the featrure +hollow; if the object has the feature -+hol-
low, then it is sometimes possible to use weit, but often this use is not happy.
(N.B. just as with 3-D objects, there are hollow 14-2-D objects which, under
certain appropriate conditions, can be conceptualised as -hollow, so that the
use of dick becomes possible to describe the dimension of their diameter too.)

One possible description strategy for such objects is the intrinsic strategy
IDDS. According to this strategy a is described with the help of lang and
the ‘diameter’ with the help of dick, and this irrespective of the object’s po-
sition. Apart from this position-independent strategy , there are also modes
of description whch take the position of the object within PPS into account.
Note in this connection that for 1+2-D objects there are within our simplified
geometry only three distinct positions — those in which the axis a is parallel
to VERT, TRANS and OBS, respectively. Of these three the third does not
seem to play a significant role in position-dependent descriptions. (It appears
that the fundamentally 2-dimensioal conception of 1+2-dimensional objects
only those positions are conceptually relevant in which both dimensions —
i.e. the axis a and the (linear projection of the) cross section are directly

possible assessment of the thickness must involve some kind of compromise. (For a square
cross section the possible values would vary between a and V2 -a, with the end points of
this interval as the most plausible candidates.)

43



accessible to the observer O. This is true for the first two positions but not
for the third.) The position dependent descriptions possible for obects satis-
fying (22) are easily listed. One describes the vertical dimension (i.e. the one
parallel to VERT) as hoch and the other one by the adjective corresponding
to its geometrical determination. Thus when a || VERT we get (23.a). and
when a || TRANS we get (23.77)

(23) a. a = hoch; diameter = dick (when hollow(x) = -)
b.  weit (?; when hollow(x) = +))

a = lang; diameter = hoch (?777)

o

d. a =lang; diameter =breit (77)
e. a = breit; diameter = hoch (?7)

In addition it seems to us just about possible to describe an object which
satisfies (22) and which is in upright position (i.e. a || VERT) as in (23.iii).
Even more marginal seems the decription of such an object in lying position
(a || TRANS) as in (23.e), though, if we are right, even this option cannot
be fully excluded.

Of the three position-dependent strategies we distinguished in connection
with 3-D objects (PDDS, HODDS and VODDS), it seems that only the
last two are conceivably applicable to 14+2-D objects at all. For after all
we are dealing with the description of what is in essence a 2-dimensional
structure and PDDS is specifically for 3-dimensions. (Cf fn. 5.) It is not
obvious, however, how the possibilities listed in (23) can be viewed as the
results of applying these stategies. (23.d,e) might be seen as resulting from
applying HODDS to the object in upright and lying position, respectively,
but we noted that these descriptions are marginal. Of the remaining two, only
(23.c) could be a candidate for the application of VODDS, but it is not clear
how the combination of adjectives in (23.c) could result from this application.
Nor is it clear how (23.a) could be the result of applying HODDS.

It seems, rather, that position-dependent dimension descriptions of 1+2-
D objects only concern the dimensions || VERT. These can be described with
the help of hoch, whereas for the remaining, horizontal dimension one is to
use the adjective which it selects according to its geometrical determination.
At this moment we do not see any more insightful solution to these facts than
to postulate a new position-sensitive strategy for 1+2-D objects which does
just this. We leave it to the reader to introduce the formal apparatus that
ought to com with the introduction of such an additional strategy hmself, or
else to find a better solution to the problem, whch obviates the introduction
of a new strategy.
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For objects of the type given in (24) the situation is different than it is
for those satisfying (22).

< (a , b) , C >
(24) < , +/-hollow>
<0 , 0 , 0 >

The reason has to do with objects with the fearure -hollow. Whereas that for
objects with the feature -hollow dick can be used to describe the diameter
of a cross section schematically represented as (b,c), there is no adjective
is available for the diameter of a cross section of an object with his feature
when the cross section is represented as (a,b). This means that objects of this
type - such as, for instance, a slice from a tree trunk, have no satisfactory
intrinsic dimension description. Curiously enough such objects do allow for
position-dependent descriptions when they present themselves to the observer
in non-canonical positions. For instance a slice from a tree with a thickness of
10 cm and a diameter of 20 cm which is standing on its edge can, we think,
be described as in ( 25.a)

(25) 20 cm hoch und 10 cm dick. < (a,b) = hoch; ¢ = dick)

a.
b. 20 cm hoch und 10 c¢m breit. <(a,b) = hoch; ¢ =breit>
c. 10 cm hoch und 20 cm breit. <(a,b) =breit; ¢ =hoch>

for the case where the object is lying in front of the observer.

In addition one may also get for this case the description given in (25.b),
though again it is one that we consider marginal. And, also in analogy with
what we observed for objects satisfying (22), there is the marginal description
for the case where the object is lying in front of the observer.

Hollow objects satisfying (24) (e.g. a ring-like piece cut from a pipe) do
not seem to allow for intrinsic descriptions. But we believe they do permit
position-dependent description when it is lying down, given in (??.a)

(26)
a. (a,b) — weit; ¢ — hoch.
(a,b) — weit; ¢ —breit.
Moreover, when the object is standing up, one of the two of us is prepa-
red, when subject to enough pressure to come up with some description, to
accept the one in (26.ii). But we doubt that more can be learned from this

observation than the age-old truth that people are prepared to say almost
anything when put on the rack.
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When the diameter is big enough, (25¢) might be an equally good (or
equally bad) possibility as ((25b)). But it seems that we are reaching the
point where returns converge on 0.

With regard to 1+2-D objects in which the two dimensions are equal -
an example would be a cylinder whose height is the same as its diameter -
our judgements are as uncertain as those for the case just discussed, and we
see no point in dwelling on these cases separately.

2.1 What remains to be done

The later parts of our remarks on dimensional adjectives have increasingly
taken on the character of a long and tedious description of data. Occasio-
nally we could see glimpses of how the DDSs which we first introduced in
conncetion with the description of block-shaped 3-dimensional objects might
be applied to objects of the various types that these later parts have dealt
with. But exactly how systematic or unsystematic the principles really are
which govern the choice of dimensional adjectives for the description of all
dimensions of all types of objects which we have reviewed is anything but
transparent. To get a clearer picture of the situation it would be necessary
to try to remould the definitions of the DDSs we have given in such a way
that they can account for as much of data like those we have discussed in as
systematic and illuminating way as possible.

Presumably such an attempt should also take into account uses of the
dimensional adjectives which we have not considered here at all. For instance,
Lang devotes some attention to the use of dimensional adjectives to the
description of motions (such as flights, which can be described as hoch, or
tief). But it doesn’t emerge clearly enough from that discussion what the
conceptual relations are between such uses of dimensional adjectives and the
uses on which we have focused here. In addition to these there are yet other
uses of these adjectives. And these two may hide some of the principles on
which dimension descriptions
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3 Motion

An object y may change its location over time. Such changes come about
through movement e of the object in space. (We assume that there is no
tele-porting!). In the description of a motion, the moving object y will be
often referred to as the theme of the described motion e.

A movement of y is an event which consists in y traversing a path. This
path has y’s initial location - the one from which it moves - as its starting
point and x’s final location - the one to which it moves - as its end point. Note
that the distinction between starting point and end point assigns the path an
orientation. I particular when motion is a rectilinear, from one point pl on
a straight line 1 to another point p2 on 1, then the path can be characterised
as the point pair (p1,p2). This is almost like a line segment. But it is a little
more in that the path (pl,p2) is not identical with the path (p2,pl). (The
second path will be called the reverse of the first path.)

We assume that the path of a movement is conceived as a continuous 1-
dimensional region, and that the object y which moves along it is conceived
as a point (i.e. as a 0-dimensional region). (This is a conception which leaves
many aspects of motion out of the picture, e.g. whether the moving object y
is able to squeeze through a narrow passage, etc.)

Moreover, we will start by looking at an even more reduced conception of
motion, according to which the only possible motions are rectilinear motions
along one of the axes of PPS. (The notion of rectilinear motion in general,
and, more generally than that, of non-rectilinear motion will considered la-
ter.) Rectilinearity of a motion entails that its path is always a line segment
included in one of the axes.

At first sight the conception of motion as not only rectilinear, but in addi-
tion being always parallel to one of the axes of PPS may seem very restricted.
In the practice of ordinary experience, it might be thought, few motions fit
this restriction. However, the conception is not really as restricted as it seems,
for we assume that the PPS in question is determined by the motion at issue.
Thus, when an object y moves away from an observer O in a horizontal di-
rection, the direction of the motion itself determines the Observer axis OBS
of the relevant PPS. (So that the path of the motion is a segment of OBS.
Likewise when y moves horizontally towards O. Furthermore, when y moves
past O in a horizontal direction, the OBS-axis of the relevant PPS is assumed
to be the line of the orthogonal projection of O’s position onto the line along
which y moves, so that in the PPS thus defined y moves parallel to TRANS.

Of course, not all motions are horizontal. First, there are those which
are vertical (either up or down); and then there are many which are neither
horizontal nor vertical but somewhere in between (as when someone walks
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or climbs up a steep mountain). We believe, however, that such ‘oblique’
motions belong to a different (‘higher’) level of conceptualisation and that
there is a self-contained conceptual level at which all motions are seen as
either horizontal or vertical.

Moreover, we think, this last conceptual level is one which clearly mani-
fests itself in the way in which motion concepts are lexicalised. On the one
hand there are verbs (relatively few, it seems, in natural languages such as
German or English), that are designed explicitly for the description of ver-
tical motions (e.g. steigen, fallen, sinken, stirzen, heben, senken). It might
be thought that at least some of these verbs are used to describe not only
perfectly (or near perfectly) vertical motions but also motions that have a
non-zero vertical component. For instance steigen can be used to describe
the progress made during a climbing tour, as when it is said of the climbers
that ‘Innerhalb von 2 Stunden waren sie mehr als 700 meter gestiegen’. Note
however that in such descriptions the distance is measured in strictly vertical
terms. In the course of the mentioned two hours the climbers are likely to
have covered several kilometers of terrain. But the distance that they are
specified to have moved in the sense of steigen is only the difference in the
height (above sea level, say) at which they were at the start of the described
motion and the height they had reached at the end. This fact is indicative
that even in such cases steigen is understood as describing a purely vertical
motion, the one which we get when projecting the actual path of motion onto
VERT.

All strictly vertical motions are ipso facto rectilinear. This is not so for
horzontal motions, since the Horizontal is a plane. Indeed, there appears to
be less justification for the conceptual restriction to rectilinear motion in
connection with motions in the horizontal plane. In fact, among the large
number of verbs used to describe horizontal motion which we find in lan-
guages such as German or English there are hardly any which distinguish
between rectilinear and non-rectilinear motion. We nevertheless believe that
the fundamental conceptions of motions towards, away from and past the
Observer have a special conceptual status. But we would like to have better
evidence for this hypothesis than we do at the moment.

We have said that each rectilinear movement of an object y defines relative
to an observer O a PPS such that the motion is parallel to one of the axes of
this PPS. A special case of this is that where y and O coincide. In this case
there can of course be no question of motion parallel to TRANS. (You cannot
move past yourself!) We assume that from the perspective of the theme itself
the PPS determined by the motion is (at any moment of time t during the
motion) given by VERT and an OBS-axis which points in the direction of
the motion. In the case of rectilinear motion this means that the origin of
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PPS changes in the course of the motion, while its axes remain constant.

After an object y has moved rectilinearly from point p1 to point p2 during
a period t1, it can perform another rectilinear motion from p2 to some further
point p3 during a subsequent period t2, and it is possible in particular that
this second period abuts the first: t1 )( t2. The second motion can be in the
same direction as the first, be in the opposite direction, be orthogonal to it,
or be at any other angle (different from either 0°, 90° or 180)°. Note that
this last possibility is not excluded by our current restricted conception so
long as allow that the second motion ‘resets’ PPS. In this way we arrive at
the general idea of the sum of a succession of horizontal rectilinear motions
at arbitrary angles to each other.

A sum of a finite number of rectilinear motions is not the same as cur-
vilinear motion - motion which is non-linear but nevertheless smooth. . The
traditional mathematical treatment of the notion of a non-rectilinear line or
line segment (i.e. of a curve) makes it possible to see any curve as the limit
of a sequence of ever more refined successions of rectilinear motions, in such
a way that the vertices of the finite approximations all disappear in the li-
mit. From the perspective of the theme of motion itself, curvilinear motion
is motion during which orientation of the theme changes continuously. From
the perspective of an Observer O who is different from the theme the motion
can still classified as either away from O, towards O, or past O,. In the first
case O locates himself on a curve which includes the path of motion at a
point p0 such that the starting point pl is between p0 and p2 on the curve;
in the second case he locates himself on such a curve at a point p0 such that
p2 is between p0 and pl; and in the third case O sees himself as occupying a
point which does not lie on such a curve, but from which there is a shortest
projection onto some segment of the motion’s path.

It is an interesting question whether the ordinary conception of a curve,
and the notion of non-rectilinear motion as motion whose path is a segment
of a curve are, in any cognitively significant sense, derived from an underlying
concept of straight line and rectilinear motion, or whether they are cognitive
primitives. This is a question about which (alas) we have nothing to say at
present.

Among the properties of motions there are those which may be called
‘purely spatial’. These are properties which can be seen as properties of the
motion’s path. Among them we find: (i) properties connected with the length
of the path (‘Er ist zehn Kilometer. gefahren.’; ‘Der Ballon stieg (um) 300
Meter.’; ‘Die Miinze rollte acht Meter, bis sie endlich umfiel’); (ii) properties
concerning the location of the path or some part thereof (‘Er ist durch den
Wald/auf der Landstrasse gefahren.’; Er ist (von A) nach B gefahren.’; ‘Er
ist in den Graben gefahren/gefallen.’; ’Er hat mich bis an die Tiir gefah-
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ren/gebracht.) It is to be noted that predicating such properties takes the
form of adding various phrases to the motion verb. Usually these are prepo-
sitional phrases; in just a few cases they are (accusative) NPs. (e.g. measure
phrases which give the length of the path.)

Just as our developments of concepts of time and space, the motion-
related notions informally described above should also be made explicit for-
mally, i.e. via axioms. For now we only state a few of these axioms, connected
with the concept of rectilinear motion, to give a flavour of what will be nee-
ded. We use Move as a 2-place predicate which relates an event e to an
individual (or group of individuals) y, saying that e is a motion of y. (Often
we will follow the familiar practice in discussions of motion verbs of rephra-
sing ‘Move(e,y)’ as the conjunction of the clauses ‘Move(e)’, and ‘Theme(e)
= y’.) Moreover, we use Rl as a 1-place predicate of events e saying that e is
rectilinear. Our axioms assert that each motion e has a duration and a path -
more precisely, we assume that there are 2-place predicates DUR and PATH,
such that ‘DUR(e,t)’ says that t is the duration of e and ‘PATH(e,Ir)’ say
that Ir is the path of e. In general Ir is claimed to be a curve segment,formally:
to satisfy the predicate CS. Axioms fixing the properties of curves and curve
segments will still have to be supplied. (Often we will write ‘dur(e) = t’ and
path(e) = Is instead of DUR(e,t) and PATH(e,ls), respectively.) For rectili-
near motion the path is always a line segment (pl.p2), i.e. a part of some
straight line 1. Moreover, if t = (t1,t2), then y occupies pi at ti (for i = 1,2).
And if p’ is any point of Ir between pl and p2, then there is a time t’ between
t1 and t2 such that y occupies p’ at t’.

At any moment of time t’ in the course of a motion e (whether or not e is
rectilinear), the motion has a definite orientation. According to the assump-
tions made above this is the OBS axis of the PPS determined by the motion
at t’ given that the theme y is taken as the observer O. This PPS determines
a partition of space into two halves, the one which lies to the side of the
plane through VERT and TRANS in the direction in which OBS points and
the half on the other side of this plane. We will sometimes refer to the first
subspace as the front of e at t” and to the other subspace as the rear of e at
t.
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3.1 Axioms for motions and their paths

t1 to
oy dur(e, (t; t2) )
_) t’ tﬂ
move(e,y) 12 Sl gy =t
dur(e, (t’y t'z) ) £y — '
Ir
w(e,lr)
¢y curve-segment(lr)
_)
move(e,y) Ir’
w(e,lr’) 7 =l
Read ‘w’ ; weg (path). Read ‘Ir’ : linear region 1D(w) .
ey Ir 1 P1 P2
Line(pi, p2)
move(e,
Rl((e) Y) - POl(pl) POl(p2)
wie,lr) Inc(py,l) Inc(pg,l)
’ Ir= (p1 p2)
eyp1p2lp p’

tl tt’ t2 s’ g’ S1 S9
move(e,y) Rl(e)
w(e,( p1 pP2))
Inc(p1,l) (p2,l) Inc(p’,l) Inc(p”,l)
Between(p1, p’ p”)
Between(p’: p”ap2 )

t < t'< t7< to

—| t1 C sy t’gS7 t”gS” to C 59
s1: Oce(y,p1) s’ Occe(y,p1)
s”: Oce(y,p”) s2: Oce(y,p2)

3.1.1 axioms for betweenness relations for points on a straight
line

1 p1 p2 p3
Line(])
Inc(ps,) (po,]) Inc(ps,l) | —

P1 # D2 D2 # D3
P1 # D3

Between(p1,p2, p3) V
Between(p2,p1, p3) V
Between(pz,ps, p1)
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P1 P2 P3
| P # D2
Between(p1,ps, p3) P1 # D3
P2 # P3
P1 P2 P3
_>
Between(p;,p2, p3) Between(ps,p2, P1)
P1 P2 P3
_>
Between(pbpm P3) - Between(pz P1, D3 )
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4 The projective prepositions uber, unter, vor,
hinter, links von, rechts von.

Projective prepositions serve the purpose of describing the location of one
object x - henceforth the “referent”®

in relation to another object, the “relatum”. In such descriptions the rela-
tum object is the referent of the NP with which the preposition is combined
into a Prepositional Phrase and the referent is the referential argument of the
phrase to which the PP is adjoined. In other words, what we are interested
in in this section are descriptions of the form ‘x (ist) unter/... /rechts von z’

The term projective preposition could be misleading. The prepositions
listed in the heading of this section are all projective prepositions in that they
can be used in the manner indicated. But they have other uses as well. One
could hardly have expected otherwise. Prepositions are notoriously multi-
purpose, and the few listed here are no exception. Projective preposition is
thus strictly speaking a misnomer. One ought to speak of projective uses of
these prepositions rather than of projective prepositions tout court. But we
have decided not to be this fussy, and to adopt the usual terminology. Note
well, however, that this has its obvious implications for the lexical entries
which we will propose later on for ‘projective’ prepositions. These entries will
only cover one use (or a small set of closely related uses) of the preposition
in question. In a complete lexical entry for the preposition, which covers all
its uses, the ‘lexical entry’ we will present here will only one anong a number
of different components.

A substantial part of the meaning of the projective prepositions can be
captured within the simplified conception of space, according to which there
are in any given situation just three possible directions (and six orientations),
given by the axes of PPS. In the context of the projective prepositions this
means that the position of the referent in relation to the relatum object can
have only one of the six mentioned orientations. How the referent’s position in
relation to the relatum object is described, i.e. which projective preposition is
used, can depend on a number of different factors - the orientation of the line
segment (z,x) which goes from the relatum z to the referent x, within PPS,
the functionally determined intrinsic axes of z and the current position of z

6Perspective taking ...involves the following operations:
1. Focussing on the scene whose spatial disposition (place, path, orienation) is to be ex-
pressed. ...I call this portion the “referent”.
2. Focussiong on some portion of the field w.r.t. which the referent’s spatial dispositon is
to be expressed. I will call this portion the “relatum”.
3. Spatially relation the referent to the relatum (or expressing the referent’s path or ori-
entation ) in terms of what I will call the “reference system”. [Levelt:1996].
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within PPS. Which preposition is actually selected depends in part on the
descriptive strategy chosen. In this respect too the semantic problem that is
presented by the projective prepositions is reminiscent of what we saw in our
exploration of dimensional adjectives. But when we look at the details we also
find considerable differences. In fact, these are so substantial that it seems
artificial to retain the names of the description strategies we introduced in
connection with the dimensional adjectives. It seems more honest to introduce
new description strategies specifically designed for the use of the projective
prepositions, and to reflect on similarities between these and the trategies for
choosing dimensional adjectives afterwards. The terminology we will adopt
is in lage part borrowed from the work of Levelt (See [Levelt:1996] )

In the last paragraph we spoke of the line segment (z,x) connecting the
relatum object z with the referent x. Evidently this makes clear sense only
on the assumption that both x and z are points. Indeed, this is what we will
assume for most of what we will have to say in this section. It should not be
forgotten, however, that conceiving of x and z as points is an idealisation.
And it is one that is especially problematic in the case of z. It is easy to
see, and has often been observed, that describing the location of one object
x by reference to its spatial relation to another object z is something to
which we are particularly inclined to resort when z is larger (and is a more
permanent landmark; the two often go together) than x. In such cases the
spatial extension of z is often an important aspect of the conceptualisation
of the spatial relation in which x stands to it, and ignoring it in the way we
do when treating z as a point is at risk of being seriously distorting. So it is
necessary to investigate the consequences of refraining from this abstraction,
and we will do so towards the end of this section. Still, much can be achieved
within the simplified context in which z as well as x is conceived as a point,
and it is therefore within this framework that most of what we will have to
say will be cast.

Recall our notation (pl,p2) for line segments. (pl,p2) denotes the line
segment whose end points are pl and p2. Thus far we have used this notation
in a way which makes it symmetrical in the two arguments - (pl,p2) =
(p2,pl). In the present context, however, we will also have to distinguish line
segments with respect to their orientation. One way we could define such
objects is as ordered pairs ( pl,p2 ) of points, in which the order is to serve
as indication of the orientation of the segment: from pl to p2. Often we
will go on the old notation (p1,p2), but with the new meaning (according
to which (p1,p2) # (p2,pl)). No harm should come from this. In particular
(z,x) is the line segment whose orientation is from the relatum object z to
the referent x.

Just as the dimensional adjectives do on closer inspection present a less
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uniform picture than one might hope for after a first perusal, this equally
true of the six projective prepositions. The first division to be made within
them is between tber and unter on the one hand and the remaining four
on the other. With very few and marginal exceptions the remaining four
prepositions can be used only to describe horizontal relations between x and
z, i.e. cases in which (z,x) || HOR. In other words, when (z,x) || VERT, then
only diber and unter are possible choices. And the choice between them is
determined quite straightforwardly:

(27) Suppose that (z,x) || VERT.
(i) if Align((z,x) ,VERT), then (z,x) = dber;
(ii) if — Align((z,x) ,VERT), then (z,x) = unter.

As far as we can tell, this exhausts the projective uses of unter. But we will
encounter ber again.

4.0.2

For technical reasons, connected with the lexical entries for projective pre-
positions which we will give later on, it will be convenient to cast the spe-
cifications in (27) in the form of preposition assigments that are made to
combinations consisting of a referent x, a relatum object z and an (otiose)
observer O by a certain Spatial Relation Description Strategy, ASRDS (whe-
re A stands for ‘Absolute’). ASRDS only assigns the prepositions #ber and
unter to the segments (z,x) which satisfy the conditions in (i) and (ii) and is
undefined for all other possibilities of (z,x).

(28) (i) if Align((z,x) ,VERT), then ASRDS(x,2,0)) = dber;
ii) if (z,x) || VERT and - Align((z,x) ,VERT), then ASRDS(x,z,0))
= unter
(iii) ASRDS(x,2,0)) undefined otherwise.

The choice of prepositions to describe the horizontal relations between x
and z (i.e. those cases where (z,x) || HOR) involves the choice between dif-
ferent strategies - the Intrinsic Spatial Relation Description Strategy ISRDS
and the Deictic Spatial Relation Description Strategy DSRDS. ISRDS choo-
ses a preposition on the basis of the relation between (z,x) and the functio-
nally determined intrinsic axes of z. DSRDS selects prepositions on the basis
of the orientation of (z,x) within the PPS determined by the relation between
z and the observer O.

%)



4.1

ISRDS is applicable only when z has at least one functionally determined axis.
Just as in connection with the dimensional adjectives it is necessary to look
at a substantial number of different cases one by one. In fact, the situation is
worse here because we have to consider, for each type of reference object z,
bot the position which z itself occupies within PPS and the relation in which
x stands to it.

We will do this here only for the case where z has a complete functionally
determined coordinate system, with axes which we will again designate as
vert fy,, fronty,, and transg,,. We leave it to the reader to work out other
cases for himself.”

We begin by considering artefacts with complete functionally determined
coordinate systems. The reader is invited to think, following [Levelt:1996],
about the example of a kitchen chair.

4.2

First the case where z is in its canonical position, with vert,,(z) aligned with
VERT. In this case everything is hunky-dory: ISRDS prescribes tber in case
(z,x) is aligned with vertg,,;®, unter when (z,x) is parallel to verts,,, but
not aligned with it; vor in the case where (z,x) is aligned with front s, (z),
; hinter when (z,x) is parallel to fronty,,(z) but not aligned with it; rechts
von in the case where (z,x) is parallel to transy,,(y) and pointing in the
direction of forward motion of a cork screw turned from the orientation of
front sy, (z) to that of verts,,(z); and links von in the case where (zx) is
parallel to transs,,(z) and pointing in the opposite direction from the one
just described. We repete this in (29)

(29) Suppose that z has the three functionally determined axes vert g,
fronts,, and trans f,, and suppose that z’s position is canonical in

"Note the degree of idealisation that is involved especially for these case in the way
we have decided to proceed. On the one hand z can be conceived as having an intrinsic
coordinate system only in virtue of its shape and function as a three-dimensional object.
Yet in connection with its spatial relation to x we insist of conceiving it as a point. This is
not necessarily inconsistent - it is quite possible for z to be on the one hand recognized as
the kind of object it is, with the functional determination of axes which that entails, while
on the other hand its actual size may be practically negligeable in relation ot its role as
localiser of x.

8Note that this is consistent with the stipulation in (27) that diber be used when (z,x)
is aligned with VERT
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the sense that verty,, || VERT. Then ISRDS assigns projective prepo-
sitions according to the following stipulations:

(i) if Align(z,x),vert ), then ISRDS(z,x,0) * = dber;

(ii) if (z,x)||vert fun), but —Align(z,x),vert sun,

then ISRDS(z,x,0) = unter;

(iii) if Align(z,x),fronty,y,), then ISRDS(z,x,0) = vor;

(iv) if (z,x)|/front fy, ), but —Align(z,x),front s,y ), then ISRDS(z,x,0) =
hinter;

(v) if (z,x)||transfyun ), and Align((z,x),v), where v is the vector determi-

ned by the cork screw principle applied to the vector pair (front sy, vert s, ),

then ISRDS(z,x,0) = rechts von;
(vi) if (z,x)||trans sy ), and —Align((z,x),v), where v is the vector deter-

mined by the cork screw principle applied to the vector pair (front sy, ver fun ),

then ISRDS(z,x,0) = links von.

As soon as z is not in its canonical position, however, things become more
tangled. ISRDS still ‘wants’ to asign the same prepositions, but now there
are competing considerations and often these win out.

The most important impediment is this. Recall that if z is not in canonical
position, then vert,, is not aligned with VERT. This means that if (z,x) is
aligned with VERT, then the intrinsic specification given in (29) will conflict
with the requirement of (27) that (z,x) be described with the help of dber.
And as far as we can see, this requirement almost always wins out (But see
the discussion of animal reference objects below.)

There are four non-canonical positions for z that we have to consider, one
in which it is upside down, one in which it is lying on its side, one in which
it lying on its front and one in which it is lying on its back. We take these in
turn, as best we can.

4.2.1

(a) When z is lying on its side, then fronty,, is parallel to HOR. This might
suggest that the intrinsic characterisation of a segment (z,x) that is aligned
with fronty,, with the help of vor and a segment that is parallel to front,,,
but not aligned with it, with hinter. And indeed, it appears that these des-
criptions are possible when z is positioned in th way we are considering.

9We follow the same practice which we adopted earlier in connection with IDDS: Even
though the ISRDS is, just like IDDS, independent of O, we include o as an argument for
reasons of uniformity
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(b) transy,, is now parallel to VERT and no intrinsic use of rechts and
links is possible, in accordance with (27), which overrides these options with
its absolute assignments of dber for the cse where (z,x) is verital and poin-
ting upwards, and unter for the case where (z,x) is vertical and pointing
downwards

(c) We also have in the case under consideration that verty,,| HOR. So
the question arises whether the intrinsic assignment of dber and unter to
line segments (z,x) parallel to vert f,, are still possible. As far as we can tell
(from our own intuitions as well as the findings reported in |Levelt:1996]),
this possibility marginally exists for dber but doesn’t seem to exist at all for
unter: That is:

(30) (i) if Align((z,x),vertyy,), then ISRDS(z,x,0) =(?) dber;
(i) if (z,x)||vert sy, but = Align((z,x),vert fy,), then ISRDS(z,x,0) un-
defined.

4.2.2

. Now consider the case where z is lying on its front.
(a) Now fronty,, || VERT. This means that the overriding power of (27)
blocks the use of vor and hinter.

(b) transs,, || HOR, which suggests the possibility of using rechts and
links, and indeed it appears that these designations are possible when (z,x)
|| trans fyy,.

(c) Also vertyy,,|| HOR. as in the subsection above. There appers to be
a marginal possibility for using dber for an x such that (z,x) is aligned with
vert f,, but no possibiity for using unter when (z,x) points in the opposite
direction.

4.2.3

The case where z is lying on its back does not seem to differ from that where
it is lying on its front.

4.2.4

z is lying/standing upside down. We personally find this case particularly
confusing.
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(a) Fairly clear is the following. In this case verty,,| VERT. However,
vert s, and VERT point in opposite directions so that the absolute assigment
of (27) and the intrinsic assignment of (29) are still in conflict.

(b) Both fronty,, and transg,, are parallel to HOR. This might suggest
that intrinsic assignments to segments that are parallel to either of these axes
might be possible. Are they? we don’t know. In fact, we have found ourselves
particularly at a loss in connection with this case. Perhaps the fact that it is
much more of an effort to mentally rotate z back into its canonical position
from one that is 180° away from it than it is from a positon only 90° away
(cf. Shepherd (??)) has got something to do with this.

Before we leave ISRDS, a very brief remark on reference objects that are
living beings, in particular humans. We have been assuming up to now that
the specifications given by (27) cannot be overruled. It seems that as long as
z isn’t an animal, this is correct. But when z is an animal, it is possible for
cases where (z,x) || VERT can be nevertheless described with the help of a
preposition other than dber or unter, and one which is chosen intrinsically.
One example is a person who is in a sleeping position and lying on his side, so
that his cheeks are horizontal and one, - let’s say the left one - resting on the
pillow. Suppose that x is a fly whirring at a distance of only a few centimeters
vertically above the person’s nose. Then it seems possible to describe x as
being rechts von the person’s nose, even though (z,x) is aligned with VERT.

We presume that the reason why in this case (27) can be overruled is that
the position of the fly is still to the right of the person’s nose from the person’s
own perspective. The circumstance that the person happens not to be upright
(i.e. in his or her ‘canonical position’) carries little weight when considered
in the context of what matters in such a situation: the possibilities of getting
rid of the fly. The actions which are typically performed to bring this about
(such as trying to swat the fly) are guided by kinaesthetic perception and
from that perspective to the right of the nose is to the right of the nose
whether one is standing up, sitting lying on one’s back or lying on one’s side.
People, one might say, take their intrinsic coordinate system with them when
they go ot bed.

4.3

We now come to the deictic strategy for choosing projective prepositions. As
we said, according to this strategy prepositions are selected on the basis of
the orientation of (z,x) vis-a-vis PPS.

The coordinate axes of PPS are VERT, OBS and TRANS, and again we
have to consider the six possible orientations that (z,x) can have with respect
to them.
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(a) Two of these cases are straightforward, since they have been decided
already by the stipulations in (27): If (z,x) is aligned with VERT, we get
dber, if it is parallel to VERT but not aligned with it, we get unter.

(b) The choice of vor and hinter are determined on the basis of the
principle that the ‘deictic front’ of z is the part which faces O. That is, the
relation between z and O determines for z a vector fronty which is parallel to
OBS but points in the opposite direction. If (z,x) is aligned with fronty, then
DSRDS assigns it the preposition wvor, if it points in the opposite direction
(i.e. in the same direction as OBS), then the preposition is hinter-

(c) rechts von and links von are determined from the perspective of O: x
counts as rechts von z if O, when facing z, has to turn right in order to face
x; and analogously for links von.

Note that the different perspectives which determine vor/hinter and rechts/links
according to the deictic perspective have the effect that they are no longer re-
lated by cork screw principles in the same way as that is the case for ISRDS.
Applying the principles of (29.v,vi) we would predict rechts and links to be
used in just the opposite way from the one they are. We do not want to
exclude the possibility at this point that there might be different way of ac-
counting for these particular facts than the one we have given. But if we are
right, then the deictic strategy for choosing rechts and links is fundamentally
different from the deictic principle for assigning vor and hinter. The former
are determined directly form the perspective of the observer himself. the lat-
ter are determined from the perspective of z, but on the basis of deictically
determined front.

The assignments given by DSRDS can be summarised as follows:

(31) (i) if Align(z,x),VERT), then DSRDS(z,x,0) = tber;
(ii) if (z,x)||VERT), but — Align(z,x),VERT), then DSRDS(z,x,0) =
unter;
(iii) if Align(z,x),front,), then DSRDS(z,x,0) = vor;
(iv) if (z,x)|/fronty), but —Align(z,x),fronts), then DSRDS(z,x,0) =
hinter;
(v) if (z,x)|[transy), and Align((z,x),v), where v is the vector determi-
ned by the cork screw principle applied to the vector pair (frontg,vert,),
then ISRDS(z,x,0) = links von;
(vi) if (z,x)||trans sy, ), and — Align((z,x),v), where v is the vector deter-
mined by the cork screw principle applied to the vector pair (front,verty),
then DSRDS(z,x,0) = rechts von;

We are now in a position to present lexical entries for the projective
prepositions along the same lines as we did for dimensional adjectives: Having
described how the prepositions get selected by the different strategies for the
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purpose of describing spatial relations defined by line segments (z,x) we get
entries for the prepositions by ‘inverson’ of those strategies.

We use in essence the same scheme for representing the lexical informa-
tion that we adopted earlier for the dimensional adjectives. Of course the-
re are some obvious differences. The projective prepositions which concern
us here have besides the referential argument x (the “referent”, according
[Levelt:1996]) also a second argument, which is the referent of the dative NP
governed by the preposition. (Note well: we are only concerned here with the
‘stative’, or ‘locative’, use of projective prepositions, which requires the NP
to be in the dative. The directional use, which is signalled by accusative case
marking of the NP governed by the preposition, will be considered later.

4.4 Lexical entries for projective prepositions
(32)
preposition NP, Dative

X Z
Selectional Restrictions material Object(x) Material Object(z)

Application Conditions:

The set of pairs <?SRDS,0> of a SRDS ?SRDS and an observer position O
vis-avis z such that ?SRDS assigns preposition to the arguments
combination (x, z, O).

Formally:

{ <?SRDS,0>: ?SRDS(x,z,0) = preposition }

Semantic Representation:

The propositional function which maps each of the pairs <?SRDS,O> onto
true or false, depending whether ?SRDS(x,z,0) = preposition Formally:

A <?DSRDS, O>. ?SRDS(x,z,0) = preposition

4.5 Sizable relatum objects

So far we have ignored the spatial extension of the referent x and the relatum
object z. As said at the outset of our discussion of the projective prepositions,
we do not consider it essential for our present concerns to draw back from this
abstraction as far as x is concerned. But the matter is different with regard
to z. Often we describe the location of a referent in terms of its relation to a
relatum object z which is much bigger than it; and especially in such cases the
size of z often does matter to the conceptualisation which motivates the use of
the chosen preposition. For instance, consider the intrinsic strategy for using
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projective prepositions in relation to a ‘large’ relatum object with a complete
functionally determined coordinate system such a building with a well-defined
front. It is unquestionable that we can describe a car as vor dem Gebdude (in
front of the building) so long as the car is within the rectangular horizontal
region which is bounded on one side by the facade of the building (more
precisely: by the intersection of the building’s facade with the horizontal
plane HOR, spanned by the axes OBS and TRANS of PPS); on the two
adjacent sides by the two vectors aligned with frontf whose origins are the
end points of the facade (at the level of the horizontal plane) and whose
fourth side is at some distance from the building in front of it. (More about
this fourth side in the next section.). But as soon as the car is on the other
side of either one of the ‘sidelines’ of this rectangle, describing its location
as vor dem Gebdude becomes problematic. We take this to be a fairly clear
fact: If x is an object that is ‘on the ground’ (i.e. whose location is conceived
as part of the horizontal plane HOR that is spanned by OBS and TRANS),
then its location can be unequivocally correctly described as ‘vor z’ (with vor
used in the sense of ISRDS) when x is within the rectangular part of HOR
just described. More generally, x can be unequivocally described in these
terms when its location is within the generalised cylinder whose cross section
is the facade, whose axis is parallel to frontf which is bounded on one end by
the facade and which is on the side indicated by frontf. (This generlisation
applies not only to objects on the ground but also birds or balloons which
hover at some ditance above it.)

The same goes for the other projective prepositions. Generalising from
what was said in the last paragraph:

A relatum object z with functionally determined coordinate sy-
stem, and whose size is taken to matter for the intrinsic use of the
projective presuppositions outward-projects in each of the six ori-
entations parallel to front ¢, vert; and trans; a cylinder ¢ such that

(i) the main axis of ¢ is parallel to the given orientation

(ii) the cross section of c is the projection of the object onto the
plane perpendicular to this orientation and has the shape of that
part of the object’s surface which is on the side of the orientation.

We can now modify the lexical entries for the projective preposi-
tions as follows:
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x is correctly described as ‘prep z’ - where prep is one of the
six projective prepositions - as long as x is located within the
cylinder determined by z and the intrinsic orientation to which
prep corresponds.

This condition turns the entries for these prepositions which we gave earlier
into the descriptions of ‘limit cases’, where the size of z is ‘allowed to go to
zero’. The effect of going to this limit is that the cylinders of which we have
just spoken all contract into line segments.

So much for the intrinsic use of projective prepositions in relation to non-
punctiual reference objects. We also have to reconsider the absolute use and
the deictic use. For the absolute use, which only concerns iiber and unter,
we need the same qualifications which we have just discussed in connection
with the intrinsic use. We believe that this is also true of the deictic use. But
here, we think, the matter requires a little discussion.

First, we have to reassess the preconditions for the deictic use of projecti-
ve prepositions in relation to a non-punctual reference object. We will restrict
our attention here to objects z whose surface consists of two horizontal and
four vertical faces. Given this assumption about z we believe that the cano-
nical relation between z and O which is presupposed by the deictic use of
the projective prepositions is this: The vertical part of z that is visible from
the position of O consists of a single face, and (consequently) the perpendi-
cular from O to this face will intesect the face itself (rather than intersect
the straight line which the face shares with HOR at some point outside the
face).

Given that this conditon obtains, we could now imagine the following al-
ternative rule for the use of ‘(x ist) vor z’. The unequivocal cases falling under
this description are those where the line going through O and x intersects
the face of z that presents itself to O. This rule requires that x be located
within the triangle whose vertices are O and the two end points of the line
segment which the face shares with HOR. Intuitively the rule says that O
can descrsibe x as ‘vor 7z’ if and only if O can see x as aligned with some part
of z.

This alternative rule defines as the region consisting of all the possible
possitions for the deictic use of ‘vor z’ a triangle whose base is the face
of z facing z. Or, more accurately, the intended region is that part of the
triangle which includes the base and which is cut off from it by the fourht
boundary spoken of above, whose discussion is still to come. This cut-off
triangle is properly included in the rectangular region defined by the rule we
formulated above in our discussion of the intrinsic use.

Which of these two poroposals is right? In other words, what are we to
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say about those cases which qualify as instances of ‘vor z’ according to the
earlier rulebut not according to the one under discussion? We suspect that
speakers’ intuitions are not entirely clear or consistent on this point. But our
own intuitions suggest to us quite strongly that the earlier, more liberal rule
is correct for the deictic use of vor as well as for its intrinsic use. We have
this intuition also in relation to the other five projective prepositions. In fact,
in connection with tber, unter, rechts von and links von our intuitions are
even stronger than they are in connection with vor.

On the strength of these intuitions we propose the old rule, involving
the cylinders projected outwards by z in the relevant directions, as the one
which governs the deictic use of the projective prepositions just as it does
the intrinsic and the absolute use.

How close must x be to z? There is one question connected with the
use of the projective prepositions which we have been staunchly ignoring up
to now. This is the question: How close must x be to z in order that it can be
described as ‘prep z’, where prep is one of our six presuppositions? To give
just one example, when O is at a distance of 100 m. from a house z, and a
car x parked 5 m from the house in a location that is in between it and O,
then describing x as ‘vor z’ seems to be unproblematically correct. When on
the other hand x, while still between O and z, is 5 m away from O (and thus
95 m. from z), then describing x as ‘vor z’ would seem marginal at best; and
in oour own judgement the decsription would simply be wrong.

Even if this is true, however, it doesn’t tell us exactly how close x must
be to z in order to satisfy the description ‘vor z’. But of course there is no
answer to this question. What we are facing here is a particularly striking
instance of the ubiquitous sorites paradox (or Paradox of the Heap) ° This

10This paradox was discovered in antiquity and is associated with the Megarians, a
philosophical School which distinguished itself especially through its identification and
discussion of problems in philosophical logic and the theorey of meaning. (Unfortunately
only a very small part of the writings of members of this school has survived, but still
eough to let us guess at the importance of its contributions.) The instances of the pardox
that have survived to this day and are still standardly used to explain what the problem
is are (i) the paradox of the heap or foritesind (ii) the bald man paradox. The first: take
one grain of salt and put it by itself on the table before you. This clearly isn’t a heap. Add
another grain, you still don’t seem to have a heap. keep doing this. At one point you will
have a heap. But when? If it any time you haven’t got a heap yet, then adding one grain
to what you shouldn’t get you a heqap either. For how could one grain make the difference
between something qualifying as a heap and its not doing so? But clearly this principle
- that one grain cannot make the difference - is inconsistent with the fact that (a) one
grain doesn’t make a heap; and () a sufficient (but finite) number of grains together does.
The paradox of the bald man tells the same story but starting from the opposite end: A
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paradox demonstrates in a particularly poignant way the inherent vagueness
which can be detected in virutally any predicate that is used in describing
the physical world (in essence: every predicate that doesn’t belong to pure
mathematics or logic). Vague predicates are predicates for which there are (or
could be) entities (fitting the sortal restrictions of the predicate) for which
it is indeterminate whether they belong to the predicate’s extension or not.
Predicates which exemplify the sorites paradox illustrate the additional, and
more disturbing fact that the ways in which we understand and describe the
world in which we live is based on principles which, when pushed to the limit,
are plainly inconsistent.

If this is so, how is it possible that we perceive and act upon the world
in ways which are at least potentially coherent and rational? The only hope
that we can harbour of demonstrating this to be so in a form that might
carry conviction istht we may succeed in making it plausible that human
thought and behaviour are governed not only by the principles which which
govern sorites-like predicates and which lead to contriduction when pushed to
the hilt, but in addition by a further principle, which keeps us from pushing
application of the other principles to the point where inconsistency becomes
inescapable. Alas, a really satisfactory argument to this effect is, we believe,
still outstanding.

There does exist, however, an argument, which though it doesn’t achieve
what the missing argument would achieve, but which draws attention to
something that is just as important for our present concerns. Assume that
normal situations allow us to draw back or stay away from the brink of
inconsistency that is built into the semantics of any sorites-like predicate.
This entails that in the situations in which we actually make use of such
predicates there always is a non-empty truth value gap for them: A set of real
or possible entities of the right sort for which it is indeterminate whether or
not they belong to the predicate’s extension. And where there is such a truth
value gap it is possible for us to uphold the notion (even if it is ultimately
illusory) that there is a sharp dividing line running through the truth value
gap which separates the objects which ‘really are in the predicate’s extension
after all’ from those which ‘really are outside the extension’. Such a dividing
line can’t be anything more than a figment of our imagination, fostered by a
desire for a clear and simple logic. But whether fictitions or not, it enables
man to reason with vague predicates as if they were sharp and thus to apply
to them the laws of classical predicate logic.

man with 200.000 hairs on his head is definitely not bald Pull one of his hairs out. That
surely won’t make him bald. Go on this way, Eventually you wil have reduced the man to
baldness. But at which point exactly does he become bald?
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The argument which yields this result - that the use of classical logic in
application to vague predicates is legitimate - is known as the supervaluation
analysis of vagueness. ' Basically the supervaluation argument is this: No
matter where the dividing lines for the different vague predicates are drawn,
the compositional semantics for sentences containing these predicates will
assign truth values (with respect to any model which incorporates a particular
choice of dividing lines) in such a way that the laws of classical logic are
validated. So the employer of vague predicates is entitled to make use of
these laws as long as he accepts that dividing lines could be drawn somewhere
through the truth value gaps, even if he is fundamentaly incapable of saying
with any accuracy where such dividing lines should be drawn.

Important for our present purposes is the conception that such lines can
be drawn somehow, and that in much of what we do with the vague predicates
that natural language makes available to us we assume that the dividing lines
do in some sense exist. It is important in particular in connection with our
use of the projective prepositions. Takevor. Part of the conception underlying
the use of expressions of the form ‘vor z’ is that the cylinders pointng outward
from z which we introduced in the last section not only have an end at the
surface of z itself, but that there also is an opposite end to them. This other
end (also a cross section of the cylinder, and necessarily of the same shape
as the one which bounds z) is determined by a plane which plays the role of
the dividing line of which we have just spoken, viz. that of the dividing line
which cuts through the truth value gap of the predicate 1x. vor(x,z).

We will assume, then, that for each relatum object z (and for any time t)
a ‘dividing plane’ is taken as ‘given’, which provides the missing bound for
the cylindirical region that demarcates the loctions of those objects x which
satisfy A x. vor(x,z) (at t) from those which do not. By analogy we assume
that there are similar dividing ‘planes’ for each of the other five projective
prepositions.

4.5.1 Directional uses of projective prepositional phrases

German has the possibility of using the projective prepositions not only to
describe the (current) location of an object - we will refer to these uses

"The idea was to our knowledge first formulated by Michael Dummett in the late
sixties in his paper “Wang’s Paradox”, which appeared in print only in the 1975 volume
of the journal Synthese. The first more detailed elaborations of the idea can be found
in Fine’s “Vagueness, Truth and Logic” which appeared in the same issue of Synthese
and Kamp’s Two Theories of Adjectives“which appeared in the same year in Keenan(ed.)
Formal Semantics for Natural Languages. These last two papers were presented in 1973
(almost at the same time, though on different occasions) and their findings were arrived
at fully. independently.
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henceforth as theirlocative uses - but also to describe motions of the object
as ending in such a location. These latter uses will be called directional. The
directional uses of projective prepositions are related to their locative uses
in the same way that directional uses of spatial prepositions are related to
their locative uses generally. (In Section 7?7 below we will address the evident
fact that there are many more location-describing prepositions than the six
projective ones with which we have been concerned so far.) On the face of
it, this relation between directional and locative uses is a morphological one:
In locative uses the NP governed by the preposition is in the Dative, in
directional uses it is in the Accusative.

Semantically, directional phrases are the inchoative counterparts of the
correspondinf locatives. To be more explicit, locative phrases describe states
- locational states of the object x that is being described. Often these states
are non-permanent: Many objects, and among them many of those whose
locations we quite naturally describe in the relational terms that involve
projective prepositions, are movable - they move themselves, or cn be moved
by others, from one location to the next. Thus the location states in which
such an object is at any time are non-permanent; they cease to obtain as
soon as the object moves or is moved.

The way in which we do justice to the non-permanence of location states
is by the usual device of representing locational predications as the obtaining
of some state s, where s’ temporal location can then be specifeid separately.
Thus we can (schematically) represent the statement that x is vor z as:

(33) s: vor’(x,z,0) 12

Information about the time t when the predicaton state obtains can be
specified by an additional clause of the form ‘t C s’.

The claim that directional phrases are the inchoatives of the correspon-
ding locatives can now be explicated as follows. Directional phrases describe
changes into a state of the type described by the locative phrase from a pre-
vious state which is not of this type. As usual, the claim that the object x
in question is at first in a state not satisfying the locative description func-
tions as a presupposition. So we can represent the inchoative meaning of a
directional phrase of the schematic form ‘prepg..(x,z)’ (where ‘prepy..’ is to
indicate that the preposition governs an NP in the accusative) as in

12Here ‘vor’(x,z,0)"stands proxy for the information which the semantic part of thel
exical entry for vor will tell us about what such a predication actually means.
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PRESUPPOSITION NON-PRESUPPOSITIONAL
e

(34) sP" so Oe

pr.
. prepaCC(X’Z) e: BEC (A S1.

S1:PI€Pgcc (X,Z)

Note that (34) does not explicitly describe e as a motion of x. However,
it is a simple fact of life that changes in location can only be brought about
through motion. Consequently, directional phrases are compatible only with
adjunction sites which describe motions. More formally, when a directional
phrase is used grammatically as an adjunct (and in our experience it almost
always is), then it must be adjoined to a phrase whose referential argument
is a motion event.

It is especially in connection with the interpretation of directional phra-
ses that the vague boundaries of the locative regions which determine the
truth conditions of predications involving the projective prepositions become
crucial. For instance, it seems perfectly possible to describe the event of a
car which drives up to a house in a direction perpendicular to its front (e.g.
along a lane which leads straight up to the house from a distant gate) and
which stops in front of the main entrance to the house with the words:

(35) Das Auto fuhr vor das Haus.

The intuition here is that the car was at first too far from the house to
admit the locative description vor dem Haus, but then traverses at some point
the boundary between the part of the horizontal plane where the description
is not appropriate and the part where it is, and thereby enters the realm
where the description is correct. Evidently, this boundary is precisely the
dividing line of which we spoke in connecion with the vagueness of projective
prepositions.

To summarise, the conception of changing from a state which does not fit
the description to one which does fit it makes sense only if we can think of the
motion as involving the crossing of some kind of boundary which separates
the relevant spatial regions.
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