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 Chapter II.  Mathematical Structures and their Descriptions
in First Order Logic.

In this chapter we will look at a few well-known examples of first order
theories.  These examples are important in their own right, i.e. as
formalisations of structures which arise in certain branches of
mathematics and other scientific domains.  But they will also serve as
illustrations of certain general logical issues and we shall use them as
opportunities to introduce and discuss those.

The kinds of structures which we will discuss fall into four main classes:

(i) order ings

(ii) certain classes of algebraic structures such as boolean and non-
boolean lattices and groups

(iii) the structure of the natural numbers and that of the real numbers
with their familiar arithmetical operations + and .

(iv) feature structures

The first order theories of these structures and structure classes we will
present will serve as anchors for the discussion of such general issues
as: incompleteness, completeness and categoricity of theories; theory
extensions and Lindenbaum algebras; quantifier elimination;
independence; implicit and explicit definability; equational logic as a
subsystem of first order logic; and feature logic as an alternative to first
order logic.

2.1     O r d e r i n g s .

Our first examples concern the concept of order.  Mathematically,
order is most naturally represented in the form of a binary relation -
either a strict   ordering relation < or a non-strict  ordering relation .
(Strict ordering relations are irreflexive and non-strict orderings
reflexive.  Given a strict ordering < we can define a corresponding non-
strict ordering by: a b iff a < b v a = b; conversely, from a non-strict
ordering we get a strict ordering < via:  a < b iff a b & a b.)
Orderings can be classified in terms of the properties of < (or,
equivalently, of ).  First, there is the distinction between linear  orders
and partial orders.  In a linear order of a domain D any two distinct
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elements a, b of D are ordered in the sense that either a stands in the
ordering relation to b or b else stands in the relation to a.  In partial
orders this condition is in gene4ral not satisfied.  (Thus the notion of a
partial order is the more general one; linear orders are a special kind of
partial order.)

A second important distinction is that between denseness and
discreteness.  In a dense order there is for any a and b such that a < b
an element c such that a < c < b; in a discrete order there exists for any
a and b such that a < b a c with the properties that (i) a < c b and (ii)
there is no d such that a < d < c; and, similarly, if b < a then there is a c
such that (i) b  c < a and (ii) there is no d such that c < d < a.  (The
element c in question is called the immediate successor (predecessor)
of  a in the direction of b.)  It should be emphasised that denseness and
discreteness are mutually exclusive (in the sense that no non-trivial
ordering - i. e. no ordering which holds between at least two different
elements - can be dense and discrete at the same time), but that they
are not jointly exhaustive:  An ordering may be neither dense nor
discrete, for instance because it consists of one part which is dense and
another which is discrete.

Here we will look at two distinct kinds of ordering structures:

(a) certain linear orders, among them the ordering of the rational 
numbers, that of real numbers (both dense orderings), that of the
narural numbers and that of the integers (both discrete

orderings);

(b) partial orders which have the additional property of being lattices .
A lattice is a partial order in which for any two elements a and b
there is a "smallest element above both of them" - i.e. an element

c
such that a c and b c and which is least with regard to this
condition, i.e. if c' is any other element such that a c' and b c ' ,
then c  c' - and, dually, there exists for any a and b a "greatest
element that is a and  b".)

Lattice-like orders have the important property that they c an be
described not only in terms of their orderings, but also interms of the
lattice operations and , which can be defined in terms of the
ordering (a b is the least element above a and b and a b the greatest
element below a and b) and which in their turn allow definition of the
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ordering relation (e.g.  via the definition: a b iff a b = b).  Thus
lattices can also be viewed as algebraic structures or algebras  - that is,
structures consisting of a universe together with a number of functions
defined on that universe.  (In other words, an algebraic structure is a
model for a language L all of whose non-logical constants are function
constants . )

Of particular importance among the lattices that we will discuss are the
boolean lattices (or boolean algebras, the term that is used to refer to
them when they are pressented as structures involving functions).  The
logical importance of boolean algebras will no doubt be familiar:
classical propositional logic with the connectives & and v has the
structure of a boolean algebra.

The order in which we proceed in this section is as follows.  We begin
with the ordering theory Trat of the rational numbers, presenting the
conceptually and historically important theorem of Cantor's according
to which any denumerable model of Trat is isomorphic to the ordering
structure of the rationals.  This will be the basis for introducing the
notion of a theory being categorical in a certain cardinality ! . Cantor's
Theorem shows that Trat is categorical in the cardinality of the
denumerably infinite sets, but as it turns out not in any other infinite
cardinality.  The subsection closes with a brief discussion of Morley's
Categoricity Theorem.

Next, in subsection 2.1.2, we proceed to lattices.  We begin with
axiomatic characterisations of the class of all lattices, first from the
ordering perspective (i.e. formulating our axioms in the first order
language {"} whose only non-logical constant is the 2-place relation " ,
and then form the algebraic perspective, using the language { , }.  We
show that each of these two theories is definable within the other.  We
then extend these axiomatisations to obtain theories for the class of all
boolean lattices and for that of all boolen algebras, respectively,
theories that are again definable within each other.  Section 2.1.3 is
concerned with the variety of boolean algebras.  It presents some
particular boolean algebras and some properties in terms of which
arbitrary boolean algebras can be classified. 2.1.4 presents the Cech-
Stone Representation Theorem, according to which every boolean
algebra is isomorphic to (and thus 'can be represented as') a set
algebra - a boolean algebra consisting of sets, with the set inclusion
relation as the partial order of the lattice.  Representation theorems,
which assert that every structure with certain abstract properties can
be 'represented', or 'realised' as a structure of some more specific
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kind, are of great importance in many areas in mathematics; the Cech-
Stone Theorem can be regarded as the classical paradigm of theorems
of this general form.

The theory of boolean algebras is incomplete, since among its models
are boolean algebras that can be distinguished from each other by
properties expressible in the language of the theory itself.  Even more
obvious is the incompleteness of the theory of all lattices, since among
its models are on the one hand the boolean lattices, which are also
models of the theory of boolean lattices, and on the other hand non-
boolean lattices, which are not models of that theory.  (Thus the theory
of boolean lattices is a proper extension of the general theory of
lattices, which proves the latter's incompleteness.) In Section 2.2 we
look at incomplete theories from a more general and systematic
perspective.  The structure consisting of all theories of a given language
l., and more generally that consisting of all theories of L which extend a
given theory T, are both lattices (though in general not boolean
lattices).  Thus the study of these structures provides with a further
application of lattice theory, as well as giving more insight in the
structure of first order logic.

The lattice consisting of all extensions of a given theory T as well as a
certain boolean sublattice of this structure, the so-called Lindenbaum
algebra of T, are studied in 2.2.1. 2.2.2 contains a discussion of almost
complete theories.  here we return to linear orderings comparing
theories of dense orderings with certain theories of discrete orderings.

2.1.1.  The Theory of Dense Linear Orders without End Points.

We choose as our first task in this chapter that of formulating a first
order theory that captures all truths about the ordering of the rational
numbers.  To this end we choose as our language, in which the theory
will be formulated, the language {<}, whose only non-logical constant is
the two-place predicate <.  We will refer to {<} also as L<.  Our task is
thus to state a theory of L<  whose theorems are all and only the truths
expressible in L<  about the structure <Q,<Q>, where Q is the set of
rational numbers and <Q  is the standard ordering of the rationals.

Here is our proposal: Let Trat be the theory consisting of all logical
consequences of the following set of axioms:
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Def. 1 (Axioms of Trat)

L1. ( x)( y) (x < y  (y < x))
L2. ( x)( y)( z) ((x < y & y < z)   x < z)
L3. ( x)( y) (x < y  v  x = y  v  y < x )
L4 ( x)( y) (x < y  ( z) (x < z  &  z < y))
L5 ( x)( y) (x < y)
L6. ( x)( y) (y < x)

T rat is also known as the theory of dense linear orders without
endpoints . The subtheory of Trat that is axiomatised by L0-L3 is known
as the theory of linear orders and that axiomatised by L0-L2 as the
theory of partial orders.1  WE will refer to the first as Tlin and to the
second as Tpar.

Some the properties of Trat are stated in Theorem 10.

Theorem 1. ( 1 ) Every model of Trat is infinite:
           ( 2 ) (Cantor)  Every two denumerably infinite models

of Trat are isomorphic.
 ( 3 ) Tden is complete.

Proof.

(1) Note that because L0 is an axiom of Trat any model of Trat must
have at least 2 elements.  Secondly, suppose that M = <UM ,<M > is a
finite model of Trat, i.e. that UM  consists of elements a1, ... , an , where
n is some natural number.  As just observed, n must be at least 2.
Furthermore, since <M  is a linear order, there must be among the
elements a1 , ... , an  at the very least one pair of elements (ai, aj) such
that ai < aj and for no ak, ai < ak & ak < aj.  But this contradicts L5.2

1 Often axiom L0 is not included in axiomatisations of the theories of linear or
partial orderings.  leaving it out has the effect that among the models of the
hteory one also includes structures of the form <{a}, >, where {a} is any singleton
set and < is interpreted as the empty relation .  Whether such structures are
included or not makes no real difference to what the theory says about the
structures which really matter, viz. those in which the universe contains more
than one element.  In hte present context it has proved to be a little more
convenient to exclude them from the start, and thus to include L0 among the
axioms.
2  Strictly speaking the existence of a pair (ai, aj) as just stated should be proved.
In fact it is easy to prove, by induction on n, that every model of the theory of
linear orders whose universe consists of n elements contains such a pair:
Suppose this holds for n and let M be a model with universe {a1 , ... , an , an+1} .



6

( 2 ) Let M, M' be denumerable models of Trat with universes UM  =
{a1, a2,...  } and UM' = {b1, b2,...  }.  We refer to the interpretations <M
and <M' in respectively M and M' of the predicate < as  <  and <'.  We
construct, by induction on n, partial isomorphisms hn from M to M'
with domains {a1, ... , an} and ranges {b1, ... , bn}.  In this notation we
assume that a1  <  ... <  an  and  b1  < ' ... < ' bn  (and thus that hn i s
defined by: hn(ai) = bi, for i = 1, .., n.  Moreover, the hn will be
constructed in such a way that, putting h = U n hn, h is an isomorphism
from M to M'.

We proceed as follows.  Suppose that the elements a1, ... , an  and b1, ...
, bn have alredsy been chosen.  We distinguish between the case where
n is odd and that where n is even.

(a) Suppose n is odd.  Then we pick the first element ai from the
enumeration {a1, a2,...  } which does not occur among {a1, ... , an}.  For
the position of ai with respect to the a1 , ... , an there are three
possibilities:

( i ) ai <  a1;
( i i ) an <  ai;
(ii i) ak <  ai <  ak+1, for some k < n.

(i)  Because M' is a model of Trat and Trat contains L4, we know that
there is a b among {b1, b2,...  } such that b <' b1. Let bj be the first
such b and let hn+1 = hn  {<ai,bj>}.  Then hn+1 is an isomorphism
with DOM(hn+1) = {ai, a1, ... , an} and RAN(hn+1) = {bj, b1, ... , bn} .

(ii)  This case is just like (i): We know that there is a b in {b1, b2,... }
such that b <'  bn  , etc.

(ii i)  This time we make use of L5.  Because Trat contains L5 that we
may infer that {b1, b2,...  } contains a b such that bk <M' b <'bk+1.
Again we let bj be the first such b.  Putting, as before, hn+1 =  hn U

Then consider the restriction M' of M to the set {a1 , ... , an }, i.e. the model with
universe {a1 , ... , an } in which the interpretation of <  is the restriction of the
interpretation of < in M to {a1 , ... , an }.  Since M' has n elements, there is by
assumption a pair (ai, aj) (i,j n) such that there is no ak  in M' with ai < ak & ak  <
aj.  If it is not the case that ai < an+1 & an+1 < aj then (ai, aj) is a pair for M of the
required kind.  If ai < an+1 & an+1  < aj then a pair of the desired kind is (ai, an+1) .
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{<ai,bj>}, we conclude that hn+1 is an isomorphism with Domain {a1, ...
, ak, ai , ak+1, ... , an} and Range {b1, ... , bk, bj, bk+1, ... , bn} .

(b)   n is even.  In this case, let bi be the first element from the
enumeration {b1, b2,...  } which does not occur among {b1, ... , bn} and
find, in each of the cases (i) - (iii), an aj in M which is "similarly
situated" with respect to {a1, ... , an}.  We put hn+1 =  hn  {<aj,bi>} .

It is not hard to verify that the union h of all the hn  has for its Domain
all of {a1 , a2 ,...  } (because of the steps in the construction for odd n)
and that it has for its Range all of {b1, b2,...  } (because of the steps for
n even).  Moreover, it is obvious from the construction that if a, a' are
elements of M and
a <  a', then h(a) <' h(a').  From linearity (Axiom L3!) it then follows
that for all a, a' from M, a <  a' iff h(a) <'  h(a').

( 3 ) This follows almost directly from (2).  Note that if Trat were not
complete, then there would be a sentence A from the language L< such
that (A # Trat) and ( A # Trat).  So it follows that Trat {A} and Trat

{ A} are both consistent and thus each of them has a model.  Let M1
be a model of Trat {A} and M2 a model of Trat { A}.  By (i) both
models are infinite.  So by the downward Skolem-Löwenheim Theorem
there are denumerably infinite models M'1 and M'2 such that M'1  M1
and M'2  M2.  So A is true in M'1 and false in M'2. But by (ii) M'1 
M'2: contradiction.  We conclude that Trat is complete.

q.e .d.

The centre piece of Theorem 1 is part (2).  This result is generally
known as 'Cantor's Theorem' (or more fully 'Cantor's Theorem about
Dense Linear Orders', in order to distinguish this theorem from the
equally famous theorem of Cantor that the cardinality of the power set
of a given set X always exceeds that of X).  The proof of this theorem
has, like Cantor's proof of his power set theorem, been a milestone in
the development of our understanding of what constitutes valid
mathematical reasoning.  At first, many mathematicians were very
sceptical with regard to the soundness of these proofs.  Precisely
because their initially controversial status, Cantor's arguments were a
major input to the debates over the foundations of mathematics that
became a vital concern in the second half of the nineteenth Century and
which in its turn provided much of the impetus to the development of
formal logic as a fool-proof framework for doing mathematics. (Recall
the interlude on Set Theory in Chapter I.)
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As opposed to part (2) of Theorem 10, which is specifically about dense
linear orderings. the purport of part (3) is much more general.  The
general statement. known as 'Vaught's test', is this:

Prop. 1 (Vaught's Test)

Whenever T is a theory which (i) has only infinite models and (ii) 
is such that for some infinite cardinaltiy !  any two models of T of
caridnality  ! are isomorphic, then T is complete.

Complete theories are the closest we can get to characterising the
properties of a given mathematical structure, when we want to do this
by dscribing them within some logical language L.  We have already seen
some general limits to what can be achieved along these lines, viz. those
imposed by the Skolem-Löwenheim Theorems presented in Chapter I.
But in fact, for many structures, the best that can be achieved is even
farther from the ideal (characterisation of the structure up to
isomorphism) than the Skolem-Löwenheim Theorems would in principle
allow for.

Let us be more exact. In order that a theory T of a first order language L
can be considered a characterisation of some given structure A , two
conditios must be satisfied.  First, all the structural properties of A
must be expressible in L.  That is, we must be able to represent A as a
model Mo = <Uo,Fo> of L such that each relation that is relevant to the
structure of A  is either given as the interpretation F o($ ) of some non-
logical constant $ of L or else must be definable in terms of  one or
more relations Fo($ ) with $ # L. (For a general discussion of notions of
definability see Section 2.3.)  Second, all sentences of L that are true in
M o must be iderivable from T as theorems (and thus, because T is
closed under logical consequence,, must be members of T).

Assume that we have succeeded in choosing a language L such that the
first condition is fulfilled - i.e. that we can represent A as some
particular model Mo of L.  In that case there exists - trivially - a unique
theory T of L which verifies all and only the sentences of L that are true
in Mo, viz, Th(Mo).  That the set Th(Mo) always exists follows from
general principles of set-theory (which will be spelled out in Ch. 3).  But
from the general principles which guarantee the existence of Th(Mo)
nothing follows that has anything to do in particular with the structure
A  whose properties Th(Mo) describes.  What we eally want is a non-
trivial characterisation of Th(Mo) that reveals some of the special
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properties of Th(Mo), and that ideally gives us some insight into them
that might have eluded us without them.  A natural way to go about this
is to try to find 'axioms' for Th(Mo) - sentences belonging to the theory
which on the one hand can be readily verified as true in Mo and on the
other as entailiing all other sentences that are true in Mo.  It seems
particularly desirable form this perspective to find a finite set of axioms
for the theory. As we saw in Chapter I, this is always possible whenn A ,
and therewith Mo, are finite.  But for infinite structures A  the situation
is very different.  For instance, it is an interesting and surprising
consequence of Gödel's Incompleteness Theorems that for many
infinite structures A no finite axiomatisation of Th(Mo) exists.  (In fact,
the situation is even worse in that there isn't even an infinite
recursively enumerable set of axioms for Th(Mo); for 'recursively
enumerable' see Ch. ??.)

These negative results hold in spite of the fact that iby requiring only
that our theory captures all the truths about A  that are expressible in L
we haven't pitched our aims necessarily very high.  There is also
another, stricter sense in which one can define complete
characterisation of A by T

Any model M of T is isomorphic to Mo

(where again Mo is represented as model for the language L of T)
Again, when A is finite, then, as established by Thm. 6 in Chapter I, a
theory T satisfying this requirement can always be found (and when L is
also finite, then this theory is finitely axiomatisable, e.g. by the single
axiom described in th proof of Thm. 6).  But the Skolem-Löwenheim
Theorems tell us that this desideratum is never met iwhen A  is infinite.
For as soon as A is infinite, Th(Mo) will have models of different infinite
cardinalities and these can never be isomorphic to each other.  The best
we can hope for is that models of Th(Mo) are isomorphic to each other
so long as they are of the same cardinality.  But even this weaker
condition is only seldomly fulfilled and holds only for rather
uninteresting structures A , with largely trivial structural properties.

In fact, even for the ordering structure <Q,<Q > of the rationals this
weaker requirement is not fulfilled, Cantor's Theorem notwithstanding.
For while , as the Thm states, any two denumerable models of
Th(<Q,<Q >) (= Trat) are isomorphic, this is not so for non-denumerable
models - see Exercise ??.
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For easier formulations during the remainder of this section we
introduce some further terminology.

Def. 2 A theory T in a first order language L is called categorical in 
a cardinality !, or also !-categorical, iff any two models of T of

cardinality ! are ismorphic.

Using this defintion we can restate what has just been said about Trat)
as:

( i ) Trat is % -categorical (where % is the cardinality of the
denumerable sets and structures)

( i i ) For any non-denumerable cardinality ! , Trat is not
!-categorical.

Another way to describe these two facts makes use of the notion of the
categoricity spectrum of a (complete) theory T.  By the categoricity
spectrum  of T, CS(T), we understand that function which maps an
infinite cardinality ! to 1 iff any two models of  T of cardinality !  are
ismorphic, and otherwise maps !  to 0.  In terms of categoricity spectra
the characterisation of Trat is as follows:

( i ) CS(Trat)(%) = 1;
( i i ) CS(Trat)(!) = 0, if ! non-denumerable.

From what little has been said so far, we should be prepared for all
sorts of categoricity spectra - functions CS(T) according to which the
collection of infinite cardinalities ! such that CS(T)(!) = 1can take a
wide variety of different forms.  But as a matter of fact this is not so.  It
was shown in the early sixties by Morley - arguably the first truly deep
result in general model theory - that for categoricity spectra CS(T)
there are altogether only four possibilities: :

i . CS(T)(!) = 1 for all infinite cardinalities ! ;
ii. CS(T)(% ) = 1; CS(T)(!) = 0 for !  non-denumerable;
iii. CS(T)(% ) = 0; CS(T)(!) = 1 for !  non-denumerable;

 iv. CS(T)(!) = 0 for all infinite cardinalities ! .

As indicated above, case (i) turns out to be very rare and arises only for
essentially trivial structures. (An example is the theory Tinf of the
language {} which says that there are infinitely many indviduals.)  An
example of case (ii) is, as we have seen, our theory Trat, but there
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aren't many other interesting examples in this category, involving
structures that are familiar on independent grounds.  Examples of case
(iii) are also rare; one - very surprising - example is the first order
theory of the arithmetic operations + and . on the real numbers (see
Section 2.4.2).

The bulk of mathematically important structures gives rise to theories
falling under (iv).  Among these structures there are in particular all
those which contain the arithmetical structure of the natural numbers
(i.e. the natural numbers with the operations of + and .)as a definable
substructure.  (Trivially, this includes in particular to the arithmetical
structure of the natural numbers itself.  For that structure contains
itself as an (improper) substructure, definable by means of identity
maps . )

All these negative results are indications of the limits of first order logic
as a toll for characterising non-trivial mathematical structure.

Morley's Theorem is usually stated in the following form3:

Theorem 2 (Morley).

Suppose that T is a theory of some first order language L and that
T is !-categorical for some non-denumerably infinite cardinality ! .
Then T is !-categorical for all non-denumerably infinite
cardinalities ! .

2. 1.2        Lattices, as Partial Orders and as Algebras.

We noted in 2.1 that lattices can be viewed in two different ways.  On
the one hand they can be described as partial orderings with certain
special properties (any two elements a and b have a least element above
them (the supremum  of a and b) and a greatest element below them
(the in f imum  of a and b).  But they can also be described as algebraic
structures, characterised by two binary operations and , which

3 We do not prove Morley's theorem in these Notes.  The proof is of this
theorem is hard (much harder than any proof presented in these Notes) and would
detain us for far too long.  Proofs can be found in several textbooks on model
theory, for instance in Chang & Keisler, Model Theory. or Hodges Model Theory .
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assign to any pair of elements a, b their supremum a  b and their
inf imum
a  b.

We first present lattices as partial orders with the mentioned
properties; that is, we formulate an axiomatic theory Tlato ('lato'
stands for 'lattice order') in the language Llato (the language whose
only non-logical constant is the 2-place predicate  and for which the
canonical reference would be '{ }') whose models are all and only the
partial ordering that are lattices. We then show how the operations 
and  can be defined in this theory and form a new theory T'lato in the
language { , , } by adding the proposed definitions of and to the
given axioms of Tlato.  From the axioms of T'lato (which, remember,
include the definitions of and in terms of  we derive a certain set
of theorems which are phrased strictly in terms of and (and thus do
not contain ).  These theorems can serve in their turn as axioms of a
theory Tlata in the language Llata = { , }.  In this theory it is now
possible to define (either in terms of just or in terms of just ) .
And these definitions are the reverse of the definitions of and i n
terms of  in that adding them to the axioms of T'lata yields a theory
T'lato:

( 1 ) T'lata = T'lato

Equation (1) captures the ultimate equivalence of the two directions
from which lattice structure can be approached.

After having obtained this result we proceed to the theories of boolean
lattices and boolean algebras.  These theories - Tbl and Tba  (for
'boolean lattices' and boolean algebras', respectively)  - are obtained by
adding further axioms to Tlato and Tlata.  It is easy to show that Tlato
and Tlata stand in the same relation of definitional equivalence as Tlato
and Tlata.

As implied by what was said in the introductory remarks to this section,
it is convenient to o axiomatise the theory of lattice-like partial
orderings using as primitive relation not the strict ordering relation <
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but rather the corresponding weak ordering relation .4  In other words
we start with the language Llato = { }.  Let Tlato be the theory
axiomatised by the following sentences of this language.

Des. 3 (Axioms for Tlato)

Axlato.1 ( x)( y)(x  y & y  x  x= y)
Axlato.2 ( x)( y) z)(x  y & y  z  x  z)
Axlato.3 ( x)( y)(( z)(x  z & y  z & ( u)(x  u & y  u  z  u))
Axlato.4 ( x)( y)(( w)(w  x & w  y & ( u)(u  x & u  y  u  w))

Note that Axlato.1 says that  is both reflexive and antisymmetric.  Thus
Axlato.1 and the transitivity axiom Axlato.2 together state that is a
partial ordering. Axlato.3 and Axlato.4 assert the existence of suprema
and infima.

Our first task is to show that the suprema and infima whose existence is
asserted by Axlato.3 and Axlato.4 are unique.  We will argue the case
for suprema; the case of infima is analogous.

We argue informally.  (Here as elsewhere the argument could be turned
without a formal derivation without any real difficulties, but such
formal derivations tend to be lengthy and cumbersome and to obscure
the idea of the argument.)  Let x and y be any elements. Suppose that z
and z' have the properties stated in (2) and (3)

( 2 ) (x  z & y  z) & ( u)((x u & y u)  z  u)
( 3 ) (x  z' & y  z') & ( u)((x u & y u)  z'  u)

Then we have, instantiating u to z' in (2),

( 4 ) (x  z' & y  z')  z  z'

Since the antecedent of (3) is a conjunct of (2), we get z  z' by MP.  In
the same way we get z'  z by instantiating u to z in (2).  From Axlato. 1
we then get z = z'.

4 As noted in the opening remarks to this Chapter the choice between < and 
is strictly one of convenience.  If we choose < as primitive, then we can define  
in terms of it via x  y df x < y v x = y; and if we choose  , then < can be defined via
x < y df x  y & x  y.
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Exercise: Derive the sentence

( x)( y)( z)( z')((x  z & y  z & ( u)(x  u & y  u  z  u)) &
x  z' & y  z' & ( u)(x  u & y  u  z'  u)))  z = z')

from Tlato.  (The easiest way to do this is to construct a Semantic
Tableau.  Constructing a derivation in some system of Natural
Deduction is also quite doable.  An axiomatic derivation is (here as in
most other cases) much harder.)

Given that Tlato entails the existence and uniqueness of suprema and
infima, we can define the operations and in Tlato in terms of as in
Def( ,{ }) and Def( ,{ })below.  These definitions correctly determine
the interpretations of and in any model of Tlato.  Also, they can be
added to Tlato without undesirable 'side effects', i.e. without adding
new theorems that can be expressed in the language Llato of Tlato.5

Def( ,{ }) ( x)( y)( z)(x y = z 
(x  z & y  z & ( u)(x  u & y  u  z  u)))

Def( ,{ }) ( x)( y)( z)(x y = z 
(z  x & z  y & ( u)(u  x & u  y  u  z)))

Let, as already indicated in the introduction to this section, T'lato be
the theory in the language Llat = { , , } that is obtained by adding the
definitions Def( ,{ }) and Def( ,{ })as new axioms to the axiom set
{Axlato.1-Axlato.4} of Tlato.  It is not hard to show that the following
sentences are all theorems of T'lato:

5 If existence and/or uniqueness could not be proved fromTlato, then adding
the definitions would also add the non-derivable statement or statements of Tl a to
which expressing existence and uniqueness, respectively to the theory.  The
reason is that the left hand sides of the biconditionals in the definitions Def( ,{ })
and Def( ,{ }) (e.g. x y  = z for the first of these) entail existence and uniqueness
of z simply because that is part of the general logical properties of function
constants.  The fact that Tlato entails the existence and uniqueness conditions
associated with the right hand sides of the biconditionals guarantees that addition
of the two definitions is what is called a conservat ive  extension of Tlato, i. e. an
extension which has exactly the same theorems as Tlato in its original language
L lato. For more on conservativity and other properties of formal definitions see
Section 2.3.
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Thlata. 1 ( x) x  x  =  x
Thlata.2       ( x)x  x  =  x
Thlata. 3      ( x)( y) x  y  = y  x
Thlata.4      ( x)( y) x  y  =  y  x
Thlata. 5      ( x)( y)( z) (x  y) z =  x  y z)
Thlata.6        ( x)( y)( z) (x  y) z =  x  y z)
Thlata. 7       ( x)( y) (x y) x  =  x
Thlata.8    ( x)( y) (x y) x  =  x

Exercise:  Show that these are theorems of T'lato.

The theorems Thlat.1 - Thlat.8 can now be used in their turn as axioms
of a theory Tlata of the language Llata  = { , }.  In this new capacity we
refer to them as Axlata.1 - Axlata.8.  Tlata allows us to define in terms
of the non-logical constants  and  of its language Llata.  In fact, as
adumbrated earlier, we need only one of  and  in such a definition.
Two such definitions, one in terms of and one in terms of , are given
below as Def( ,{ }) and Def( ,{ }).

Def( ,{ }) ( x)( y)(x  y  x y  =  y)
Def( ,{ }) ( x)( y)(x  y  x y  =  x)

Adding either Def( ,{ }) or Def( ,{ }) as a new axiom to the set
{Axlata.1,.., Axlata.8} of axioms of Tlata yields an extension in the
language Llat from which the our original axioms Axlato.1 - Axlato. 4
can be derived in their turn.  For the sake of definiteness let us assume
that the definition that is added is Def( ,{ }) and that the resulting
extension of Tlata is the theory T'lata of the language Llat.  As we noted
in the introduction, it turns out that this theory is the very same theory
as the theory T'lata which we obtained by approaching the
characterisation of lattice structure from the perspective of partial
orderings.  That is, we have the equality (1).

( 1 ) T'lata = T'lato.
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Exercise: Show the equality (1) is true.  This requires showing -in
addition to what has already been asked of the reader in earlier
exercises from this section:

(i) T'lato Def( ,{ });
( i i ) T'lata Axlato.i for i = 1,..,4;
(iii) T'lata Def( ,{ }) and Def( ,{ }).

2. 1.3        Lattices based on sets and Boolean Lattices

Prominent among the models of Tlato are power set inclusion
structures.  These are models of the form <P (X), >, where P (X) is the
power set of some set X and  is the set inclusion relation (restricted to
P (X)).  Similarly a prominent subclass of the models of Tlata is that
consisting of  models of the form <P (X), , >, where  and  are the
operations of set-theoretic union and intersection, again restricted to
P (X).  What we have seen in general terms in the last section - viz. that

 and  are definable in terms of and that  is conversely definable in
terms of or  - is reflected by the well-known fact that set-theoretic
union and intersection are definable in terms of and conversely. In
fact, for any given X we can combine the structures <P (X), > and
<P(X), , > into a single structure
<P (X), , , >), which is a model of the theory which we have denoted
either as T'lato or as T'lata.

But models of this kind are speial not only in that they are based on set-
theoretic relations and operations. They are also special in that they all
verify some additional conditions, which are expressible in the
languages of our theories but are not derivable from those theories.

Among these conditions are in particular the so-called distribution laws
for  and .  Formulations of these laws are given in BA9 and BA10.

DISTR.1       ( x)( y)( z) (x  y)  z =  (x  z) y z)
DISTR.2     ( x)( y)( z) (x  y)  z =  (x  z) y z)

It follows from the results in the last section that DISTR.1 and DISTR.2
can be expressed in the language { }.  (In fact, one way to obtain such
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formulations is to translate DISTR.1 and DISTR.2  into formulas of Llat
using definitions Def( ,{ }) and Def( ,{ }) of and in terms of .)

Exercise:  Carry out this translation for DISTR.1 and prove that
Cl(T'lata {DISTR.1}) = Cl(T'lato {DISTR'.1}), where DISTR'.1 is the
translation of DISTR.1.

Lattices satisfying DISTR.1and DISTR.2 (or, what comes to the same
thing, satisfying their translations into Llato) are called distributive
lattices. The following simple example shows that not all lattices are
distributive.  Let M be hte following model for the language Llato:

M = <{0,a,b,c,1}, >, where  is the following set of ordered pairs:
{<0,0>,<0,a>,<0,b>,<0,c>,<0,1>,<a,a>,<a,1>, <c,c>,<c,b>,
<c,1>,<b,b>,<b,1>,<1,1>}.

More perspicuously, M can be represented as the following directed
graph6:

1

b
a

c

0

In this lattice we have: a c = a b = 1 and a c = a b = 0. So (a b )
 c = 0 c = c and (a c) (b c) = 1 b = b, falsifying DISTR.2.

Exercise:  Show that the structure M described above also falsifies
DISTR.1.

6 A directed graph G is a structure <U,R> where U is a set ( the nodes  of the
graph G) and R is some binary relation on U. The pairs (a,b) of elements of U that
belong to R are the (directed) edges of G.  The edge (a,b) goes from a to  b. Certain
directed graphs, in which R is antisymmetric and either reflexive or irreflexive,
can be used to represent partial orderings. When a graph G is used in this way, its
node set represents the universe of the ordering,while the ordering relation itself
is the transitive closure of R.  Thus the ordering relation holds between two nodes
a and b iff there is a path (i.e. a chain of edges) from a to b.
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When a lattice is finite, it always has a smallest element - keep taking
infima of pairs of elements - first taking the infimum c of two
arbitrarily chosen elements a an b, then taking the infimum of c and
some element d chosen arbitrarily from the elements not yet
considered, and so on - until you have used up all elements of the
lattice's finite universe - and a largest element (obtainable by taking
suprema until the universe has been exhausted).  Infinite lattices - i.e.
infinite models of our theory Tlato - do not necessarily a smallest
element (an element a such that for all other elements b in the lattice a

 b - or a largest element.  (A counterexample is any unbounded linear
order, such as, for instance, the orderings of the integers, the rationals
or the reals.7) For the remainder of this section, however, we will focus
on lattices which do have a smallest and a largest element.8  We will
refer to these as the 0 of the lattice and the 1 of the lattice,
respectively.  We will also use '0' and '1' as individual constants to
denote these elements.  We further limit our attention to distributive
lattices. Thus - stated in terms of the language Llato - we will be dealing
with models of the theory Td,0,1, whose axioms are, besides those of
Tlato, translations into Llato of  the axioms DISTR.1 and DISTR.2 as well
as the following two axioms, which assert the existence of a smallest
and a largest element:

ExO  ( z)( u) z  u
Ex1  ( z)( u) u  z

It is easy to see that Td,0,1 entails that both the smallest and the largest
element are uniquw.  (This follows from ExO and Ex1, respectively,
together with the fact that the models of Tlato are partial orderings.)
This means that we can, for the same reason that this was possible
earlier for and , and following the same procedure, introduce
individual constants 0 and 1 into the language Llato by definitions
obtained from the existence axioms ExO and Ex1.  For the sake of
explicitness the two definitions are given below.

Def(0,{ }) ( z)(0 = z   ( u) z u )
Def(1,{ }) ( z)(1 = z   ( u) u z )

7 Every linear order is a lattice. Exerice: prove that this is so.
8 The notion of a lattice is sometimes def ined  as including the existence of a
smallest and a largest element. This is not the practice we have adopted here.
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Note that all set inclusion algebras are distributive lattices with a 0 and
1.  On the other hand, as we already noted, linear orderings are
distributive lattices, but they need not have a 0 or 1.

From here on it will be convenient to work in a language which contains
all the constants considered so far - the 2-place predicate , the two 2-
place operations  and  and the individual constants 0 and 1.  For the
moment this is the language which contains just these five constants,
i.e. { , , ,0,1}.  Let T'd,0,1 be the theory of this language whose axioms
are :

(i) Axlato.1 - Axlato.4,
(ii) Def( ,{ }) and Def( ,{ }),
(ii i) DISTR.1 and DISTR.2
( iv) Def(0,{ }) and Def(1,{ })

The theory T'd,0,1 provides a suitable basis for the introduction of yet
another operation, the 1-place operation of complement . To pave the
way for the introduction of this operation we proceed once as we did
before in the case of , , 0 and 1, viz. by first adopting a new axiom
which asserts the existence of suitable values for the operation, then
proving that these values are unique, and then, on the basis of this
result introducing hte operation by means of a definition that is derived
directly from the existence axiom.

Our existence axiom, COMP, asserts that for every element x there is an
element y such that (a) the supremum of x and y is the 1 of the lattice
and (b) the infimum of x and y is the 0 of the lattice:

COMP ( x)( y)(x y = 1 & x y = 0)

From the combination of  T'd,0,1 and COMP it is possible to prove that
the element y mentioned in COMP is uniquely determined in relation to
x.  We argue as follows. First we observe that the sentences (i) and (ii)
are theorems of T'd,0,1.  (The proof of this is left to the reader.)

( i ) ( u) u 1 = u

( i i ) ( u)(u 0 = u
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Assume that y1 and y2 both satisfy the matrix (= the quantifier-free
part) of COMP for some given x, i.e. that

( a ) x y1  = 1 ( b ) x y2  = 1
( c ) x y1  = 0 ( d ) x y2  = 0

Then, since x y1  = 1, (x y1) y2 = 1 y2 = y2, by (i).  By DISTR.1
(x y1) y2 = (x y2) (y1 y2) and (x y2) (y1 y2) =
0 (y1 y2) = y1 y2, by (ii) and assumption (d).  So y1 y2 = y2.
Similarly we show that y2 y1 = y1.  So y1 = y2 y1 = y1 y2 = y2.

The definitions Def( ,{ }) and Def( ,{ }) enable us to translate the
axioms DISTR.1, DISTR.2 and COMP into sentences DISTR.1( ),
DISTR.2( ) and COMP( ) of the language { }.  Consider the theory Tbl
that we obtain when these translations to the theory Tlato. ( T h e
subscript 'bl' stands for 'boolean lattice'.) The models of Tbl are called
boolean lattices.   In view of the existence and uniqueness of
complements in such models we can, in the same way in which we
extended the theory of lattice orderings with definitions for the
supremum and infimum functions and those for the '0-place functions'
1 and 0, now add a definition of  the complement function.  We denote
this function as '-'. (That is, -x is the complement of x.)

The definition Def(-,{ , }) of - can, as we already said, be directly
obtained form the corresponding existence axiom COMP.

Def(-,{ , }) ( x)( y)(y = -x (x  y = 1 & x y = 0))

'-' and Def(-,{ , }) are our final additions to language and theory,
respectively.  Let Lbla be the language { , , ,0,1,-} and let Tbla be the
extension of T'd,0,1 with COMP and Def(-,{ , }).  The models of Tbla
are on the one hand, because of the properties of their partial ordering
relation, boolean lattices, while on the other hand they have, because of
the properties of their operations , ,0,1 and -, the structure of
boolean algebras.

To amplify this last statement:  We have seen that the theory of lattices
can be formulated in terms of the operations  and . (This was the
theory Tbla.) We can extend this theory with existence axioms and
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definitions for 0,1 and - all couched in terms of  and .  It is not hard
to show that the theory that we obtain this way, and which belongs to
the language { , ,0,1, -} is identical with the restriction of Tbla to the
sentences of this language.  This theory is known as the theory of
boolean algebras and its models as boolean algebras.  So as to fit in
with this terminology we refer to the language { , ,0,1, -} as Lba and to
the theory of this language which we have just described as Tba.

For further reference we list once more the set of axioms for Tba w h i c h
has emerged in the course of this discussion.  In this list we have
combined the existence axioms which guarantee the legitimacy of the
corresponding definitions we used to introduce the new operation
symbols into single axioms, in which the operation symbols take the
place of the existentially quantified variables in the existence axioms.

Def. 4 (Axioms for the theory Tba of boolean algebras.9)

Axba.1 ( x) x  x  =  x
Axba.2       ( x)x  x  =  x
Axba.3      ( x)( y) x  y  = y  x
Axba.4       ( x)( y) x  y  =  y  x
Axba.5      ( x)( y)( z) (x  y) z =  x  y z)
Axba.6        ( x)( y)( z) (x  y) z =  x  y z)
Axba.7       ( x)( y) (x y) x  =  x
Axba.8      ( x)( y) (x y) x  =  x
Axba.9       ( x)( y)( z) (x  y)  z =  (x  z) y z)
Axba.10     ( x)( y)( z) (x  y)  z =  (x  z) y z)
Axba.11 ( u) u 1 = u
Axba.12 ( u)(u 0 = u
Axba.13 ( x)(x  -x = 1 & x -x = 0))

9 Here Axba.1 - Axba.8 are the theorems Thlat.1 - Thlat.8 of Section 2.1.2;
Axba.9 and Axba.10 are the earlier DISTR.1 and DISTR.2; Axba.11 and Axba.12 -
mentioned earlier as (i) and (ii) in the proof of uniqueness of complements, are
the results of combining the existence axioms Ex0 and Ex1 for the lattice One and
the latice Zero with the definitions of the individual constants 0 and 1 in terms of 
and  - these definitions we did not actually give, but they can be obtained from
the defintions Def(0,{ }) and Def(1,{ }) we did give by translating them into
sentences of  Lba using the definition of  in terms of ; Axba.13 results form
combining the axiom COMP with Definition Def(-,{ , }).
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This concludes our general account of lattices, lattice algebras, boolean
lattices and boolean algebras.  The route we have followed, with all the
switching back and forth between partial orderings and operations, may
appear rather round-about and hard to follow, certainly on a first
reading. But I believe that this is a price worth paying.  The central
methodological point of the last two sections has been to show, by
means of the example that lattices and the corresponding algebras
provide, how two at first sight very different perspectives on structure -
here that of structure in the form of partial order and structure in the
form of a number of connected operations - can nevertheless prove to
be concerned with what is essentially the same structure after all.  In
order to bring out how and why this convergence arises in the case in
question, switching between the two perspectives was essential.  That
does of course require a greater effort, both on the part of the
presenter and that of the reader, than a simple presentation of lattices
just  as ordered structures or of lattice algebras and boolean algebras
just in terms of their operations.

There is also a practical spin-off to the presentation of lattices as being
describable either as partial orders or as algebras: Now that we have
explored the nature of this correspondence thoroughly, we can, with
the benefits of that investigation, join the wide-spread practice of
switching betgween the two perspectives in discussions of such
structures if and when this proves convenient.  We will make use of this
freedom in particualr in the next sections.

In the next two sections we focus exclusively on boolean algebras.
2.1.4 presents a number of distinct types of boolean algebras and
defines certain properties in terms of which they can be distinguished
from each other and classified. 2.1.5 is devoted to the Stone Cech
Theorem, according to which every boolean algebra is isomorphic to a
structure in which the operations , and - are set-theoretic union,
intersection and subtraction, respectively.
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2.1.4         Some Examples of Boolean Algebras.

As compared with lattices in general, boolean lattices form a quite
special category.  But even so there is much variety even within this
special domain. One important subtype is that identified by the power
set inclusion lattices <P (X), >that were mentioned earlier.  These are
distinguished by two properties: they are (i) atomic  and (ii) complete .

Before we define these two properties, first, in Prop. 2, an obvious
observation about the power set lattices, viz that they are determined
up to isomorphism by their carrier sets X:

Prop. 2 If |X| = |X'|, then <P(X), > P(X'), >.

Proof:  It suffices to note that a bijection between X and X' induces a
bijection between P (X) and P (X') and carries the inclusion relation
restricted to P (X) into the inclusion relation restricted to P (X') .

Next the definitions of atomicity and completeness.  The first of these
presupposes the notion of an element being an atom , which is
important in  its own right.

Def. 5 (a) Let BL =<U, > be a boolean lattice, b an element of BL.
b is an atom  of BA iff
(i) a 0 and
(ii) there is no c in BL such that 0 < c < a (where < is the

strict partial order corresponding to the lattice
ordering .

 (b) BL is atomic iff for every b in BL there is an atom a of BA
such that a  b.

Def.     6 A boolean lattice BL = <U, > is complete iff for every
subset V of U there is a least element c in U such
that for all v # V, v  c. More formally:

For each V U there is a c in U such that
( i ) ( v # V) v  c, and
(ii) ( c')(( v # V v  c')  c  c')
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To show that power set inclusion lattices are atomic and complete is
once again very easy to show and we record the fact as another
proposi t ion.

Prop. 3 Every power set inclusion lattice is atomic and complete.

Proof:  Let PSIL = <P(X), > be any 0power set inclusion lattice. Note that
the 0 of PSIL is the empty set . So the atoms of PSIL are the singleton
sets {x}, where x is any element of X. Suppose that Y is any element of
PSIL distinct from 0.  Then Y is a subset of X and Y . So Y contains at
least one element x # X. But then we have {x} Y, i.e. the lattice ordering
relation holds between the atom {x} and Y.  Thus PSIL is atomic.

To see that PSIL is complete, let V  be any subset of P(X). Then V   is a
subset of X and thus a member of P (X).  It is easy to verify (i) that for
all V # V, V V  and (ii) if W is any other element of P (X) such that for

all V # V, V W, then V  W.  Thus PSIL is complete.

But not all boolean lattices are either atomic or complete, In fact, there
are boolean lattices that are the extreme opposite of atomic in that they
have no atoms at all. And there are also boolean lattices that are the
extreme opposite of complete in that they have the following property:

Every set V  of elements is either essentially finite or else V does
not have a supremum.

Here by essentially finite we mean the following: V is essentially finite
iff there is a finite subset W  of V  such that ( v # V )( w # W ) v w .
(Note that in this case the supremum of W , which must exist since W  is
finite, is also the supremum of V . )

But besides boolean lattices which occupy the opposite end of the
spectrum from the power set inclusion lattices with regard to either
atomicity or completeness or both, there are also many which display
less extreme forms of non-atomicity or incompleteness. For instance
there are boolean lattices which do contain some atoms but which
nevertheless do not have enough of them to make them atomic.

Our first example of a boolean lattice that is not like the power set
inclusion lattices, BL1, differs from them in being not complete,
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although it shares with them the property of being atomic. The example
also illustrates another important fact, the true significance of which
will become clear when we turn to the Stone Cech Representation
Theorem in the next section.  This is because it is a boolean lattice
whose ordering relation is, just like it is for the power set inclusion
lattices, set-theoretic inclusion.  The only, but crucial difference with
the power set inclusion lattices is that in our example the universe is no
longer a full power set P (X), but rather some proper subset of such a
power set. (The Stone Cech Theorem says that just by varying the
universes of inclusion lattices all possible properties of boolean lattices
can be exemplified.)

In the case of BL1 the universe is defined as the set of all fintie and all
cofinite subsets of the set N of natural numbers.  Here a cofinite subset
of N is a subset Y of N such that N \ Y is finite. In other words, if  U is
the set of all finite and cofinite subsets of N, then BL1= <U, >, where is
the relation of set-theoretic inclusion restricted to U.

Before we show that BA1 has the mentioned properties, i.e. that it is
atomic but not complete, we first have to show that it is a boolean
lattice- in other words, that it is a lattice and that is it boolean.  To this
end we make use of the possibility of switching back and forth between
lattices and the corresponding algebras.  To start, note that the
restriction of  to any set of sets will always be a partial order. To
show that in the case at hand this order is a lattice we note that U is
closed under the set-theoretic operations , .  To see that the union X

Y of two subsets X and Y of U belongs to U, we have to distinguish
between two cases: (i) if X, Y are both finite, then X Y is finite and
thus in U; (ii) if at least one of X, Y is cofinite, then X Y is cofinite and
thus also in U.  In the same way one shows that U is closed under .
From the fact that U is closed under  and it follows that <U, > is a
lattice.  For if, say, the union of the sets X and Y from U is again a
member of U, then it will be the supremum of X and Y in <U, > ;
likewise, since the intersection of subsets X and Y of U again belongs to
U it must be the infimum of X and Y.  Thus <U, > is a lattice.

Furthermore, and N both belong to <U, >, since is a finite and N  a
cofinite subset of N. But then it is obvious that these are the smallest
and largest element, respectively, of <U, >. So <U, > has a 0 and a 1.
We also note that set-theoretic union and intersection satisfy the
distributivity laws DISRT1 and DISTR2.  So <U, > is a distributive lattice
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with a 0 and a 1. To see that <U, > is boolean, we note that U is closed
under the operation of complementation relative to N (that is, the
operation of subtracting a given X from N, denoted as N \ X). For the
relative complement of a finite subset of N is a cofinite subset and vice
versa.  Using the same reasoning as above, we conclude that the relative
complement is the operation we obtain when we apply Def(-,{ , }) (see
section 1.2.3) to the supremum and infimum operations of <U, > ,
which, as we have already shown, are nothing but the operations of set-
theoretic union and intersection.  Moreover the relative complement
operation of set theory does satisfy, in conjunction with union and
intersection, the laws Axba.11 and Axba.12. So <U, > is a boolean
lattice.

We next show that BA1 is atomic.  This is easy.  All singleton sets {n},
where the n #  N, are finite and thus belong to U.  Clearly they are the
atoms of <U, >.  And if X is a member of U that is different from the 0
of U, i.e. X , then there must be some n such that n # X and thus {n}

 X; so there is an atom between 0 and X.

Finally BA1 is not complete.  For let A be a subset of N such that both A
and N\A are infinite. (For instance, we could take for A the set of even
numbers.) Let A  be the set {{n}: n # A}.  Then A  has no supremum in
<U, >.  For if Y is any element in U with the property that ( Z)(Z e A  
Z Y), then A Y.  The only elements of U with this property are the
cofinite subsets of N which include A.  But among these there is no
smallest element:  Take any such Y.  Then Y\A is non-empty (in fact it is
infinite).  Let m # Y\A and Y' = Y\{m}.  Then Y' # U, A  Y' and Y' is a
proper subset of Y. So there is no smallest member of U which includes
all members of A .

Our second example, BA2, is presented as a boolean algebra. And it is
not a set algebra. Once again the set N of natural numbers is our
starting point. But this time we begin by defining an equivalence
relation on the subset of N:

X Y iffdef. X -Y is finite.

Here "X - Y" denotes the symmetric difference between X and Y, i.e.
X - Y = (X\Y) (Y\X).
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The first thing to observe is that is a congruence relation with respect
to the set-theoretic operations ,  and \.  That is, if the arguments of
the operations stand to each other in the relation , then so are the
results of those operations.  For instance, suppose that X  X' and that Y

 Y'.  Then also (X Y)  (X' Y').  That this must be so is not hard to
see. On the one hand (X Y) \ (X' Y')  (X \ X') (Y \ Y'). This entails
that if the term on the right of  is finite, so is the one on the left.
Analogously (X' Y') \ (X Y) is finite.  So (X Y) \ (X' Y') is finite.  It
follows that (X Y)  (X' Y').  Likewise for the other two operations.

Let V be the set {[X] : X N}.  (N.B. during the remainder of our
discussion of BA2 we will leave out the subscript .) The congruence of

w.r.t. ,  and \ entails that we can define the following operations on
V:

Def. For arbitrary X, Y N,

( i ) [X] [Y] = [X  Y]
( i i ) [X] [Y] = [X  Y]
(iii) [X]      = [N \ X]

Now let BA2 be the structure <V, , , ,[ ],[N]>.  That this is a
Boolean algebra follows straightforwardly from the Boolean nature of
the set-theoretical operations  ,  and \, in terms of which we have
defined the operations , , .  Note that the lattice ordering of this
structure holds between any two members [X] and [Y] of V iff X \ Y is
finite.  To see this, recall that can be defined in terms of  by: [X]  [Y]
iff [X]  [Y] = [Y]. This entails that (X  Y) \ Y is finite.  But (X  Y) \ Y is
the same set as
X \ Y.

We first observe that BA2 is atomless, and thus not atomic.  Suppose
that [X] [ ].  Then X is infinite.  But then we can split X into two
infinite subsets Y and X \ Y  But in that case we have < [Y] < [X], where
< is the strict order in relation corresponding to the lattice ordering 
of BA2. So [X] is not an atom.
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BA2 is also not complete.  To see this, let A  be a denumerably infinite
set of infinite mutually disjoint subsets of N whose union is N.  (That is,
if X # A, then X is infinite, if X, Y # A and X Y, then X Y =  and A  =
N.)  Then there is no element in V which is the supremum of A .  For
suppose that [Z] were the supremum of A .  Then for each X # A , [X] 
[Z].  So, by the remark at the end of the penultimate paragraph X \ Z is
finite.  Consequently, since X infinite and X = (X \ Z) (X Z), Z X
must be infinite and thus .  So we can for each X in A  pick an
element nX from X Z.   Note that if Y # A  and Y X, then by assumption
Y is disjoint from X and therefore nX is not an element of Y. So each nX
belongs to exactly one element of A .  That is, if B = {nX: X # A}, then for
each X # A, X  B = {nX}.  Now let Z' = Z \ B.  Since B Z, Z \ Z' = B and
thus Z\Z' is infinite.  So [Z'] <  [Z].  On the other hand, for any X # A , Z' \
X = (Z \ X)  {nX}, and this set is finite, since Z \ X is finite.  So, by the
remark at the end of the one-but-last paragraph, [X]  [Z'].  It follows
that [Z] is not the supremum of A .

There are also boolean lattices that are complete but not atomic.  [An
example of such a lattice can be found in the exercises.]

2.1.5         The Stone-Cech representation Theorem

One of the most famous and most fundamental results in the theory of
boolean algebras is the Stone-Cech Representation Theorem, which says
that every boolean algebra is isomorphic to (and thus 'can be
represented as') a set algebra; that is, it is isomorphic to a structure
<U, , , -,0,1> in which the elements of U are subsets of some set X,
the operations , , -, are set-theoretic union, intersection a n d
complementation relative to X, 0 is the empty set and 1 the set X.
(Once more, note well that U will in general not consist of all subsets of
X.)

The proof of the Stone Cech Theorem involves the notion of an ideal  of
a boolean lattice, or, alternatively, that of a filter.  So we begin by
defining these notions as well as a few others connected with them.
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Def. 7. Let BL = <U, > be a boolean lattice.

1 . A subset V of U is an ideal of BL iff (i) V ; (ii) V U ;
(iii) if b # V and a b, then a # V; and (iv) if a, b # V, then
a b # V.

2 . A subset V of U is a filter of BL iff  (i) V U; (ii) V ;
(iii) if  b # V and b a, then a # V; and (iii) if a, b # V, then
a b # V.

3 . Let b # BL, b 1.  The ideal of BL generated by b is the set
{a # U: a b}
An ideal is called a principal  ideal if it is generated by some
b # U such that b 1 .

Likewise, if b 0, the filter of BL generated by b is the set
{a # U: b a}; and a filter is called a principal filter if it is
generated by some b #  U such that b 0 .

4 . An ideal V of BL is called a prime or maximal ideal of BL iff
for each b # U either b # V or else -b # V.

Likewise, a filter V of BL is called a prime  or maximal  filter
of BA iff for each b # U either b # V or else -b # V.

Prop. 4. 1 . If V is an ideal of a boolean lattice BL = <U, >, then -V
= {-b: b # V} is a filter of BL, and conversely.

2 . If V is a principal ideal {a # U: a b} of BL, then -V is
the principal filter {a # U: -b a} of BL, and conversely.

3 . If V is a prime ideal of BL, then -V is a prime filter of
BL, and conversely.

Lemma. 1. (Boolean Prime Ideal Theorem for Boolean Lattices)

Let V be an ideal of some BL <U, >.  Then there exists a
prime ideal V' of BL such that V V'.
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A general proof of the Prime Ideal Theorem, which applies to lattices of
arbitrary cardinality, is not possible at this stage, since it requires set-
theoretic assumptions and methods that are not available to us as yet.
We can only prove the theorem for BA's which are at most infinitely
denumerable.  For this case the argument goes as follows.

If <U, > is denumerable, then we can assume an enumeration u1, u2, ...
of all elements of U and extend V stepwise, first with u1 or -u1, then
with u2 or -u2, and so on, obtaining in the limit an extension of V which
is a prime ideal.  We just sketch the first step, in which V is extended
with either u1 or -u1 .  (The other steps are completely analogous.)

With regard to V and u1 we distinguish two cases:

( a ) For all finite W V, sup(W) u1 1.
( b ) For some finite W V, sup(W) u1 = 1.

In case (a) V1 = {u # U: ( W)(W V & W finite & u sup(W) {u1}};
in case (b) V1 = {u # U: ( W)(W V & W finite & u sup(W) {-u1}}

We begin by showing that in case (a) V1 is an ideal.  First, note that
u1 # V1.  This is so since the empty set  is a subset of V and
u1 0 u1 = sup( ) u1.  Second, suppose b # V1 and a b.  Then
there is a finite W V such that b sup(W) u1.  But then also
a sup(W) u1, so a # V1.  Third, suppose that V1 = U.  Then 1 # V1.
This means that there is a finite W V such that 1 sup(W) u1, which
is equivalent to: sup(W) u1 = 1.  This contradicts the assumption of
case (a) and we conclude that V1 U.  Lastly, let a, b # V1.  Then there
are finite subsets Wa, Wb of V such that a sup(Wa) u1 and b 
sup(Wb) u1.  If Wa and Wb are both finite subsets of V, then so is
W a  Wb.  Also, sup(Wa) sup(Wa  Wb), so a sup(Wa  Wb) u1.
Similarly, b sup(Wa  Wb) u1.  So a b sup(Wa  Wb) u1.  Our
final observation is that V  V1.  Suppose that u # V.  Then u sup({u})

u1, with {u} a finite subset of V.  So u # V1.

From all this we conclude for case (a): V1 is an  ideal which extends V
and contains one of u1 and -u1 .
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Now consider case (b).  We show:

(*) for all finite W' V, sup(W') -u1 1 .

Suppose this is not so.  Then there is a finite W' V such that
sup(W') -u1 = 1.  By assumption of case (b) there also is a finite
W V such that sup(W) u1 = 1.  Let W'' = W W'.  Then W'' is a finite
subset of V.  Let w = sup(W'').  Then w # V, so, since V is an ideal, w 1
(for otherwise we would have that V = U).  Furthermore, sup(W) w .
So, since sup(W) u1 = 1, w u1 = 1.  Similarly w -u1 = 1.  So
(w u1) (w -u1) = 1 1 = 1.  But (w u1) (w -u1) =
((w u1) w)  ((w u1) -u1) = w  ((w -u1) u1 -u1)) =
w  ((w -u1) ) = w  (w -u1) = w.  So w = 1, contrary to what we
established above.  This proves (*).

We can now show as in case (a) that V1 is an ideal which extends V and
contains -u1.  So it follows in either case that V1 is an ideal which
extends V and contains one of u1 and -u1.

In this way we coinstruct a denumerable sequence V1, V2, ... of ideals
extending V such that for each n Vn will contain, for i = 1, ..., n, one of
ui and -ui.

Now let V' = n V n. Then it is easy to show that V' is an ideal.  (In
particular V' does not cootain 1.  For is it did than 1 would be an
element of some Vn, contradicting the already established fact that Vn
is an ideal. From the construction of V' it is also clear that V' is
maximal.

   q.e.d.

Corollary.  Let u be an element of some BL <U, > such that u &  1.  Then
there exists a prime ideal V' of BL such that u # V'.

Proof.  Suppose that u is as described in the statement.  Then
Vu = {v # U: v u} is an ideal.  (Show this.  N. B. ideals of this form,
which consist of all elements some given element, are called principal
ideals .) So, accroding to Lemma 3 there is a prime ideal V such that
Vu  V.  Clearly u e V.

q.e .d.
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We now turn to the Stone-Cech Theorem itself.

Theorem. 3 (Stone-Cech Theorem for Boolean Lattices)

Let M = <U, > be any boolean lattice.  Then there is a set inclusion
lattice M* - i.e. a structure <U*, > in which U* is a subset of some
power set P (X) and is the set-theoretic inclusion relation on U* - such
that  M  M*.

Proof.  For any u # U let u* be the set consisting of all maximal ideals V
of M such that not u # V: u* = {V: V is a prime ideal of M and not u # V}.
Let U* = {u*: u # U}.  Then U* P(P(U)); so U* P(X) for some X.  We
show that * is 1-1 map from U onto U*.  That * is onto follows from the
definition of U*.  To show that * is 1-1 we argue as follows.  First
suppose that u, u' #  U and that u  u'.  Then either not u u' or not
u' u.  Assume that not u u'.  (The other case is analogous.) Then
u' -u 1.  For if u' -u = 1, then  u u' = u' u = (u' u) 0 =
(u' u) (-u u) = (u' -u) u = 1 u = u, so u u', contrary to
assumption.  Since u' -u 1, there is according to the Corollary to
Lemma 3 a maximal ideal V containing u' -u . Since -u # V it is not the
case that u # V', For otherwise u, -u # V', so u -u # V' and V' wouldn't
be an ideal.  So by teh definition of *, V' # u*.  On the other hand, u' #
V'.  So it is not the case that V' # u'*.  So u* u'*.

Next we prove that u  u' iff u*  u'*.  First assume u  u'. Then, as can
easily be shown,  -u'  -u. Let V be any maximal ideal in u*. Then, since
not u # V, -u # V.  So, since -u'  -u, -u' # V.  So it is not the case that
u # V, and therefore V # u'*.  So u*  u'*. Conversely assume that
u*  u'*.  Suppose it is not the case that u  u'.  Then, as we saw above,
there is a maximal ideal V' such that u' #  V' but not u #  V'.  So V' #  u*,
but not V' #  u'*, contrary to the assumption that u*  u'*. 

q .e .d.

The Stone-Cech Representation Theorem for Boolean Algebras is a
paradigm for a type of result that has proved of great value in
mathematics and logic in a number of distinct contexts.  Results of this
type are generally called 'representation theorems'.  Informally
speaking, a representation theorem for a theory T of a language L is a
statement to the effect that a certain class M' of models for some
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extension L' of L is representative for T's models.  Putting the matter
more formally, representation theorems take the following general
form:

Let T be a theory in some language L.  Let M  be the class of all
models of T.  Let L' be an extension of L and let M'  be a class of
models for L' such that for each M # M' the reduction M L of M to
L is a member of M .  Then M'  is representative of the models of T
iff for each M # M  there is an M' # M'  such that M  M' L .

The use and importance of representation theorems is in most cases
that they provide a clearer view of the range of variation among the
models of a given theory T and/or a way of studying this variation.  In
order to obtain a picture of the different (isomorphism) types of
models of T it is enough to study the variation within the representing
class M' .  And in many cases this latter investigation is helped by the
fact that the models within this class are of a special kind, e.g. in that
they have additional properties which do not apply to models of T in
general.  (Normally this is because these properties are not expressible
within the language L of T, but only in the extended language L' of the
models in M' .

The Stone Representation Theorem for boolean lattices is a good
example of this:  There are ways to explore the possible structure of set
inclusion lattices which are not directly available for arbitrary boolean
lattices.  On the other hand, however, the very fact that the Stone
Theorem is true is an indication of how much variation can be found
among set inclusion lattices.  To take just one example, our algebra BAII
was not a set inclusion lattice as we defined it.  Stone's Theorem tells us
that there is a set inclusion lattice isomorphic to BAII, and also gives us
a method for how to construct such a lattice.  But the resulting lattice is
not a set inclusion structure that one would easily have thought of off
the bat.  Should one have expected that a set inclusion lattice with this
structure actually exists?  That would of course depend on our general
knowledge of set theory, but at the very least the answer is not
obviously 'yes'.

In fact, one way to look at the Stone-Cech Theorem is as a statement
telling us how much variation can be obtained by starting from the
narrowly circumscribed notion of a power set lattice
<P (X), > - recall: any such lattice is atomic and complete and it is fully
determined by the cardinality of the carrier set X - and then to broaden
this notion by allowing for variation in just one respect: the universe U
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need not be all of P (X), but may also be some proper subset of it. All
variety, in other words, can be located in the choice of U.

2.1.6         Booelan Algebra and Logic.

We noted at the outset of this Chapter that boolean algebras are of
particular importance for logic; some the most prominent structures
that are studied in formal logic have the properties of such algebras.1 0

The simplest (and arguably most central) example is the 'algebra of
propositions', in which the disjunction p v q of two propositions p and
q interpreted as the supremum of p and q, their conjunction p & q as
their infimum and the negation -p of p as its complement.  Exactly what
boolean algebra this will give us depends on how we decide to
characterise propositions.  When we identify 'propositions' with the
Fregean denotations of sentences - 'the True', or '1', and 'the False', or
'0' - then we get a boolean algebra whose universe is the two-element
truth value space {0,1}, in which the boolean operations are as follows:

( i ) 1 1 = 0  1 = 1 0 = 1, 0 0 = 0;
( i i ) 1 0 = 0  1 = 0 0 = 0, 1 1 = 1;
(iii) -1 = 0, - 0 = 1.

Note that this algebra results as the image of any language L of
propositional logic under any classical valuation Suppose that V is a
classical  valuation of the set of propositional letters of L (classical in
the sense that it assigns each letter one of the classical truth values 0
and 1).  Then V will map each formula of L into {0,1} according to the
familiar truth table rules:

1 0 Boolean algebras and lattices owe their name to one of the founders of
modern logic, the 19-th century mathematician George Boole (1815-1864).  Boole
was together with his compatriot Augustus de Morgan, the first to look at logic
from an algebraic perspective, according ot which the logical connectives &, v, ,
etc. are seen as operators, or functors, which can be used to obtain propositions
out of other propositions (e.g. the conjunction 'A & B' from the propoisitions A and
B). Boole tried to formulate the laws of logic (his 'Laws of Thought') in algebraic
terms, i.e. as equations that express logical equivalences that hold between
propositions in virtue of their logical structure, such as e.g.

( i ) A & B = B & A
( i i ) (A & B) & C = A & (B & C)

to express the commutativity and associativity of conhunction.  Eventually such
equations became the axiomatic foundation of the definition of the concept of a
boolean algrebra, see our axioms Axba.1 - 13 on p. 21 of this Chapter.
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( i ) V(AvB) = V(A)  V(B);
( i i ) V(A&B) = V(A)  V(B);
(iii) V( A) = 1 if V(A) = 0 and V( A) = 0 if V(A) = 1.

More interesting is the kind of algebra that we get when propositions
are characterised intensionally , viz. as sets of possible worlds.  Let W be
the set of all possible worlds.  Then each proposition p determines a
subset of W, consisting of those worlds in which p is true.  According to
the intensional  theory of propositions this set - or, if one prefers, the
division of W into two parts that comes with it, the part of those
possible worlds in which p is true and those in which it is false - fully
identifies the proposition p; in other words, propositions are  sets of
possible worlds; and on the assumption that the set of all possible
worlds is W, they are subsets of W.  The logical operations of
disjunction, conjunction and negation now turn into set-theoretic
operations.  For instance, the conjunction p & q of the propositions (i.e.
subsets of W) p and q is the set of worlds of W in which both p and q
are true, i.e. the worlds which belong both to the subset p of W and to
the subset q of W.  Thus p & q is the set-theoretic intersection of p and
q. Similarly, p v q becomes the union of p and q and p the set-
theoretic difference W\p.  Furthermore, the 0 of the proposition
algebra thus defined is the empty set  ('the contradictory
proposition') and its 1 the entire set W ('the tautologous proposition').

This 'intensional' proposition algebra is the model-theoretic fundament
of the currently most popular developments of modal and intensional
logic, in which logical relations are defined in terms of a 'Kripkean'1 1

model-theoretic semantics, propositions are interpreted as sets of
possible worlds and modalities are analysed in terms of relations
between such worlds.  It is also the model-theoretic foundation of the
system of Higher Order Intensional Logic, the logical formalism that was
introduced by Montague12 in his seminal work on the semantics of
natural languages - work that, in various guises has served as the formal
basis for the formal semantics of natural languages since the early
seventies.

1 1 Saul Kripke (1940 - ) is the founder of modern modal logic.  He did his
astoundingwork in this area at the astoishingly young age of 16, while still in
high school.
1 2 Richard Montague (1930 - 1971).  Founder of the model-theoretic approach
to the analysis of meaning of natural languages.  Montague was the first to see
that it was possible and illuminating to apply the model-theoretic methods
developed by his teacher Tarski for the formal languages of mathematical logic,
such as, in particular, the predicate calculus..
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There is a further connection between the semi-formal ideas expressed
above and Montague's conception of the semantics of (formal and
natural) languages.  Montague thought of the way in which the syntactic
structure of a sentence determines its meaning as generally taking the
form of a homomorp i sm  from syntactic structures to meanings (or
'semantic values').  In the context of the present discussion of boolean
structure this idea can be explained rather succinctly.  Doing so,
moreover, will give an opportunity to introduce the general notion of a
homomorphism and its systematic connections to the already familiar
notions of an equivalence relation and that of one relation being
congruence relation wrt. some other relation.  And finally it throws an
illuminating light on the ideas that Boole and De Morgan were after but
that can be stated fully transparently only now that we know how to
draw a clear distinction between sentences of a language as symbol
strings with a syntactic structure and the samentic values
('propositions') they denote.

In the more formal discussion that follows we focus on first order
languages as we have been doing hitherto.  This will also allow for a
natural transition to the topic of the next two sections.

Central to the discussion will be the language of boolean algebra, i.e.
the language  Lba whose logical constants are , ,0,1and -. Let L be any
first order language.  We can use the set SL  consisting of the sentences
of L to define the following model ML for Lba: the universe is SL and the
interpretations of the non-logical constants of Lba are given by the
following function FL:

FL( )(A,B) = (A v B); FL( )(A,B) = (A & B); FL(0) =
( v1) v1 = v1; FL(1) = ( v1) v1 = v1; & B); FL(-)(A) = A,

where A and B are arbitrary sentences of L.

In other words, the 'boolean' operator symbols  etc. are interpreted in
as syntactic operations of the sentences of L.  For instance, L operates
on arbitrary sentences (that is, arbitrary well-formed symbol strings) A
and B of L and maps such a pair to the symbol string (A & B).

Now let M  be some class of models for L.  Then each sentence A of L
can be said to express wrt M a 'proposition' [[A]]M , consisting of those
models M in M for which M A: [[A]]M = {M # M:  M A}. (It is
reasonable to refer to [[A]]M as the 'proposition expressed by A wrt. M '
insofar as [[A]]M tells us for each M #  M , and thus for each of the
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'possible worlds' described by models of M , whether or not A (or the
proposition A expresses) is true in that world or model.)

From the propositions [[A]]M  expressed by A wrt. M  it is possible to
construct another model for Lba, to which we refer as MM . The
universe of this model is the set {[[A]]M : A is a sentence of L} anf its
interpretation function FM  is defined by:

FL( )([[A]]M,[[B]]M) = ([[A]]M  [[B]]M;
FL( )([[A]]M,[[B]]M) = ([[A]]M  [[B]]M;
FL(0) = ; FL(1) = M; FL(-)([[A]]M) = M\[[A]]M.

(Here we have used bold face and to distinguish the set-theoretical
union and intersection from the function constants  and of the
language Lba.)

It follows directly from what we seen in the last section that MM  is a
boolean algebra.  On the other hand the model ML is not, for one thing
because syntactic disjunction and conjunction, the functions which
interpret the function constants  and in ML, are not commutative.
(For instance, in general, (A&B) is not the same string as (B & A); in
particular, ( ( v1) v1 = v1 & ( v1) v1 = v1) is not the same string as
(( v1) v1 = v1 & ( v1) v1 = v1); and so on.)  This means that the
function [[ ]]M maps the non-boolean model for Lba onto the boolean
model MM .

Given a first order language L many different classes of models M  are
possible and for each such choice we get a different function [[ ]]M . The
possible choices of M are bounded on the one side by the smallest such
choices- those where M is a singleton set {M} - and on the other side by
the maximal choice, where M  is the class of all models for L.  When M =
{M}, then the universe of the model MM  consists of just two elements,
the set {M} itself and the empty set .  We can think of these two
elements as 'true in MM ' and 'false in MM ' and replace them by 1 and 0.
This gives us the 2-element boolean algebra, whose universe is the set
{0,1} and whose operations are the familiar connectives of classical
propositional logic, given by the classical truth tables.  (For example,
the interpretation of  in this model is the 2-place function &  defined
by & (1,1) = 1; & (1,0) = & (0,1) = & (0,0) = 0, and so on.) In this case the
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notion of a 'proposition wrt MM ' reduces to that of a mere truth value.
[[ ]]M  throws together any two sentences that have the same truth value
in M and we end up with just two 'bags' one for the sentences of L that
are true in M and one for the false sentences.

At the other extreme, where M is the class of all models for L, we get a
maximal diversity of bags.  Now two sentences A and B end up in the
same bag only iff tghey are logically equivalent: [[A]]M  = [[B]]M  iff for
every model M for L, M A iff M B.

The function [[ ]]M is an example of a homomorphism .
Homomorphisms are maps from one structure into another which are
structure-preserving. In general such maps are not 1-1.  And that is true
also for [[ ]]M , since any two different logically equivalent sentences
will be mapped onto the same value.  For instance, we have for any
sentences A and B that [[(A & B)]]M  = [[(B & A)]]M , even though the
two conjunctions (A & B) and (B & A) are, as we have just observed, in
general distinct.  In fact, the point of a homomorphism is often that it
isolates those aspects of a given type of structure that are relevant from
a certain perspective while abstracting from all remaining features.  It
does this by 'throwing into the same bag' any two elements for which
the structural features that are relevant from the given perspective are
the same and that thus only differ in respects that do not matter.  Thus
[[ ]]M  identifies, by mapping them onto the same value, any two
sentences whose structure guarantees that they have the same truth
value in all models of M .

We will define the notion of a homomorphism only for algebraic
structures - that is, for models of algebraic languages. (There is a way
of generalising the notion to arbitrary first order languages, some or all
of whose non-logical constants are predicates, but since we won't need
this generalisation here or later, we will limit ourselves to the case of
algebraic languages only.

Def.  8

a . Let L be any algebraic language, M, M' models for L, h a function 
from UM  into UM' . h is a homomorphism from M into  M' iff for
every non-logical constant fn of L and every n elements d1, ..., dn
from UM :

h(fnM (d1 ,..,dn )) = fnM ' (h(d1),.. ,h(dn) )
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Special cases are those where a homomorphism h from M into M'is   (i)
onto M' and (ii) where h is 1-1.  It is immediate that if h is both 1-1 and
onto, then it is an isomorphism from M onto M'.  We already noted that
[[ ]]M is onto MM .  Usually MM is a proper submodel of the set
inclusion lattice M' = <P (M ), >, and when that is so, [[ ]]M is a
homomorphism into, but not onto, M'. (Exercise: For which
combinations of of a first order language L and a class M of models for
L is MM  a proper submodel of M'?)

There is an important general connection between homomorphisms and
congruence relations.  Again we use our 'syntax-semantics interface
function' [[ ]]M to illustrate the matter.  As a preliminary recall that
there is a general correlation between functions and equivalence
relations: (i) Let f be a function defined on some set X. Then f induces
an equivalence relation on X, defined by:

( 1 ) for any x,y # X, x y iff f(x) = f(y).

Conversely, any  equivalence relation on a set X induces a function on
X which maps each x  # X onto the equivalence class [x]  it generates
under .  Moreover, when (1) is applied to this function, it gets us
back to the relation .

This correlation holds in particular for functions that are
homomorphisms. In particular, when h is a homomorphism from one
structure M into another structure M', then there will be a
corresponding equivalence relation on UM  induced by h via (1).  In
this case, however,  has additional properties, which reflect the fact
that h is a homomorphisms (and not just any function): is a congruence
relation wrt each of the operations of M.  We recall the notion of a
congruence relation:  Suppose that f is an n-place function defined on
some set X, i.e. both the arguments and the values of f belong to X, and
that  is a binary relation on X.  Then is a congruence relation wrt f
iff for any x1, ..., xn, x'1, ..., x'n from X such that x1 x'1, ..., xn x'n,
f(x1,.,xn) f(x'1 ,.,x'n) .

It is easily verified that when h is a homomorphism from a model M for
an algebraic language L into some other model M' for L, then the
relation induced by h via (1) is congruence relation wrt. all
interpretations in M of function constants of L.  Moreover, the converse
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also holds in this case: If is an equivalence relation on UM which is a
congruence relation on the interpretations in m of all the non-logical
constants of L, then the function which maps any element d of UM on to
its equivalence class [d]  is a homomorphism from M into the model
M' whose universe is the set of equivalence classes [d]  and which
interprets each n-place function constant f of L via the definition:

fM' = {<[d1] ,  ..,[dn] ,[d] >: d1, ..,dn,d # UM & f(d1,..,dn) = d}

(This definition is legitimate because is a congruence relation wrt f.)

Returning to [[ ]]M we recall that this function is a homomorphism in
that this function preserves the interpretations of all the function
constants of Lba.  (For instance, [[ ]]M  converts the syntactic
conjunction operation & into the 'propositional conjunction' which
maps the model sets [[A]]M and [[B]]M onto their intersection.)  It
follows from the general connection between homomorphisms and
congruence relations we have described above that the relation which
holds between sentences A and B iff they have the same truth values in
each of the models of M is a congruence relation wrt to the syntactic
operations that interpret the function constants of Lba in MLba.  This is
the formal justification for looking at the connectives of classical
propositional logic as algebraic operations on 'sentence meanings'.

As noted in footnote ?? , the conception of the way in which meaning is
determined by form as a homomorphism that maps syntactic strings
onto meanings, thereby identifying any two strings whose structures
make them identical in meaning, is a central assumption in the
approach to meaning in natural languages developed by Montague in
the late sixties and early seventies and now generally known as
'Montague Grammar'.  The idea is that the syntax of any language -
natural languages no less than the formal languages of logic and
computer science (including in particular the first order languages that
are the topic of these Notes) - can always be characterised by a set of
syntactic operations which build complex expressions from
constituents, and that to each such syntactic operation corresponds a
rule which combines the semantic values of the constituents into the
semantic value of the expression that is the output of the syntactic
operation. It became clear soon that (except for very restricted
fragments) the strictest implementation of this conception comes at a
cost of assumptions about the syntax of natural languages that are quite
artificial, and are ill supported by intrinsically syntactic evidence, of the
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kind that linguists do, and should, take seriously.  Nevertheless, the
attempt to develop a syntax-semantics interface that is based on an
independently plausible syntax and yet keeps as closely to Montague's
original conception has proved a principle of immense methodological
value in the development of semantics over the past 40 years.

The model MM  for Lba that we obtain when M is the class of all models
for L is known as the Lindenbaum algebra of L.  Lindenbaum algebras
will play an important part in the next section, be it in the different
guise of structures whose elements are the finitely axiomatisable
deductive theories of a given first order language L.  (There is an
obvious 1-1 correspondence between the finitely axomatisable theories
of L and the classes [[A]]M into which [[ ]]M partitions the set of all
sentences of L and that make up the universe of MM   when M contains
all models for L.  For on the one hand, if t is a finitely axiomatisable
theory of L, then there is a single sentence A of L such that T = ClL({A}).
On the other hand, when two sentences A and A' belong to the same
class, i.e. if [[A]]M  = [[A']]M , then A and A' are logically equivalent and
thus axiomatise the same theory: ClL({A}) = ClL({A'}).  Thus each finitely
axiomatisable theory of L corresponds to exactly one element of the
universe of MM .)
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2.2     Incomplete Theories and their Extensions.

In section 2.1 we saw that complete theories do not always do what one
might have expected of them, and for which they are often designed:
describe a given structure uniquely up to isomorphism.  A complete
theory always succeeds in doing this, we observed, when the structure
it is meant to describe is finite.  (See Thm. 6 of Ch.1.) But for theories
with infinite models the picture is much more complicated.  We know
that if a complete theory has an infinite model, then all its models are
infinite (see exercise ??).  But the differences between these infinite
models may still be considerable.  Not only will the theory always have
models that are not isomorphic for the simple reason that their
universes are of different cardinality - recall that the Skolem-
Löwenheim Theorems tell us that theories with infinite models always
have models of every possible infinite cardinality -, there exist complete
theories that have non-isomorphic models even within the same
cardinality.  Though Morley's Theorem indicates that the range of
possibilities us much more limited than one might have thought, there
nevertheless remains considerable room for variation.  For suppose a
theory T has non-isomorphic models in some infinite cardinality ! .
Then there is the further question how wide the variety of models of T
of cardinality !  is.  To answer this question a much finer - and much
deeper - analysis of complete first order theories is needed than
anything presented in these notes.  Such an analysis exists.  it is known
as Stability Theory, a subject of considerable complexity, developed and
brought to conclusion almost single-handedly by the Israeli
mathematician and logician Saradon Shelah [ref. to Shelah]

When we move from complete to incomplete theories we find much
wider ranges of possible models.  Now the models of a theory T can be
given a first classification in terms of the sentences they verify, in other
words, in terms of those of the complete extensions of T which they
verify.  So the range of models of an incomplete theory T can be
studied from two complementary perspectives, first the set of complete
extensions of T, and second, for each of these complete extensions the
range of models for that extension.

So far we have encountered examples of complete as well as of
incomplete theories.  But we haven't looked much at the structure of
the entire field of theories in a given language L, including both its
complete and its ncomplete theories. It is this issue that we will pursie
in the present section.
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2.2.1  Lattices of Theories.

Let L be a first order Language and let TL be the set of all theories of L.
The structure TL = <TL, >, where is the relation of set-theoretical
inclusion restricted to TL, is called the Lattice of Theories of L.  We will
also refer to it as the Tarski Lattice of L in honour of the logician A.
Tarski, who was the first to study these structures.

Our first task is to show that TL  is a distributive lattice with 0 and 1.
We already noted in the precious sections that any restriction  V  of  
to some set V of sets is a weak partial order on V. To show that when V
= TL this partial ordering is a lattice, we must show that for each pair of
theories T1 and T2 of L TL yields an infimum and a supremum with.
First, note that T1  T2 (where  is set-theoretic intersection) is a
theory of L.  For suppose B is any sentence of L such that T1  T2 B .
Then T1 B and T2 B, So, since T1 and T2 are theories, B # T1 and B #
T2. So B # T1  T2. Since this holds for arbitrary B, T1  T2 is a theory.
It now follows almost directly that T1  T2 is the infimum of T1 and T2
in TL. For if T is any theory of L such that T  T1 and T  T2, then T 
T1  T2.

The case of is different because T1  T2 is in general not a theory. (It
is a theory only if T1  T2 or T2  T1, (See Exercise 20.ii of Ch.1)  But
T1 and T2 do have a supremum in TL nevertheless, viz. the theory
ClL(T1  T2).
To see this, observe that T1 ClL(T1  T2) and T2 ClL(T1  T2). Now
suppose that T' is any theory of L such that T1 T' and T2 T'.  Let B
be any sentence from ClL(T1  T2).  Then T1  T2 B.  So by the
Completeness Theorem T1  T2 B. From this is can easily be inferred
that there must be a single sentence C #  T1 and a single sentence D #  T2,
such that C & D B.  Since T1 T', C # T1  T2 and thus C # T'. Similarly
D # T'.  So, T' C & D and so since T' is a theory, C & D # T'. So since
C & D B, also B # T'.

Having shown that the supremum and the infimum of any two members
of TL exist, we facilitate further discussion by introducing the symbols

L and L for these operations:
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( 1 ) ( i ) T1 L T2 =df ClL(T1  T2)
( i i ) T1 L T2 =df T1  T2

That TL has a 0 and a 1 is obvious.  Its 0 is the theory 0L = {A # L: A }
and its 1 the contradictory L-theory 1L consisting of all sentences of L.
That is distributive requires an argument.  We show that the distributive
law  DISTR.2 holds in TL.13 (The validity of the other law is shown in
much the same way.)

DISTR.2 T1 L (T2 L T3) = (T1 L T2) L (T1 LT3)

To show the inclusion of the left hand side in the right hand side is
straightforward.  (In fact this inclusion holds in all lattices.)  To show
inclusion in the opposite direction, let B # (T1 L T2) L (T1 LT3).
Then B # (T1 L T2) and B # (T1 L T3).  Since B # (T1 L T2), there are
C' # T1 and D # T2 such that C' & D  B.  Similarly, since B # (T1 L T3),
there are C'' # T1 and E # T3 such that C'' & E  B.  Putting C =df C' & C'',
we have C & D  B and C & E  B.  So C & (D v E)  B.  But D v E # T2 and
D v E # T3.  So D v E # T2 TT3.  So T1 L (T2 L T3)  B.  So
B # T1 L (T2 L T3).

q.e .d.

While TL is always a distributive lattice, it is never a boolean lattice.
The reason is that if T is a theory of a first order language L which is not
finitely axiomatisable, then there is no theory T' of L such that T L T' =
1L and T L T' = 0L. And every first order language has theories that are
not finitely axiomatisable.  We record this fact as Theorem 4.

Thm. 4   For no first order language L is TL a boolean lattice.

We postpone the proof of Thm. 4 till later in this section.

While TL is never a boolean lattice, each TL has a certain sublattice
which invariably is boolean.  This is the so-called Lindenbaum algebra
of  L.14  It consists of all finitely axiomatisable theories of L, i.e. all

1 3 See Section 2.1.2.  Note that here we have omitted the universal quantifiers
binding T1, T2 and T3.
1 4 Speaking on the one hand of 'Tarski lattices and on the other of
Lindenbaum algebras will seem incoherent.  The term 'Lindenbaum algebra  has'
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theories T of L such that for some finite set A  of L-sentences T = ClL(A  ).
We denote the Lindenbaum Algebra of L as LL.

To show that LL is a boolean lattice, we recall that a theory T is finitely
axiomatisable iff there is a single sentence A such that T = ClL({A}) - see
Exercise 12.a of Ch. 1. (For easier reading we write 'TA ' instead of
'ClL({A})'.) It is straightforward to verify that if T1 and T2 are finitely
axiomatisable theories of L and T1 = TA and T2 = TB, then the following
two conditions hold (Exercise:  Show this.)

( 1 ) ( i ) T1 L T2 = TA&B
(i i ) T1 L T2 = TAvB

Now let T be any finitely axiomatisable theory of L and suppose that T =
TA. Let T' = T A.  Then  according to (3.i,ii)  TA L T A = TA& A and
TA L T A = TAv A.  But TA& A = ClL({A& A}) = 1L and TAv A =
ClL({Av A}) = 0L.  So T' is the complement of T, in that the two satisfy
the characteristic equations, repeated in (2).

( 2 ) ( i ) T  L T' = 1L
(i i ) T  L T' = 0L

Since for each member T of LL there is a complement T' in  LL such that
(2.i,ii) are satisfied, LL is boolean. q.e .d.

As noted in the remarks leading up to Thm. 4, theories that are not
finitely axiomatisable do not have boolean complements.  However, it is
possible to define an operation on arbitrary theories that (a) satisfies at
least one of the conditions in (2), viz. (2.ii), (b) is the largest element
satisfying this condition and (c) coincides with the boolean
complement of any finitely axiomatisable theory.  One definition of this
operation is given in Def. 9.

It is possible to define a complement operation on theories of L which
acts as a boolean complement when the theory in question is a theory

been adopted because of its general use in the literature - few people if anyone
speak of the Lindenbaum lattice  of L. Because of the equivalence between lattices
and algebras nothing much hangs on this terminological issue.  In fact we might
just as well speak of Lindnbaum latticesa as of Lindenbaum algebras, and likewise,
speaking of Tarski algebras is just as legitimate as talking about Tarski lattices.
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of LL.  The definition we will give is such that it can be applied to
arbitrary theories.  But only when the theory is finitely axiomatisable,
will the theory and its complement stand in the relations that are
distinctive of boolean algebras.

Def. 9 Let T be an element of TL.  The pseudocomplement of T in

TL, -LT, is defined by:  -LT = {T' # TL: T L T' = 0L}15

Prop. 5 ( i ) -LT is the largest theory T' of L such that T L T' = 0L.
( i i ) Suppose that T = TA.  Then -LT = T A.

Proof.

( i ) Let T = ClL(-LT ). Suppose that B # T T. Then B # T and there is a
C # -LT such that C B.  But if C # -LT, then there is some theory T' such
that  T L T' = 0L and C # T'.  Since C # T' and B # T, C v B # 0L. On the
other hand, since C B and B B. C v B B. So, since 0L is a theory, B #
0L. This establishes that T is a theory T' such that T L T' = 0L.
Therefore ClL(-LT ) = T  -LT. So -LT = ClL(-LT ).  That is, -LT is a theory
It now follows directly from Def. 8 that it is the largest theory T' such
that T L T' = 0L.

( i i ) Suppose that T = TA. Then, as we have already seen, T A is a
theory T' such that T L T' = 0L.  So T A  -LT.  Now let T' be any
theory such that T L T' = 0L. Suppose that B # T'. Then, since A # T ,
A v B # 0L; that is, A v B.  But A v B is logically equivalent to A  B.
So A  B, and therefore A  B. So B # T A. This establishes that
-LT T A. So T A = -LT.

q.e .d.

1 5 Tarski lattices are thus structuresc which, according to a well-esrablished
terminology are called pseudo-complemented lattices. A pseudo-complemented
lattice is a lattice with an additional 1-place operation - with the properties that
for all x, -x is the largest element such that x -x = 0. Tarski-lattices have
additional properties, one of which is that they are distributive.  In fact, most of
the well-known examples of pseudo-complemented lattices that are not Boolean
algebras are distributive. However, the existence of a pseudo-complement does not
entail distributivity. For instance, the 5-element lattice of Section 2.1.3 is pseudo-
complemented (-1 = 0, -0 = 1, - a = b, -b = -c = a), but as we saw it is not distributive.
Sometimes the pseudo-complement of x is defined as the smallest element y such
that x y = 1. From a formal poitn of view this comes in last analysis to the same
ting because of the duality of and .



4 7

We now proceed to the proof of Thm. 4.

 Proof of Thm. 4

( a ) Suppose that T is a theory of some first order language L and that
T L -LT = 1L. Then there are a sentence A from T and a sentence B
from -LT such that A & B . This entails that B A.  So we have A #
-LT. We show that T = TA.  Suppose that C # T. Then, since A # -LT, C v

A # 0L. So  C v A, which is equivalent to: A  C.  So C # TA. So we
have shown that T TA. On the other hand, since A # T, TA T. So
T = TA.

( b ) We observe that the following infinite set of sentences {Dn}n =
2,3,..is strictly increasing in that for all n, Dn+1 D n but not Dn D n+1:

D2: ( v1)( v2) v1  v2
D3: ( v1)( v2)( v2) (v1  v2 & v1  v3 & v2  v3)
.
.
(D n says that there are at least n different elements in the universe.)

Let L be any first order language and let Tinf,L be the theory
axiomatised by the sentences , i.e. Tinf,L =  ClL({Dn}n = 2,3,..).  (Note
that the sentences only use logical vocabulary and thus belong to any
first order language whatever.) Then according to Exercise 7.b of Ch. 1
Tinf,L is not finitely axiomatisable. So Tinf,L has no complement in L
satisfying both of the two conditions (2.i,ii).
It follows that for no L is TL, the Tarski lattice for L, a boolean lattice.

q.e .d.

So far we have considered the Tarski lattices TL of first order languages
and just one type of substructure of those, the Lindenbaum algebras.
But of course we could in principle study many other sublattices of the
TLs.  Of special importance among those sublattices are certain lattices
whose bottom element is not 0L , but rather some theory T of L.  More
particularly, it has proved useful in a variety of contexts to study (i) the
lattice consisting of all extensions of T, and (ii) the lattice consisting of
the finitely axiomatisable extensions of T (those extensions T' of T for
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which there is a sentence A of L such that T' = ClL(T  {A}).16 We call
these the Tarski lattice of L generated by T and the Lindenbaum algebra
of L generated by T, respectively, and denote them as TL,T and LL,T.

Def. 1 0 Let L be a language, T a theory of L.

a . The Tarski lattice of L generated by T is the structure TL,T =
<TL,T, >, where TL,T is the set of all L-extensions of T and 
is the relation of set-theoretic inclusion restricted to  T L,T.

b . The Lindenbaum algebra of L generated by T is the structure
LL,T = <LL,T, >, where LL,T is the set of all L-extensions of T
which are finitely axiomatisable over T - that is. All those
L-extensions T' of T for which there is an L-sentence A such 
that T' = ClL(T {A})) and is the inclusion relation on LL,T.

Like TL, TL,T is always a distributive lattice with 0 and 1.  This can be
shown in just the same way as we did for TL. The argument that LL,T i s
always boolean also goes as before.  So far, then, there is no difference
between the more general cases of TL,T and LL,T and the more specific
cases of TL and LL, in which the bottom element is 0L. But there is
nevertheless one difference, viz. that among the lattices TL,T we now
find many that are boolean (while, as we have seen, this is never so for
the lattices TL ).  It can be inferred from what has already been
established in this section that this happens only when the Tarski lattice
generated by T and the Lindenbaum algebra generated by T coincide,
i.e. when all extensions of T are finitely axiomatisable over T.  In the
next section we will see a number of comparatively simple examples of
this situation.

Besides the lattices TL,T and LL,T other sublattices of TL are worth
consideration as well. Among these are in particular the lattice of all
subtheories of a given theory T and the lattice consisting of all its
finitely axiomatisable subtheories. (Exercise: prove that the former is
again a distributive lattice with 0 and 1, where the set of tautologies of
L is the 0 and T is the 1, and that the latter is a boolean lattice.)  Even

1 6 Often the lattice T L,T provides us with certain insights into the nature of T.
For by telling us something aqbout the range of possible extensions of T it also
tells us something about the range of its possible models, or true interpretations.
and with that of the range of variability among the models of T.
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more generally, we can, for any pair of L-theories T and T' such that T 
T', consider the Tarski lattice and Lindenbaum algebra consisting of
those L-theories (or finitely axiomatisable L-theories, respectively) that
lie between T and T', - in other words, at the sublattices of TL whose 0
is T and whose 1 is T'.  None of these, however, will be further
considered in these Notes.

We have already observed that TL is never boolean - not even for the
simplest language {}.  This is not so for the lattices TL,T.  These can be
boolean.  Among them is the trivial lattice TL,'L, whose only element is
'L, and all two element lattices TL,T, for T a consistent and complete
theory of L, lattices whose only elements are 'L and T.

In general, lattices of the form TL,T are always both atomic and
complete.  More precisely, this is so for any such lattice with more than
two elements. (If a lattice has " 2 elements, then there are no atoms and
the concept of atomicity is not applicable.) To see that TL,T is atomic,
assume that TL,T has > 2 elements and observe that the complete
consistent extension of T are the 'anti-atoms' of TL,T: they are those
theories different from the inconsistent theory of L such that there is
no theory between them and the inconsistent theory. It is easy to show -
Exercise: do this! - that the atoms of TL,T are precisely the theories -LT '
where T' is any complete and consistent extension of T. With this in
mind it is easy to see that TL,T is atomic. For let T' be any proper
extension of T (i.e. any extension of T that is different from T). Let A be
any consistent sentence in T'\T - there will be such sentences if TL , T
has > 2 elements - and let T'' be any complete and consistent extension
of Cl({ A}). Then -LT' ' is an atom below T'. (Exercise: prove this!)

That TL,T is a complete lattice is straightforward.  Let T  be any set of
extensions of T.  It is easy to show that ClL((T  ) is the supremum of T .

We already know that TL,T is not always a boolean lattice.  (In
particular, this is never so when T is 0L.)  For some L and T, however,
TL,T is boolean. Trivial examples are those where T is the inconsistent
theory of L, in which case TL,T is the trivial boolean algebra consisting
of just one element and the case we already considered, where T is a
complete consistent theory, in which case TL,T consists of two
elements, T and the inconsistent theory of L.  There are also many
examples of boolean TL,T of more than 2 elements.  However, all
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boolean lattices TL,T are finite.  Note that this does not simply follow
from the fact that such lattices are atomic and complete. For there exist
infinite atomic and complete boolean lattices, viz. the power set
inclusion structures <P(X), > in which X is infinite.

The fact that boolean lattices of the form TL,T are always finite thus has
to do with the special properties of theory lattices.  Since we have
already established that TL,T is always atomic and complete, the
argument is quite simple.  It goes as follows.  First we observe the
following general property of complete atomic boolean lattices L :

( 1 ) Let L  be a complete atomic boolean lattice and let A1 and A2 b e
two distinct sets of atoms of L .  Then the suprema in L o f
these two sets, sup(A 1) and sup(A 2), are distinct.

We prove (1) by making use of (2), which we leave as an exercise:

( 2 ) Let L  be a boolean lattice and let a, a' be distinct atoms of L .
Then a "  -a'.

Proof of (1): Let A1 and A2 be two distinct sets of atoms of L . Then
there is an a #  A 1\ A 2 or there is an a #  A 2\ A 1.  Assume that
a #  A1\ A2.  Then by (2) for each a' #  A2, a' "  -a. So, sup(A2)  -a. On
the other hand a sup(A 1).  So it is not the case that sup(A 1)  -a; for
that would mean that a  -a, which is obviously impossible, as it would
entail that -a = 1L, which evidently it isn't. (If it were, then a =  --a = 0L,
and thus a would not be an atom.)

We next observe (3)

( 3 ) Any complete, atomic boolean lattice L  = <U, > with atom set A  is
isomorphic to the power set inclusion lattice <P(A ), > .

(3) follows from (1) and (4), the proposition that in a complete atomic
boolean lattice L  each element other than 0L  is the supremum of the set
of all atoms below it.

( 4 ) Let L  be a complete atomic boolean lattice with atom set A and let
b be any element of L  such that b &  0L . Let Ab be the set of atoms
below b: Ab = {a # A : a "  b}. Then b = sup(Ab).
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The proof of (4) is left as an exercise.  (See Exercise ?? at the end of
this Chapter.)

In view of (1) and (4) we can define the following map h from L  to
P(A ), >: for b # U such that b &  0L h(b) = sup(Ab); and h(0L) = ) . It is
then easy to see that h is onto an that it transfers into the inclusion
relation on P(A ) .

Suppose now that TL,T is infinite.  Then because of (3) its atom set A
must be infinite.  Now let A ' be any proper infinite subset of A .  Since
each element a of is finitely axiomatisable we can choose for each such
a a single sentence Aa which axiomatises a.  Let T(A ') be the theory of L
which is the supremum of A ' in TL,T. Then, since A ' is a proper subset
of A , there is at least one atom a that does not belong to A '. Then, as we
have seen, T(A ')  -a, so T(A ') consistent. But then T(A ') is not finitely
axiomatisable. The argument is like that of Exercise 12 of Ch. 1. Let
a1 ,a2 , ... be an enumeration of all members of A '. Note that A ' is
denumerable. (Why?).  Furthermore, let the sentences Bn be defined as
follows: (i) B1 = Aa1; Bn+1 = Bn & Aan+1.  Then it is easily verified (i)
that the Bn are strictly increasing in logical strength - i. e. we have for
all n that Bn+1  Bn, but not Bn  Bn+1 - and (ii) that T(A ') = ClL({Bn}n
= 1,2, ..).  So we can argue as in Exercise 12 of CH.1 that T(A ') is not
finitely axiomatisable.  But then, as shown in Exercise 21 of CH. 1,
T(A ')  -T(A ') 1. So TL,T is not boolean.

This concludes the proof of our claim that when a lattice TL,T i s
boolean, it must be finite.  We record this claim once more, as part of
the following more elaborate Theorem 5, which gives three additional
equivalent conditions.

Thm. 5  Let T be a theory in some first order language L
Then the following five statements are equivalent:

( i ) TL,T is boolean.
( i i ) T has finitely many complete extensions.
(iii) T has finitely many extensions. (i.e. TL,T is finite.)
( iv) All of T's complete extensions are finitely

axiomatisable over T.
( v ) All of T's extensions are finitely axiomatisable over T.
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The main work of the proof of Theorem 5 has been done above. What
remains is left as an exercise.

Theorem 5 entails that boolean lattices of the form TL,T  a r e
comparatively rare.  They are found only 'at the upper end' of the set of
all lattices TL, i.e. when T is cose to being complete.  (The cases we
have already mentioned, i.e. the lattices TL,T where T is itself a
complete theory, are the extreme examples of this.)  In the next section
we will look at some simple cases of boolean lattices of the form TL,T.

To get a clear picture of the structure of the lattices TL for different
languages L turns out to be a far from trivial problem.  Only for the
very simplest languages is it possible to describe the structure of TL i n
fairly straightforward and readily understandable terms.  This is so in
particular for the language without any non-logical constants, {}.
Already for the language {P} whose only non-logical constant is the 1-
place predicate P, ta complete description proves to be considerably
more involved.  But a much higher degree of complexity is reached
when the language contains predicates of 2 or more places or function
constants whose arity is 1.  There are all sorts of questions that can be
asked here, for instance:

(a) What is the full range of isomorphism types of lattices TL for
various first order languages?

( b ) How does the structure of TL depend on L?

( c ) Call two languages L1 and  L2  isomorphic iff they have essentially
the same signature; that is, if there is a bijection h of
the set NLC1 of non-logical constants of L1 onto the set NLC2 of 
n o n - logical constants of L2 which preserves signature in that for
any $ # NLC1, L1($) =  L2(h($)).

Question: Are there (finite) non-isomorphic languages for which
the corresponding theory lattices are isomorphic nevertheless?
And if so, for which language pairs is this so?

To none of these questions do I have answers, and I do not know
whether answers to them exist.

2.2.2.        Tarski Lattices of some almost complete Theories
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In this section we look at two examples of Tarski lattices TL , T
which are comparatively simple and tractable.

In the first example the theory T is the theory Tden of arbitrary dense
linear orderings.  One of the extensions of this the theory Trat of the
ordering of the rationals (or, what comes to the same thing: the theory
of all dense linear orderings without beginning or end point) which we
investigated in Section 2.1.1.  Of Trat we showed that it is % -categorical,
und thus, since it also has the property that all its models are infinite,
complete .

Tden is axiomatised by the following axioms Tden.0 - Tden.4. Tden.1 -
T den.4 are from our earlier axiomatisation of Trat;  Tden.0 has been
added in order to eliminate the degenerate order which consists of just
one element. (In the case of Trat this possibility was excluded by the
presence of axioms L5 and L6, repeated below, which assert that there
is no beginning and no end point, respectively-)

Tden. 0 ( x)( y) (x  y)
Tden. 1 ( x)( y) (x < y  (y < x))
Tden. 2 ( x)( y)( z) ((x < y & y < z)   x < z)
Tden. 3 ( x)( y) (x < y  v  x = y  v  y < x )
Tden. 4 ( x)( y) (x < y  ( z) (x < z  &  z < y))

L5. ( x)( y) (x < y)
L6. ( x)( y) (y < x)

Unlike Trat Tden is of course not complete.  But it is not far removed
from that.  It has a total of no more than four complete extensions.
One of these is Trat, which we get by adding the axioms L5 and L6.
The other three are obtained by adding the other boolean combinations
of these two axioms: (i) { L5, L6}, (ii) {L5, L6}, (iii) { L5, L6}.

We denote the four extensions of  Tden as(i) Tden(+,+), (ii) Tden(+,-),
(iii) Tden(-,+)and (iv) Tden(-,-).  The + and - signs indicate the
presence or absence of a first or last point.  For instance, if the first
sign is a plus, then the models of the theory all have a beginning point,
and if it is - then all models don't.  In other words, Tden(+,+) is the
theory we get by adding to Tden the axioms L5 and L6, and so on,
In particular Tden(-,-) = Trat.
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That each of the theories Tden(+,+), Tden(+,-) and Tden(-,+) is
consistent and complete can be shown in the same way as we did this
for Trat in Section 2.1.1.  In fact, since the rational interval (0,1) is one
of the models of Trat  (Exercise: show this!), it follows from what was
shown in Section 2.1.1 that every denumerable model of Trat  is
isomorphic to (0,1). Using the same method we can also prove that
[0,1), (0,1] and [0,1] are models of  Tden(+,-), Tden(-,+) and
T den(+,+), respectively, and that they are the only denumerable models
of these theories up to isomorphism. So since each of the theories only
has infinite models (Exercise: show this!), they are all complete as well
as consistent.1 7

It is also easy to show that these are all the complete and consistent
extensions of Tden.  For suppose that T is any complete extension of
Tden and that M is a model of T.  M will either have or fail to have a
first point and likewise it will either have or fail to have a last point.
This gives a total of four possibilities, corresponding to the four
boolean combinations of L5 and L6 mentioned above. In each case T is
identical with the theory we get by adding this boolean combination to
T den.  For instance, suppose that M has both a first and a last point.
Then it will verify both L5 and L6.  So these sentences are consistent
with T, and so, since by assumption T is complete, they must belong to
T.  So T is the theory Tden(+,+).  Likewise for the other three
possibilities.

This shows that the lattice TL,Tden has exactly four 'anti-atoms'.  So it
also has exactly four atoms, which means that it consists of 24  theories
altogether.  Exercise: give explicit axiomatisations for each of the
theories that make up TL,Tden!

2.2.3         Quantifier Elimination

1 7 The same is true for the other three complete extensions of Tden .  Consider
for instance Tden(+,-).  The only complication which we have to deal with, when
constructing martching tuples <a1, ..., an>, <b1, ..., bn> from two models M1, M2 of
T den(+,-) is that if <a1 , ..., an> contains the first element of M1, and more precisely,
if this first element is ai, then bi must be the first element of M2 , and conversely.
That that is the only additional precaution we need to take in constructing the
finite sequences  <a1, ..., an>, <b1, ..., bn> and the isomorphiisms  between them rests
on the fact that all elements of M1 (casu quo M2 ) which are distinct from its first
element are "infinitely far away from it" in the sense that there are infinitely
many points between any such point and the first point (just as there are
infinitely many points between any two distinct points of any model of Tden , )
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Our second example concerns the theory of discrete linear orderings.
We will explore the Tarski lattice TL,Tdis, where Tdis is the theory
defined below.

This exploration will be more involved than that of TL,Tden in the last
section, and that for two distinct reasons.  First, TL,Tdis is a more
complex lattice than TL,Tden, although its complexity is still quite
modest when compared with most Tarski lattices. But also - and this
will be the bigger hurdle we will encounter - proving that the structure
of the lattice is indeed what we will claim it to be, will prove a good
deal more involved than tit was in the case of  TL,Tden and it will
require a fundamentally different method. This is the method of
quantifier elimination mentioned in the title to this section.

The base theory of our lattice, Tdis, is once more a theory of the
language L = {<}.  Tdis is axiomatised by the axioms Tdis.0 - Tdis.5.  Not
surprisingly there is a considerable overlap with the axioms of Tdis.  For
after all both theories deal with linear orderings.  Consequently the first
four axioms are the same, and divergence from Tden comes only with
the discreteness axioms Tdis.4 and Tdis.5.

Tdis.0 ( x)( y) (x  y)
Tdis.1 ( x)( y) (x < y  (y < x))
Tdis.2 ( x)( y)( z) ((x < y & y < z)   x < z)
Tdis.3 ( x)( y) (x < y  v  x = y  v  y < x )
Tdis.4 ( x)(( y) (x < y (( y) (x < y & ( z) (x < z  &  z < y))
Tdis.5 ( x)(( y) (y < x (( y) (y < x & ( z) (y < z  &  z < x))

Tdis is not complete and for much the same reasons as Tden: Nothing is
said about the existence or non-existence of beginning or end points.
Using the same notation that we resorted to in our discussion of Tden,
we define the theories Tdis(+,+), Tdis(+,-), Tdis(-,+) and Tdis(-,-) to be
those which we get by adding the boolean combinations of L5 and L 6
described in the last section. (Thus Tdis(+,+) is obtained by adding 
L5 and L6, etc.)  All of these have, like the corresponding extensions
of Tden, infinite models.  In particular, Tdis(+,-)is satisfied by the
ordering of the natural numbers, Tdis(-,+) by the order of the negative
integers,Tden(-,-) by the order of the positive and negative integers and
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Tdis(+,+) by the structure which we get when we put the negative
integers "behind" the natural numbers.1 8

There is however an important difference between Tdis(+,+) and the
other three: while the latter only have infinite models, Tdis(+,+) has
finite models as well.  In fact, Tdis(+,+) has models of cardinality n for
all finite n 2: any linearly ordered set of n elements will be a model of
T dis(+,+).19 On the other hand it is also clear that for each finite
cardinality n there is essentially just one model for Tdis of that
cardinality: Any two linearly ordered sets of n elements are (obviously)
order-isomorphic; we can define, in the obvious way, an order-
preserving correspondence between them.  This means that if we add to
T dis(+,+) a sentence which states that there are exactly n elements,
then the resulting theory will have for its only models the linear orders
of n elements.  And since any two such orders are isomorphic, it
follows that all these theories are complete.

In the spirit of the notation which we have been using, let us denote as
Tdis(+,+,n) the theories obtained by adding to Tdis(+,+) a sentence
saying that there are exactly n elements; and let us denote as
Tdis(+,+,* ) the theory obtained by adding to Tdis(+,+) the infinitely
many sentences D n which say that there are at least n elements.

What can we say about the theories Tdis(-,-), Tdis(+,-), Tdis(-,+) and
Tdis(+,+,* )?  The first pertinent observation is that unlike what we
found for the corresponding extensions of Tden, these theories are not
% -categorical.  Let us focus on Tdis(+,-).  One of its denumerably
infinite models, we noted, is the set of the natural numbers with their
natural order. But there are other denumerably infinite models too, and

1 8 More presicely, we can define this structure as the ordered disjoint union of
these two structures, viz as the set of all pairs <0,n>, with n #  N and all pairs <1,-n>
with n #  N, with the ordering relation < defined by:

( i ) <0,n> < <0,m> iff n <N m
( i i ) <1,-n> < <1,-m> iff m <N n
( i i i ) <0,n> < <1,´m> for arbitrary n, m

1 9 The requirement that n 2 comes from Tdis.0, which we have retained from
our axiomatisation of Tden .  We could have dropped this axiom without changing
much to the structure of T L,Tdis.  The only effect would have been that the
degenerate, one point ordering would have been included among the possible
models of Tdis.  This would have meant that in addition to the complete extensions
of  Tdis  we are in the process of describing there would have been the extension
which says that there is exactly one point.
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as a rule these will not be isomorphic to the natural number structure.
The simplest model of Tdis(+,-) which is not isomorphic to the natural
numbers is the structure that we obtain when we put a copy of Z (the
negative and positive integers) behind a copy of the natural numbers.
We can make this precise in the same way as we did for the infinite
model we considered for Tdis(+,+) described in footnote 16.  That is we
let M be the model < UM ,<M >, where

( a ) UM = {<0,n>: n # N} {<1,z>: z # Z}

( b ) <M = {<<0,n>:, <0,m>>: n < N m} {<<1,z >:, <1,y>>: z < y}

 {<<0,n>:, <1,z>>}

It is obvious that M is not isomorphic to the set N of natural numbers
with their standard order.   Just try to construct an isomorphism
between N and M, starting with the 0 of N, 0N .  Obviously there is only
one element of M on which an order isomorphism h from N to M could
map 0, viz. M's first point <0,0>.  In other words, it is necessarily the
case that h(0N ) =<0,0>.  Likewise the number 1 of N, 1N , which is the
immediate successor of 0 in N, can only be mapped onto the immediate
successor <0,1> of <0M  in M. That is, we must have h(1N ) = <0,1>. In
the same way the structure of N and M fixes the images under h of all
the other elements of N.  This means that, when N has been exhausted -
i.e. h has been defined for all of N - only the "N-part" of M (consisting
of the pairs of the form <0,n>) has been covered in the range of h.

The non-isomorphism of N and M entails that the completeness of
Tdis(+,-) cannot be established by the simple technique which we used
to prove Cantor's theorem (the % -categoricity of Tden(-,-)) in Section
2.1.1 and which would also be applied to the three other extensions of
Tden which we considered in the last section.  Nevertheless, Tdis(+,-) is
complete and the same is true of the remaining three extensions of Td i s
which have infinite models, Tdis(-,-), Tdis(-,+) and Tdis(+,+,* ).  But the
proof that they are complete is harder than the Cantor-type proofs for
the corresponding extensions of Tden.  We will give the proof for the
case of Tdis(+,-).  The proofs that the three other theories are complete
are virtually identical.

In presenting the proof that Tdis(+,-) is complete we will proceed as
follows.  We first focus on the concrete task before us.  We show that
any two models of Tdis(+,-) are elementary equivalent.  This argument
will reveal the general features of the method used (that of quantifier
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elimination).  Un the next section we will then describe and discuss the
method of quantifier elimination in general.

Recall the basic architecture of Cantor's proof.  We considered two
models M1= < U1, <1> and M2 = < U2, <2> of Tden(-,-) and
constructed, by going back and forth between the universes U1 and U2,
ever longer matching n-tuples <a1, ..., an> of elements from U1a n d
<b1, ..., bn> of elements from U2, which were order-isomorphic.
Because of the special properties of dense linear orderings it proved to
be always possible to match a new element an+1 chosen from U1 by a
new element bn+1 from U2 which stood in exactly the same order
relations to each of the bi (i = 1, ..., n) as an+1 stood to each of the ai;
and conversely. For models of theories of discrete orderings - among
them the models for Tdis(+,-) - the situation is different.  Here the
"distance" between two points - i.e. the number of points between them
- can be either finite or infinite; and the distance could involve any
finite number n of intermediate points.  The model N is special among
the models of Tden(+,-) in that the distance between two of its
elements is always finite.  But in this respect it is unique. Any model of
Tden(+,-) which is not isomorphic to N will have points that are
infinitely far from each other.  (This is true in particular for the model
we considered above, in which a copy of N is followed by a copy of Z.
In this model there is an infinite distance between any two elements
<0,n> and <1,z>.)

A consequence of this is that when we consider a formula A of our
language and two tuples <a1, ..., an>, <b1, ..., bn> belonging to two
models M1, M2 and ask whether A gets the same truth value in M2
under the assignment provided by <b1, ..., bn> that it gets in M2 under
the assignment provided by <a1, ..., an>, then we will have to take into
account the quantifier complexity of A:  It will depend on this
complexity how similar <a1, ..., an> and <b1, ..., bn> will have to be in
order that we can be certain that they confer upon A the same truth
value in their respective models M1and M2.  A few simple examples will
illustrate this.

First consider a quantifier-free formula, e.g. v1 < v2.  Let M1, M2 be
models of Tdis(+,-) and let  <a1,a2>, <b1,b2> be ordered pairs of
elements of M1 and M2 which are order-isomorphic to each other, i. e.
a1 <M 1 a2 iff b1 <M 2 b2 .  Then clearly M1  (v1 < v2)[a1,a2] iff
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M 2  (v1 < v2)[b1,b2].  The same holds for any other quantifier-free
formulas such as v1 < v2 & v2 < v3, v1 < v2 & (v2 < v3), etc, etc.  This
is just as in the case of dense orderings.

As soon as A contains quantifiers, however, the mere order
isomorphism between <a1, ..., an> and <b1, ..., bn> will no longer
suffice.  For example, let A be the formula ( v2)(v1 < v2 & v2 < v3) .
Suppose that M1and M2 are both the natural number structure N and
that <a1, a2> = <4,7> and <b1,b2> = <8,9>.  Then <a1,a2> and
<b1,b2> are order-isomorphic; yet N  A[a1,a2], while on the other
hand not N  A[b1,b2].  The source of the problem is obvious.  A says
something about the distance between the points represented by its
free variables v1  and v3, viz. that there is at least one point between
them. This is a condition which a mere order isomorphism need not
preserve.  And that is precisely what we see in our example: <a1,a2>
and <b1,b2> are both order-isomorphic, but the point pair <a1 ,a2>
satisfies the condition that there is at least one point between them
whereas the pair <b1 ,b2> does not.  In other words, in order to be sure
that two pairs <a1,a2> and <b1,b2> confer upon A the same truth
value, they must not just be order-isomorphic, but stand in some
tighter relationship, which also involves information about how many
points there are between them.

As we move to formulas A more quantifiers even stronger similarity
relations must hold between <a1,a2> and <b1,b2> to guarantee that
a1and a2 satisfy A in M1 iff b1and b2 satisfy A in M2.  This is because
with more quantifiers we can say more about the number of points
between two given points a1and a2.  For instance, with two quantifiers,
but not with just one, it is possible to say that there are at least two
points between a1 and a2; and so on.  And the same goes, more
generally, for formulas A with free variables x1, ..., xn:  Ever stronger
relations must hold between an n-tuple <a1, ..., an> of elements from
M 1 and an n-tuple <b1, ..., bn> of elements from M2 in order to
guarantee that <a1, ..., an> satisfies A in M1 iff <b1, ..., bn> satisfies A
in M2.

It would be convenient iff we could define a relation between tuples
<a1, ..., an> and <b1, ..., bn> such that any two tuples standing in this
relation will confer the same truth value on all formulas.  But often -
this is true of our present problem but also for many others - there is
no direct way of defining such a single relation; all that can be done is
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to define a hierarchy 1 , 2 , ... of ever tighter relations between n-
tuples so that whenever <a1, ..., an> k <b1, ..., bn>, then <a1, ..., an>
and <b1, ..., bn> confer the same truth values on all formulas whose
quantifier depth is  k. By the quantifier depth of a formula A we
understand the maximal degree of nesting of quantifiers in A.  There is
no particular difficulty in defining this notion for arbitrary formulas.
But it is somewhat more convenient to limit our attention to prenex
formulas.  For a formula A in prenex form the quantiifer depth of A is
simply the number of quantifiers in its quantifier prefix. Since every
formula is logically equivalent to a formula in prenex normal form,
satisfaction preservation of all prenex formulas will entail preservation
of all other formulas.

For the argument below it will be also convenient to asssume a slightly
different form for prenex formulas, one in which the prefix contains
only existential quantifiers but no universal ones.  We can obtain such a
prefix from a standard prefix by replacing every universal quantifier
( vi) in the standard prefix by the equivalent combination ( vi) .  So
the formulas with which we will be concerned will always begin with a
(possibly empty) prefix consisting of existential quantifiers and
negation signs, followed by a quantifier-free formula.  The quantifier
depth  of such a formula is then the number of existential quantifiers in
its prefix.

In (1) we repeat for further reference the basic requirement we have
already stated on the relations k .

(1)  Let M1and M2 be models of Tdis(+,-). And let A be any formula of
quantifier depth  k whose free variables are among x1, ..., xn.
Then for any n-tuples <a1, ..., an> and <b1, ..., bn> of elements
chosen from M1and M2, respectively, such that <a1, ..., an> k
<b1, ..., bn>, M1  A[a1,..,an] iff  M2  A[b1,.., bn]. 

We already know what is required of the relation o, which according
to (1) should guarantee that if <a1, ..., an>  o  <b1, ..., bn>, then
<a1, ..., an> and <b1, ..., bn> satisfy the same formulas of quantifier
depth 0 (i.e. the same quantifier-free formulas). This requires that the
function h, given by the condition: h(ai) = bi, is an order isomorphism
between (the submodels of M1and M2 determined by) {a1, ..., an} and
{b1, ..., bn}, respectively.  We define o accordingly:
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(2)  Let <a1, ..., an>and <b1, ..., bn> be n-tuples of elements chosen
from models M1and M2, respectively. Then

<a1, ..., an> o <b1, ..., bn> iff

the function h given by: "for i = 1,2, .., n, h(ai) = bi" is an order 
isomorphism between the submodels of M1and  M2 whose
universes are }a1, ..., an} and {b1, ..., bn} .

A second requirement on the relations k , which is imposed by the
strategy we will follow to show that two models M1and M2 of Tdis(+,-)
are elementarily equivalent, is that successive relations k and k + 1
stand in the following relation:

( 3 ) Suppose that M1 and M2 are as under (1), that, for
arbitrary number n,<a1,..,an>, <b1,..,bn> are n-tuples of
elements of M1 and elements of  M2, respectively and that
<a1,..,an> k+1 <b1,..,bn>. Then

i. if a is any element of M1, then there is an element b of M2,
such that <a1,..,an,a> k <b1,..,bn,b>.

ii. if b is any element of M2, then there is an element a of M1,
such that <a1,..,an,a> k <b1,..,bn,b>.

From (2) and (3) we can derive that the condition (1) holds for all
formulas of the special prenex form described above, in which a
quantifier-free part is preceded by a string of existential quantifiers and
negations.  We repeat this restricted version of (1) as (1') below. Since
every formula can be transformed into a logically equivalent formula of
this special form, (1') entails (1).

( 1 ' ) Let M1and M2 be models of Tdis(+,-). And let A be any prenex
formula with a prefix consisting of existential quantifiers and
negation signs, that A has quantifier depth  k and that its free
variables are among x1, ..., xn.  Then for any n-tuples <a1, ..., an>
and <b1, ..., bn> of elements chosen from M1and M2,
respectively, such that <a1, ..., an> k <b1, ..., bn> ,

M 1  A[a1,..,an] iff  M2  A[b1,.., bn]. 
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To derive (1') from (2) and (3) we argue by induction on the
complexity of such formulas. The base case is constituted by quantifier
free formulas. Strictly speaking, this reuires an inductive proof in its
own right: First, when <a1, ..., an> o <b1, ..., bn> and A is an atomic
formula - that is, A is either of the form "vi = vj" or of the form
"vi < vj", then obviously A is satisfied by <a1, ..., an> in M1 iff it is
satisfied by <b1, ..., bn> in M2.  The inductive step then consists in
showing that the condition in (1') holds for B and for C then it holds for

B, B & C, and likewise for the other sentence connectives.  But this is
trivial.

The inductive step makes use of (3).  Suppose that (1') holds for
formulas of quantifier depth  k and that A is a formula in our special
prenex form and is of quantifier depth k + 1.  If A begins with a
negation sign - i.e. A is of the form B, where B too has our special
prenex form, then the result will hold for A provided it holds for B.  Let
us assume therefore that A begins with an existential quantifier, i.e. A is
of the form ( x)B.  Suppose then that the free variables of B are among
v1, ..., vn and that <a1, ..., an> k+1 <b1, ..., bn>.  Without loss of
generality we may assume x is the variable vn+1. (We do not really need
this assumption, but it simplifies notation.) Assume that
M 1  A[a1,..,an].  Then there is an element a of M1 such that
M 1  B[a1,..,an,a].  Given (3) we can find an element b in M2 such that
<a1, ..., an,a> k <b1, ..., bn,b>.  By induction hypothesis
M 2  B[b1,..,bn,b].  So it follows that M2  ( x)B[b1,..,bn].  In the same
way we show that if M2  A[b1,..,bn], then M1  A[a1,..,an] .

This concludes the argument that (1) provided that we can define a
sequence of relations o , 1 , 2 ,.. such that o is the relation defined in
(2) and successive relations k , k+1 satisfy (3).  In the present case .
the one concerning the theory Tdis(+,-) - the relations can be given by
independent explicit definitions. (In other applications of the quantifier
elimination method their definition may be more complicat4ed and
require itself an induction on k.)  The definitions are given in (4)

( 4 ) Let M1 and M2 be models of Tdis(+,-).  Let abeg be the first
element of  M1in the sense of its order relation <M 1 - there must
be a unique such element since M1 is a model of Tdis(+,-) - and let
bbeg be the first element of  M2. Let <a1, ..., an> and <b1, ..., bn>
be n-tuples from M1 and M2, respectively.
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Then <a1, ..., an> k <b1, ..., bn> iff the following conditions are
fulfilled:

( i ) <a1, ..., an> and <b1, ..., bn> are order-isomorphic.
(For simplicity we assume, as we have been all along, that their
elements have been arranged "in order of magnitude", i.e.
a1 <M 1 a2, etc. and similarly for the elements of <b1, ..., bn> )

( i i ) For any pair of successive elements ai, ai+1 from the first tuple
and corresponding pair bi, bi+1 from the second we have either
(a) or (b):

( a ) the number of elements) between ai and ai+1in M1 and that
between bi and bi+1 in M2 are both < 2k and they are
identical;

( b ) the number of elements between ai and ai+1in M1and that
between bi and bi+1 in M2 are both  2k.

(iii) For the elements a1 and b1  we have either (c) or (d):

( c ) the number of elements between a1  and abeg and that 
between b1  and bbeg are both < 2k and they are identical;

( d ) number of elements between a1  and abeg and that between
b1  and bbeg are both   2k .

N.B. For the case where k = 0 condition (ii) is vacuous, since the first
possibility they mention - of the distances between ai and ai+1 and
between bi and bi+1 being < 2o - cannot arise.  Similarly condition (ii)
is vacuous, So only (i) matters and thus the specification that (4)
provides of o coincides with that given in (2).

It remains to show that the relations of (4) satisfy (3). Suppose that
<a1, ..., an> k+1 <b1, ..., bn>.  We have to show that for any element a
of M1 there is an element b of M2 such that <a1, ..., an,a> k + 1
<b1, ..., bn,b> and conversely.  we only consider the first half. Let a be
any element of UM 1 .  There are three possibilities to be considered:

( i ) a <M1 a1;
( i i ) ai <M 1 a <M 1 ai+1for some i < r



6 4

(iii) an <M 1 a .

Assume (i).  Let D(abeg,a1) be the number of elements between ab e g
and a1 .  Then either (c) D(abeg,a1) < 2k+1 or (d) D(abeg,a1) 2k+1.
First suppose (c).   Since the number of elements in M2 between bb e g
and b1 , D(bbeg,b1), is the same as D(abeg,a1), we can pick as the b
required by (3) that element of M2 which lies just as many elements
before b1 in M2 as a lies before a1in M1.  Then the distance between b
and b1 is the same as that between a and a1  and the same is true for
the distance between the b and bbeg and the distance between a and
abeg.  So <a1,..,an,a> k <b1,..,bn,b>.

Now suppose that both D(abeg,a1) and D(bbeg,b1) are + 2k+1.  First
suppose that the distance between a and a1 is < 2k.  Then we pick from
M 2 the element b which lies before b1 at just the same distance that a
lies before a1 in M1. This guarantees that there are as many elements
between a and a1 in M1 as there are between b and in b1 in M2.
Moreover, since by assumption the distance between abeg and a1 a n d
that between bbeg and b1 are both + 2k+1 , the distance between ab e g
and a and that between bbeg and b will be both  +  2k.  So again we have
that <a1,..,an,a> k <b1,..,bn,b>.

The second possibility to be considered is that where D(abeg,a) < 2k.
Then we pick the element b of M2 which lies at that same distance from
bbeg.  This time D(abeg,a1) and D(bbeg,b1) are both + 2k . So again
<a1,..,an,a> k <b1,..,bn,b>.

The third possibility we must consider for the position of a before a1  is
that where both D(abeg,a) and D(a,a1) are + 2k.  In this case the fact
that D(abeg,a1) is + 2k+1 guarantees that we can pick an element b
from M2 such that D(bbeg,b) and D(b,b1) are both + 2k. Again
<a1,..,an,a> k <b1,..,bn,b>.

This completes case (i), in which a lies before a1 in M1.  We leave the
other two cases - that where a lies between ai and ai+1 for some i < 1
and that where a lies beyond a - to the reader, and thus reach the end
of the argument that if <a1, ..., an> k+1 <b1, ..., bn>, then for any
choice of an element a from M1 we can make a matching choice of an
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element d from M2 such that <a1,..,an,a> k <b1,..,bn,b>20  and
therewith the proof that definition (4) entails (3). 

We have now proved (1'). One step remains towards the conclusion
that M1 and M2 are elementarily equivalent.  But this is
straightforward. Suppose that A is any sentence and that A' is formula
in our prenex form that is logically equivalent to A.  Then A' may be
assumed to also be a sentence.  Suppose that A' has quantifier depth k.
In order that M1 A' iff M2 A' we need to show that the empty
sequence < > of elements of M1 satisfies A' in M1 iff the empty
sequence < > of elements of M2 satisfies A' in M2.  According to (1')
this will be the case, provided these two sequences stand in the relation

k. But it is obvious from def. (4) that the empty sequences of elements
of M1 and M2 trivially satisfy this requirement.

q.e .d.

We have now proved that any two infinite models of Tdis(+,-) are
elementarily equivalent.  Since Tdis(+,-) only has infinite models,
Tdis(+,-) is complete. The argument is much like the one justifying
Vaught's Test.  (See Ch. 1, Theorem ??.)  Suppose that Tdis(+,-) were
not complete.  Then there would be a sentence A such that neither A
nor A belong to Tdis(+,-).  So both Tdis(+,-) {A} and
Tdis(+,-) { A} are consistent.  So each of them has a model.  Both
models must be infinite.  So, because of the Downward Skolem-
Löwenheim theorem, we may assume that they are both denumerably
infinite. So, since they are both models of Tdis(+,-) , it follows from
what we have just proved that they are elementarily equivalent. This
contradicts the assumption that the first model verifies A and the
second A .

By the same method that we have used to prove that Tdis(+,-) is
complete we can also prove completeness for the three remaining
theories, Tdis(-,+), Tdis(-,-) and Tdis(+,+,* ).  This rounds off our
survey of the complete consistent extensions of Tdis:  There are four
extensions whose models are infinite and denumerably many - the
theories Tdis(+,+,n) - whose models are of cardinality n.  These latter

2 0 N. B. the tuples <a1,..,an ,a> and <b1,..,bn,b>  are not necessarily arranged in
order of magnitude, even if this was true for the tuples <a1,..,an> and <b1,..,bn> ,
since the new elements a and b But of course we can rearrange the elements  of
a1 ,..,an ,a> and <b1 ,..,bn ,b> so that their order in hte tuples reflects there order in
the sense of M1 and M2.
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theories are absolutely categorical - any two models of Tdis(+,+,n) are
isomorphic - whereas the first four are complete but not % -categorical.

Since TL,Tdis is infinite, it follows from Thm. 5 that it is not boolean.
The trouble maker is Tdis(+,+,* ). All other complete extensions of Tdis
are finitely axiomatisable over Tdis (and in fact, since Tdis is finitely
axiomatisable itself, finitely axiomatisable simpliciter).  From this and
the infinity of TL,Tdis we can conclude that the one remaining complete
theory of TL,Tdis, viz. Tdis(+,+,* ), is not finitely axiomatisable.  (This is
a result that we can also easily derive directly, making use of the
particular axioms - those of Tdis(+,+) together with the difference
axioms Dn - which we have given, but we get it from Thm. 5 "for free".

Exercise.  Determine which extension of Tdis is the complement
- Tdis(+,+,* ) of Tdis(+,+,* ) relative to Tdis. (In particular, give an
explicit axiomatisation for - Tdis(+,+,* ).)

The purpose of this section has been two-fold.  On the one hand it is
meant as counterpoint to our investigation of the much simpler lattice
TL,Tden in Section 2.2.2.  As we noted earlier, the lattice TL,Tdis of this
section is still of modest complexity when compared with the Tarski
lattices for most languages and theories. But it is nevertheless
significantly more complex than TL,Tden.  Crucially, TL,Tden is boolean
while TL,Tdis is not.

However, the section also has served a second, more general purpose,
that of introducing the method of Quantifier Elimination.  The general
method is contained in the argument we have given for the inductive
step in the proof of (1') from condition (3).  This argument is fully
general in that it makes no use of any special properties of the models
for Tdis.  To turn that arument into a proof that any two models of Td i s
are elementarily equivalent we needed in addition (i) a definition of the
relations k  together with (ii) a proof that that the relations thus
defined satisfy (3) and (ii) a proof that o  satisfies condition (2) for
quantifier free formulas.  In each application of the method of
Quantifier Elimination (i)-(iii) have to be dealt with anew, in a way
which reflects the special properties of the problem to which it is being
applied. But the general architecture is always the same.  The next
section contains some further general reflections about this method
and some remarks about its history.
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One final remark on the nature of our investigations in the last three
sections (Sections 2.2.1 -2.2.3).  On the one hand these invesitgations
can be seen as a continuation of the exploration of first order theories
of boolean and other lattices which we started in Section 2.1.2.  From
this pointt of view there is no fundamental difference between our
exploration of Tarski and Lindenbaum lattices in the last four sections
and, say, our look at the two boolean algebras of Section 2.1.4.  But
there is also another point of view from which what we have been doing
from Section 2.2 onwards is importantly different from what precedes
it. In these last sections we have been applying the formal tools of
analysis - that of investigating structures as models of first order
theories - to the structure of those tools themselves.  In other words,
here we have one example of the situation described informally in
Sections 1.3.2 and 1.3.3 of Ch. 1: the possibility and potential
usefulness of applying the tools of formal logic to the structures of
formal logic - its expressions, languages and theories - themselves.  As
announced in Ch. 1 we will another instance of this in Ch. 3 when we
develop set theory as a first order theory.  While there are many
important differences between what we will do in Ch. 3 and the
explorations of the last three sectons, they nevertheless have in
common that both show the methods of formal logic can be made into
their own topic.

2.2.4         Why "Quantifier Elimination"?

N.B.  The following section - is mostly of historical interest and can be
skipped without any loss to the substance of these Notes.

The term "quantifier elimination" refers originally to a method which it
describes perfectly:  To show that all sentences A of a given language L
have a certain semantic property which involves truth in certain Models
or classes of models, show that in relation to the models M in question
every sentence A is equivalent to a quantifier-free sentence A', in the
sense that for each such model M we have M A iff M A'.  In the
simplest cases where quantifier elimination is possible in this sense, the
quantifier-free formulas A' are formulas of the very language L one
starts out with.  but very often the method isn't applicable in this
simple form. Quantifier-free equivalents for sentences with quantifiers
can be found, but only in some extension L´ of L.  Typically L' is that
where is a definitional extension of L in the following sense.  Each new
non-logical constant $  of L' is defined by a formula ,$  of L, with as
many free variables as $  has arguments.  Thus, if $ is an n-place
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predicate, then ,$ has the free variables v1,..., vn. (Function constants
present an additional complication, which is not directly relevant here.
So we leave them out of consideration.  If necessary, n-place function
constants can always be "simulated" as n+1-place predicates.)  The
definitions of the new constants of L' provide us with a way of
expanding any model for L to a model for L':  If M = <U,I> is a model for
L, $  a new n-place predicate of L' and ,$ the definition of $ , then the
interpretation function I' of the expansion M' of M will assign $ the set
of all n-tuples <a1,..., an> of elements of M such that M ,$ [a1,..., an] .
This transforms in particular each of the models which determine the
notion of equivalence relevant to the given application into
corresponding L'-models.

The defining formulas ,$  will often contain quantifiers.  When this is so,
the term "quantifier elimination" for the existence, for each sentence A
of L, of a quantifier-free formula in L' is easily somewhat misleading.
for by permitting in the "quantifier-free" formula A' of L' that is
equivalent to A  predicates that are defined by quantified formulas of L
we allow quantification to sneak back in as it were, and A' should be
considered as "quantifier-free" only in an attenuated sense.  In fact,
when we translate A' back into L by replacing all occurrences in it of
new predicates by their definitions in L, then we will in general get a
formula A'' which does contain quantifiers. The point of the method in
these cases is that while A'' does contain quantifiers, it contains them
only in quite special configurations, and this is what makes it (or,
equivalently, the formula A' from which A'' is obtained) behave in ways
that are relevantly  similar to the behaviour of the quantifier-free
formulas of L.  In particular - this is the crucial point here - A'' ought to
behave much like a quantifier-free formula with regard to the questions
of the form: "Does M A''[a1,.., an]?", where M is one of the relevant L-
models and <a1,..., an> an n-tuple of elements from M (assuming that
the free variables of A'' are among v1,.., vn).  For instance, when the
issue is to show that two such models M1, M2 are elementarily
equivalent, then it should be true that M1 A''[a1,.., an] iff M2 
A''[b1,.., bn], where a1,.., an , b1,.., bn are from M1,M2 , respectively,
and <a1,.., an> 0 <b1,.., bn> 0 is some relation of moderate
complexity, and we should be able to prove that.

In fact, the use of quantifier elimination in this sense for the purpose of
proving elementary equivalence may involve much more complicated
arguments than the one that was needed in the proof above to establish
the truth of condition (3).
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The method of quantifier elimination in this form becomes particularly
involved in those cases where it is not only necessary to extend the
language L with which one starts to a larger language L', but where L
must be extended with infinitely many new predicates,  The definitions
of these predicates will necessarily be of increasing complexity, and in
particular of increasing quantifier complexity.2 1

About the simplest illustration of quantifier elimination in the literal
sense of the term concerns the theory Trat, to which we applied the
method of Cantor's proof in Section 2.1.  The simplicity of the proof
that any two denumerable models of this theory are isomorphic is
directly reflected in the ease with which the quantifier elimination
method is applied in this instance.  In particular, it is not necessary in
this case to extend the language {<} of the theory to a larger language.

We begin by considering quantifier-free formulas of L in the variables
v1, ..., vn.  We think of these variables as designating points of some
dense linear order.  Among formulas of this kind there are in particular
those which fully describe the order relations between these points, and
also say which variables are to be seen as designating the same point.
Any formula A of this kind can be written in a form which is the
conjunction of three conjunctions A1, A2, A3, which can be dscribed as
follows.

( i ) A 1 is a conjunction of equations of the form vi = vj (i < j n) .
These give us all combinations of variables vi, vj which, according to
the situation described by A, designate the same point.

( i i ) A 2 is the conjunction of all formulas of the form vi  vj (i < j n )
such that vi = vj is not a conjunct of A1.

(iii) Let x1, ..., xm (m  n) be all those variables vj from {v1, ..., vn}
such that A1 contains no equation of the form vi = vj.  Then A1 is a
conjunction of formulas xi < xj which completely fixes a linear order
between the x's.

It is easy to see (a) that any such conjunction A is consistent with

2 1 If L is finite (i.e. has only finitely many non-logical constants), then only
finitely many non-equivalent predicates of a given arity can be defined in L if we
only consider defining formulas whose quantifier depth does not exceed some
given fintite number k.
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Trat in that we can find a model M for L and objects a1, ..., an of M
such that M Trat and M A[a1, ..., an], and (b)  A is maximal in the
sense that if we take any other quantifier-free formula B of L in v1, ...,
vn , such that B is consistent with Tden(-,-), then either
Trat ( v1)...( vn)(A B) or Trat ( v1)...( vn)(A B); and,
finally, (c) any quantifier-free formula of B L in v1, ..., vn that is
maximal consistent in the sense above is equivalent to an A of the kind
described, i.e. there is an A as described such that
Trat ( v1)...( vn)(A B).

(a), (b) and (c) together entail that any quantifier-free formula B of L in
v1, ..., vn which is consistent with Trat is equivalent modulo T to some
disjunction V i Ai of conjunctions Ai of the described kind:

Trat ( v1)...( vn)(B Vi Ai).

We can generalise to the case of inconsistent formulae B by stipulating
that they are equivalent to some fixed logical contradiction ,
identifying with the "empty disjunction" of formulas.

Now let A be an arbitrary sentence of L in the kind of prenex form used
in Section 2.2.3 - i.e. one whose prefix consists of existential quantifiers
and negations - and let us assume that the matrix B of A is given as a
disjunction V i Ai of maximal conjunctions Ai of the kind we have
described.  Without loss of generality we may assume that the matrix is
immediately preceded by an existential quantifier ( vn).  (In case the
last element of the prefix is a negation sign, this negation can be moved
towards the inside of the matrix formula and the resulting formula
rewritten once more as a disjunction V i Ai.)  We first observe that
( vn) (V i Ai) is logically equivalent to V i ( vn)Ai.  Now consider any
one of the disjuncts Ai.  Let A'i be the formula which we obtain from Ai
by eliminating from it all conjuncts which contain vn.
Claim:  Trat ( vn)Ai   A'i.  First the implication from left to right.
This is a theorem of predicate logic.  For (i) A i  A'i, since in going
from Ai to A'i we have only thrown out conjuncts; (ii) since vn does not
occur in A'i, (i) entails that A'i also follows logically from the existential
quantification ( vn)Ai of Ai.  For the opposite direction we have to
distinguish between several cases.  First, suppose that vn occurs in Ai i n
a conjunct of the form vj = vn. Then vn will occur in Ai only in
conjuncts that have the form of equations. So in this case, adding these
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conjuncts again to A'i and then quantifying existentially over vn yields a
formula which is entailed by A'i, and this formula is (obviously
equivalent to) ( vn)Ai. Second suppose that vn does not occur in Ai in a
conjunct of the form vj = vn.  Then vn will occur in at least one
conjunct involving <.  There are three cases to be considered here:

(i) vn occurs only in conjuncts of the form vn < vj.  Then Ai describes
vn as the first element among its "points". In particular, vn  is described
as lying before the point which is described by A'i as the first of the
points designated by v1, ..., vn-1.  Let vj be the variable (or one of the
variables) designating this first point of the order described by A'i.
Since Trat ( vj)( vn) vn < vj, we also have that
Trat A'i ( vn)Ai.

( i i ) The second possibility is that vn occurs in Ai both in conjuncts of
the form vn < vj and in conjuncts of the form vj < vn.  In that case there
will be two variables vj and vk such that Ai entails that vj, vn and vk a re
adjacent in the order it describes.  This time we make use of the fact
that Trat ( vj)( vk)(vj < vk ( vn)(vj < vn & vn < vk)) to see that
Trat A'i ( vn)Ai.

(iii) The third case is that where Ai only contains conjuncts of the
form vj < vn.  This case is just like case (i).

This competes the argument that

( 7 ) Trat ( vn)Ai A'i .

(7) entails that when we replace ( vn)Ai by A'i in A, we obtain a
sentence which is equivalent to A, but in which the quantifier ( vn) no
longer occurs.  In an analogous way we can eliminate all quantifiers of
A but one.  At this point we have a sentence C equivalent to A modulo
Trat which contains one quantifier ( x), with or without a negation sign
in front of it and some quantifier-free formula D following it in which
the only variable is x.  It is easy to verify by checking the small number
of different forms that D can take that either Trat ( x)D or
Trat ( x)D.  Then we also have: Tden(-,-) C or Trat C. So in
particular we have Trat A or Trat A.  This shows the completeness
of Tden(-,-) and by the same token the fact that modulo it every
formula is equivalent to either a theorem of the theory or a
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contradict ion.
q.e .d.

Evidently this has been a rather fussy proof, with lots of little details
that had to be checked along the way, and far lengthier than Cantor's
proof of the same result presented in Section 2.1. For more
complicated cases, where Cantor's proof can't work, the method
outlined is also much fussier than the one we described in connection
with the extensions of Tdis.  Let us briefly look at the case of Tdis(+,-)
in connection with the present method.  This time we must, as indicated
above, extend L to a larger language L', and in fact to one with infinitely
new predicates.  The following 2-place predicates D r for r = 1, 2, ...will
fit the bill.  Intuitively, D r(x,y) says that x lies before y and that there
are at least r points between them.  It is left to the reader to define
these predicates in L.  (That is, to find formulas Er(x,y) of L with x and y
as free variables whose extension in any model of Tdis(+,-) consists
exactly of the pairs <a,b> such that a and b stand in the relation D r.
With the help of the predicates D r we can also define predicates D= r
which say that between x and y there are exactly r points.  Evidently
D=r(x,y) holds iff D r(x,y) & D r+1(x,y).  For k = 1,2, ... let Lk be the
extension of L with the predicates D=r for r = 1, ..., 2k together with the
predicate D 2k+1.  Suppose that B is a quantifier-free formula in v1, ...,
vn of Lk' and that k'  k.  Then B is equivalent modulo Tdis(+,-) to a
disjunction of conjunctions of literals from Lk.

Now let A be a sentence of L and assume that A is in prenex form with a
prefix consisting of existential quantifiers and negations.  Consider the
innermost quantifier ( vn) of A. Rewrite the matrix of A as a
disjunction Vi Ai of maximal consistent formulas of L.  Again ( vn)Vi Ai
is logically equivalent to V i ( vn)Ai. Consider ( vn)Ai.  Ai is equivalent
to a disjunction V j Aij of maximal consistent formulas of L1.  Let A'ij be
the result of eliminating all conjuncts containing vn from Aij.  It is not
hard to see that Tdis(+,-) ( vn)Ai  V j A'ij.  So we can replace the
part inside A beginning with ( vn) by a quantifier-free formula from L1
in which vn no longer occurs and which is equivalent to this part
modulo Tdis(+,-).  In this way we can remove all the quantifiers from A.
Note, however, that each time we remove a new quantifier the matrix
formula which we remove together with it will belong to one of the
languages Lk and the disjunction replacing it will then belong to the
next language Lk+1.  This recursion is the direct counterpart of the one
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which in our earlier proof of this result made use of the hierarchy of
relations {+k}.

Not very nice proofs.  But they do explain how our earlier, nicer,
method came to its name.

2.3     More about Algebraic Theories

Our only encounter with algebraic languages and theories so far was
with the languages and theories of lattice algebras and boolean algebras
(Llata, Lba, Tlata, Tba; see Sections 2.1.2 and 2.1.3).  One of the points
we stressed about those structures, all of which are lattices, was that
they can be characterised alternatively as algebraic structures,
involving a number of operations with certain equationally definable
properties, or as structures that involve a partial ordering with special
properties.  As a matter of fact this kind of duality between an algebraic
and a relational conception of structure is quite rare, of which the case
of lattices is arguably the most striking example in mathematics and
logic as they are known today.  For most types of relational structures
there seem to exist no algebraic alternatives that provide a significantly
different perspective; and, similarly, no significantly different relational
formulations seem possible for most algebraic structures that play a
prominent part in mathematics.

It should be stressed that these are informal assessments, which it
would be hard to turn into hard-nosed formal claims that it would be
possible to prove or conclusively refute.  For what is it for an
alternative characterisation of a type of structure to be 'significantly'
different?  That seems rather a matter of taste, for which it would be
difficult to find a convincing formal definition.  And that significance is
the crucial notion here follows from the fact that some way of
redefining relational structures in algebraic terms is almost trivially
possible. And the same holds for, conversely, redefining algebraic
structures in relational terms.  As regards the redefinition of algebraic
structure in relational terms we refer to Exercise EA2 at the end of the
Appendix to Ch. 1, where it was shown how each n-place function
constant can be replaced by a corresponding n+1-place relation
constant together with an axiom stating that the relation denoted by the
new constant is functional in its last argument; and further, how each
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formula couched in the original functional vocabulary is to be
translated into a formula couched in the new relational one.

The converse reformulation is slightly more involved.  We know from
set theory that the extension of any n-place relation R - i.e. any set of n-
toples of objects drawn from some domain U - can be turned into the
corresponding characteristic function fR  which maps the tuples
belonging to the extension to one of two special objects - the one which
intuitively speaking signifies 'yes' - and maps the other n-tuples to the
other special object, which intuitively means 'no'. Usually the two
objects chosen for this purpose are the numbers 1 and 0, but of course
that is not essential for the reduction - any two objects will do,
provided that they can be kept suitably distinct from the objects in U.
There are various ways in which distinctness can be secured.  One of
these makes use of a simple technique that has proved useful in formal
logic elsewhere too is to extend the universes of the algebraic
structures M that are to be redescribed in relational terms with a pair
of new objects 1M  and 0M which serve as the 'yes' and the 'no' in the
context of M.  Some care has to be taken to make sure that the
relational translations of the sentences of the original algebraic
language are true in the new extended models M[0M ,1M ] iff the original
sentences were true in the non-extended models M.  But these matters
are essentially trivial.  For details see Exercise ??  of this Chapter.

The types of algebraic structures to which we turn now, groups and
semi-groups, conform to what appears to be the rule in that no
significantly different relational characterisations of these types seem
to exist.  They are also typical of algebraic structures more generally in
that they can be characterised by axioms all of which have the form of
universally quantified equations, just as we found this to be possible in
the case of lattices, distributive lattices and boolean algebras.  In
Universal Algebra - the branch of mathematics which studies algebraic
structures from a general and abstract point of view - types of structure
(i.e. classes of models) that are defined by sets of such equational
axioms are known as varieties.  It is important to keep the distinction
between this notion and the more general one of an axiomatically
definable type of algebraic structure firmly in mind.  In general
axiomatic characterisations of types of algebraic structures may involve
axioms that can be any sentences from the first order language for
which the structures are models.  The equational axiomatisations that
make the characterised model class into a variety constitute a
comparatively small special subclass from the range of all possible first
order axiomatisations.  (Note in this connection that equational axioms
are (i) purely universal sentences, but in addition (ii) even among the
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purely universal sentences they form a specialised subclass.)  It seems
safe to infer that the class of varieties is a correspondingly small
subclass of the class of all axiomatisable structure types.)

We start, mostly as a preamble to our discussion of the Theory of
Groups, with a brief introduction to the Theory of Semi-Groups.  The
notion of a semi-group is simpler and more fundamental than that of a
group, although, as the terminology suggests, the notion of a group
came first.  This is comparable to what can be observed in connection
with orderings, where the notion of a linear ordering was well
understood before the general notion of a partial ordering was properly
articulated and made into the topic of the exploration of a theory - the
Theory of Partial Orders - which subsumes the Theory of Linear Orders
as one of several specialisations (Lattice Theory being another).

2.3.1  The Theory of Semi-Groups

The language of the theory of semi-groups consists of a single 2-place
function constant.  We follow the widely accepted convention of
denoting this constant as a full stop and of writing the terms involving
it in 'infix notation', just as with ordinary multiplication. So the
language, Lsg, is {.}, and the term we get when applying. to, say, the
variables x and y  is written as 'x.y'.

The Theory of Semi-groups, Tsg, is nothing more or less than the theory
of an associative operation.  Thus it consists of all consequences of the
single axiom ASS:

ASS ( x)( y)( z) x.(y.z) = (x.y).z

Associative operations can be found in all kinds of contexts and they
come in a variety of very different forms.  Three salient categories are:

(i) 'arithmetical operations like addition and multiplication, as
operations on a range of different domains: natural numbers,
integers, rational numbers, real numbers, complex numbers.

( i i ) fairly closely related to these, set-theoretical union and
intersection, and more generally supremum and infimum
operations in lattice-like structures.

(iii) 'function application', in the widest sense of the word.  In a sense
this is just one operation.  But it is found in such a wide variety of
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contexts that its instances provide a quite diverse spectrum of
different semi-groups, both conceptually and as regards their
further formal properties.

In (iii) the basic idea is that of a succession of operations which
transform objects of a certain sort into other objects of that sort.  the
objects can be numbers, geometrical figures, linguistic expressions,
computer files or documents, ..  - in fact, they can be data structures of
and kind. And similarly, the operations can be of any kind too,
provided that they return objects of the same sort that they take as
input. All that is required is that these operations can be carried out in
succession, but that is in essence guaranteed by the fact that their
outputs are such that they can serve again as inputs to further
applications of the operations.

Under these conditions it is possible to form complex operations by
combining two operations O1 and O2 into a complex operation O1.O2
which consists in first executing O1 and then applying O2 to the output
that the first operation produced.  That is, for any input x we have
(O1.O2)(x) = O2(O1(x)).  It should be obvious that the 'second order
operation' (= operation on operations), will always be associative: First
executing O1.O2 and then O3 obviously amounts to the same thing as
first executing O1 and then O2.O3; in both cases we get a succession of
first executing O1, then executing O2 and finally executing O3.

More 'mathematically' the second order operator, can be identified
with the operation o of function composition: Let U be any set of 1-
place functions from an 'object set' X into itself. Then for any two
functions f and g from U, we can form the function fog which maps
each object x from X to g(f(x)).  Evidently this is again a function from
X into X. That o is associative follows for the obvious reasons spelled out
above.

The three types of associative operations listed above are distinguished
by additional formal properties.  Arithmetical operations are typically
commutative, ie. they satisfy the commutativity axiom COM.

COM ( x)( y) x.y = y.x

Function composition, in contrast, is in general not commutative.
Consider for instance the functions f(x) = x +1 and g(x) = 2x on the
natural numbers. Then (fog)(1) = g(f(1)) = 2(1+1) = 4, but (gof)(1) =
f(g(1)) = 2 + 1 = 3.  However, while non-commutativity is the rule for
function composition, there do exist (naturally arising) function spaces
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on which composition is commutative.  An example is the set U of all
functions (say, on the natural numbers, but other number sets will do
too here) that map each number onto a certain multiple of it.  That is,
U = {-x.nx: n # %} (where -x.nx is that function f which for any number y
as argument returns the number n.y as value).  On the other hand, in
modern mathematics one studies number systems ('skew number
fields') in which addition and/or multiplication are not commutative.
So commutativity is a property that tends  to hold for semi-groups of
types (i) and (ii) and not to hold for semi-groups of type (iii), but this
is only a matter of tendencies.

A distinction between semi-groups of types (i) and (ii) is that those of
the second type typically satisfy the law of idempotency, given as IDP
below, while those of type normally do not:

IDP ( x) x.x = x

This does not mean that in semi-groups of the first type there are no
elements at all which satisfy the equation x.x = x.  More often than not
such semi-groups have some element that satisfies the equation.  But
these elements are, in case they exist at all, rare, and often they are
unique.  For instance, the additive semi-groups of the natural numbers,
the integers and the reals (i.e. the operation of addition on the natural
numbers, the integers or the reals, respectively) all have exactly one
such element, viz. the number 0.  In the multiplicative groups of
(among other number systems) the reals and the rationals (i.e. the
multiplication operation on the reals and the rationals) there are two
such elements, viz. 0 and 1.

That semi-groups of the first kind contain such elements is closely
connected with another property that singles out a certain subclass of
semi-groups.  This is the property of having an identity. An identity of
semi-group is an element e such that for any element x of the semi-
group x.e = e.x = x.  In additive groups this is the unique element that
satisfies the equation x.x = x, i.e. 0: for any number x, 0 + x = x + 0 = x.
(That an identity satisfies x.x = x follows logically from the definition.)
In the case of multiplicative semi-groups the identity is not 0 but 1.

The existence of an identity is quite common among semi-groups of
each of the three types.  Thus among the salient examples of semi-
groups of type (ii), structures of the form <U, >, where U is some set
of sets and is set-theoretic union, have an identity iff U contains a
bottom element wrt. set-theoretic inclusion, i.e. an element b that is
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included in all other elements of U. For then it will be the case for all x
in U that b x = x b = x.  (A common way for this condition to be
satisfied is when u contains the empty set , which will always be the
bottom element so long as it is present.)

Among semi-groups of type (iii) the existence of an identity is also a
common occurrence.  This will be so in particular when the universe U
of a given semi-group contains the identity function IX  on the
associated object set X, i.e. the function whose domain is X and which
maps each x in X to x.  Obviously we have for any function f in U that IX
of =  f o IX = f.

The existence of an identity is our first property of semi-groups that
cannot be expressed by means of an equational axiom - evidently so,
for we are not dealing with a general condition that all elements of the
structure must satisfy, but an existence claim, to the effect that there is
at least one element that satisfies a certain equational condition.  As
stated this has the form of an -formula; and indeed, in the language
{.} there seems to be no simpler way of stating it.  For the sake of
explicitness we give the formula:

IDE ( y)( x)(y.x = x & x.y = x)

One might wonder if this formulation isn't somewhat redundant.  Do we
really need the conjunction of the two equations y.x = x and x.y = x?
Wouldn't one of those be enough? The answer to this question is
negative. But there are some slight subtleties to the matter, so we will
dwell on it a little.  Let us, just as we have called an element that
satisfies the condition ( x)(y.x = x & x.y = x) an identity, use the terms
left identity and right identity for elements that satisfy the conditions
( x)y.x = x and ( x) x.y = x, respectively; and let us call the statements
that a left, resp. right identity exists, IDEL and IDER:

IDEL ( y)( x) y.x = x
IDER ( y)( x) x.y = x

Evidently an identity is both a left identity and a right identity.  But we
will see in Section ?? that in general a left identity need not be a right
identity (and thus not be an identity) and conversely.  Nor does the
existence of a left identity entail that there is some other element that
is a right identity or vice versa.  That is, in general neither of IDEL and
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IDER entails the other, and so a fortiori neither entails IDE.22  On the
other hand, when a semi-group has both a left identity and a right
identity, then these two elements must be identical, and this element
will thus be an identity. Similarly, any two left identities and any two
right identities must be identical (and so any two identities must be
identical). But of course the identity of two left or two right identities
doesn't entail that they will be identities.

Exercise. a.  Suppose that el and er are a left an right identity of
some semi-group <U,.>.  Show that el  = er.

b . Suppose that e1  and e2  are both left identities of
<U,.>. Show that e1  = e2.

Some semi-groups with an identity are distinguished by a further
property, which makes them into groups . A group is a semi-group with
an identity e in which each element x as an inverse , i.e. an element z
such that x.z = z.x = e.  Expressing this property in our language of
semi-groups, {.}, is cumbersome, since it must incorporate the assertion
that there exists an identity within it.

INV ( y)( x)(y.x = x & x.y = x & ( x)( z)(z.x = y & x.z = y))

Once again the question arises whether we need ther conjunction of the
two conditions in the scope of ( z).  This time the immediate answer is
negative.  But here too there are subtleties that deserve to be pointed
out, and which will emerge in the next section.  So once again we
distinguish, so that we will be in a better position to discuss those when
we come to them, between a left inverse zl of  an element x, which has
the property that zl .x = e and a right inverse zr of  x, which has the
property that x.zr = e.

The answer to the question above is negative in the following precise
sense.  Suppose that a semi-group M = <U,.> has an identity e.  Then  if
every element of M has a left inverse it is also the case that every
element has a right inverse; and conversely,  if every element has a
right inverse, then every element has a left inverse.  Moreover, in either
case the left and right inverse of any element will coincide,.

2 2 When we say that (e.g.) IDEL does not 'entail' IDER, what is meant is that
IDEL doesn't entail IDER within the Theory of Semi-Groups, Tsg. That is, IDER does
not follow logically from the conjunction of IDEL and Tsg's only axiom ASS.
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Consequently if every element has a left inverse, then every element x
has an inverse in the sense of INV (i.e. an element z such that x.z = e &
z.x = e)

The proof of these different claims is not complicated.   First suppose
that every element of M has a left inverse.  Let x be any element of M,
let z be a left inverse of x, i.e. z.x = e.  We must show that x has a rght
inverse.  Let u be a left inverse of z, i.e. u.z = e. Then x = e.x = (u.z).x =
u.(z.x) = u.e = u.  But then x.z = u.z = e, so z is right inverse of x.  This
establishes not only that every element of M has a right inverse, but
that for each x there is an element that is both left and right inverse.  A
parallel argument shows that this conclusion follows equally from the
assumption that every element of M has a right inverse.

We can summarise the upshot of this by observing that relative to the
Theory of Semi-Groups INV is equivalent to each of the two following
sentences INVL and INVR.

INVL ( y)( x)(y.x = x & x.y = x & ( x)( z) z.x = y )
INVR ( y)( x)(y.x = x & x.y = x & ( x)( z) x.z = y )

In thee next section we look at the Theory of Groups. As we have seen
this theory can be axiomatised in the language of semi-groups we have
been using in this section (the language Lsg, or {.}), e.g. by the axioms
ASS and INV.  But the second of these is not in equational form, and it
seems that it cannot be converted into such a form, or be replaced by
one more others of such form that yield the same theorems in
conjunction with ASS - at least not when we stick with the language Lsg.
As we have seen this theory can be axiomatised in the language of semi-
groups we have been using in this section (the language Lsg.  (We are
not giving an actual proof that such a replacement is impossible, and as
far as we know such a proof this not all that easy.)

However, we will see in the next section that it does become possible to
axiomatise the Theory of Groups in equational form if we extend Ls g
with additional non-logical constants.

2.3.2         The Theory of Groups

We have already given one formulation of the first order theory of
groups and thus specified what groups are like.  But, as in the case of
lattices, there are other ways of formalizing the notion, even if in the
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present case the differences aren't quite as dramatic.  As we already
said, the main advantage of the alternative formulation we present
below is that it enables us to state all the axioms as equations. The
comparison between this new axiomatisation and the one given in the
last section is interesting from a general methodological point of view
in that it shows a trade-off of a kind not yet encountered: That between
a parsimonious choice of primitive notions (our language {.} with its
one 2-place function constant) but axioms of a more complicated
structure and on the other hand a richer set of primitives with a
corresponding gain in simplicity as far as teh axioms are concerned.

The section serves to focus on two other issues of general significance.
The first is the question of independence as applied to axiom systems,
or sets of sentences.  Usually when we specify a set of axioms as a way
of characterising a given formal theory, we try to avoid redundancies:
none of the axioms in the set should follow logically from the rest.
However, proving that this desideratum has in fact been satisfied can be
very tricky.  And when there are many axioms, there is a lot of work to
be done, since each axiom requires its own independence proof. For the
axiomatisations of group theory that are considered in this section this
problem is manageable since there are few axioms to deal with.  But the
independence arguments we wil give for them should provide a clear
impression of the general nature of independence proofs and also give
a little taste of why such proofs can be difficult.

The third point of general significance that the section seeks to
illustrate was already brought up in the last section, when we drew
attention to the wide conceptual and formal diversity of semi-groups.
This is also true of groups, and here the value of extracting what is
common to a great diversity of structures by describing them as models
of a single formal theory that covers them all has been of great
importance in the history and current practice of pure and applied
mathemat ics .

A fourth point concerns the special properties of 'equations', that is of
those purely universal sentences in which the quantifier prefix is
followed by a single equation.  Equations, in this sense of the word,
form a kind of closed subsystem of the set of sentences of a given
language L, with their own proof theory and its own special model-
theoretic properties.  This subsystem is known as Equational Logic. A
separate section (Section ??) will be devoted to it.

The axiomatisation of the Theory of Groups we gave in the last section
had to resort to axioms that were not of equational form.  These axioms
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contain existential quantifiers that are needed to express that groups
contain entities with special properties: (i) an identity and (ii) for each
element x an inverse of x.  However, we saw that if such entities exist a
all, then they are unique.  This means that we can also proceed as
follows: We introduce constants in our language to denote these entities
and then give axioms stating that the denotations of those constants
have the required properties.  The constants we need are (i) a o-place
function constant e to denote the group identity and (ii) a 1-place
function constant -1 to denote a function that maps each element to its
inverse.

Thus we are led to the language {., -1, e}, to which we will also refer as

L G1.  {., -1, e} is the group-theoretic vocabulary that is usually treated as
basic in discussions of groups.)

In LG1 the Theory of Groups can be axiomatised with the axioms TG1.A1-
T G 1.A3, which we present both in the standard notation of first order
predicate logic and also in the abridged notation of equational logic, in
which the universal quantifiers are implicit

TG1.A1 ( x) ( y)( z)  (x.y).z  =  x.(y.z ) (x.y).z  =  x.(y.z )

TG1.A2 ( x) x.x-1 = e x.x-1 = e

TG1.A3 ( x) x.e = x x.e = x

But whether we explicitly write the quantifiers of these axioms or not,
they are there, and they are meant as axioms of a theory consisting of
all sentences of LG1 that logically follow from them, and not just those
that are universally quantified equations themselves.  We will see this
presently when we go through a few simple theorems of this theory and
proofs of those from the axioms: some of these theorems do have the
form of equations, but not all of them.

The proofs of the equational theorems that follow make use of notation
that is familiar from the way arguments in universal algebra are often
presented, where all mention of quantifiers is suppressed.  (Where both
premises and conclusions of an argument are in equational form this is
very natural, and hardly needs a justification.  Nevertheless, it is an
interesting, and as it turns out non-trivial, logical question exactly how
this form of derivation relates to standard methods of logical deduction
like those discussed in Ch. 1.  In Section ??, which is devoted to
Equational Logic as an alternative to predicate logic, we will go into this
question in detail.)
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TG1.T1 x-1.x = e

Proof. x .e = x.(x-1.(x-1)-1) = (x.x -1).(x-1)-1 = e.(x-1)-1.
Therefore:

x -1.x = (x-1.x).e = x-1.(x.e) = x-1.(e.(x-1)-1) =

(x -1.e).(x -1)-1 = x-1.(x -1)-1 = e.

TG1.T2 e.x = x

Proof. e.x = (x.x-1).x = x.(x-1.x) =(TG1.T1) x.e = x

TG1.T3 (x-1)-1 = x

Proof. Combine TG1.T2 and the first line of the proof of TG1.T1.

Exercise.  Turn the proofs of TG1.T1 - TG1.T3 into predicate logic
derivations in the formal sense of the definition on p. 5.

Given what was said about groups in the last section, theorems TG1. T 1
and TG1.T2 are a natural complement to axioms TG1.A1 - TG1.A3.  In
fact, when one looks at these axioms without the hindsight that these
theorems provide, the suspicion might easily arise that the axioms are
too weak.  For TG1.A2 only asserts that x-1 ia a right inverse of x, and
T G1.A3 only that e is a right identity.  Is that enough to guarantee that e
is also a left identity and x-1 also a left inverse?  Theorems TG1.T1 and
T G1.T2 tell us that they are.  But that this is so has to do with a subtle
interaction between TG1.A2 and TG1.A3.  We will see in the next section
that when one of TG1.A2 and TG1.A3 is changed into its opposite (i.e.
T G1.A2 into the axiom which says that e is a left identity), then the
axiom system does become too weak.

Exercise.  Prove the following theorems of G1 from its axioms:

( i ) (x.y)-1 = y-1.x- 1

( i i ) x.y = y.x  y-1.x.y = x  y.x.y-1 = x  x.y.x-1 = y 
x-1.y.x = y

(Here "A B C .." is used as shorthand for
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"(A B) & (B C) & (C .. ")

Exercise.  Let "x/y" be short for "x.y-1".  Show:

( i ) e = x/x
( i i ) x -1 = (x/x)/x
(iii) x.y = x/((y/y)/y)

The  next theorems do not have the form of equations:

TG1.T4 ( x)( y)( z)( x.y = z  z.y-1 = x)

Proof. First suppose that x.y = z.  Then z.y-1 = (x.y).y-1 =

x.(y.y-1) = x.e = x.  Conversely, if z.y-1 = x, then

x.y = (z.y-1).y = z.(y-1.y) = z.e = z.

TG1.T5 ( x)( y)( x.y = e  y = x-1)

Proof. Suppose  x.y = e.  Then x-1 = x-1.e = x-1.(x.y) =

(x-1.x).y = e.y = y.

We have now seen two formalisations of the Theory of Groups, one in
the language Lsg and involving the axioms ASS and INV, and one in the
language LG1 and involving the axioms TG1.A1-TG1.A3.  The move from
Lsg to LG1 was motivated by the observation that the existence
statements made by INV provide to be of elements that turn out to be
uniquely characterised by the conditions that IV specifies.  This means
that we could also have proceeded in the same way as we did when
extending the theory of lattices Tlato in the language { } to the theory
in which we have constants to refer to the operations and that Tlato
enables us to define in terms of .  That is, we can (i) extend Lsg to LG 1
(as we have done), and (ii) extend the theory ClLsg({ASS,INV}) to a
theory in LG1 by adding the following two definitions of e and -1 a s
axioms:

(Def.e) ( y)(e = y  ( z) z.y = z)
(Def. -1) ( x)( y)(x-1 = y  x.y = e)

It is not hard to show that this is the same theory as TG1.
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Exercise: Prove this.

The difference with the situation we found to obtain in the case of
lattices is that this time the converse route is not possible: We cannot
formulate the Theory of Groups in the language whose non-logical
constants are just the ones that we added when passing from Lsg to LG1;
no axiomatsaton of the Theory of Groups is possible within the
language {e,-1} .

Exercise: Prove this.  (Hint: there is no way to define the two place
operation, with the help of just the 0-place function e and the 1-place
function -1. )

These formalisations of the Theory of Groups are by no means the only
ones possible.  As a matter of fact, in a strict formal sense the number
of possible formalisations of a theory is always infinite; for any one
formalisation there twill always be infinitely many alternatives,
although as a rule most of these will be uninteresting variants which it
is as pointless to present as they are easy to construct. But often
genuinely different alternatives exist, which cast a different light on
what is being formalised.  The alternative formalisation of lattices as
orderings and as algebras was a particularly striking example of this.
Nothing quite like that compares with it in the case of groups.  But
there is one alternative that is worth mentioning, at least because it
answers a certain formal question that naturally arises in connection
with what we have said above about our two axiomatisations in the
languages Lsg and LG1.  The choice between those was presented as a
kind of trade-off between (i) having just the single function constant,
and (ii) having only axioms in equational form.  The alternative that is
discussed in the following exercise can be seen as combining the
advantages of both.  It uses a single 2-place function constant / and it
only needs equational axioms.  The function / is the 'division operator'
of Group Theory, which can be defined in terms of . and -1 a s :
x/y = x.(y-1) .

Exercise.  Give a complete axiomatisation, all axioms of which are
equations, of the Theory of Groups in the language {/}, where / is the 2-
place operation of group-theoretical division: More precisely, provide
equational axioms A/.1,..,A/.n (for some number n) such that the
theories T1 and T2 defined below are identical.

Definition of T1 and T2:
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Let T/ = Cl{/}({A/.1,..,A/.n}).  Let L' be the language {/, . ,-1,e}.

( a ) T1 is the theory of L' that is obtained by adding to the axioms of
T/ the following definitions of e, -1 and . in terms of /:

( i ) ( x) e = x/x
( i i ) ( x) x-1 = (x/x)/x
(iii) ( x)( y) x.y = x/((y/y)/y)

( b ) T2 is the theory of L' that is obtained by adding to the axioms of
TG1  the following definition of / in terms of . and -1:

( iv) ( x)( y) x/y = x.y- 1

(Solution.  One solution is the following set of axioms A/.1,.,A/.4:

A / . 1 y/y = x/x
A / . 2 y/(y/y) = y y/e = y
A / . 3 (y/y)/(x/y) = y/x = x/x e/(x/y) = y/x
A / . 4 x/(y/z) = (x/((z/z)/z))/y x/(y/z) = (x/(e/z))/y

In the formulations of A/.2-A/.4 on the right, subterms of the form $ /$
have been abbreviated as 'e', in accordance with A/.1.)

2.3.3         I n d e p e n d e n c e

In the introduction to this section we mentioned the question of the
independence  of the members of a given axiom set.  As indicated, it is
generally considered a matter of logical hygiene that the sets of axioms
used to formalise a given structure or concept contain no redundant
axioms.  That is, if G is any such set and A #  G, then it should not be the
case that (G\{A}  A.  If this is not the case, then we say that A is
independent in G; and if all members of G are independent, G is called
an independent set of axioms.

As a matter of fact, all axiom sets presented so far in this chapter have
been independent in the sense just defined.  Showing that this is so,
however, is not trivial.  In general, proving that an axiom set is
independent tends to be not only a fair bit of work - to show that the
set A1, ..., An is independent requires n separate proofs, one for each
Ai - some independence questions can be a real challenge.  Also
independence proofs may provide real insight into what precisely is
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contributed by a given axiom to the given characterisation of the
intended class cof structures that is not contributed by the other
axioms. More about this towards the end of this section.

Here we consider only two of the three independence questions
connected with the axiom set {TG1.A1,TG1.A2,TG1.A3}.  We show the
independence of TG1.A3 from the remaining two axioms explicitly, and
provide a hint for establishing the independence of TG1.A2.  As regards
TG1.A1, the reader is on his own (see Exercise ??) .

First TG1.A3.  Consider the following model M = <U,F> for LG1:

( i ) U = the set of all pairs <i,n>, where i #  Z  (the set of integers)
and n #  N  (the set of natural numbers).

( i i ) F(.) = the function f such that for any <i,n>,<j,m> #  U,
f(<i,n>,<j,m>) = <i+j,m>

(iii) F(e) = <0,0>
( iv) F(-1) = the function g such that for any <i,n> #  U, g(<i,n>) = <-i,0>

Then it is straightforward to verify that TG1.A1 and TG1.A2 hold in M.

But TG1.A3 does not hold, since e.g. <1,1>.e = <1,1>.<0,0> = <1,0) 
<1,1>.

It is easy to turn this construction into a demonstration that the second

axiom is independent of the other two by changing the definition of F(.)
in to

( i i ' ) F'(.) = the function f' such that for any <i,n>,<j,m> #  U,
f'(<i,n>,<j,m>) = <i+j,n>

It is worth noting that while M falsifies TG1.A3 it verifies the
superficially similar sentence

TG1.A3' ( x) e.x = x

Recall that TG1.A3' is nothing other than TG1.T2.  So we have also shown
that TG1.A3 cannot be derived from TG1.A1, TG1.A2 and G1.A3'.
Apparently, then, this sentence is, given TG1.A1 and TG1.A2, genuinely
weaker than TG1.A3, and replacing TG1.A3 by TG1.A3' in the
axiomatisation of TG1 would yield a different, weaker theory.  In the
same vein it can be observed that the modified model M' = <U,F'>
verifies the sentence
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TG1.A2' ( x) x-1.x = e

So replacing TG1.A2 by TG1.A2' while leaving TG1.A1 and TG1.A3 the
same would also lead to a weakening of deductive power.  On the other
hand it is easy to verify that if we replace both TG1.A2 and TG1.A3 by
TG1.A2' and TG1.A3' the result is a theory that is equivalent to TG1.

Exercise:  Show this.

Exercise:  Show that the associativity axiom TG1.A1 is independent of
the axioms TG1.A2 and TG1.A3.

Hint:  1. Consider the model M = <U,F>, where U = the set of the

rational numbers without 0 and let F(.)(r,s) = r/s. Then TG1. A 1
evidently fails.  Choose F(-1) and F(e) so that M verifies TG1.A2 and
TG1.A3.

Other solution. Here is another possibility.  U is the set {0,1,2, ..,n-1}.
F(e) = 0, F(-1)(k) is the unique number m from U such that k + m =
0(mod n ) and F(.) is defined as follows:  (i) F(.)(k,k) = k; (ii) if k  m,
then F(.)(k,m) = k + m (mod n).  Then it is easily verified that (writing
"." instead of "F(.)" and using infix notation) 0.k = k.0 = k and that k.k-
1 = k-1,k = 0.  But in general F(.) will not be associative.  For instance, if
n = 4, then (2.2).3 = 2.3 = 5 (mod 4) = 1, but 2.(2.3) = 2. (5 (mod 4)) =
2.1 = 3.  Note that in this example F(.) is commutative and that
(because of this) not only the axioms TG1.A2 and TG1.A3 are verified,
but also the formulas which we get by switching the arguments of the

left hand term around, i.e. ( x) e.x = x and ( x) x.x-1.x = e.

[End Exercise]

The three independence arguments presented here are comparatively
simple.  They do give insight why each of the three axioms contributes
something that the others do not, but precisely because models that
satisfy all but one of the axioms are comparatively easy to find, the
insight gained from any one such models (and thus from the
independence proof it provides) are limited: Other models might give
additional insights in the contributions of the different axioms in the
set and quite possibly more important ones.
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But in this regard our examples are not representative. In the history of
mathematics and logic certain independence questions have had an
enormous impact. Their solution have led to the discovery of structures
that have proved of lasting importance and to methods of mathematical
reasoning and mathematical construction that subsequently found
many additional applications. Even some attempts at finding a solution
to an independence question that did not answer the question that they
were meant to have led to significant progress in other areas.

Perhaps the most famous example from mathematics id the parallel
postulate from Euclid's axiomatisation of plane geometry, the statement
that for every point p that is not on a straight line l there is exactly one
straight line m that goes through p and is parallel to l.  Ever since Euclid
it was felt that this postulate was less self-evident than Euclid's other
postulates.  Since it was widely thought that Euclidean geometry
described a structure that was in some sense necessary - space just
couldn't have been different from what it is! - and since it was thought
also that since the properties of the structure of space were necessary,
they should be directly accessible to intellectual judgement, the lacking
self-evidence of the parallel postulate was seen as an imperfection of
Euclid's system, and an imperfection that could be removed only by
either finding a more intuitive replacement for it or - even better - to
derive it from Euclid's other postulates.  In the course of the many
centuries during which this was an open question an enormous amount
of mathematical energy and ingenuity must have gone into the project
of deriving the parallel postulate from the other postulates.  Eventually,
in the second half of the 18-th century it dawned on some
mathematicians that the persistent failure to find a proof of the parallel
postulate from the others might have a very simple explanation, viz that
there is no such proof, in other words, that the parallel postulate was
independent from the other postulates. This led to the new and
contrary effort to demonstrate the independence of the parallel
postulate, or, what comes to the same thing, the consistency of the
other postulates with the negation of the parallel postulate. (It no
longer needs to be said here that being a model in which postulates A1,
..., An-1 hold and An doesn't is the same as being a model in which A1,
..., An-1 and A n hold together.) The models of the negation of the
parallel postulate jointly with the other Euclidean postulates - as
described in the work of the Hungarian mathematician Janos Bolyai
(1802-1860), the Russian mathematician Lobachewski (1792-1856) and
the German mathematicians Gauss (1777-1855) and Riemann (1826-
1866) - have done more than anything else to revolutionarise geometry
as mathematical discipline as it in the course of the 19-th century.  And
it has also deeply affected our understanding of the distinction between
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necessary and contingent truth as well as the distinction between
geometry as a conceptual structure (along the lines it was seen by, for
instance, Kant) and geometry as part of the structure of the physical
world.2 3

A second independence problem, which was specific to the
development of mathematical logic in the 20-th century, concerns the
Continuum Hypothesis in Set Theory, the Hypothesis that there are no
sets whose cardinality is intermediate between that of the natural
numbers (the smallest infinite cardinality) and that of the set of real
numbers, which is the same as that of the power set of the set of
natural numbers). As we noted earlier, the Continuum Hypothesis was
formulated by Cantor, the founder of set theory.  Cantor is said to have
worked desperately on a proof of the Continuum Hypothesis from other
set-theoretical principles, whose validity he did not consider in doubt,
and the effort is supposed to have seriously affected his health. His
unsuccessful efforts were followed by those of many others, and among
these efforts were in particular those to derive the Continuum
Hypothesis from the other established set-theoretical axioms e.g. those
of Zermelo-Fraenkel (see Ch. 3).  But in this case too eventually the
suspicion arose that no such derivation could be given, since the
Continuum Hypothesis was in fact independent from the other,
uncontroversial, axioms of set theory. And independence was finally
proved in 1963 by the American mathematician Paul Cohen.  In this
case too the method used to establish independence has proved
immensely fruitful, leading in particular to a series of further
independence results within the realm of set theory.

There is an interesting similarity between these tow cases - the parallel
postulate in geometry and the Continuum Hypothesis in set theory - in
that in both cases a conception of the subject matter as involving
necessary and therefore presumably ultimately self-evident truths
drove scholars to persistent efforts to decide what seemed not self-

2 3 The first to have clearly understood this second disrtinction appears to have
been Gauss , who engaged as early as the first half of the nineteenth century in a
large scale prohect of geodetical measurments in order to determine whether the
physical geometry whose straight lines are the paths of light rays is in fact
Euclidean or not.  (i.e. if light rays conform to the parallel postulate.)  Gauss
suspician of non-Euclidenan character of the genoatryx of light rays was
confirmed only when in the forst quarter of the 20-th century physisicts and
astronomers looked for a experimental confirmation of one of the implications of
Einstein's gedneral Theory of Relativity, which is that gravitation 'bends' the
paths of light rays, so that the geometry they define is - in the presence of
graviational fields, which is always the case in our actual cosmos - non-Eucildean.
Einstein's Theory of General Relativity, it has been sad would not have been
possible without the work of Riemann.
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evident on the bassi of those principles that were considered self-
evident.  One of the general lessons that has been learned from both
efforts is that the line between necessity and contingency is much more
difficult to draw than people seem to have realised through most of the
history of philosophy (and than, in the depth of our hearts, many of us
would still like to believe today); and, connected with that, that we
should not set too much store by our intuitions on  what is 'self-
evident' and what is not.

2.3.4         The Theory of Groups and Group Theory

1 . What has been called the (first order) Theory of Groups here
should not be confused with what is normally understood by 'Group
Theory'. First, the 'mini-theorems' of the Theory of Groups of which we
have given a few examples here bear no comparison with the theorems
about groups that mathematicians find interesting.  But more
fundamentally, those results can as a rule not even be stated within the
first order languages we have been using. For instance, many results in
Group Theory have to do with characterisations of groups in terms of
the kinds of subgroups they have - that is, in our terminology, in terms
of their submodels.  (Note that a submodel of a structure that satisfies
the axioms TG1.A1-TG1.A3 will automatically be itself a model of these
axioms and thus again a group.  (Exercise: Prove this and/or Section ??
below.) To state such a characterisations of a group we need to
quantify over its subgroups and thus over subsets of its universe, and to
do that we need second, not first order logic. So at a minimum we will
need the second order extension of one of our first order languages {.}
or {,.,-1,e}. Also, there are many theorems of Group Theory which
involve reference to natural numbers (e.g. to describe the possible
size(s) of finite groups with certain properties, and/or the sizes of
certain parts of them.  The proofs of such theorems often make use of
quite complicated facts of combinatorial number theory,.  In these
cases formalisation requires a logical vocabulary that includes number-
theoretic notions as well as the group-theoretic ones that are the only
non-logical constants of the language we have used here, and for a
formalisation of the proofs of these statements we will need an
axiomatisation of number theory as well.

All this goes to say that Group Theory as it is practiced by algebraists
involves far more than our 'bare bones' languages provide. Even if such
a language suffices to characterise the general notion of a group, it falls
far short of what is needed to state and proof what a mathematician
wants to know.  This is a somewhat sobering comment on the power of
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first order formalisations, not only of the structures that are the
subject of group Theory, but of most kinds of mathematically
interesting structures generally.

2 . It was pointed out more than once in this Chapter that the point
of many algebraic theories is that their models cover a wide range of
different structures.  This is true in particular of the theory of groups.
The class of all groups shows a great deal of diversity, in the sense that
it contains structures which vary substantially either in their
conception or in their formal properties or both.

The value of an algebraic theory with such coverage is, we have noted,
that the theorems that can be derived from the general theory are
applicable to all the different structures that are among its models. This
is as true of the Theory of Groups as it is of other theories with wide
structure coverage.  But on the other hand the diversity among the
different types of groups is such, and certain types of groups are so
important, that these types have become the subject of a separate
branch of mathematical investigation.  A prominent example of this is
the class of Abelian  or commutative  groups, in which the group

operation . is commutative (i.e. x.y = y.x holds for all elements x,y of
the group).

In this particular case the additional property that singles out the given

class of groups, viz. commutativity of ., can be expressed by a first
order axiom.  But for many other properties that define important
subtypes of groups this is not so.  An example is the notion of a s imple
group , i.e. group that doesn't contain any proper subgroups (i.e. for
which there are no properly included submodels which consist of more
than one element); the notion of a finite group - finiteness cannot be
expressed by a first order axiom -; or the class of all permutat ion
groups, a notion which will be explained below.

To give an impression of how different certain models of the Theory of
Groups can be from each other in origin and/or appearance we remind
the reader of the two types of examples that were mentioned briefly in
the introduction to Section 2.2.1. The first type, it may be recalled,

consists of structures in which the group operation . is one of the
familiar arithmetical operations of addition or multiplication, or some
variant thereof.  One example of this type of groups are: the integers
with the binary operation of addition, the 1-place operation of sign
inversion (i.e. n-1 is the number -n) and the number 0 as e constitute a
group. Similar examples are provided by the rational numbers and the
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real numbers, each with the same operations of addition, sign inversion
and 0.  Closely related examples are the additive groups modulo n,
consisting of the numbers {0,1,..., n} with "+ mod(ulo) n" for the

operation . (where i+j (mod n) is the remainder of i+j after division by
n), "sign inversion modulo n" for the operation -1 (i.e. i-1 = n - i) and
again 0 as e.  Besides these additive groups there are also multiplicative

groups, in which . is multiplication.  One example we have already

encountered: the rational numbers without 0, with multiplication for .,
1/r  for r-1, and 1 for e.  Yet another example is provided by the real
numbers (also without 0) with the usual operations of times,
multiplicative inverse and 1.  There are many more examples of this
general sort, involving either some variant of addition or multiplication
and/or the use of some alternative notion of "number" (complex
numbers, quaternions, etc.).

As a rule groups of this type are commutative, since operations of
addition and multiplication tend to be commutative (though there are
exceptions) .

The second type of group to be mentioned here is that where the

elements of the group are functions, . is the operation of function
composition, -1 is function inverse and e is the identity map.  In order
that these notions are defined for all elements of the structure it is
necessary that all elements (i.e. all functions) have one and the same
domain and range.  Moreover, the requirement that the inverse
operation be everywhere defined entails that all functions are
injections.  Thus a group of this kind will consist of a set of bijections
from some given set X to itself.  Such bijections from X to X are also
known as permutations  of X.

It is easy to verify that any set of permutations from X to X which
includes the identity map on X and is closed under inverses and
function composition forms a group.  (Exercise: Show this.)  Such
groups are called permutation  groups .  Within the class of permutation
groups we still find a remarkable spectrum of variety.  Among the
simplest examples are those groups which consist of all permutations of
some finite set {a1,..., an}.  Evidently, the properties of any such group
are determined entirely by the cardinality of the set - the group of all
permutations of {a1,..., an} and the group of all permutations of {b1,...,
bm } are isomorphic iff n = m.  So it is possible to confine attention to
the full permutation groups of {1,..., n} for the different natural
numbers n.
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Function composition is usually not a commutative operation.  So,
contrary to the groups based on arithmetical operations permutation
groups are hardly ever commutative.

Exercise.  i.   Show this, by defining a permutation group in which

the commutativity law x.y = y.x is invalid.
ii.   What is the smallest number n such that the full

permutation group on {1,..., n} is not commutative?

[To be added to the list of exercises at the end pf Ch. 2]

Exercise:  In Section 2.2.1.1 it was shown that the axiom TG1.A1 is
independent of the axioms TG1.A2 and TG1.A3.  The model discussed in
that exercise did not establish the following stronger independence
result, according to which TG1.A1 is not entailed by the set consisting of
TG1.A2 and TG1.A3 and their "converses" TG1.A2' and TG1.A3':

TG1.A2' x-1.x = e

TG1.A3' e.x = x

One way to get this stronger result is to make use of permutation
models.  Let M = <U,F>, where U is the set of permutations of the set
{1,2, ..., n}, for some n > 2.   F(-1) and F(e) are defined for permutation
groups, i.e. F(-1)(f) is the inverse f-1 of f and F(e) is the identity map.

But we now define F(.) by: F(.)(f,g) = g-1 o f.  Show that in this model
TG1.A2, TG1.A3, TG1.A2' and TG1.A3' all hold, but that TG1.A1 fails.

Exercise:  Missing from the independence proof for the axiom set
{TG1.A1, TG1.A2, TG1.A3} in Section 2.2.1.1 was the independence of
TG1.A2.

To show independence of this axiom from the other two is very easy,
because it is the only axiom that contains the opersation -1.

a . Why? Prove the independence of  TG1.A2.

More interesting is the independence from TG1.A1 and TG1.A3 of the
weaker principles (i) that there is for each x an element y such that
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x.y = e and (ii) that, for ay x,, any two elements y and y' such that x.y =

e and x.y = e are identical:

( i ) ( x)( y) x.y = e

( i i ) ( x)( y)( y')(x.y = e & x.y' = e  y = y')

b . Prove the independence of (i) and of (ii) from TG1.A1 and
TG1.A3.

2.4    Equational Logic.

Equations - purely universal sentences whose matrices are of the form
.  = /, where . and / are terms - have special properties.  First, they allow
for a special method of deduction:  if an equation B follows from
equations A1, ..., An, then this can be shown by deriving B from A1, ...,
A n via special rules, which are designed to fit the special form that
equations have.

Secondly, equations are characterised by special model-theoretic
properties.  These of course include the properties that are shared by
all purely universal sentences (see Ch. 1, Sn 1.5.2). But equations are
distinguished from universal sentences in general by some additional
properties.  As for purely universal sentences in general this fact can be
cast in the mould of a preservation theorem, a theorem first stated and
proved by the American algebraist G. Birkhoff.

These then are the topics of this section.  We will first present the
special deduction system for equations and prove its soundness and
completeness, and then present and prove Birkhoff's Theorem.

Let L = {f1, ..., fk} be an algebraic language, where, for i = 1, ..., k, fi i s
an n(i)-ary function constant.  By an identity of L we understand any
purely universal sentence of the form ( x1)...( xm ) s = t, where s and t
are terms of L and x1,...,xm  are the variables that have occurrences in
at least one of s and t.  We denote the identity
( x1)...( xm ) s = t also as "s  t".

There is a sense in which the identities of L form a "self-contained"
subsystem of the set of all formulae of L:
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Suppose 0  E, where E is an identity and 0  is set of identities.  Then it is
possible to derive E from 0 by means of a set of five inference rules
REref.,..., RErepl., each of which only involves identities.  That is, there
always exists in such a case a derivation of E from 0 which consists of
identities only (and in which each line is either a premise from 0 o r
comes from earlier lines by application of one of the rules).

Here are the rules:

RErefl. t = t  (that is: each identity of the form "t = t",
where t is any term, may be written down as
a new line; thus this rule functions as an
axiom.)

REsym. s = t
t = s

REtrans. r = s, s = t
   r = t

REsubst. Suppose that x1  ,..., xm are the free variables occurring
in the identity s = t and that r1 ,..., rm are terms.  Let s'
be the result of simultaneously substituting the terms
r1,..., rm for the variables x1 ,..., xm in s; and likewise
for t' and t. Then

s = t
s' = t'

N.B.  This rule also covers the case where we substitute
terms for only some of the free variables in s = t (and in
particular the case where we do this for only one
variable).  In such cases we choose for each variable xi
that we want to "leave alone" that variable itself as term
ri.

RErepl. Suppose that s has an occurrence as a subterm in t and
that t' results from t by replacing this occurrence of s in
t by the term s'.  Then
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s = s'
t = t'

A EL Derivation (Equational Logic derivation) from a set of equations 0
in an algebraic language L is a sequence <E1, ..., Ep> of identities of L in
which each line Ei either (i) is a member of 0 , or (ii) results from an
application of RErefl., or (iii) comes from one or more earlier lines by
an application of one of the rules REsym - RErepl..

Exercise.  Show that the proofs of TG1.T1 - TG1.T3 from TG1 can be
turned into derivations of Equational Logic.

Theorem 12  (Completeness Theorem for Equational Logic).

Suppose that L is an algebraic language and that 0  E, where E is an
identity of L and 0  is set of identities of L.  Then 0  eq E
(That is, there is a derivation in Equational Logic of E from 0  in L.)

Proof:   As in the completeness proof for the first order predicate logic
we proceed by contraposition.  Suppose that it is not the case that
0  eq so = to.  We construct a model M such that M  0 but not
M  so = to .  (Recall in this connection that the identities are really
universally quantified formulas.  Thus M  1 means that for all possible
value assignments a to the variables of 1 [[1]]M,a  = 1.  On the other
hand, in order to show that not M  so  = to  it suffices to find one
assignment b  such that [[so = to]]M,b   1.)

Informally, we proceed as follows:  We identify all terms s, t for which
the identity s = t is derivable from 0 .  The (equivalence) classes [s], [t],
...  obtained in this way will be the elements of the universe of M.  We
can then define on this universe the interpretations of the function
constants of L so that the identities in 0  are all universally satisfied in
M. Since it is not the case that M  so = to, so and to will not belong to
the same equivalence class; hence if b  assigns to each of the free
variables of so = to its own equivalence class, then [[so]]M,b  
[[to]]M,b .

Formally:  Let the relation 0  on the terms of L be defined by:

( 1 ) s 0  t iff 0  eq s = t.
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Because of the rules RErefl., REsym. and REtrans. 0 is an equivalence
relation.  So we can form the corresponding equivalence classes [t] 0.
Let UM = {[s] 0: s a term of L}.  Furthermore, in virtue of RErepl., 0  is
a congruence relation with respect to each function constant fn  of L,
that is:

( 2 ) when for i = 1, .., n, si 0  ti, then f(s1, ..., sn) 0 f(t1, ..., tn) .

This means that the following definition of the interpretation fM  of fn
in M is coherent and defines a total function on UM :

( 3 ) <[t1] 0 , .., [tn] 0,[t] 0> # fM  iff 0  eq f(1, .., tn) = t

(As regards totality of fM : EQ1 guarantees that there is at least one term
t such that "f(t1 , .., tn) = t" is derivable, viz. f(1 , .., tn) . )

This completes the definition of M.  To show that M is a countermodel
to the claim that 0   s = t we first establish the following:

( 4 ) Let r be any term of L with variables x1,.., xn and let a  be an
assignment in M such that for j = 1, ..., n, a(xj) = [xj] 0.  Then
[[r]]M,a = [r] 0.

(4) is proved by a simple induction on the complexity of r.

We now show that for each Ei # 0, Ei is true in M.  Suppose that Ei is the
equation si = ti.  Recall that "equations" are really sentences , which are
obtained from the bare equations by universally quantifying over all the
variables occurring in them. So in order that the equation si = ti is true
in M it is necessary and sufficient to show that for arbitrary
assignments a  in M, [si = ti]M,a  = 1.

Assume that x1,.., xn are the variables occurring in si = ti.  Let a  be any
assignment in M.  Suppose that for j = 1, ..., r, a(xj) = [rj] 0 .  Let si' be
the term si[r1 /x1,..., rn /xn] - i.e. s' is the result of simultaneously
substituting the terms rj for the variables xj in s - and similarly for ti
and ti' .

Since si = ti  # 0, we have, trivially, 0  eq si = ti.  So, by the rule REsubst. it
follows that we also have 0  eq si' = ti'.  So
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( 5 ) [si'] 0 = [ti'] 0 .

Let y1,.., ym  be all the variables occurring in si' = ti' and let a'  be an
assignment such that for h = 1, ..., m, a'(yh]) = [yh] 0.  From Lemma 3,
established in connection with the Completeness Proof for Predicate
Logic in Ch. I, we know that:

( 6 ) [[si']]M,a' = [[si]]M,a'',

where a''  = a'[ [[r1]]M , a' /x1,..., [[rn]]M , a' /xn ] .

By (4) we get (i)

( 7 ) [[si']]M,a' = [si'] 0  and [[ti]]M,a' =[ti'] 0.

and (ii)

(8)  [[rj]]M,a' = [rj] 0 , for j = 1,..., n.

From (8) it follows that a'' = a'[ [r1] 0 /x1,..., [rn] 0 /xn ].  Thus a'' a n d
a  coincide on the variables x1,.., xn.  Therefore, since x1,.., xn are all
the (free) variables of si = ti, it follows by Lemma 1 from Part I that

( 9 ) [[si]]M,a  = [si]]M,a'' and [[ti]]M,a  = [ti]]M,a''.

From (5), (6) and (9) we get:

[si]]M,a  = [si]]M,a'' = [[si']]M,a' = [si'] 0 = = [ti'] 0  = [[ti']]M,a' =
[ti]]M,a'' = [ti]]M,a .

This establishes that M  0 .

To see that not M  s = t, it suffices to note that it follows from (4)
above that [[s]]M,b   [[t]]M,b , where b  is an assignment such that
b(wi) = [wi] 0 , for i = 1,..., h, where w1, ..., wh are all the variables
occurring in s = t.  The existence of such assignments entails that the
equational sentence s = t is false in M.

q.e .d.
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It is striking how much simpler this proof is than the Completeness
Proof we gave in Part I.  In a way this should not come as a surprise
since we are dealing with formulas of a comparatively simple logical
structure.  Still, it is to be notes that while the present result is weaker
than the full completeness proof precisely in that it deals with a small
subclass of formulas, it is stronger in that it shows that when G and E
stand in the consequence relation then a proof can be found of a very
special and simple form.  The following Corollary makes this a little
more explicit.

Corollary.  If L is an algebraic language and 0  E, where, as above, E is
an identity of L and 0  is set of equations of L and is the proof relation
of full first order logic, then 0  eq E.

This Corollary follows immediately from the Theorem and the
soundness of the proof relation .   The result is interesting in its own
right insofar as it gives a certain normal form for proofs whose
premises and conclusion all have the simple form of a universally
quantified equation.

(To turn a derivation within Equational Logic into a "simple" proof of
the universal generalisation of the conclusion from the universal
generalisations of the premises is not completely trivial but very nearly
so.  In particular, a little reflection makes clear that one can turn the
proof into (i) a series of applications of UI to the needed premises and
to the identiy axioms; (ii) a series of steps involving MP corresponding
to the successive steps of the given Equational Logic proof; and (iii) UG
on the variables of the conclusion.)

Note also that the present proof yields like the completeness proof we
presented for the full predicate calculus the additional information that
a countermodel never need be more than denumerable in size.  From
the proof we have just gone through this follows from the fact that for
any of the languages L we consider in this script the set of terms is
denumerable.  So a model whose universe consists of equivalence
classes of such terms can be at most denumerable.

It should be noted, though, that in the case of equational logic the
counter models constructed in the completeness proof as we have
presented it here are almost always denumerably infinite.  The reason is
simple and relates to equations of the form vi = vj, with variables on
both sides of =. If any such equation is entailed by a given set of
equations 0 , then this will be true for all of them.  For it is easy to see
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that any one entails any other.  So we have only two possibilities as
regards such equations:  (i) for all i,j such that i  j, [vi] 0  [vj] 0, in
which case the model M 0 will be infinite; or (ii) for some i,j such that i

 j, [vi] 0  = [vj] 0,  in which case we have [s] 0  = [t] 0  for all terms s,
t.  In this second case the model M 0  will have a universe consisting of
only one element, viz. the set of all terms of L.

Identities (i.e. equational sentences) differ from purely universal
sentences in general in that they have special preservation properties.
More precisely, we have a preservation theorem for conjunctions of
identities:  A sentence of L is logically equivalent to a conjunction of
identities iff it is preserved under (i) submodels; (ii) homomorphic
images; and (iii) direct products.

Of the three model-theoretic relations that are involved in these
preservation properties the first two -that of a model M being a
submodel oof some other model M' and that of h being a
homomorphism of a model M into a model M' have laready been
defined (the first in Ch. 1 Sn. 1.5.2, Def. 20 and the second in this
Chapter, Sn. 2.1.6, Def. 8).

The direct product M1 M 2 of two models M1 = <U1,F1> and M2 =
<U2,F2> of L is defined as follows:  The universe U of the product is the
set of all ordered pairs <a,b> with a #  U1 and b #  U2; and for any n-
place function constant f, the interpretation F of f is the function
defined as follows:

F(f)(<a1,b1>,.., <an,bn>) = <F1(f)(a1,.., an), F2(f)(b1,.., bn)> .

Def. 11 Let M1 = <U1,F1> and M2 = <U2,F2> be models for the
algebraic language L.  The direct product of M1 and M2 is the model M
= <U,F>, where:

(i)  U  = {<a,b>: a # U1 & b # U2}
(ii) F(f)  = {<<a1,b1>,..,<an,bn>,<F1(f)(a1,.., an), F2(f)(b1,.., bn)>:

   a1,.., an # U1 & b1,.., bn # U2}

The direct product of M1 and M2 is denoted as M1 M 2.

Exercise:  Show that if E is an equation of L,  M is the direct product
M1 M2 of two models M1 and M2 for L, M1 E and M2 E, then
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M E.

Hint. First show, by induction on the complexity of terms t of L,
that for any assignments a  in M1 and b  in M2, the product assignment
a b in M1 M 2 assigns to t in M1 M 2 the value
<[[t]]M 1,a , [[t]]M 2,b>. Here a b is the assignment which assigns to
each variable vi the element <a(vi),b (vi)> of M1 M 2.

Before we turn to the exact formulation and proof of the preservation
result for conjunctions of identities, it will be useful to first make a
general observation about a special type of model for algebraic
languages. These are the so-called term models.  We encountered an
example of such a model in the Completeness Proof for Equational Logic
just given, where we constructed a counter example to the consequence
claim 0  E in the form of a model M whose elements were equivalence
classes of terms.  In general, a term model for an algebraic language L is
a model whose universe consists of equivalence classes of the terms of
L, where these equivalence classes are generated by equivalence
relations which are also congruence relations with respect to all the
function constants of L.

More specifically, given a congruence relation  of the set TeL of all
terms of L, the corresponding model M  will have for its universe the
set {[t]: t # TeL}, where TeL, and as interpretation for any n-place
function constant f of L the function defined by:

fM ([t1] , ..., t[tn] ) = [f(t1, ..., tn)]

The term models for a given algebraic language L are situated between
two extremes.  At the one and of the spectrum we find the so-called
free algebra for the language L. This is the model generated by the
identity relation on the set TeL.  Obviously this is an equivalence
relation and congruence relation wrt to all function constants of L.  Its
equivalence classes are all the singleton sets {t}, where t # TeL.  We
denote this model as Mfr(L). Clearly any other term model M  for L,
generated by some congruence relation , is a homomorphic image of
M fr(L).  For it easy to see that the map {t} [t]  is is homomorpism
from Mfr(L) onto M .  At the other end of the spectrum we find the
model generated by the universal relation UTeL on TeL.  Again, this



1 0 3

relation is an equivalence relation and congruence relation wrt. the
function constants of L.  The model generated by this relation has for
its universe the singleton set {TeL}, and the interpretation of the
function constants are, of necessity functions which map the one tuple
all of whose members are the one element of this universe to this
element. Since every congruence relation is a refinement of UTeL, the
model just described is a homomorphic image of the model M .

More generally, if 1 and 2 are equivalence and congruence relations
on TeL and 1 2, then M 2 is a homomorphic image of M 1.  For
the map h which maps each element [t] 1 of the universe of M 1 onto
[t] 2 is a homomorphism from M 1 onto M 2.  At the opposite and
from we find the one element term algebra <TeL, F>, where for any fn #
L, F(f) = {<TeL, .., TeL,TeL>} (with <TeL, .., TeL,TeL> the n+1-tuple all of
whose members are TeL).

Given any model M for L we can associate a term model with M in
several ways.  First, we can form the equivalence relation M on the set
of terms of L defined by:  s M t iff M  s  t.  Evidently, the resulting
term model M M  will verify exactly the same equations as M.  But
beyond that it is not so easy to say how M and M M  are related.  A
second method goes as follows. We extend L to a language L+ with
names for each of the objects in UM .  (i.e. L+ = L {ca: a # UM }; cf. the
definition of the diagram of M in Ch. 1.)  Let M+ be the expansion of M
in L+, i.e. caM+ = a for ca # L+\L and otherwise M+ is like M.  Now let

M + be the relation between terms of L+ defined by

s M+ t iff M+  s  t

M + is an equivalence relation on TeL+ and a congruence relation wrt
all function constants of L+.  Thus M M + is a well-defined model for L+.
In this case too an equation of L will be true in the derived term model
iff it is true in the original model M.  Moreover, since for distinct
objects a and b in UM , M+  ca  cb, [ca] M +  [cb] M +.  So the map a

[ca] M + is a 1-1 map into the universe of M M +.  It is easy to verify
that this map is an isomorphism between M and a submodel of M M +,
but in general this will be a proper submodel of M M +.  A third
possibility is to form a model M' M +, whose universe consists of the
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equivalence classes under M + of all the closed  terms of L+.  Here, the
map a [ca] M + is a 1-1 map onto  the universe of M' M + and thus an
isomorphism from M to M' M +.

To conclude these remarks on term models, we recall an important
property concerning the values of terms in term models which we
established and made use of in the Completeness Proof above:

(*) Let M  be a term model for the language L based on the
congruence relation , let t be a term of L, let x1, ..., xn be the
variables occurring in t and let a be an assignment in M
such that for i = 1,.., n, a(xi) = [xi] .  Then [t]M , a = [t] .

As we have seen, (6) can be proved by a simple induction on the
complexity of terms.

We are now ready to prove the mentioned preservation theorem for
equations:

Theorem 13  (Birkhoff)

Let L be an algebraic language.  A sentence A of L is logically equivalent
to a conjunction of identities of L iff (a) A is satisfiable and (b) A is
preserved under (i) submodels; (ii) homomorphic images; and (iii)
direct products.

Proof

The direction from left to right is straightforward. Clearly each
identity is preserved by taking submodels (since identities are purely
universal sentences), direct products (since the matrix of an identity is
an atomic formula); and homomorphic images (since the matrix has the
form of an equation "s = t").  And since the individual identities satisfy
these conditions, the same is obviously true of their conjunctions.
Finally, if the truth of each such conjunction is preserved under the
model relations in question, then the same will be true for any sentence
that is logically equivalent to such a conjunction.

The hard part is (as always with preservation theorems) the
direction from right to left.  Suppose that A is a sentence that is
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preserved under taking submodels, direct products and
homomorphisms.  Let 0  = {E: E is an identity such that A E}.  First we
show that if M 0 A, then 0 A .

To show that 0  A, we have to show that if M is any model of 0 , then M
A. In view of the Completeness Proof we know that it suffices to show

this for denumerable models.  So let M be a denumerable model of 0 .
Let g be an assignment in M which maps the set of variables onto UM .
We extend g to the set of all terms of L by letting g(t) = [[t]]M,g.
Suppose that s and t are two terms of L such that s 0  t.  Then 0  s = t.

So, since M 0, M s = t.  So
[[s = t]]M,g = 1.  So [[s]]M,g = [[t]]M,g.  So the map g from terms t to
elements [[t]]M,g induces a map from the equivalence classes [t] 0
onto the elements of M.  It is also easily verified that this map is a
homorphism.  So, since A is preserved by homomorphisms and by
assumption M 0 A, it follows that M A .

So we conclude that 0  A.  But then there is a finite set of E1, .., En in 0
such that E1 & .. & En A.  So, since on the other hand A Ei for all i (1

 i n), A (E1 & .. & En).

It remains to show that M 0 A.  Suppose not.  Then M 0 A. Let
(M 0)+ be the expansion of M 0 in some language L+ =

L {ca: a # UM 0  } and let D((M 0)+) be the set of (a) all equations s =

t with s, t constant terms of L+  and (b) all negations of such sentences.
Then D((M 0)+) {A} is inconsistent.  For if not, then D((M 0)+) 
{A} has a model.  But this model will be (isomorphic to) an extension of
(M 0)+.  So (M 0)+ will be a submodel of this model and

consequently, because A is preserved by taking submodels, (M 0)+ A .

This contradicts the assumption that M 0 A.  Since D((M 0)+) 
{A} is inconsistent, there are E1, .., Ek, D1, .., Dn in D((M 0)+), where
the Ei are of type (a) and the Dj of type (b) (see the def. of D((M 0 )+) )
a n d

( 1 ) A (E1 & .. & Ek & D1 & . & Dm)
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Since A does not contain any of the constants {ca: a # UM 0} ,

( 2 ) A ( x1)..( xr) (E'1 & .. & E'k & D'1 & . & D'm)

where (i) ca1, ..., car are all the new constants occurring in E1, .. , Ek,
D 1, .., Dm , (ii) x1, ..., xr are r new variables (i.e. variables not occurring
in A or E1, .. , Ek, D1, .., Dm ) and (iii) the E'i and D'j are the result of
replacing in the Ei and Dj the constants cah by the variables xh.

First assume that k = 0 (i.e. all the conjuncts on the right hand side in
(1) are of type (b)):

( 3 ) A ( x1)..( xr) (D'1 & . & D'm)

Consider D'1.  Suppose D'1 is the inequality s1  t1.  We know that the
elements a1, ..., ar of UM 0 satisfy s1  t1 in M 0 . This means that the
identity s1 = t1  does not belong to 0 , for if it did it would be satisfied in
M 0  by all possible combinations of elements of UM 0 .  So it is not

the case that A  s1 = t1.  That is, A is consistent with ( x1)..( xr) s1 
t1.  So there is a model M1 of {A} {( x1)..( xr) s1  t1}.  So there are
objects a11, ..., a1r in UM 1which satisfy s1  t1 in M1.  In the same way
we can find models Mj of {A} {( x1)..( xr) sj  tj} and sequences of
objects aj1, ..., ajr in their universes which satisfy sj  tj, for each of the
remaining disjuncts D'j.  Let M be the direct product of the models Mj
and let for i = 1, ..., r bi = <a1,i, ..., am,i>.  Then (i) since A is preserved
by direct products, A holds in M and (ii) the sequence <b1, ..., br>
simultaneously satisfies all inequalities  s1  t1, ..,  sm   tm  in M.  But
the existence of such a model contradicts (3).

Now assume that k > 0.   Consider E'1. E1 is of the form s1 = t1. Since
(M 0)+ E1, the elements a1, ..., ar of M 0 satisfy the equation s'1 =
t'1 in M 0 . Now let q1, ..., qr, be terms of L such that for i = 1, .., r, qi #
ai.  Then we have, for i = 1, .., r, ai = [qi] 0 .  Let
z1 , ...,  zs be all the variables occurring in q1 , ..., qr, and let b be an
assignment such that for h = 1, ..., s, b(zh) = [zh] 0 .  Then according
to (*), we have for i = 1, ..., r that
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( 4 ) [[qi]]M 0,b = [qi] 0.

Let s''1  be the result of substituting the terms qi for the variables xi in
s'1; in the same way we obtain t''1  from t'1 .  By Lemma 3 of Ch. 1,

( 5 ) [[s''1]]M 0,b = [[s'1]]M 0 ,b',

where b' is the assignment which is like b except that for i = 1, ..., r,
b'(xi) = [[qi]]M 0 ,b ; and similarly for t''1  and t'1 . But according to (4),

[[qi]]M 0,b = [qi] 0 = ai.  So [[s'1]]M 0 ,b' is the value of s'1 i n

M 0 under any assignment which assigns the ai to the xi, and the same

is true for [[t'1]]M 0 ,b'.  Since M 0 s'1 = t'1 [a1, ..., ar], it thus
follows that

( 6 ) [[s''1]]M 0 ,b = [[t''1]]M 0,b.

Now note that the variables in s''1 and t''1  are z1 , ...,  zs.  So we can
apply (*) once more, obtaining that [[s''1]]M 0 ,b = [s''1] 0 and

similarly for t''1 .  So from (6) we conclude that [s''1] 0 = [t''1] 0 , that
is:

( 7 ) s''1  0  t''1 .

But this means that

( 8 ) 0   s''1 =   t''1 .

Since A 0 , A  s''1 =   t''1, that is

( 9 ) A ( z1)..( zs)(s'[qi/xi] = t'[qi/xi])

Now substitute the terms q1 ,..,qr for the corresponding variables x1 ,..,
x r throughout the matrix of the formula on the right of in (2).  This
will turn the conjuncts E'i, D'j into new conjuncts E''i, D''j which are
substitution instances of the E'i and D'j.  From (2) we infer that

(10) A ( z1)..( zs) (E''1 & .. & E''k & D''1 &. & D''m)
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Note further that the argument we have just given for E'1  applies
equally to each of the other E'j (if any) and that the choice of the terms
qi can be the same in each case (i.e. irrespective of which E'j w e
consider.  In other words we have:

( 1 1 ) A  s''j   t''j,  for j = 1, .., k.

Because of (9) we can eliminate the disjunct E''1  from the negated
conjunction.  This reduces (10) to (12)

(12) A ( z1)..( zs) (E''2 & .. & E''k & D''1 &. & D''m)

But because of (11), the same argument applies to each of the other E''i
(i = 2,.., k).  So each of these conjuncts can be removed from (12) and
we end up with a formula of the form (4) with each of the conjuncts
satisfiable in M 0 .  We have already seen that this leads to a
contradict ion.

q .e .d

Exercise.  Let L be the algebraic language consisting of two 1-place
function constants f and g.  Let 0  be the pair of equations {f(x) = x, g(x)
= x}.  Show: there is no single equation E of L which is logically
equivalent to the conjunction ( x)(f(x) = x) & ( x)(g(x) = x).

We conclude this section with the comment which we promised in the
introduction to Section 2.2.  There we noted that formulas that contain
function constants may seem to carry, because of those function
constants, additional quantificational information other than what is
directly visible from the quantifiers that are overtly displayed.  This
extra information becomes explicit, when the formula is translated into
one in which the function constants are replaced by predicates.  In
particular, this translation will normally convert a purely universal
formula into one that is AE.  In the light of this observation it might
seem surprising that the preservation theorem for purely universal
formulas which we proved towards the end of Ch. 1 applies not only to
languages that only have predicates, but also to those some or all of
whose non-logical constants are function constants.  If it is true, one
might ask, that in general a purely universal sentence with function
constants has the force of an AE sentence, how then can it be that such
formulas obey the same model-theoretic restrictions as the "genuinely
purely universal" sentences which consist of a purely universal prefix
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followed by a quantifier-free matrix in which there are no function
symbols?

The explanation of this apparent paradox is that when we are dealing
with a language L which has function constants, the submodel relation
between models for L is subject to restrictions which do not play a role
when we deal with models for languages which only have predicates.
Whenever M = <U, F> is any model for a language without function
constants and U' is a subset of U, then there is always a unique
submodel M' = <U',F'> of M, in which F' assigns to each predicate P of
the language the restriction to U' of the interpretation F(P) assigned to P
in M.  When the language L contains function constants, this no longer
holds in general.  Suppose for instance that L contains the 1-place
function constant f and let M be any model for <U, F> and U' a subset
of U.  In order that there be a submodel M' = <U',F'> of M whose
universe is U' it should be the case that the restriction of F(f) to U'
satisfies the requirements for interpretations of 1-place function
constants, viz that the interpretation is a function from the universe
into itself.  In general this won't be the case, for there may well be
elements a #  U' such that F(f)(a) belongs to U \U'.  In that case the pair
<a,F(f)(a)> will not belong to F'(f), F'(f) will thus only be a partial but
not a total function form U' into U' and thus unsuitable as
interpretation for f.

The upshot of this is that when L contains function constants, then the
submodel relation is much harder to satisfy than it is for pure predicate
languages.  Consequently truth preservation under arbitrary submodels
is a condition that is easier to satisfy for such languages than for pure
predicate languages - since there are fewer submodels, it is easier for a
sentence to have the property that whenever it is true in a given model
it is also true in all its submodels.  In fact, the general validity of
preservation theorem of Ch. shows that the extra quantificational
complexity that formulas may seem to have because of containing
complex terms is "matched" by the special constraints which function
constants impose on the submodel relation.

Arguably this comment would have been more appropriate after the
proof of the preservation theorem in Ch. 1.  But since the general issue
that prompted it was raised only in this chapter, this seemed the next
best place to make the comment.  For the preservation properties of
universally quantified equations are, as Birkhoff's Theorem asserts,
even stricter than those for purely universal formulas - preservation
under formation of submodels being one (but only one) of the
properties that distinguish sentences that are equivalent to a universally
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quantified equation.  Since universally quantified equations are
preserved under submodel formation and since they too will usually
produce additional existential quantifiers when translated into formulas
with predicates, they too give rise to the apparent paradox of which we
have spoken.

2.4.1         U n i f i c a t i o n

A very different conception and use of equations is found in connection
with unification .  Here equations are understood as constraints on a
structure consisting of (presumably) connected objects which are
represented by the variables of a given set E of equations.  Thus the
equations in the set E  are not understood as universally true - i.e. as
universally quantified sentences - but as "locally true" - i.e. as true of
the particular objects which the variables occurring in E represent .
What one is after is a particular set of values for the variables for which
all the equations are satisfied.

In certain situations one moreover wants the simultaneous solution to E
to be "provably correct".  More specifically, what one is looking for is a
way of specifying the values so that the fact that they form a solution to
the equations becomes a fact of pure logic.  There is one salient and
natural way in which this may be accomplished, and it is this:  Let L be
the language of the equations in E and let Mfr(L) be the free algebra for
L. Suppose that x1, ..., xn are the variables occurring in E  and that a is
an assignment in Mfr(L) such that [[E]]M fr(L),a = 1 for all E # E.
Suppose that for i = 1, ..., n, a(xi) = [ri] = {ri}.  It is easy to see that,
supposing that E is the equation s = t, s' is the result of replacing x1, ...,
xn in s by r1, ..., rn and likewise for t' and t, [[E]]M fr(L),a = 1 implies
that the equation s' = t' is a tautology, i.e. s' is the very same term as t';
and thus that s' = t'  is a (trivial) theorem of pure logic.

The problem of finding such a "logically valid" simultaneous solution to
the equations in a given set E in the free algebra for L is known as the
problem of (term )unification .

The problem of unification is usually stated as the question whether a
set of equations has a unifier  (or unifying substitution).  Let us begin by
introducing the relevant notions.
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Def. 12 Let L be an algebraic language, X a set of variables.

i . A substitution on X in L is a function .  with domain X,
which assigns each variable xi in X a term ri of L.

ii. Suppose . is a substitution on X.  There is a standard
extension . ' of . to the set of all variables, defined by

. '(vj) = .(vj), if vj # X

. '(vj) = vj otherwise

Since there is an obvious 1-1 correspondence between
substitutions on subsets X of the set of all variables and
their extensions as just defined, we won't distinguish
between them, using "." both to refer to the substitution
.  on X itself and to its extension . ' .

iii. Let . , / be two substitutions.  By . o /, the composition
of  . and / , we understand the substitution 2  which
assigns to each variable vj the term 2(vj) which we
obtain by simultaneously substituting for the variables
vk occurring in . (vj) the terms /(vk) .

iv. Suppose that E  is a set of equations of L and that .  is a
substitution in L.  Then .  is called a unifier of E iff for
each E # E, E[.], where E[.] is the result of
simultaneously substituting the terms . (vj) for the
variables vj which have free occurrences in E.

The main result about unification is that for finite sets of equations the
problem whether a unifier exists is decidable:  There exists an algorithm
(due to Martelli & Montanari), which will find a unifier in a finite
number of steps if one exists, and will return a negative answer to the
question, when there is no simultaneous solution.   Moreover, the
algorithm returns, in those cases where there is a solution, a so-called
"most general unifier" for the given equation set.

Def. 13 Let E be a set of equations of L and .  a substitution in L.
Then . is called a most general unifier of E  iff (i) . is a unifier of E; and
(ii) for any unifier 2 of E there is a substitution / such that 2 = . o / .

Thm.  14
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i. There exists an algorithm which (i) returns for any finite set of
equations E of any algebraic language L in finitely many steps either a
unifier .  for E or else the answer that no unifier of E  exists.

ii. The unifier . which the algorithm returns when E does admit of a
simultaneous solution is a most general unifier for E .

[Ref.  ??]

N.B.  1.  Note that when  E = {E1, ..., En}, then, if .  is unifier of ,

( x1)...( xk)(E1[.] & ... & En[.]),

where x1, ..., xk are all the variables occurring in (E1[.], ...,  En[.].  This
formulation is especially apt to show how strong a claim unifiability
really is.

2 . The unification problem is special in that it asks for a
substitution which turns all equations in the set into tautologies.  There
are many situations where such a result is stronger than one really
needs.  Rather, what is wanted is a substitution which turns all
equations into theorems of a given theory T:

For all E # E, T E[.]

It should be stressed that with each different T the corresponding
unification problem one is dealing with is a different one; and as a rule
the problems are very different indeed, involving very different
combinatorics, as a function of the axiomatic principles that T includes.
This is so in particular in certain cases where T is itself an equational
theory.  For a few simple examples of such equational theories T the
unification problem has been showed to be undecidable - which is one
indication of how different the problem may become when a non-
tautological theory T is brought into play.

(Two references on Unification: (i) Martelli, A. & U. Montanari.  An
Efficient Unification Algorithm.  ACM Transactrions on Programming
Languages and Systems, April 1982. (ii) Lloyd, J.W., Foundations of
Logic Programming. Springer, 1984)
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2.5     D e f i n i t i o n s .

It is common practice to extend given scientific theories by adding new
notions via definitions.  Sometimes the point of a definition is strictly
one of notational convenience: the defined concept abbreviates a
complicated expression in the "primitive" vocabulary of the theory
(that is, of the vocabulary in which the theory is given initially) and
thus allows simplification of statements which contain this expression
as a part.  In other cases the defined notion has a conceptual
significance of its own, which will make it easier to understand and
handle statements in which it is represented as a unit - i.e. by a single
symbol or term - than they would be if the concept were circumscribed
in the theory's primitive vocabulary.  And in yet other cases the defined
concept may be one that is directly accessible to empirical observation,
and deserve to be made explicit by a separate definition for that reason.
In fact, the method of introducing concepts by definition is so general
and of such methodological importance that most textbooks on logic
and/or scientific methodology devote a separate chapter to it.

Here we will look at issues connected with definitions within the
specific context of theories formalised within first order logic. That
somewhat limits the range of issues that the theory and pactice of
definition give rise to in general. Nevertheless, there remain a number
of useful things to be said and these we will address. (Something that
does not fit within the setting we adopt here is the conceptually
important question of (non-)circularity of definitions. We will have a
few observations about this notion towards the end of the section.)

In relation to first order theories questions of definition arise in two
different settings. The first is that implicit in what was said in the
opening paragraph: We have a theory T of some first order language L
and want to extend T by adding some notion by definition. Formally this
will consist in (i) choosing a new symbol $  for the notion that is to be
added to it, (ii) extending the language L to the language L' = L {$} and
then (iii) extending T to the theory T' of L' which is obtained by adding
the definition of $ to T and then closing under logical consequence in
L'. This is what might be called the external  perspective on  definition.

But questions of definition can also be raised from a theory-internal
prespective. Suppose again that T is a theory of L but now $ is a non-
logical constant of L. We can then ask the question whether $ could not
be defined within T in terms of its remaining vocabulary: Is there a
definition D of $ in terms of the remaining vocabulary which (i) is a
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theorem of T and (ii) will give us back all of T when combined with the
reduction T' of T to the language L' = L\{$} (i.e. the theory which
consists of all theorems of T that belong to L')? Or - to put the question
a little more informally - could we not eliminate all statements
involving $  from T and then restore them again to T by adding D?

In order to state this second question with the necessary precision we
need to first have a clearer notion of what a "definition" is. We just
spoke of "adding a definition of $" to some first order theory.  That
implies that the defintion in question must be a first order sentence,
which we can add to a theory as an additional axiom. But which
sentences should qualify as possible definitions of some non-logical
constant $? What do we, or should we, expect of a sentence that is to
serve as a definition? There are two criteria that, as the result of
discussions of the purpose and form of definitions that stretched over
centuries, have emerged as the central functional requirements. These
are :

(i) conservativity

a n d

(ii) determination .

( i ) Conservativity is a notion that does not only arise in connection
with definitions. Its general context is that of a theory T of some
language L and an extension T' of T whose language is some extension L'
of L. T' is called a conservative  extension of T iff T' coincides with T as
far as L is concerned: if A is a sentence of L, then A is a theorem of T' iff
it is a theorem of T.

The notion of conservativity as definability constraint involves a
straightforward application of the "conservative extension" relation.
Intuitively, the constraint is that adding a definition D of a new notion $
to a theory T should not introduce new information that is expressible
in the primitive vocabulary L of T. The formal expression of this
requirement is as follows: every sentence A of L that is a theorem of the
theory T' = ClL'(T {D}) (where as before L' is the language L {$}) is
already a theorem of L; or, put in terms of the notion just introduced:
T' is a conservative extension of T.

( i i ) Determination is the principle that a definition D of $ should fully
determine the extension of $ when the extensions of the notions in
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terms of which D defines $ are given. The formal characterisation of
this condition is model-theoretic: Let T and T' be as under (i) and let M
= <U,F> be a model for L that is a model of T. Then there should be one
and only one way to expand M to a model M' = <U,F'> for the language
L' = L {$} that is a model of M'. That is, there ought to be only one way
of extending F to an interpretation function F' of the non-logical
constants of L', i.e. only one way of adding an interpretation F'($ ) for $
which verifies all the additional theorems of T' (including, in particular,
the new "axiom" D)

Of these two criteria determination is the stronger one; it entails
conservativity. For supppose that T, T', L and L' are as above and that D
satisfies determination of $ in relation to T. That is:

( 3 ) For every model M of T there is one and only one expansion M' of
M to L' which is a model of T'.

To show that T' = ClL'(T {D}) is a conservative extension of T assume
that (3) holds and that A is a sentence of L such that T' A. We must
show that T A. Suppose that it is not the case that T A, Then T {
A} consistent. Let M be a model of T { A}. Then there will be no
expansion M' of M that is a model of T'. For every such expansion will
verify A, while A is a theorem of T'.2 4

With this we are now in a position to address the question what form a
definition should have in order that the mentioned criteria are satisfied.
Since determination entails conservativity, it suffices to consider just
determinat ion.

Within formal logic we find two different forms of definitions which
both satisfy determination. For the first of these, known as explicit
definition , this is almost trivial. For the second, definition by recursion,
- also called "definition by induction", or "recursive definition" or
"inductive definition" - determination isn't quite as obvious, but even
for this type of definition it is relatively easy to see that all the familiar

2 4 It is natural to ask whether conservativity in its turn entails determination.
As it stands, I so not know the answer to this question. (I suspect the answer must
be known but i haven't done the extensive literatire check need to find out
whether this is so.) my hunch is that the entailment in this direction does not
hold. it may fold under certain restrictions, but I have no clear idea what these
might be either.
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instances do satisfy determination.  In this section we will only consider
explicit definitions.2 5

Explicit definitions are universally quantified biconditionals in which an
atomic formula involving the symbol that is being defined stands to the
left of and its definition - some formula A of the language in which
the new symbol is being defined - to its right. (The left hand side and
the right hand side are often referred to as the def in iendum  and the
definiens  of the given definition.) Exactly what this comes to still
depends on what type of symbol $ - or, more accurately: what type of
non-logical constant $ - is being defined. If $ is an n-place predicate P,
then an explicit definition for $ in  a language L has the form specified in
( 4 )

(4) ( x1)...( xn)(P(x1,.., xn) A(x1,.., xn)),

where x1,.., xn are n distinct variables and A is a formula of L not
containing P whose only free variabes are x1,.., xn.

Explicit definitions of function constants are essentially of the same
form, except that the atomic formula on the left reflects the fact that
we are dealing with a function constant rather than a predicate
constant. The form of an explicit definition for an n-place function
constant is given in (5).

( 5 ) ( x1)...( xn)( xn+1)(f(x,.,xn) = xn+1  A(x1,.., xn,xn+1)),

where x1,.,xn, xn+1 are n + 1 distinct variables and A is a formula
of L not containing f whose only free variabes are x1,.., xn+1.

It is easy to see that sentences of the form (4) sastisfy determination.
Suppose again that T is a theory of L, that P does not belong to L and
that we form the theory T' = ClL'(T {D}) of the language L' = L {P},
where D has the form given in (4). Let M = <U,F> be a model of T. The
right hand side A of D has for its extension the set [[A]]M  in M, where
[[A]]M = {<u1,.., un>: for i = 1,..,n, ui # U & [[A]]M[u1,.,un] = 1}.
Let M' = <U,F'> be the expansion of M to L' defined by F' =

2 5 Examples of recursive definitions will be encountered in the next section,
where we deal with the axiomatisation of natural number arithmetic. In chapter 3
recusive definitions will be discussed in greater depth; there we will in particular
look at the systematic connections that exist between recursive and explicit
de f in i t ions .



1 1 7

F {<P,[[A]]M>}. It is easily verified that M' T'. (This follows from the
fact that on the one hand M' T, while on the other the choice of F'(P)
guarantees that M' D.) This establishes that there is at least one
expansion of M which verifies T'. Secondly, suppose that M'' = <U,F''> is
another expansion of M such that M'' T'. Then in particular M'' D .
This means that for every n-tuple <u1,.., un> of elements of U,
[[P(x1,.,xn)]]M''[u1,.., un] = 1 iff [[A]]M''[u1,.., un] = 1.

In other words, [[P(x1,.,xn)]]M'' = [[A]]M'', where

[[P(x1,.,xn)]]M'' = {<u1,.., un>: ui..un # U & [[P(x1,.,xn)]]M[u1,.., un] = 1}

a n d

[[A]]M'' = {<u1,.., un>: ui # U for i = 1,..,n & [[A]]M[u1,.., un] = 1}.

But the first of these two sets is nothing other than F''(P) and the
second set equals [[A]]M . This entails that [[P(x1,.,xn)]]M'' = [[A]]M =

[[P(x1,.,xn)]]M' and thus that M'' = M'.

The case of (5) is a little more complicated. A definition D of the form
(5) does not automatically guarantee determination, because the form
of D imposes certain constraints on the semantics of its definiens A. D
says that A(x1,.., xn,xn+1) is equivalent to a statement of the form
"f(x1,.., xn) = xn+1". This means that in any model M' of D there will
have to be for any n-tuple <u1,.,un> of elements of the unviverse
exactly one un+1 such that [[A]]M'[u1,..,un,un+1] = 1. This means that
the correspnding "unique value" condition (6) for A will be a theorem
of T', whether or not it is a theorem of T.

( 6 ) ( x1)...( xn)( y)(A(x1,.., xn,y) & ( y')A(x1,.., xn,y) y' = y),

So if T' is to be a conservative extension of T, then (6) should be a
theorem of T to begin with.

The upshot of this is that an explicit definition D of a function constant
is acceptable as an addition to a theory T only if T already entails the
corresponding unique value condition (6) for its definiens A. For only
then will the addition of D be conservative. However, when this
condition is fulfilled, then the addition of D will not only satisfy
conservativity but also determination. (The argument is the same as for
explicit definitions of predicates.)
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The general moral of this discussion is that sentences of the form (4)
and, with the qualifications just noted, also those of the form (5) satisfy
the requirements we laid down for good definitions. This is consistent
with the almost universal practice to cast definitions of new symbols in
these particular forms.2 6

This concludes our discussion of the external perspective on the
question what constitutes a proper definition, and we now turn to the
internal perspective. In discussing the questions that this perspective
gives rise to we follow the tradition in that we assume the notion of an
explicit definition, as specified in (4) and (5), as our syntactic
characterisation of proper definitions.

Suppose that T is a theory of the language L and that $ is a non-logical
constant of L. We already stated what it means for $  to count as
definable within T: there has to be some definition D of $ in the
language L' = L\{$}) such that T = ClL(T' {D}), where T' = T {A: A #
L'}. Now that we have adopted a specific syntactic characterisation of
definitions we can turn this notion of definability into a strictly formal
characterisat ion:

( 7 ) Let T be a theory of a first order language L and $  a non-logical 
constant of L. Let L' = L\{$} and T' = T {A: A is a sentence of L'}.
Then $ is explicitly definable in T iff there exists an explicit 
definition D of $ in L' such that T = ClL(T' {D}).

We have already seen that when $ is explicitly definable in T, then $ i s
also implicitly definable in T, where implicit definability is
characterised model-theoretically as in (8).

( 8 ) Let T, L, $ , L' and T' as in (7). Then $ is implicitly definable in T iff
the following condition holds:

Every model M' of T' can be expanded in one and only one way to
a model M of T

It is an interesting fact that the converse of this implication - that
implicit definability entails explicit definability - also holds. This result

2 6 Recursive definitions are found almost exclusively within mathematics,
something that has to do with the circumstance that they are suitable for domains
that have the special "recursive" structure that such definitions presuppose.
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differs from the statement that explicit definability entails implicit
definability in that it depends on specific properties of first order
predicate logic and is not generalisable to other logical formalisms
(such as, for instance, higher order predicate logic). The result is
known as Beth's Definability Theorem, after the Dutch logician E.W.
Beth (1908-1964) who formulated and proved the theorem. To do
justice to its importance we state Beth' Theorem  once more, as a
separate theorem with its own number.

Theorem  15 (Beth's Definability Theorem)

Let L be a language of first order logic, $  a non-logical constant of
L and T a theory of L. If $  is implicitly definable in T, then $  is
explicitly definable in T.

The proof of Beth's Theorem that we will present here is not the proof
which Beth gave himself.  But it is, I believe, the most popular proof of
the theorem today.  It makes use of another important theorem abolut
first order logic, the so-called "Craig Interpolation Lemma". Craig
proved this theorem on the way towards some other result in proof
theory in which he was interested ar that point, hence the name
"Interpolation Lemma".  But it states a proposition which has come to
be recognised as a salient fact about first order predicate logic in its
own right.  As in the case of Beth's Definability Theorem, there are
other logical formalisms than first order logic for which the
Interpolation Lemma does not hold, and in fact, validity of the Lemma
has become (like the validity of Beth's Theorem) an important property
in terms of which logical formalisms are classified.  (Satisfying Craig's
Lemma can be seen as a certain kind of well-behavedness for formal
systems.)

The Interpolation Lemma says that if A and B are sentences of first
order logic and A  B, then there is a sentence C in the comon
vocabulary of A and B such that A  C and C  B.  We can roughly
paraphrase this as: That which is responsible for the fact that A is
logically at least as strong as B can be articulated in just the
terminology that is common to them both.  A formal statement of the
Interpolation Lemma is given as Theorem 16.

Theorem 16  (Craig's Interpolation Lemma).

Suppose that A is a sentence belonging to some first order language L1,
B a sentence belonging to some first order language L2 and that L1 and L2
are compatible in that L1 and L2 assign the same signature to the
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symbols they have in common. We denote the language whose non-
logical constants are those common to L1 and L2 as L. Suppose that A 
B.  Then there is a sentence C belonging to L such that A  C and
C  B.

The Interpolation Lemma can be proved quite easily on the basis of the
completeness proof for first order logic that is given in the Appendix to
Ch. 1. A proof of the Interpolation Lemma along those lines is given at
the end of that Appendix. Here we will, as last item of this section,
present a proof in which the same construction is used that is central to
the completeness proof given in the main body of the text of Ch. 1 (see
Section 1.2). This proof has an interest in its own right as a further
application of the method used to prove completeness there, but it is
more complicated than the one from the Appendix. (The central idea of
this latter proof can be grasped immediately, although its technical
details take up a certain amount of space.)

Proof of Beth's Theorem.

Beth's Theorem holds for arbitrary non-logical constants $ . However,
we will first give the proof for the case where $  is an n-place predicate
P. After completion of that proof we will then show how the case where
$  is a function constant can be reduced to the case where $  is a
predicate .

Suppose that L, T and $ are as in the statement of the Theorem and that
$ is implicitly definable in T. Further assume that $ is an n-place
predicate P, that L' = L\{P} and that T' is the theory of L' defined by:
T' = T {A: A is a sentence of L}. Let P1 and P2 be symbols not occurring
in L and let L1 and L2 be the languages which result when we add,
respectively, P1 and P2 as n-place predicates to L'. Let T1 be the theory of
L1 which we get by replacing P in all theorems of T everywhere by P1,
and let, analogously, T2. be the theory of L2 which we get by replacing P
in T everywhere by P2. Let T3 be the theory CNL3(T1 T2) in the language
L3 = L1 L2. Then the following sentence (1) is a theorem of T3:

( x1) .. ( xn) (P1(x1, .. , xn)  P2(x1, .. , xn) ) ( 1 )

That (1) is a theorem of T3 can be seen as follows.  Suppose that M3 is
any model of T3.  Let M1 be the reduction of M3 to L1, M2 the reduction
of M3 to L2 and M' the reduction of M3 to L'.  Then M1 is a model of T1,
M 2 is a model of T2 and M' is a model of T'.  Since by assumption P is
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implicitly defined in T, the same is evidently true of P1 in relation to T1
and of P2 in relation to T2.  Since P1 is implicitly defined in T1, there is
exactly one expansion M1' of M' which is a model of T1. So M1' = M1,
which means that the extension of P1 in M1' is the same as it is in M1.
Since T2 is just like T1 except for renaming of the predicate P1 as P2, the
unique expansion M2' of M to L2 that is a model of T2 will assign to P2
exactly the same extension as M1' assigns to P1.  And, as before, the
extension of P2 in M2' is the same as the extension of P2 in M2.  So all
these extensions are the same and in particular the extension of P1 in M1
is the same as the extension of P2 in M2.  As these are also the respective
extensions of P1 and P2 in M3, P1 and P2 have the same extension in M3.
So it follows that (1) holds in M3.  Since this is true for arbitrary models
M 3 of T3, (1) is a logical consequence of T3.

Since T3  (1), we also have T3  (2), where (2) is the result of dropping
the universal quantifiers of (1) and replacing the variables x1,.., xn by
fresh individual constants c1,.., cn, which do not belong to L':

P1(c1,.,cn)  P2(c1,.,cn) ( 2 )

Since T3 = CNL3(T1 T2) and T3  (2), there are finitely many sentences
D 11,.., D1m from T1 and there are finitely many sentences D21, .., D2 n
from T2 such that

{D11,.,D1n,  D21,.,D2m} P1(c1,.,cn)  P2(c1,.,cn). ( 3 )

We can choose the sentences D11,..,D1n, D21,..,D2m  in such a way that n =
m and that D2i is the result of replacing P1 in D1i by P2. Forming the
conjunction D1 of the D1i and the conjunction D2 of the D1i we get

D 1 & D2   P1(c1,.,cn)  P2(c1,.,cn) ( 4 )

a n d

  D2  = D1 [P2/ P1]. ( 5 )

(4) entails (6):

D 1 & P1(c1,.,cn)  D2  P2(c1,.,cn) ( 6 )

Note that in (6) the formula to the left of  belongs to L'1 and the
formula to its right belongs to L'2, where L'1 = L1  {c1,.,cn }, and
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similarly for L'2.  So the Craig Interpolation Lemma applies:  There is a
sentence C from the common language L' = L  {c1,., cn} such that

D1 & P1(c1,.,cn) C   ( 7 )

a n d

C  D2  P2(c1,.,cn). ( 8 )

Since C does not contain any occurrences of P2, the proof of
D 2  P2(c1,.,cn) from C will turn into a proof of D1  P1(c1,.,cn) from C
when we replace all occurrences of P2 by P1.  So we have

C  D1  P1(c1,.,cn), or, equivalently: ( 9 )

D1  C P1(c1,.,cn), ( 1 0 )

Also, (7) can be turned into 

D1  P1(c1,.,cn) C , ( 1 1 )

and (10) and (11) give us

D1  P1(c1,..,cn) C . ( 1 2 )

Since D1 is a sentence from L1, it does not contain any of the constants
c1,..,cn.  So (12) entails:

D 1  ( x1)..( xn) (P1(x1,.,xn) C'), ( 1 3 )

where C' is the formula of L which we get by replacing the occurrences
of c1,.,cn in C by the variables x1,.,xn.  Replacing P1 in (13) throughout
by P gives us

 D  ( x1) .. ( xn) (P(x1,.,xn) C'), ( 1 4 )

where D is a sentence from T' and C'' is a formula from L.  So

T'  ( x1) .. ( xn) (P(x1,..,xn) C') ( 1 5 )

which shows that P is explicitly definable in T'. q .e .d.
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This concludes the proof for the case where $  is a predicate. Suppose
now that $ is an n-place function constant f. We can reduce this case to
the case where $  is a predicate by replacing f by an n+1-place predicate
P, where "P(x1,.,xn,xn+1)" expresses that f(x1,.,xn) = xn+1. Let P be a
symbol not occurring in L and let 'L be the language (L\{f})  {P}.
Corresponding to each model M = <U,F> for L there is a model
'M = <U,'F> for 'L, where for any n+1-tuple <u1,.,un,un+1> of elements of
U, ('F(P))(<u1,.,un,un+1>) = 1 iff (F(f))(<u1,.,un>) = un+1. Conversely, for
any model 'M for 'L there is a model M for L such that 'M corresponds
to M in the manner indicated.

Let + be the translation function from L to 'L defined in Exercise EA2 of
the Appendix to Ch. 1. +  translates terms /  into formulas /+(y) and
formulas A of L into formulas A+ of 'L. As shown in EA2, + has the
property that for any model M for L, corresponding model 'M for 'L and
assignment a  in M, [[/+(y)]]'M,a = 1 iff [[/]]M,a = a(y) and [[A+]]'M,a =
[[A]]M,a.

Let 'T be the deductive closure of the set of + -translations of the
sentences in T: 'T = Cl'L({A+: A # T}). Then it follows from the above
remarks about + that for any model M for L we have M T iff 'M 'T,
where 'M is the 'L-model corresponding to M. Moreover, the
"reduction" of T to L' = L\{f} - i.e. the theory T' = T {A: A is a sentence
of L'} - is the same as the "reduction" of 'T to L'. (Note that the language
L' can also be written as 'L\{P}.) From these observations we can infer
that P is implicitly definable in 'T. For suppose that M' is a model of T'.
Then there is by assumption a unique way to expand M' to a model M of
T. It follows from what we have said that the model 'M for 'L
coresponding to M is a model of 'T. So there exists an expansion of M'
to a model of 'T. Moreover, if there were two different expansions 'M1
and 'M2 of M' that were both models of 'T, then the corresponding
models M1 and M2 for L would be also different and they would be
expansions of M' that would be both models of T, which would
contradict the assumption that f is implicitly definable in T.

Since P is implicitly definable in 'T we can apply Beth's Theorem for the
case of predicates and obtain as theorem of 'T an explicit definition for
P of the form given in (16).

 ( x1) .. ( xn)( xn+1)(P(x1,.,xn,xn+1)  A ) ( 1 6 )

where A is a formula of the language L'.
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At this point we must refer once more to the properties of the
translation function + . One further property of + is that the formula
(f(x1,.,xn) = xn+1)+  is logically equivalent to the formula P(x1,.,xn,xn+1)
and that this equivalence is preserved by logical operations which
combine these atomic formulas with each other and with formulas from
L' (which are not affected by +). This entails that (16) is logically
equivalent to the + -translation of (19).

 ( x1) .. ( xn)( xn+1)(f(x1,.,xn) = xn+1   A ) ( 1 7 )

So since (16) is a theorem of 'T, (17) is a theorem of T.

This concludes the proof of Beth's Theorem.
q.e .d.

There is a striking similarity between Beth's Definability Theorem and
the Correctness-and-Completeness Theorem for first order predicate
logic.  Each theorem states an equivalence between (i) a syntactic and
(ii) a semantic condition, and in each case the one condition is
existential and the other universal. In our original formulation of the
(Correctness and) Completeness Theorem the syntactic condition is
existential - there exists a proof of B from the premises A1, .., An -
and the semantic condition universal - every  model which verifies
A 1, .., An also verifies B. Similarly, in the case of Beth's Theorem the
syntactic condition - explicit definability, i.e. the existence of an explicit
definition of $  which is a theorem of T - is existential and the semantic
condition - implicit definability, the unique expandability of every
model of T' to a model of T - is universal. But we can also turn things
around by taking contrapositives. The two conditions connected by the
Completeness Theorem are then an existential semantic condition -
there exists a model which verifies A1, .., An but fails to verify B and
a universal syntactic condition - no  formally correct proof is a proof of
B from  A1, .., An. Similarly, taking contrapositives in the case of Beth's
Theorem turns it into an equivalence statement between an existential
semantic condition - there is a model of T' that either cannot be
expanded to a model of T at all or else can be expanded to a model of T
in more than one way - and a universal syntactic condition - no  explicit
definition of $  is a theorem of T.

When the Correctness-and-Completeness Theorem is stated as the
equivalence between the negated conditions mentioned above - there
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exists a "countermodel", in which A1, .., An are true and B is false iff
there is no derivation of B from A1, ..,An -, then the hard part
(completeness) is to prove that non-existence of a proof of B from A1,
.., An entails the existence of a countermodel. The converse - that the
existence of a countermodel entails that there is no proof of B from A1,
.., An; in other words, the correctness of the given proof procedure - is
generally easier (although how easy will depend somewhat on the proof
procedure for which correctness and completeness are being proved).
In the case of Beth's Theorem the difference between the two directions
is even more striking. When there is a model of T' which either has no
expansion or else more than one expansion to a model of T, then
obviously it cannot be the case that T contains an explicit definition of
$ as a theorem. It was Beth's striking accomplishment to succeed in
proving the converse of that.

In fact, the easy direction of the equivalence between implicit and
explicit definition had been known for many years before Beth proved
his Theorem. And it was one half of that easy direction - that the non-
existence of an explicit definition of $  in T can be established by finding
a model of T' that can be expanded in more than one way to a model of
T - which had gained currency under its own name, viz. as the "Method
of Padoa", after the Italian mathematician Alessandro Padoa (1868-
1937). It was by pursuing the question whether Padoa's Method was a
necessary as well as a sufficient condition for the non-existence of an
explicit edfinition of $  in T that Beth was led to the proof of his
definability theorem.

Internal definability questions - Is, for given T and $ # LT, $  definable in
T? - are sometimes easy to answer, but they can also be very hard.
Examples of fairly easy questions of this kind we have observed earlier
in this Chapter in connection with the Theory of Boolean Lattices and
the Theory of Algebras. In the theory Tbla of Boolean Algebras given in
Section 2.1.3 the operation 3 is definable in terms of ( and - and,
conversely, ( is definable in terms of 3 and -. To show this is
straightforward since in this case explicit definitions are easy to find: 3
is definable in Tbla in terms of ( and - by the definition
( x)( y)( z)(x 3 y = z z = -(-x 3 -y)) and ( is similarly definable in
terms of 3 and - by a definition that is the "dual" of the one just given
(i.e. one whose definiens is obtained by replacing in that of the given
definition ( everywhere by 3 and 3 everywhere by ( ). We also saw that
- is definable in Tbla in terms of (, 3, 0 and 1, viz. by the definition
( x)( y)(-x  = y (x ( y = 1 & x 3 y = 0)).
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In fact, there are even stronger definability results in this case: (i) the
complement operation - is definable just in terms of 3 , for instance by
the definition

( 2 0 ) ( x)( y)(-x  = y (x 3 y = 0 & ( z)(x 3 z = 0  y 3 z = z)))

where "a 3 b = 0" is short for: "( u)(( v)(u 3 v = u) & a 3 b = u)"

and (ii) - is definable just in terms of ( , for instance by the definition

( 2 1 ) ( x)( y)(-x  = y (x ( y = 1 & ( z)(x ( z = 1  y ( z = z))).

(where "a ( b = 1" is a similar abrreeviation as "a 3 b = 0")

The reason why (20) is a proper definition of - in Tbla is that it is one
of the theorems of Tbla that for each x there is among the elements y
such that x 3 y = 0 a unique largest one. Likewise, (21) is a proper
definition of - in Tbla because Tbla has the theorem that for each x
there is a unique smallest element y such that x ( y = 1.

For the same reason the pseudo-complement - of pseudo-
complemented lattices is definable in terms of , , 0 and 1. (See
Section 2.2.1) For recall that one of the axioms of the theory of pseudo-
complemented lattices says that for each x there is a unique largest y
such that x 3 y = 0. But when the uniqueness requirement is dropped,
the possibility of defining "-" in terms of these operations also
disappears. More precisely, let T be the theory of the language
{ , ,0,1,-} which we get by adding to the axioms of Tlata the following
sentence, which says that the meet of x and -x is always equal to the
minimal element 0:

( 2 1 ) ( x) x  -x =0

In this theory  there is no longer any guarantee that -x is unique and so
there is no hope of defining - in terms of { , ,0,1}.
That - is no longer definable can be seen as follows. Let V =
<U, , ,0 ,1> be the lattice whose universe U consists of the elements
{0 ,1 ,a} and the infinite set of elements {bn: n # N}, where 1 is as always
the largest and 0 the smallest element of the lattice and where the
operations  and are fixed by: (i) for all n, a bn = 1  and a bn =
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0 , and (ii) for all n, m such that n " m, bn  bm  = bm  and bn  bm  =
bn.   Evidently V is a model of the theory T' consisting of those
theorems of T that are expressible in the language { , ,0,1}. We can
extend V to a model of T in several ways by adding an extension for -.
That is, we can choose FV (-) to be any of the following functions -n o n
U. The functions -n all coincide insofar as (i) -n(0) = 1, (ii) -n(1) = 0
and (iii) for all m, -n(bm ) = a . But they differ from each other in the
values they return for the argument a : for each n, -n(a ) = bn. It is easily
seen that each function -n yields a model of T when added to the model
V of T'. So there is more than one way to expand V to a model of T.

Note that this argument is an application of Padoa's Method. In fact, to
reach the conclusion that - is not definable in T it suffices to consider
just two of the functions -n, e.g. -0 and -1.

In the discussion above we have repeatedly used the phrase "$  is
definable in T in terms of ...", where the ... mention some of the other
non-logical constants of LT, but not necessarily all of them. We have so
far only used this turn of phrase in connection with explicit definitions,
and there it is immediately clear what is meant: a definition in which
the definiens A contains only those non-logical constants that are
mentioned in the dot part ...); thus $ isn't merely claimed to be
definable in the language L \ {$}, but in the sublanguage L' of L \ {$}
which consists just of the symbols mentioned in the dor part. It is
straightforward to also extend the characterisation of implicit
definability to this more general case. All we need to do is to restrict
the earlier characterisation of implicit definability to the sub-theories
T' and T'' of T in the sublanguages L' and L'', where L' is the sublanguage
just mentioned and L'' = L' ( {$}. To be precise, the characterisation of
implicit definability of $ in T in terms of the non-logical constants of L'
now takes the following form:

( 2 2 ) Let T be a theory of the language L. Let $ be a non-logical constant
of T, let L'  L\{$} and let L'' = L' ( {$}. Let T' = T {A: A is a
sentence of L'} and T'' = T {A: A is a sentence of L''}.
Then $ is said to be implicitly definable in T in terms of L' iff
for each model M' of T' there is a unique expansion M'' of M' that
is a model of T''.

It is left as an exercise to the reader to show that the corresponding
version of Beth's Theorem holds:
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( 2 3 ) Let T, L and L' as in (22). If $ is implicitly definable in T in terms of
L', then there exists an explicit definition of $ in terms of L' which
is a theorem of T.

These generalised characterisations of implicit and explicit definability
are convenient in particular in connection with a kind of application
which we haven't yet mentioned, but of which there are many instances
of the greatest importance. In such applications the focus is on
particular structures - or, more precisely, on the descriptions of those
structures in particular logical languages. Relevant examples that we
have already entcountered are the structure of the rational numbers as
described in the language {<}, and the Tarski Lattices for particular first
order languages L as described in the language { , ,0,1,-}.

Given a particular structure and a particular language in which it is
described we can ask questions about the definability "within the given
structure" of some of the notions represented in the describing
language in terms of one or more of the others. Such questions can be
phrased as definability questions of the kind we have been asking so
far, i.e. as questions about the definability in a first order theory T of
one non-logical constant $ from the language of T, LT, in terms of
certain others. More specifically, they are questions of the form given
in (24), where S  is the structure in question, Th(S) is the set of all
sentences of LT that are true in S and L' is some sublanguage of  LT \{$} .

( 2 4 ) Is $ definable in the theory Th(S) in terms of the non-logical
constants of L'?

In the next section we will study two structures that are at the very
centre of mathematics. The first of these is "natural number
arithmetic", i.e. the structure consisting of the natural numbers with
the number null, the successor function S (where S(n) = n+1) and the
operations of addition and multiplication; more explicitly, we will study
the theory of natural number arithmetic as a theory of first order
predicate logic formulated in the "language of Peano Arithmetic" - the
first order language LPA = {0,S,+,.}, where 0 is an individual constant, S
a 1-place function constant and + and . are 2-place function constants.
The second structure is that of real number arithmetic, i.e. the
structure of the real numbers described in the first order language
{+,.,<,0,1}, where + and . are 2-place function constants, < is a 2-place
predicate constant and 0 and 1 are individual constants. About these
and some other, related structures a range of questions of the general
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form (24) can be asked - some easy, some hard and some with answers
that have important further consequences.

The "Non-Circularity Requirement"

In the opening paragraphs of this section we promised a few words on
the notion of definitional circularity. Many philosophical discussions of
definitions make a big thing out of circularity, as something that is bad
and should be avoided at all cost. Informally speaking, the basic cocern
is something like this: Suppose you define a concept C in terms of
certain other concepts C1, ..., Cn. Suppose moreover that at the same
time you define one of the Ci in terms of some further concepts one of
which is C. That wouldn't be right, as the second definition would in all
likelihood defeat the purpose of the first definition. For suppose you
want to use the first definition to determine whether some given
entities fall under C; then there is good chance that that will lead you
consider whether certain entities, and quite possibly the same ones, fall
under Ci. But to determine that you will, in all likelihood, be led to
apply the second definition and that may get you involved in turn in
questions about what falls under C; in particular, it may lead you back
to the very same question that you started with.

We noted that circularity isn't really a topic that can be properly dealt
with within the setting we have adopted - that of fully articulated
theories formalised within first order logic. The difficulty can be
illustrated at the hand of a very simple example. Consider the theory
Tlin of arbitrary non-trivial linear orderings in the language {<, }
according to which < and stand in the familiar relation of a strict
linear ordering and the corresponding weak ordering. We can
axiomatise this theory by means of the axioms L1-L3 of Section 1.2.1
together with the sentences (25.i) and (25.ii).

( 2 5 ) i. ( x)( y) x   y
ii. ( x)( y)(x y (x = y v x < y))

Among the theorems of Tlin we find on the one hand the definition
(25.ii) of in terms of < and on the other - this is just as trivial to show
- the definition (26) of < in terms of .

( 2 6 ) ( x)( y)(x < y (x y & x  y))



1 3 0

An obvious implication of this result is that for any given structure S
which involves some linear ordering of its universe the weak ordering 
of the universe of S can be defined in terms of the strict ordering <  in
the sense that (25.i) will be a theorem of the theory Th(S) for any first
order language which includes the predicate symbols < and  and where
these symbols are interpreted in S  as < and . Conversely, in the same
sense of 'define' < can be defined in S  in terms of .

To repeat: can be defined for such structures in terms of < and < in
terms of . Does this mean that there is any circularity involved, of a
sort that should be cause for worry? The answer would seem to be an
obvious "no". You can define  in terms of < or you can define < in
terms of ; either is fine. What you cannot do, of course, is at the same
time "define  in terms of < and < in terms of " - not at least if that
were to mean that on the one hand you formulate the theory of linear
orderings as one which uses < as "primitive" - i.e. as a theory in the
language {<} - and then add  as a defined concept (by extending the
language {<} to {<, } and adding, say, definition (25.ii) as a new axiom)
- and also formulate the theory as a theory in the language { } and then
extend that theory  with a definition of < (such as (26)). You have to
make a choice: either formulate your theory in the language {<} and
then, if you wish, add by definition, or else formulate it in the
language { } and then, if you wish, add a definition for <.

Surely the warning to avoid circularity can't be a warning against
anything as obviously impossible as constructing a formal theory T
whose language LT is different from what it is. But then, what are the
dangers of which we are being warned? To answer this it is important to
realise that theory development is in general a very complex and
protracted process, which typically runs through a number of
successive stages. First, a body of data whose internal connections will
often be quite poorly understood at hte outset must be structured into
an organic, explanatory whole - into a "theory", in other words - and an
essential part of that is to design the concepts in terms of which the
central principles of the theory are to be stated. Exactly what these
concepts stand for need not be fully clear from the start; often their
true meaning will reveal itself only gradually, as the principles which
make use of them become more firmly entrenched and their
implications better understood (in particular those which link them to
the data). Among the means of concept clarification that can be helpful
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during this stage of theory development are definitions of one concept
in terms of some of the others.27 And such definitions may be useful
even if some of the other concepts occurring in the definiens are still in
need of further clarification in their turn. If, however, one then
attempts to clarify one of those other concepts by means of a definition
that employs the original concept C in its definiens, then that is a sign
that something has gone awry. Trying to back a given definition of C
with a further definition that makes use of C is a bit like putting up one
piece of real estate as collateral when acquiring another, and then
offering the second one as a collateral in an attempt to refinance the
first. In business this is regarded as a form of fraud. Circular definitions
won't land you in jail, but they too are violations of sound general
principles and ought to be be avoided.

2 7 It is a remarkable fact that progress can be made in this way at all.
Philosophers call this the "Paradox of Analysis": If we understand a conecpt C well
enough to be able to judge a proposed definition as a correct definition of C, then
how can that definition tell us anything about C that we didn't know already?
There are, it would seem, just two possibilities: either we didn't know everything
that the definition tells us, but then we are not in a position to recognise the
definition as correct; or else we did already know all that it tells us, but then the
definition cannot tell us anything about C that is really new to us; the best that it
could do would be to give us something that we knew already in a different form.
And yet it is undeniable that "explanatory" definitions - definitions of concepts we
already have that seem right to us and that nonetheless reveal something new
about the concepts they define - do play a sginificant part in theory development,
and in concept formation generally.

How can a definition ever be explanatory in this sense? There are no easy answers
to this question. But I think it is intuitively clear that any satisfactory answer
must have to do in some essential way with the nature of human cognition.
A person's thoughts form a complex web of propositional representations in
which concepts are the principal building blocks. At the same time some of these
concepts are linked to the external world by complex application criteria - criteria
that determine for at least some real world entities that they belong to the
extension of the concept, and for certain others that they do not, and which also
enable us to recognise when this to the case. However, much of this - propositional
representations as well as linking criteria - can be implicit knowledge: we can
apply the criteria without being able to articulate them and we can draw
inferences from the network of representations without necessarily being able to
name or state all those parts of the network that serve as premises to the
inference. Definitions which purport to reduce one concept to a number of others
are among the most effective prompts for dragging to the surface of our
awareness connections between two or more concepts that up to then were just
implicit knowledge. In this way something that was known to us already in some
hidden and nebulous way can acquire a new quality - become a "clear and distinct
idea", to use Descartes' phrase. This may give us on the one hand the sense that we
are learning something new while at the same time we can perceive that "new"
piece of knowledge  as agreeing with the implicit knowledge we already had
As I said, this isn't much of an answer. But I think it indicates the direction in
which we should look for one.
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It doesn't follow from what has just been said that definitional
circularity is a trap that it is easy to fall into.  But it doesn't follow
either that it is harmless altogether. There are at least two concomitant
factors that contribute to the danger of being caught in it. First,
definitional circles can be more concealed than they are in the simple
case I have mentioned - they may involve not just two, but three
definitions (D1 defines C with the help of C', D2 C' with the help of C''
and D3 C'' with the help of C) or even more than three. At a stage
where one is still struggling for a better grasp of each of these concepts
it is perfectly possible - and legitimiate - for all three definitions to be
on the drawing board, each indicating a possible avenue of conceptual
clarification. In this context the non-circularity principle can be seen as
urging that a choice between those definitions will have to be made
eventually: At least one of the definitions will have to be abandoned.

A second contributing factor is that theory development, and the
conceptual analysis that is almost always an indispensable part of it in
its earlier stages, is usually not a one-person enterprise but one that
involves a group of investigators or even a whole scientific community.
Different members of the group or community may come up with
different definitions for different concepts. Taken together these
definitions may well contain loops that no one member of the group or
community is aware of; or else, individual members may not even be
much concerned by such loops even if they see them, since they feel no
commitment to one or more of the definitions involved. Once again, as
a temporary state of affairs during the exploratory stage of theory
development this situation need not be particularly objectionable. But,
of course, by the time the theory has reached its definitive form all
loops will have had to be eliminated.

When conceptual clarification has progressed to the point where logical
formalisation becomes a meaningful option the explorations and
debates that can lead to definitional circularity will normally have come
to an end.  At that point the hardest conceptual work that goes into
developing the given theory will have been done as well. But this does
not mean that logical formalisation should be seen as little more than a
logician's pass time, from which nothing of substance can be learned
that could not have been gathered just as easily from the theory before
it is formalised. Within mathematics formalisation has led to numerous
results that are not just of interest to formal logicians but are
considered important by the community of mathematicians who deal
with the branch of mathematics to which the given theory belongs, and
who may have no particular interest in formal logic as such. Within the
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empirical sciences formalisation has led to many important new
insights too. Perhaps the single most important advance that has been
achieved in this way within the general domain of empirical sicence is
the formalisation of the concept of probability by Kolmogorov (1903-
1987) (About the Analytical Methods of Probability Theory, 1831).
Probability has become a central concept in all the empirical sciences,
since it enters almost invariably in evaluating the truth or tenability of
scientific hypotheses in the light of relevant data. Kolmogorov's
axiomatisation has given us an understanding of the essentials of
probability that, it seems fair to say, could not have been reached in
any other way.

Proof of the Craig Interpolation Lemma.

Our last act in this section is the promised proof of the Craig
Interpolation Lemma. (We remind the reader: an alternative proof can
be found in the Appendix to Ch. 1.)

Proof of the Craig Interpolation Lemma.

Let A and B are as in the statement of the Interpolation Lemma and
suppose that there is no C of L such that A  C and C  B.  We extend L
to a language L' by adding an infinite sequence {ci}i # N of new constants.
Similarly we extend, by adding this same set of constants, L1 to L'1 and
L 2 to L'2.  Let {Di+1} i # N be an infinite sequence of sentences such that (i)
the even-numbered sentences D2i constitute a complete enumeration of
the set of all sentences of L'1 and the odd-numbered sentences D2i+1 a
complete enumeration of the set of all sentences of L'1.  We proceed in
a way reminiscent of the completeness theorem, extending once more
given consistent sets in an infinite number of steps to maximal
consistent sets.   However this time we extend two sets in tandem and it
is not just the consistency of the individual sets that we are interested
in, but a kind of mutual consistency between them.  More precisely, we
generate two infinite sequences, a sequence {4 1i}  i #  N of finite but
growing sets of sentences from L'1 and a sequence {4 2i}  i # N of finite but
growing sets of sentences from L'2.  At each stage the pair
<  41i,, 41i> is "compatible modulo L' " in the following sense:

( 1 ) there is no sentence C of L' such that (i) 4 1i  C and
(ii) 42i C.
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Note that if (1) holds, then both 4 1i and 4 2i are consistent.  For suppose
e.g. that 41i were inconsistent.  Then 41i L', where L'  is some logical
contradiction of L'; but then we would also have
42i L', which would contradict (1).  Consistency of 42i is entailed for
the same reason.

Our initial sets are singletons: 41o  = {A} and 42o  = {  B}, and our first
task is to verify that these two satisfy (1).  This, however, follows
directly from the reductio assumption we have made about A and B.

The construction of the sequences {4 ji} proceeds as follows: At the even
steps 2.i we operate on the set 4 1,2.i and at the odd steps 2.i + 1 we
operate on the set 4 2,2.i+1.  We will state the rules according to which the
sets are modified only for the even steps.  The case for the odd steps is
entirely symmetric.

Step 2.i:

Consider D2.i.  (i) When (1) holds for 41,2.i  U {D2.i} and 42,2.i, then we
add D2.i to 41,2.i , and, as in the Completeness Proof, we
add, in case D2.i is an existential sentence
( vi)E, then we also add a "witness sentence"
E[ck/ vi], where ck is a constant which does not occur
in either 4 1,2.i or 4 2,2.i.  Much as in the case of the
Completeness Proof we can show that (1) is preserved
also in the case where 41,2.i+1 =
41,2.i  {D2.i, E[ck/ vi]}, given that it holds for the pair
<41,2.i , 42,2.i>.

( i i ) When (1) does not hold for 41,2.i  {D2.i} and 42,2.i,
then we add D2.i to 41,2.i: 41,2.i+1 = 41,2.i  {  D2.i,}.

We need to show that in each of the three cases condition (1) is
preserved.  Case (i) is automatic in case D2.i is not an existential
sentence.  Suppose instead that D2.i is the sentence ( v i)E.  In that case
is 41,2.i+1 = 41,2.i  {( vi)E,E[ck/ vi]}, with ck a constant not previously
used. Suppose that (1) fails for 41,2.i+1 and 42,2.i+1 = 42,2.i.  Then there is a
sentence C of L' such that

( 2 ) ( i ) 41,2.i  {( vi)E,E[ck/ vi]}  C,  and
( i i ) 42,2.i C
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From (2.i) we get that there is a sentence G #  4 1,2.i such that

( 3 ) {G, ( vi)E}  E[ck/ vi] C(ck)

(Here we have made explicit that C may contain the constant ck. )

Since ck does not occur in {G, ( vi)E}, (3) entails

(4) {G, ( vi)E} ( vi)(E C(vi)/ck)), and from this

(5) {G, ( vi)E} ( vi)E ( vi)C(vi)/ck),

(5) evidently entails

( 6 ) {G, ( vi)E} ( vi)C(vi)/ck).

On the other hand, since does not contain ck, (2,ii) entails

( 7 ) 42,2.i ( v i) C(vi)/ck),  and thus

( 8 ) 42,2.i ( vi) C(vi)/ck).

Thus ( v i) C(vi)/ck) is a sentence of L' which is provable from 4 1,2.i,
while its negation is provable from 4 2,2.i. This contradicts the
assumption that (1) holds for 4 1,2.i and 4 2,2.i.

Case (ii) is also somewhat different from the corresponding argument
in the completeness proof. The argument now takes the following form.

Suppose that (1) fails for 41,2.i  {  D2.i} and 42,2.i.  Then

( 9 ) there is a sentence C of L' such that 41,2.i  {  D2.i} C and
42,2.i  C.

Recall, however, that in this case we also have a failure of (1) for the
pair <41,2.i  {D2.i,}, 42,2.i>.  So

( 1 0 ) there is a C' of L' such that 41,2.i  {D2.i} C' and 42,2.i  C'.
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(9) and (10) entail on the one hand that 42,2.i  C and 42,2.i  C' and
thus that 42,2.i  (C v C').  On the other hand 41,2.i  { D2.i} C entails
41,2.i   D2.i C v C') and 41,2.i  {D2.i} C' entails
41,2.i  D2.i C v C').

These last two consequence relations jointly entail
41,2.i  (D2.i v  D2.i) C v C') and thus also 41,2.i C v C').  So there is a
sentence C'' of L' (viz. C v C') such that 41,2.i C''  and
42,2.i  C''.  So (1) fails for the pair <41,2.i , 42,2.i>, contrary to
assumption.

We now form 41 = {41i} i # N and 42 = {42i} i # N.  Much as in the proof
of the Completeness Theorem, we can show that (1) holds for the pair
<41, 42>.  This entails, as we have seen, that 41 is a maximal consistent
theory of L'1 and that 4 2 is a maximal consistent theory of L'2.  So, again
as in the Completeness Proof, we can convert 4 1 into a model M1 for the
language L'1 which verifies precisely the sentences of 4 1, and 4 2 into a
model M2 for the language L'2 which verifies precisely the sentences of
42.  We note the following:  M1 and M2 have the same universe.  For
recall that if we proceed as in the Completeness Proof, then the
universe U1 of M1 consists of equivalence classes [ci] 1, where ci is one
of the new constants of L' and 1 is the relation which holds between
constants ci and cj iff the sentence ci = cj belongs to 4 1.  Similarly, the
universe U2 of M2 consists of equivalence classes [ci] 2, where ci is one
of the new constants of L' and 2 is the relation which holds between
constants ci and cj iff the sentence ci = cj belongs to 4 2.  It is to be
stressed that in the present construction we take the elements of the
universes U1 and U2 to consist solely  of the new constants
ci #  L' \L. (This means that we need a separate clause to deterine the
denotations of the individual constants c # L1  L2.  But this is
unproblematic.  For instance, assume that c #  L1.  Then there is a
constant ci # L'\L such that ci = c # 4 1, i.e. c 1 c i.  In this case we can
unambiguously stipulate that cM 1 = [ci] 1.)  This entails that the two
universes are in fact identical, since the relations 1 and 2 coincide.
To see this, suppose for instance that ci 1 c j.  Then
ci = cj # 41.  But then also ci = cj # 42.  For if not, then, by maximality of
4 2, ci  cj # 4 2. But then there would be a sentence C of L' (viz. ci = cj) ,
such that 41  C and 42  C.  So (1) would fail for <41, 42>, which we
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know already that (1) holds for these sets.  Since ci = cj #  4 2, ci 2 c j.  In
the same way we show that if ci 2 c j, then ci 1 c j.

Not only do M1 and M2 have the same universes, they also assign the
same interpretations to each of the non-logical constants of L'.  For the
new constants ci this is immediate:  [ci]M 1 is the equivalence class
[ci] 1 and [ci]M 2 is the equivalence class [ci] 2, but these equivalence
classes are the same.  Now consider any non-logical constant $  of L. Let
us for simplicity assume that $  is a 1-place predicate P.  From the
construction of M1 we know that the extension of P in M1, [P]M 1,
consists of those equivalence classes [ci] 1 such that the sentence P(ci)
# 41.  And by the same token, [ci] 2 # [P]M 1 iff the sentence P(ci) # 42.
But again we can infer from the fact that (1) holds for <4 1, 4 2> that
P(ci) # 41 iff P(ci) # 42.  For if not then we would have, say, P(ci) # 41 and

 P(ci) # 42, so P(ci) would be a sentence C of L' contradicting (1).  For
non-logical constants of other types the argument is analogous.

We thus conclude that the reduction of M1 to L' is identical with the
reduction of M2 to L'.  This means that we can form the common
expansion M3 of M1 and M2 in that we add to their common reduction
(i) the interpretations in M1 of the non-logical constants of L1\L and
(ii) the interpretations in M2 of the non-logical constants of L2\L.  Since
M 1 is the reduction of M3 to L'1, A, which is a sentence of L'1, will have
the same truth value in M3 as in M1.  So A is true in M3.  An analogous
argument shows that B is true in M3. But this contradicts the
assumption that A  B.     q.e.d.

2.6.  Formalisations of Arithmetic

The first theory we looked at in this chapter aimed at giving as accurate
a description as possible of one particular structure, viz. the ordering
of the rationals.  In that case our effort was as successful as a first
order description of an infinite structure can be: the theory Trat we
formulated proved to be not only complete - in the sense that it
captured as theorems all that can be said truly about that structure in
the given first order language {<} in which Trat was formulated - it even
proved to be categorical in the cardinality of the target structure; every
countably infinite model of Trat, we found, is isomorphic to the
ordering structure of the rationals.
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The theories we have been looking at since then - lattices, distributive
lattices, boolean algebras, groups - have for the most part been
incomplete, and they were meant to be that. The aim of those theories
was to capture what is common to a whole range of similar but non-
identical structures, many of which differ from each other in ways that
can actually be expressed in the language of the theory.  In such cases
the common core - the theory which consists of all sentences of the
given language that are true in all the structures - is necessarily
incomplete. It was only in a few cases - when we considered the
theories of some particular orderings such as the ordering of the
integers and that of the natural numbers or the theories of the Tarski
Lattices of particular first order languages - that we were confronted
once again with questions of the form: "What is the theory of this
particular structure?

In this section we will focus once again on axiomatisation tasks
connected with particular structures.  We will be concerned with
axiomatisations of two structures that occupy a central place in both
pure and applied mathematics: (i) the structure of 'natural number
arithmetic', i.e. the structure consisting of the natural numbers with the
arithmetical operations + and . ; and (ii) the structure of 'real number
arithmetic', i.e. the structure of the real numbers, also with the
arithmetical operations + and . .  The main results about
axiomatisability of these two strutures are strikingly different, and at
first sight they seem to contradict each other. The axiomatisation we
will give for arithnmetic on the natural numbers will be, like any other
axiomatisation for natural number arithmetic, incomplete and
undecidable; these are the famous incompleteness and undecidability
results for natural number arithmetic that we owe to Gödel. (Gödel's
resuts will not be proved in this chapter). On the other hand, the
axioms that we will give for arithmetic on the real numbers provide us
with a complete axiomatisation of this kind of artihmetic. (For this
result an explicit proof will be given here.)

How can this be, one might be tempted to ask? For it would seem
obvious that airhtmetic on the real numbers is much richer than
arithmetic on the natural numbers? and that the first includes the
second as a part (and as a comparatively small and simple part at that).
To put this intuition into a more concrete form:  Couldn't one
determine whether any arbitrary statement of natural number
arithmetic is true by interpreting it as a statement of real number
arithmetic (which speaks only of a small part of the real numbers, viz.
the natural numbers) and then either derive or else refute this
statement (as a statemrent about the reals) from our complete axiom
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system for real number arithmetic?  That would give as a decision
method for number-theoretic truth; but that, Gödel proved, cannot be.
The just mentioned results about natural and real number arithmetic
thus entail that tstatements about antural number arithmetic cannot be
interpreted as statements about the arithmetic of the real numbers. But
why not? One of our tasks in this chapter will be to elucidate this
apparent contradition.

2.6.1   The Natural Numbers and Peano Arithmetic.

The arithmetical structure N  of the natural numbers consists of the
numbers 0,1,2, ... ad infinitum, with the familiar operations of addition
and multiplication.  Our task in this subsection is to describe this
structure by means of a first order theory.

Our first decision is to choose a suitable language.  As we have seen
repeatedly in this chapter, there usually is a certain freedom regarding
this choice: We can choose one set of 'primitives' and then define the
missing members of some other set in terms of them, or we can choose
the other set and use those to define the missing members of the first
set.  Also it is not always desirable to keep the set of primitives as small
as possible; it can be more perspicuous to choose a larger set, some
members of which could also be defined in terms of the others and thus
could have been dispensed with in principle.

This is the case for the language we will adopt for the description of  N .
With the help of the operations + and . we can, given the right axioms,
define a number of other notions, such as that of the number 0 (the
unique number x with the property that for any number y, y + x = y);
the number 1 (the unique number y such that y  y = y); the successor
function S, which assigns to each number the next one after it (this is
the function which maps each number x onto x + 1), and the relation <
(which holds between x and y iff there is number z  0 such that
y = x + z).  So none of these are absolutely indispensable.  However, it
has become standard practice to include both the constant 0 and the
successor function S among the non-logical constants of the language
of natural number arithmetic. Quite often the relation < is included as
well, but we won't do that here. So the language LPA in which we will
describe N  has besides the 2-place function constants + and . the
individual constant 0 and the 1-place function constant S, and that is it:
LPA = {0,S,+,.}.
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In the literature on formal natural number arithmetic the following
axiom set has gained wide currency.  It is known as '(First Order) Peano
Arithmetic', after the Italian mathematician Giuseppe Peano (1958-
1932), who first formulated a set of axioms much like these.  We refer
to the theory axiomatised by PA1-PA7 simply as 'PA'.

PA1. ( x) (x  0   ( y) x = Sy)2 8

PA2. ( x)( y) (Sx = Sy   x = y)
PA3. ( x) x + 0 = x
PA4. ( x)( y) x + Sy = S(x + y) )
PA5. ( x)  x . 0 = 0
PA6. ( x)( y) (x . Sy = (x . y) + x)
PA7. ( y1)..( yn)((A[0/x] & ( x)(A   A[S(x)/x]))  ( x)A),

where y1, .., yn are all the variables other than x which have
free occurrences in A.

The rationale behind these axioms is as follows.  The first two concern
only the constant 0 and the function S and say that 0 is the only
element that is not in the range of S and that S is 1-1.  These axioms
guarantee that 0 is the first of an infinite series of elements 0, S0, SS0,
.. all of which are different from each other, and thus that all models of
the axioms will be infinite. The next four axioms 'recursively define' the
operations of addition and multiplication - PA3 and PA4 do this for +,
PA5 and PA6 build on this definition in the recursive definition for . .
The specifications of these axioms can be regarded as recursive
definitions in that they specify an algorithm for computing the results
of these operations, reducing all instances ultimately of cases involving
0.  Thus PA3 and PA4 define n + m for any two numbers n and m, by
reducing the result via n + (m-1), n + (m-2), .... eventually to n + 0.
Likewise for PA5, PA6 and the terms 'n.m'.

This leaves PA7.  Here, for the first time, we are dealing not with a
single axiom, but with an axiom schema, which can be instantiated to
an infinite number of different axioms by substituting different
formulas of LPA for the schematic letter A. The idea behind this schema
is the following.  The structure of the natural numbers makes it
possible to prove that all natural numbers have a certain property P by
mathematical induction: Show (i) that 0 has P and (ii) that for any

2 8 Where there is no danger of confusion we will wríte 'St' instead of 'S(t)'.
Note that in the literature one often uses a prime ' instead of S.  Thus one writes ' t'
' instead of 'S(t)'. Thus, in partocular the term " 0' " will be a term denoting the
number 1.
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number x that has P Sx also has P.  That it follows from (i) and (ii) that
every natural number must have P can be argued in a number of
different (if fairly closely similar) ways.  One informal argument goes
like this: (i) tells us that 0 has P.  From this and one application of (ii),
taking x to be 0, we get that 1 has P.  From this and a second application
of (ii), now taking x to be 1, we get that 2 has P, and so forth.  In this
way we eventually reach every number n and establish that n has P.

Peano recognised that the Principle of Induction - that (i) and (ii)
suffice to show that all numbers have P irrespective of what P may be -
is one of the central characteristics of the natural number system.  And
he made it into the corner stone of his axiomatisation of N .  PA7' states
this principle with the force he intended it to have, but in the notation
of formal logic as we know it today.

PA7' ( P)(P(0) & ( x)(P(x) P(Sx)) ( x)P(x))

The problem with (1) is that it is not a formula of first order logic. It
isn't because it quantifies over the predicate symbol P.  This means that
P is a predicate variable and predicate variables are not part of first
order logic.  They are part of what is called 'Second Order Logic', a very
powerful extension of First Order Logic in which we can quantify not
only over individuals but also over sets of individuals. Second Order
Logic has formal properties that are very different from those of First
Order Logic.

We can use PA7' to obtain an axiomatisation of N  within second order
logic in which the other axioms are PA1-PA6.  In one sense this axiom
system is the perfect answer to our desire for an exhaustive description
of the properties of N .  For it has the property that any model of it is
isomorphic to N .  To see that this is so, we first need to make explicit
what is meant by a predicate quantification like that in PA7'.  The
standard semantics of quantifications over predicate variables is that
for any set X of individuals of the model M in which the formula
containing the quantification is evaluated there is a predicate that can
be a value for the variable and which has X as its extension in M.  This
means that predicate quantification comes to the same thing as
quantification over sets, more precisely: over arbitrary subsets of the
universe of the model.  In particular, PA7' can be stated equivalently in
the form PA7''.

PA7'' ( X)(0 # X & ( x)(x # X Sx # X) ( x) x # X)
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Given this interpretation of the quantification in PA7', we can argue as
follows.  Let M = <U,F> and M' = <U',F'> be two models of
{PA1-PA6, PA7'}.  Consider the universe U of M.  It contains denotations
in M of all the terms 0, S0, SS0, .. of LPA.  (We will refer to these terms
as the numerals  of LPA. Thus a numeral is a term in which the constant
0 is preceded by some number n of occurrences of the function
constant S, where n 0.) Let us denote the element of U that is denoted
in M by the term 'S...S0', in which '0' is preceded by n occurrences of
'S', as nM . Let NM  be the set of all u #  U that are denotations of
numerals :

N M  = {u # U: u = nM for some natural number n}
(= {u # U: there is numeral 5 of such that u = [[5]]M } )

Then NM is the extension in M of a possible value for the predicate
variable P in PA7'.  It is clear that when P ia assigned this extension in M,
then the formulas P(0) and ( x)(P(x) P(Sx)), which form the
antecedent of the conditional in PA7', are satisfied in M.  So it follows
that the consequent of the conditional is satisfied as well, i.e. ( x)P(x).
But that means that every element of the model belongs to NM and thus
is the denotation of some numeral.

This argument is just as applicable to M', so its universe too consists of
all and only the elements that are denotations of numerals. Given this it
is easy to define an isomorphism h from M onto M': for every numeral
5 , h([[5]]M ) = [[5]]M' .  (It follows from the argument above that h is
well-defined and onto, from PA1 and PA2 that h is 1-1, from the
definition of 'numeral' that h preserves S and from PA3-PA6 that h
preserves + and . .)

This means that the theory PA2 axiomatised by {PA1-PA6, PA7'} is
semantically complete: For any sentence A of LPA we have either
PA2  A or PA2 A. (For either N  A, but then, since all models of PA2

are isomorphic to N, for all M such that M  PA2, M  A; or else N  A ,
and so for all M such that M  PA2, M  A.  But unfortunately this is not
much help in deciding which sentences are true in N and which are
false.  For second order Logic has no complete proof procedure - there
is no completeness result for Second Order Logic comparable to the
completeness of First Order Logic we proved in Ch. 1.  In fact, it follows
from Gödel's Incompleteness Theorems that there can be no sound and
complete proof procedure for second Order Logic, for then we would
have a decision procedure for natural number arithmetic: to decide
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whether a sentence A is true or false in N , launch a simultaneous search
for a proof of A from PA2 and a proof of A from PA2 and go on until
one or the other is found; this must happen at some point in a
systematic proof search, since one of A and A must be derivable from
PA2.  But what Gödel proved is that there cannot be such a decision
procedure .

PA7' is thus too much of a good thing.  If we want to stay within First
Order Logic, which does have completeness, the best we can do is to
save from PA7' as much as can be expressed in first order terms.
Presumably PA7 is the best one can do towards this end (though it
seems hard to turn this intuition into a well-defined statement that we
might be able to demonstrate formally).  PA7 saves from PA7' all those
cases in which the value of the predicate variable P is a property that is
defined by some formula A(x) of the language LPA.  We write 'A(x)' to
indicate that we think of x as the 'predicate bearer': A(x) is to be
understood as the predicate that is true of an individual d in a model M
iff M A(x)[d]. This means that the interesting cases are those where A
has free occurrences of x.  (If x does not occur free in A, then the
'predicate' A is either true of all individuals in the model or else of
none.) On the other hand we allow A to have other free variables
besides x.  This form of PA7 is more comprehensive and thus gives a
stronger axiom system.  In some inductive proofs this extra strength is
actually needed and in many others, where it could strictly speaking be
avoided, it can be quite convenient. We will see an example of this in
our sample derivation below.

To prove general properties of the natural numbers from the Peano
axioms almost always involves induction, and thus an appeal to one or
more instances of PA7.  As an example we derive the 'commutative law
for +', i.e. the sentence ( x)( y) y + x = x + y.  This is a very simple
statement, which most people - and in particular non-mathematicians -
would be inclined to think hardly worth attention.  But even the
derivation of this intuitively simple law takes some doing.

The strategy we will follow is the following.  We will apply induction to
the property that is expressed by the formula A(x) ( y) x + y = y + x.
That is, we use the following instance of PA7:

(( y) 0 + y = y + 0  & ( x)(( y) x + y = y + x   ( y) Sx + y = y + Sx))
 ( x)( y) x + y = y + x   ( 1 )
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To derive the consequent ( x)( y) x + y = y + x of (1) we must prove
the two conjuncts that make up its antecedent. We begin with the first
conjunct :

( y) 0 + y = y + 0 ( 2 )

According to PA3 y + 0 = y.  But how do we prove that 0 + y = y?  This
requires another induction, this time wrt. y.  To this end we use the
following instance of PA7.  (Of course this involves renaming variables,
but we know we can always do that in the sense that every sentence
logically entails all of its alphabetic variants. See Section 1.2.? of Ch. 1)

0 + 0 = 0 + 0 & ( y)(0 + y = y + 0  0 + Sy = Sy + 0)  
( y) 0 + y = y + 0 ( 3 )

To prove the antecedent of (3) first observe that its first conjunct - 0 +
0 = 0 + 0 - is a logical truth.  To prove the second conjunct,

( y)(0 + y = y + 0  0 + Sy = Sy + 0), ( 4 )

assume that 0 + y = y + 0.  We must show that 0 + Sy = Sy + 0.  We
argue as follows. 0 + Sy =(PA4) S(0 + y) =(Ass) S(y + 0) =(PA3) Sy
=(PA3) Sy + 0.  This shows that 0 + y = y + 0  0 + Sy = Sy + 0 and so by
Universal Generalisation we get (4).  From (3) and (4) we get (2) by
M.P.

We now turn to the second conjunct of (1):

( x)(( y) x + y = y + x   ( y) Sx + y = y + Sx) ( 5 )

Suppose that

( x)(( y) x + y = y + x ( 6 )

We must derive from this

( y) Sx + y = y + Sx ( 7 )

Take any y.  By PA4 we have y + Sx = S(y + x), which by assumption (6)
equals S(x + y), which by another application of PA4 equals x + Sy.  But
unfortunately y + Sx =  x + Sy is not what we want; what we want is
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y + Sx = Sx + y.  There is nothing for it but to prove the missing
equality, x + Sy = Sx + y, separately, and that requires yet another
induct ion.

In other words we must prove

( x)( y) x + Sy = Sx + y ( 8 )

It is now convenient to take some arbitrary x and prove by induction
t h a t

( y) x + Sy = Sx + y ( 9 )

This requires another induction and thus another instance of PA7, to
wit

( x)((x + S0 = Sx + 0 & ( y)(x + Sy = Sx + y  x + SSy = Sx + Sy))
( y) x + Sy = Sx + y)29 ( 1 0 )

(10) entails the free variable formula (11)

x + S0 = Sx + 0 & ( y)(x + Sy = Sx + y  x + SSy = Sx + Sy)
( y) x + Sy = Sx + y ( 1 1 )

To prove (9) from (11) we have to prove the antecedent of (11).  Its
first conjunct is straightforward:

x + S0 =(PA4) S(x + 0) =(PA3) Sx =(PA3) Sx + 0

To prove the second conjunct,

( y)(x + Sy = Sx + y  x + SSy = Sx + Sy), ( 1 2 )

assume that x + Sy = Sx + y in order to show that x + SSy = Sx + Sy. We
have:

x + SSy =(PA4) S(x + Sy) =(Ass) S(Sy + x) =(PA4) Sx + Sy

This shows (12). From (12) together with the first conjunct of (11) we
get (9) and from this by Universal Generalisation (8). We already saw

2 9 Here we make use of the strong form of PA7, according to which A(x) may
have free variables other than the "induction variable" x,
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that with the help of (8) we can complete our derivation of (7) from
(6).  This completes the proof of (5) and thus of the second conjunct of
the antecedent of (1). (5) and (2) give us the desired conclusion
( x)( y) y + x = x + y.

q.e .d.

Exercise: Give a complete formal derivation of this result from the
axioms of PA, using the rules of MP and UG, together with the axioms of
predicate logic and previously proved logical theorems.

Exercise:  Prove from PA1-7 the following theorems:

( i ) ( x)( y) (x + y =  y + x)
( i i ) ( x)( y)( z) ((x + y) + z = (x + (y + z))
(iii) ( x)( y) (x . y =  y . x)
( iv) ( x)( y)( z) ((x . y) . z = (x . (y . z))
( v ) ( x)( y)( z) ((x + y) . z = (x . z) + (y . z))
(v i ) ( x)( y) (x = y v ( z)(z  0 & x = y + z) v

( z)(z  0 & y = x + z))

Exercise: In PA we can define the order relation between the natural
numbers by: ( x)( y)(x < y   ( z) x + Sz = y).

( a ) Show that for any numbers n and m, n is less than m (in the
standard sense) iff N  (( z) x + Sz = y)[n,m].

( b ) Interpreting 'x < y' as an abbreviation for '( z) x + Sz = y' prove
that the following are theorems of PA:

( i ) ( x)( y)(x < y (y < x))
( i i ) ( x)( y)( z)(x < y  & y < z x < z)
(iii) ( x)( y)(x < y  v  x = y  v  y < x)
( iv)  ( x)( y)(x < Sy  (x = y  v  x < y))
( v ) ( x)( y)( z)(x < y Sx < Sy)
(vi ) ( x)( y)( z)(x < y   x + z < y + z)
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Induction and Well-Foundedness

The validity of the method of mathematical induction rests on the fact
that the "less than" relation between natural numbers is well- founded .
This means that every non-empty set of natural numbers has a smallest
member, a number such that no other number in the set is less than it.
WF, in which X is assumed to range over subsets of N, expresses this
fact formally.

(WF) ( X) (X   ( z) (z # X & ( u)(u # X  & u  z   (u < z))))3 0

WF entails the Principle of Induction. Consider for instance the 'subsets
of N' version of the principle PA7''.  That PA7'' follows from WF is easy
to show.  Suppose that X is a subset of N such that (i) 0 #  X and (ii)

x)(x # X Sx # X).  Suppose for the sake of arriving at a contradiction
that it is not the case that X = N.  Then the set Y = N\X is non-empty.  So
according to WF Y has a smallest member yo.  Since by assumption
0 #  X, yo  0 . So yo must be a successor, i.e. there must be a number z
such that yo = Sz; obviously this entaikls that z < yo.  Since yo is the
smallest number of Y, z is not a member of Y and therefore a member
of X.  But then by property (ii) of X Sz - i.e. yo - must also be in X and
thus not in Y; and with thia we have our contradiction.

The relation between well-foundedness and the validity of the method
of proof by induction holds more generally.  First, well-foundednes is a
property that can be defined for arbitrary strict partial orderings.

Def. 15  Let <U,< > be a strict partial ordering.
<U,< > is well-founded iff every non-empty subset of U has a
minimal element.  Formally:

      ( X U)(X   ( z) (z # X & ( u)(u # X  & u  z   u < z)))

To this general notion of well-foundedness corresponds a more general
induction principle on partial orderings, As in Def, 15 let  <U,< > be a
strict partial ordering.

(GIP) ( X U)(( x # U)(( y # U)(y < x y # X) x # X) U X)

Prop.  6 GIP holds for all well-founded strict partial orderings.

3 0 For the 'definition' of "<" see the Exercise at the end of the last section.
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Prop. 6 can be proved in the same way as the special case we
considered above where <U, < > was the ordering of the natural
numbers .

The converse of Prop. 6 also holds: If GIP holds for <U,< >, then <U, < >
is well-founded.  The proof is left to the reader.

Well-foundedness is equivalent to the non-existence of infinite
descending chains.  An infinite descending chain in a strict partial
ordering <U,< > is a function f from the set of the natural numbers N
into U such that for all n f(n+1) < f(n). Clearly, well-foundedness of
<U,< > entails the non-existence of such chains.  For if there were such
a chain, then Ran(f) would be a non-empty set without a first element.
Conversely, if <U,< > is without infinite descending chains, then <U,< >
must be well-founded.  For suppose <U,< > were not well-founded.
Then there would be a non-empty subset X of U without a minimal
element. Let xo be any element of X.  We put f(0) = xo.  Since xo is not a
minimal element of X, there is an element x1 in X such that x1 < xo.  Put
f(1) = x1. Since x1 is not minimal, there must be an element x2 in X
such that x2 < x1. So we can put f(2) = x2; and so on ad infinitum.  In
this way we obtain an infinite descending chain f.  (Warning: this
second argument involves the Axiom of Choice.  See Ch. 3 for
discussion.)

Inductive proofs on well-founded partial orderings are very common in
formal logic.  We already encountered many examples of this, in
particular in all those cases where we found it necessary or convenient
to prove results by induction on the complexity of formulas. The partial
order invoked in those proofs is that which holds between two
grammatical expressions whenever the first is a constituent of the
second. That such relations are always well-founded is plain: The easiest
way to see this is to consider a well-formed expression together with all
its syntactic constituents, Obviously there are no infinite descending
chains of expressions, no infinite sequences of expressions in which
each next element is a constituent of the last one.  For each expression
is built from basic expressions in a finite number of steps; so when we
decompose an expression into its constituents, then we will get again to
the bottom also in a finite number of steps.

As an example consider a language L of propositional logic with
propositional constants po, p1, .. and connectives , &, v, , .  The
constituent relation between formulas of this language is of course
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well-known by now, but for present purposes we will define it once
again explicitly.  We do this by first defining the relation of immediate
consti tuency . The immediate constituency relation <ic for formulas of
the given language consists of all pairs of the following forms:

<A, A>, <A, (A & B)>, <B, (A & B)>, <A, (A v B)>, <B, (A v B)>,
<A, (A  B)>, <B, (A  B)>, <A, (A  B)>, <A, (A  B)>,

The general relation of constituency <co , which holds also between A
and B when A is not an immediate constituent of B, but, for instance, an
immediate constituent of an immediate constituent of B, is defined as
the transitive closure of <ic. That is: <co holds between two formulas A
and B iff there is a finite chain of formulas Co = A, C2, ... Cn = B, with n

1, so that for all i, Ci <ic Ci+1.

Let U be the set of all formulas of L. Since <U,<co >is well-founded, we
can use GOP to prove that all formulas in U have a certain property P.
Here is an example of such a property.  Let NPC(A) be the number of
occurrences of propositional constants in A and NBC(A) the number of
occurrences of binary connectives in A. Then P is the property defined
in (1)

NPC(A) = NBC(A) + 1 ( 1 )

To prove that all formulas of L have P, suppose that X is the set of all
formulas in U that have P.  We show that

( A # U)(( B # U)(B <co  A B # X) A # X) ( 2 )

Suppose that A is any formula and that ( B # U)(B <co A B # X).  We
must show that A #  X.  First suppose that A is a propositional constant.
Then NPC(A) = 1 and NBC(A) = 0, so (12) is satisfied and A # X.

Second suppose that A is of the form C. Then C <co A. So C # X and
thus (12) holds for C.  But then clearly (12) also holds for A, since
adding a negation sign changes neither NPC nor NBC.  So A # X.

Finally suppose that A is built from two immediate constituents C and
D, combined via a binary connective.  For instance let A = (C & D).
Then C <coA and D <co A, so by assumption C, D # X and therefore
(12) holds for C and for D.  Furthermore
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NPC(A) = NPC(C) + NPC(D) ( 3 )

a n d

NBC(A) = NBC(C) + NBC(D) + 1 ( 4 )

So NPC(A) = NPC(C) + NPC(D) =(Ind.Hyp.) (NBC(C) + 1) +
(NBC(D) + 1) = (NBC(C) + NBC(D) + 1) + 1 = NBS(A) + 1.

So once more A # X.

This concludes the proof of (2).  With GIP we conclude that X = U, i.e.
that all formulas have the property P and thus satisfy (1).

q.e .d.

Another way to justify the method of proof by induction on well-
founded partial orderings is to reduce it to induction on the natural
numbers via the notion of rank .

Def. 16 (of rank)

Suppose that <U, < > is a well-founded strict partial ordering.  Then we
can assign elements x of U a rank by the following condition::

( i ) If for no y e U, y < x, then rank(x) = 0.

( i i ) Otherwise rank(x) = max({rank(y): y < x}) + 1

In general it is not clear that this will assign a rank to every element of
U. For it is in principle possible that certain elements have 'infinite
rank;. (For details see Ch. 3.).  But in the case considered above, and
similarly for all other cases where we have proved results by induction
on partial orders so far in the Notes, every element of the ordering has
'finite rank', and in that case the interpretation of Def. 16 is
unproblematic, and each element of U is assigned a finite number.

Given that all members of U have finite rank we can prove that all
members of U have a certain property P by using induction over NN   t o
prove the following related property P' of natural numbers n, defined
b y

P'(n) iff ( x # U)(rank(x)  n P(x))
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It is straightforwardly verified that the following two statements are
equivalent:

( i ) The instantiaton of GIP to the set X of all members of U that have
P;

( i i ) The instantiaton of PA7'' to the set X of all n that have P'.

Exercise: Check this for the example discussed above in which P is the
property given by (1).

Extensions of PA and Non-Standard models of Arithemtic

It follows from Gödel's Incompleteness Theorems that PA is essentially
undecidable: every consistent axiomatisable extension of PA is
undecidable.  Exactly what is meant by 'axiomatisable' here is
something that we cannot properly account for with the means
available to us.  (Any account will presuppose a certain amount of
Recursion Theory and as things stand,  Recursion Theory is entirely
missing from these Notes.)  But for what we want to say here it suffices
to note that finitely axiomatisable extensions of PA  - extensions
obtained by adding a finite number of axioms to those of PA - are
axiomatisable extensions in the relevant sense.  So it is true in
particular that all finitely axiomatisable extensions of PA are
undecidable.

This entails that every consistent finitely axiomatisable extension of PA
must be incomplete.  For suppose T = CLLPA(PA {A1,..., An}) were
consistent and complete.  Then we would have the following decision
procedure for T:  for any sentence B of LPA start simultaneously a
search for a derivation of B from T and a search for a derivation of B
from T.  A search for such a derivation can be set up in such a way that
if there exists a derivation, then it will eventually be found: just
enumerate all finite lists of sentences of LPA and check whether they are
correct derivations from T and whether they yield the target sentence
as a theorem. When no finite list is left out by the search, the proof
must be turned up at some point.  Since by assumption T is complete,
there must either exist a derivation from it of B or a derivation from it
of B.  So if both searches are carried out in tandem, then a proof of
one of the two formulas will eventually turn up and that then tells us
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whether B is a theorem of T: It is if the derivation that has been found is
of B itself; it is not if the derivation is of its negation.

The fact that no finitely axiomatisable extension of PA is consistent and
complete, means that the Tarski lattice TLPA,PA is very rich.  On the
other hand, part of it admits of a comparatively simple
characterisation.  Let A1, A2,... be a complete enumeration of all
sentences of LPA. Pick the first sentence A from this list that is neither
provable nor refutable in PA and form the to extensions PA<0> =
CLLPA(PA {A}) and PA<1> = CLLPA(PA { A}).  (From now on we refer
to a sentence that is neither provable nor refutable form a given theory
as independent from T.) Both extensions will be consistent and
incomplete. Consider PA<0>. Since it is incomplete, there will be
sentences that are neither provable nor refutable from it.  Let A<0> be
the first of these in our list. We form the extensions PA<0,0>=
CLLPA(PA<0> {A<0>}) and PA<0,1> = CLLPA(PA<0> { A<0>}) of
PA<0>.  Similarly we can form consistent, but necessarily incomplete
extensions PA<1,0>= CLLPA(PA<1> {A<1>}) and PA<1,1> =
CLLPA(PA<1> { A<1>}) of PA<1>.  Each of these four theories can
then be extended in its turn into a pair of consistent, incomplete and
mutually incompatible theories, and so on.  In this way we obtain an
infinitely branching binary tree all of whose branches are infinite.

Each branch B determines a theory TB consisting of all sentences that
belong to some node of the tree.  (Exercise: prove that TB is a theory.)
Let us denote the successive nodes of B as TB,1, TB,2, .. . It is obvious
that TB is consistent.  For its successive nodes are increasing in strength
- for all n TB,n TB,n+1. So if a contradiction were derivable from TB, it
would be derivable from some TB,n, which is impossible since TB,n i s
consistent.  Second, TB is complete. For let C be any sentence of LPA.
Then C occurs somewhere in our list, say C = Ak. Then during the
construction of the first k nodes TB,1,.., TB,k of B C must have been
considered at least once as a possible candidate for extending the
theory TB,i that was up for extension.  At that point there were two
possibilities (a) C was independent from TB,i.  Then either TB,i+1 =
CLLPA(TB,i {C}) or TB,i+1 = CLLPA(TB,i { C}), so either C or C
belongs to TB. (b) C was not independent from TB,i.  That means that
either C or C belongs to TB,i; so again one of C and C belongs to TB.

Furthermore, it is easy to show (i) that no TB is finitely axiomatisable
over PA - this follows from the fact that the theories are strictly
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increasing in strength - and (ii) that if B and B' are different branches,
then TB TB' - there must be some node T in the tree where B and B'
part company and the two daughters R' and T'' of T that belong to B
and B', respectively, will then differ in that for some sentence C, T'
contains C and T'' C. We conclude that there is a 1-1 correspondence
between the complete consistent extensions of PA and the branches of
our tree.  From this we can infer that the cardinality of the set of all
complete extensions of PA is that of the power set P (N) of the set of
natural numbers N.

So our tree gives a complete description of the complete extensions of
PA.  But it is not by any means an exhaustive representation of TLPA,PA.
For one thing the extensions it represents, by its nodes and by its
branches, are either finitely axiomatisable over PA (the nodes) or else
complete (the branches).  However, there are also many incomplete
extensions of PA that are not finitely axiomatisable.  Also, which finitely
axiomatisable extensions turn up as nodes of the tree depends on the
enumeration A1, A2,.. of the sentences of LPA.  And each enumeration
will leave some of them out.

Exercise: Let the enumeration A1, A2,.. and the tree T of extensions of
PA constructed on the basis of that enumeration be as described above.

( a ) Show that the cardinality of the set of branches of T  is that of the
power set P (N). (Hint: Show that there is a 1-1 correspondence between
the set of branches and the set of all denumerably infinite sequences of
0's and 1's. Note that there is a 1-1 correspondence between the
countable sequences of 0' and 1' on the one hand and the subsets of N
on the other.)

( b ) Show that for every complete and consistent extension T of PA
there is a branch B of T such that T = TB.

( c ) Show that there are incomplete extensions of PA that are not
finitely axiomatisable over PA.

( d ) Show (i) that there are finitely axiomatisable extensions of PA that
do not occur as nodes of T .

The second topic of this section concerns the models of PA. Models of
PA that are not isomorphic to the standard model N  are usually referred
to as non-standard  models. Even when we stay within the realm of the
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denumerably infinite, the variety of models is very great.  First, since PA
is incomplete, many models differ from N in that they do not even
verify the same sentences.  Such models will not be considered here.
Instead we concentrate on non-standard models of the theory Th(N ) ,
consisting of all sentences of LPA that are true in N . Even of such models
there exists a great variety.  (The cardinality of the set of isomorphism
types of denumerable models of Th(N ) is again that of P (N).) Here we
will only show how certain non-standard models of Th(N ) can be
constructed with the comparatively simple methods that are available
to us.

The geneRAL method we will use consists in adding new individual
constants to the first order language of the theory of departure and
adding new sentences involving those constants to the theory.  In the
case at hand the language is LPA and the theory is Th(N ) .

First a matter of terminology.  The numerals of L PA are the terms 0, S0,
SS0, ... - in other words, all terms of the form S...S0 consisting of the
constant '0' preceded by zero or more occurrences of the symbol 'S'.
Note that in the standard model N  every individual is the denotation of
some numeral: If n # N, then n = [[5n]]N , where 5n is the term consisting
of one occurrence of 0 preceded by n occurrences of S.

We begin by adding just a single constant c to LPA, thus obtaining the
language LPA {c}, which we will denote for simplicity as L(c). Let S be
the set Th(N ) together with all sentences of the form c  5 , where 5  is a
numeral of LPA: S = Th(N) {c  5: 5 a numeral of LPA}.  It is easy to
show that S is consistent.  For this it suffices to show that Th(N )
together with any finite subset of {c  5: 5  a numeral of LPA} is
consistent. Sol et S' be such a finite subset. Let k be the largest number
n such that the numeral 5n occurs in the sentences of S'. Expand N to a
model N ' for L(c) by adding that interpretation of c which assigns it as
its denotation the number k+1. Then the sentences of Th(N ) are true in
N ' for the same reason that they are true in N  and the sentences in S'
are true in N ' since the numerals they contain all denote numbers that
are distinct from the denotation of c. So S' has a model and thus is
consistent .

Since S is consistent, S has a model.  And since any model of S will be
infinite - this is because all models of Th(N ) are necessarily infinite - it
has a denumerably infinite model.  Let M be such a model.  Then M is
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not isomorphic to N .  To see this, let us consider what an isomorphism
h from N  into M would have to be like. We begin by observing that
every numeral will denote a unique element of M. We refer to the
denotations of 0, S0, SS0, .., Sn0,.. in M as 0M , 1M , 2M ,., nM ,.. . It is
clear that the number 0, which is the element of N  that is the
denotation in of the constant '0', can only be mapped by h onto the
element 0M  of M. For if h is to be an isomorphism from N to M, then it
must preserve in particular the denotation of '0'. So we have: h(0) =
0M . By the same token, the number 1 can only be mapped onto 1M ,
since 1 and 1M are the denotations in N and M, respectively of the term
'S0'; the same applies for the numbers 2,3,.. and the elements 2M , 3M
of M; and so on ad infinitum.  So we have for every natural number n in
N that h(n) = nM .

This specifies h for all of N.  But the range of h will not consist of all of
M.  For the truth in M of all the sentences in S entails that the
denotation of c is different from all denotations of numerals in M and
thus from all elements in the range of h.  It is not hard to verify that h
is indeed an isomorphism.  (The axioms PA3-PA6 fix the extensions of +
and . in both N  and M in terms of the extensions of 0 and S. So if the
latter are preserved by h, then so are the former.)  But h cannot be
onto M. Since there can be no isomorphism from onto  M, N  and M are
not isomorphic.

It would be natural to try and push this method further to show that
there are more isomorphism types of denumerable models of Th(N )
than the two we have so far identified.  But that is not easy.  Additional
or alternative techniques are needed to make further progress on this
particular question, and many others like that.  We do not pursue this
issue any further here.

2.6.2.        Arithmetic on the Reals.

We now turn to arithmetic of the real numbers.  We mentioned in the
introduction that this arithmetic admits a complete axiomatisation.
Again the choice of a first order language in which the axiomatisation is
to be formulated leaves some latitude.  We follow the standard in
adopting as language the language LRea = {0,1,+,.,<} (where 0 and 1 are
individual constants, + and . are 2-place function constants and < 2-
place predicate).  Let R  be the structure of the real numbers cast in hte
form of a model for the language LRea.  That is, R  = <R,0 ,1 ,+ , . ,< > ,
where R is the set of real numbers and 0 ,1 ,+ , . and < are the number
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zero, the number one, the operations of addition and multiplication on
the reals and the standard ordering of the reals, respectively.

The theory TRea in the language LRea that we will consider is also
standard. Its axioms are REA1-REA18.

REA1. ( x)(x + 0 = x )
REA2. ( x)( y) (x + y =  y + x)
REA3. ( x)( y)( z) ((x + y) + z = (x + (y + z))
REA4. ( x)( y)( z)( x = y + z)
REA5. ( x)  (x . 1 = x)
REA6. ( x)( y) (x . y =  y . x)
REA7. ( x)( y)( z) ((x . y) . z = (x . (y . z))
REA8. ( x)( y)((y  0  ( z)( x = y . z))
REA9. ( x)( y)( z) ((x + y) . z = (x . z) + (y . z))
REA10. ( x)( y)(x < y y < x))
REA11. ( x)( y)( z) (x < y & y <  z x <  z)
REA12 ( x)( y)(x = y  v  x < y  v  y < x)
REA13. 0  <  1
REA14 ( x)( y)( z)(y <  z    x + y  <   x + z)
REA15 ( x)( y)( z)(x < 0  &  y <  z   x . z  <  x . y)
REA16. x)(0 < x     ( z)( x =  z . z))
REA17. ( ao) .. ( a2n+1)( a2n+1  0 

( x)(a2n+1.x2n+1 + a2n.x2n + .. + ao = 0),

for all n, where " xn " is short for x.x. ... .x
(multiplication of x with itself n times)

REA18. ( x1) .. ( xn)(x12 + ... + xn2  -1), for all n

The models of TRea are known among algebraists as real-closed fields.

Note that the last two axioms are, like PA7 in our formalisation of the
arithmetic of the natural numbers, schemata:  They are not single
sentences of the language but infinite collections thereof.  Once again
this is essential; there are no finite axiomatisations of R  in LRea that are
equivalent to the axiomatisation presented.
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As in the case of PA, it is not too difficult to see that all axioms REA1-
REA18 are true in the model R that TRea is meant to describe.  No more
than standard high school knowledge is needed to verify all but REA17.
REA17 expresses the fact, the proof of which requires a certain amount
of algebra, that every polynomial in and 'unknown' x in which the
highest occurring power of x is odd takes on the value 0.  (This has to
do with the fact that such polynomials always become negative for
sufficiently large negative values of x and positive for sufficiently high
positive values of x, together with the Mean Value Theorem for
continuous functions on the reals. We do not go into the details here.)

We noted in Chapter 1 that the set of the real numbers is non-
denumerable: There are as many real numbers as there are sets of
natural numbers. Since TRea is a first order theory, it will also have
denumerable models.  In neither cardinality - that of the reals or that of
the denumerable sets - is TRea categorical.  For the case of the reals
themselves this can be easily shown by the same trick which we used to
show the existence of non-standard models of arithmetic.  The standard
model R  of TRea has a property reminiscent of the property of   N  we
used to show the existence of a non-standard model of Th(N ) and
which is known by the name archemedean  (after the great Greek
mathematician Archimedes.) R  is archemedean in that for every real
number r there is a natural number n such that r < +n, where '+n' is
short for '1 + ... + 1 n times'. i. e. for the term of LRea in which '1' is
followed by n-1 occurrences of '+ 1', and -n is the unique number such
that (-n) + (+n) = 0.  The existence of a non-standard model of TRea,
which is not isomorphic to R , follows from the fact that the following
set S of sentences of the language TRea  {c} is consistent:
S = Th(R)  {+n < c: n # N}.  Clearly no model of S is archemedean. So,
since S has models of any infinite cardinality, it will have a non-
archemedean model M of the same cardinality as R .  M cannot be
isomorphic to R , since the denotation in R of any term +n must be
mapped by any isomorphism h onto the denotation of +n in M.  But that
will mean that no matching element to cM can be found in R . Dor
suppose that h(r) = cM .  Since is archemedean, there is an n such that r
satisfies the formula "x < +n" in  R . But on the other hand the sentence
"+n < c" is true in M. so r stands in the relation <  to the denotation of
+n in R  whereas cM  does not stand in the relation <M  to (+n)M  in M.
Thus h would not preserve <.

A similar argument is also possible for the denumerable case, provided
we can show that TRea has denumerable models that are archemedean.
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This can be done.  But it requires some techniques we haven't
developed.  So we will let this matter rest.

The remainder of this section will be devoted to a proof of the
completeness of TRea. This proof rests in part on deep properties of
real-closed fields and otherwise on general results and arguments in
general Model Theory.  We closely follow the proof presented in
(Hodges, 1993), which has the merit of separating the algebraic and
model-theoretic components of the argument very clearly.

As in (Hodges,1993) we take the following two facts about real-closed
fields for granted. Fact 2 is a 'deep' fact about real closed fields, and an
algebraist would properly argue that that is really the crux of the entire
argument. We also follow Hodges in using sometimes capital letters A,
B, C, .. to denote models.  Given the need that will arise more than once
to talk about three models at once, this is somewhat more perspicuous
than using M, M', M'', .. , as we have done so far.

Fact 1.

Let M be a model of TRea and let p(x, y1,..,yk) be polynomial in x and
the parameters y1,..,yk - i. e. a term of LRea which has occurrences of x
and y1,..,yk (where k 0, so the case without parameters in included)
and which is of the form "an.xn + an-1.xn-1 + .. + ao", where the ai a r e
terms of LRea not containing x - and two elements u1 and u2 of M such
that u1 <M  u2 and M p(u1).p(u2) < 0.  Then there is an element u in M
sich that u1 <M  u <M  u2 a n d
M p(u) = 0.

Fact 2.

Let A be real-closed field, i.e. A is a model for LRea such that
A TRea and C an ordered subfield of A, i.e. a submodel of A which
satisfies the axioms of an ordered field, that is REA1-REA15. Then there
exists an extension of C to a real closed field A' within A that is
'minimal' in the following sense:

( 0 ) C A' A, A' TRea and if B is a model of TRea such that C B ,
then there is an isomorphic embedding f of A' into B which is the
identity on C.

The strategy of the proof is as follows.  We prove that TRea has
Quantifier Elimination (QE) and from this that the theory is complete.
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Def. 17 A theory T of a language L has Quantifier Elimination iff for
every formula A(y1,..,yk) of L there is a quantifier-free formula
B(y1,..,yk) such that T y1 yk A  B).

To prove that T has QE it suffices to show

( 1 ) For every quantifier-free formula B(x,y1,..,yk)of L there is a
quantifier-free formula C(y1,..,yk) such that

T y1 yk x B(x,y1,..,yk)  C(y1,..,yk)).

That (1) entails that T has QE is easily verified.  Let A(y1,..,yk) be as in
Def. 17, and let Q 1x1 Q mxm D(x1,..,xm, y1,..,yk) be a formula in
prenex normal form that is logically equivalent to A, where D is
quantifier free and for each i = 1,.., k, Qi is either  or .   We can of
course always arrange for this to be so, by renaming.) Suppose first
that Qk is .  Then because of (1) there is a quantifier-free formula
D m (x1,..,xm-1, y1,..,yk) so that

(2)  T y1 yk xm)D(x1,.,xm,y1,..,yk)  Dm(x1,.,xm-1,y1,.,yk)).

The equivalence (2) entails that in (3), where we have replaced
xm D(x1,..,xm , y1,..,yk) by Dm (x1,.,xm-1,y1,.,yk) in the normal form for

A:

( 3 ) T Q1x1 Qmxm D(x1,..,xm, y1,..,yk) 
Q1x1 Qmxm-1 Dm(x1,.,xm-1,y1,.,yk)

In case Qm is , we proceed analogously, but making use of the
equivalence between and :  According to (1) there is a quantifier-
free D'm (x1,.,xm-1,y1,.,yk) such that

( 4 ) T y1 yk xm) D(x1,.,xm,y1,..,yk)  D'm(x1,.,xm-1,y1,.,yk)).

So defining Dm(x1,.,xm-1,y1,.,yk) as D'm(x1,.,xm-1,y1,.,yk)), we get

( 5 ) T y1 yk xm)D(x1,.,xm,y1,..,yk)  Dm(x1,.,xm-1,y1,.,yk)).
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Again (5) enables us to eliminate the innermost quantifier Q m xm f r o m
the normal form.  In this way we continue until all quantifiers have
been eliminated and we have found a quantifier-free formula
D 1(y1,.,yk) that is provably equivalent in T to the normal form of A and
thus also to A itself.  So T has QE.

Before we go on, here is a brief comment on the two Facts we have
stated. It is important to realise that these are facts about the theory
T Rea: What is claimed here is that the facts hold in any model of TRea,
not just in its standard model, or perhaps one or two other models
familiar from Field Theory as a branch of Analysis or Algebra. Thus
there is an important difference in particular between Fact 1 and the
appeal to the Mean Value Theorem that we made when discussing the
truth of the axioms of TRea in R . The proof we appealed to there can
make use of any acknowledged form of argumentation that
mathematicians as legitimate for proving results about the reals.  Ín
contrast, the claim made by Fact 1 is that there exists a formal
derivation of the fact claimed from TRea - i.e. an axiomatic derivation in
the sense of Ch. 1 or the construction of closed semantic tableau in the
sense of the Appendix to Ch.1. So establishing these facts requires
careful checking that all steps can be justified by the axioms REA1-
REA18.

To prove that TRea has QE we need two intermediate steps.  First we
derive the following two properties of TRea:

( 6 ) Let A, B be models of TRea and that A B. Suppose that
D(x, y1,..,yk) is a quantifier-free formula of and that a1,..,ak are
elements of A. Then if B x D(x, y1,..,yk)[a1,..,ak], also
A x D(x, y1,..,yk)[a1,..,ak].

( 7 ) Suppose that A TRea and C a submodel of A.  Then the condition
of Fact 2 is fulfilled:  There exists an A' such that

( 0 ) C A' A, A' TRea and if B is a model of TRea such that C B ,
then there is an isomorphic embedding of A' into B which is the
identity on C.

Proof of (6)   Suppose that A,B, D are described in (6) and that
B x D(x, y1,..,yk)[a1,..,ak]. We make use of the fact that because we
are dealing with the language and theory of rela-closed fields,
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x D(x, y1,..,yk) can be written in a special form.  First, we note that,
quite generally, D(x, y1,..,yk) can be written in disjunctive normal form
and the existential quantifier then distributed over the disjuncts.  So it
suffices to show that if B verifies on of the disjuncts, then A does too.
Each disjunct will be of the form

( 8 ) x ($1 & .. & $r)

where the $ j are literals of LRea - atomic formulas or negations of
atomic formulas.  Note that atmoic formulas of are either equations .  =
/ or inequalities .  < /, where .  and / are terms of LRea.

Our next observation is that TRea allows us to replace the negations of
atomic formulas by disjunctions of atomic formulas:  (.  = /) is
provably equivalent to .  < / v / < . and (.  < /) to .  = / v / < . .  When
we substitute these disjunctions for the negative literals in (8), we get a
conjunction of disjunctions following the quantifier x This
conjunction can be transformed once more into a disjunctive normal
form and the quantifier distributed once more over the disjuncts so
that we end up with a disjunction of formulas of the form (8) where
now the $ j are all positive literals.

It now helps to think of the terms .  and /  that occur in these atomic
formulas as polynomials in x and to think of the elements a1,..,ak f r o m
A as 'parameters' of these polynomials.  (If we want to be very formal,
we can extend the language LRea to a language L' = LRea {a1,..,ak} ,
where a1,..,ak are new individual constants and expand A and B to
models of L' by adding the specification that ai denotes ai.) This means
that the conjuncts of (8) are either of the form p(x) = q(x) or of the
form p(x) < q(x), where p and q are polynomials in x with coefficients
built from the constants 0,1, a1,..,ak.  As a next step we can, by familiar
algebraic manipulations of which it can easily be seen that they can be
justified in TRea, Transform atomic formulas of the form p(x) = q(x)
into atomic formulas of the form r(x) = 0 (essentially by 'subtracting q
from p or vice versa, though the matter is a little more involved, since
we haven't introduced - as a separate operation into our language, and
similarly reduce formulas of the form p(x) < q(x) to formulas of the
form r(x) > 0.  This turns (8) into a formula of the form:

( 9 ) x (p1(x) = 0 & .. &pm(x) = 0 & pm+1(x) >0  & .. &pr(x) > 0 )
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We now distinguish two cases.  (i) First suppose that there is at least
one non-trivial equation among the conjuncts.  Here 'non-trivial' means
that not every element of A is a solution ot the equation, i.e. every
possible assignment to x verifies the equation in A.  It is a well-known
fact of real-closed fields that if a polynomial equation is non-trivial inm
this sense, then it has only finitely many solutions; moreover, any
solution that exists in a real-closed field that extends A already exists in
A.  (This is really what 'real-closed' means, and it follows directly from
the definitions of the notion that are found in mathematics. if real-
closed fields are defined as the models of TRea, then more work is
necessary here.  of course that work needs to be done one way or
another, for as we remarked above, models of is what we are concerned
with, whatever we choose to call them.  It too belongs to the results
that we are taking for granted here, but that an exhaustive proof would
have to supply.  (As should be intuitively clear, the crucial part in
demonstrating this fact is played by the solution axioms REA17.)

Suppose then that the equation pi(x) = 0 (1  i m) is non-trivial.  Since
by assumption B  (9) there is an element b in B such that

( 1 0 ) B p1(x) = 0 & .. &pm(x) = 0 & pm+1(x) > 0  & .. &pr(x) > 0)[b]

Since b is a solution of  pi(x) = 0 in B b must by the remark above
belong to A.  Furthermore, all the other equations and inequalities of
(9) are also satisfied by b in B and thus, since they are all quantifier-
free, will be equally satisfied by b in A.  So we have

( 1 1 ) A p1(x) = 0 & .. &pm(x) = 0 & pm+1(x) >0  & .. &pr(x) > 0)[b]

From this we can conclude

( 1 2 ) A x p1(x) = 0 & .. &pm(x) = 0 & pm+1(x) > 0  & .. &pr(x) > 0),

which concluds the first case.

The second case is that where there are no non-trivial equations in (9).
In this case, (9) reduces to

( 1 3 ) x (pm+1(x) > 0  & .. &pr(x) > 0 )

We now make use of Fact 1.  Let b1, ... bs be all the solutions of the
equations pm+1(x) = 0, .., pr(x) = 0 in B, given in order of magnitude in
B. (I.e. er have  b1 <B b2,. .)  For the same reason that was mentioned in
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the argument for case (i) all of b1, ... bs belong to A. Moreover, since
these are all the solutions to these equations, there will bee no other
switches from positive(negative to negative/positive values of any of
the polynomials pm+1(x),.., pr(x). Since by assumption B verifies (13),
there is a b in B such that

( 1 4 ) B (pm+1(x) > 0  & .. &pr(x) > 0)[b]

this element b will be situated somewhere with regard to the sequence
of elements b1, ... bs, e.g. between bj and bj+1; that is, bj <B b <B bj+1.
This means that in B b verifies all the inequalities occurring as
conjuncts in (14).  Since b1, ... bs are all the places where any of the
polynomials pm+1(x),.., pr(x) changes sign, the formula (14) will be
satisfied by any element in the interval (bj,bj+1), whether in A or in B.
There must be elements in (bj,bj+1) in A, since the order relation in any
real-closed filed is dense.  (This is yet another thing that must be
derived from TRea, but this is quite straightforward.) Any such element
a will satisfy the formula in (9) in A.  So we get:

( 1 5 ) A ( x (pm+1(x) > 0  & .. &pr(x) > 0)

and so, in the light of the assumptions of case (ii), we have once more
(12) and we are done.

We now proceed to the proof of (7)

Let A and C be as stated in (7).  We must show that there exists A' such
t h a t

( 0 ) C A' A, A' TRea and if B is a model of TRea such that C B ,
then there is an isomorphic embedding of A' into B which is the
identity on C.

This is almost what Fact 2 tells us.  The only difference is that our
assumption is that in the assumption of Fact 2 C is an ordered subfield
of A, whereas what we are given in (7) is only that C is a submodel of A.
To bridge this gap we argue aas follows.  Assume that A,B are models of
TRea and that C is a submodel of both A and B.  Here we must appeal to
another general fact of real-closed fields: There is unique way of
extending C to an ordered subfield C' of A. (C' can be obtained as the
quotient field of C, a familiar construction which among other things
leads to the arithmetical structure of the rationals starting from the
integers.) This minimal field extension of C can be embedded also into
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B, and in fact we may as well assume that C' is within the intersection of
A and B. replacing elements in B by their originals from C' under the
given embedding.  This gives as the situation described in the
assumptions of Fact 2.  So there is a real-closed field A' such that
C C' A' A, such that A' can be embedded into B by a map which
preserves C' and therefore also C.

Our next step is to prove from (6) and (7) the following condition (16):

(16) If A and B are models of TRea, and <a1, ... ak>, <b1, ... bk> are k-
tuples from A and B respectively such that

( i ) (A,a1, ... ak) o (B,b1, ... bk) ,
t h e n

( i i ) (A,a1, ... ak) 1 (B,b1, ... bk)

First we must explain the notation.  For any models A, B for some
language L and tuples <a1, ... ak>, <b1, ... bk> from these models
(A,a1, ... ak) o (B, b1,...bk) means that the tuples satisfy the same
quantifier-free formulas in A and B, respectively; and (A,a1, ... ak) 1
(B, b1,...bk) means that every purely existential formula

x1 xm D(x1,.,xm,y1,..,yk) that is verified by a1, ... ak in A is verified
by b1, ... bk in B.

Proof of (16) from (6) and (7).

Assume that A, B  TRea, (A,<a1, .., ak>) o (B,<b1, .., bk>), and that
D(x1,.,xm ,y1,.,yk)) is a quantifier-free formula of LRea such that

( 1 7 ) A x1 xm D(x1,.,xm,y1,.,yk))[a1, .., ak].

We have to show that

( 1 8 ) B x1 xm D(x1,.,xm,y1,.,yk))[b1, .., bk].

Because of (17) there are elements c1, ... cm  of A such that

( 1 9 ) A D(x1,.,xm,y1,.,yk))[c1, ... cm,a1, .., ak] .

We first show that there exists an elementary extension B1 of B and an
element d1 in B1 such that
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( 2 0 ) (A,c1,a1, .., ak) o (B1,d1,b1, .., bk)

Let 6 (x1,y1,.,yk) be the set of all quantifier-free formulas satisfied by
<c1,a1, .., ak> in A:

( 2 1 ) 6 (x1,y1,.,yk) = {7(x1,y1,.,yk): A  7(x1,y1,.,yk)[c1,a1, .., ak]}

We infer that

(22) For each 7 # 6, A x1 (x1,y1,.,yk)[a1, .., ak].

Consider the subset {a1, .., ak} of UA. Since LRea contains function
constants the restriction of A to {a1, .., ak} will not be a submodel of A.
But we can close {a1, .., ak} under the operations of A and obtain in this
way a (uniquely determined) extension Ao of this restriction which is a
submodel of A. Since by assumption (A,a1, .., ak) o (B1,b1, .., bk), the
b's satisfy the same relations in B as the a's in A.  This remains the case
when we close {b1, .., bk} to a submodel Bo of B.  That is, we can extend
the map (a1, .., ak) | (b1, .., bk)to an isomorphism f from Ao to Bo.  We
can rearrange things so that f becomes the identity function by taking
an isomorphic copy B' of B which contains Ao as a submodel in lieu of
f(Ao). In other words we may assume that Ao is both a submodel of A
and of B'.

We are now in a position to apply (7): There is a model A' of TRea such
that Ao A' A and such that A' has an embedding h in B' which is the
identity on Ao. Since A' A and A' and A are both models of TRea, we
can apply (6) and infer from (22) that,

( 2 3 ) for each 7 # 6, A' x1 (x1,y1,.,yk)[a1, .., ak].

Since h is an embedding of A' in B' which preserves a1, .., ak we can
conclude that for each 7 # 6, B' x1 (x1,y1,.,yk)[a1, .., ak], and since B
is an isomorphic copy of B' under an isomorphism which maps a1, .., ak
onto b1, .., bk, we get (24).

( 2 4 ) for each 7 # 6, B x1 (x1,y1,.,yk)[b1, .., bk].

This entails that there is an elementary extension B1 of B and an
element d1 in B1 such that
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( 2 5 ) B1 6 (x1,y1,.,yk)[d1,b1, .., bk]

(The argument is the same as in the proof of Thm. 8 of Ch. 1:  We
extend the language with names for all elements of B and form the
theory Th'(B) of B in this language. Let 6 (d1,b1,.,bk) be the set of all
sentences 7 (d1,b1,.,bk), where 7 # 6, b1,.,bk are the names in the
extended language for b1, .., bk and d1 is an additional new constant (in
yet a further extension of the language).  It is then easily shown using
(22) that Th'(B)  6 (d1,b1,.,bk) is consistent.  Any model of this set
will be an elementary extension of B in which the sentences of
6 (d1,b1,.,bk) are true.) Let d1 be the denotation of d1 in B1. Then for all
7 # 6 B1 7(x1,y1,.,yk)[d1,b1, .., bk].  So we have (23).)

Since contains all quantifier-free formulas 7 such that A 
7 (x1,y1,.,yk)[c1,a1, .., ak] we have (20).

We can now reiterate the argument above for A and B1. in this way we
obtain an elementary extension B2 of B1 and an element d2 in B2 such
that (A,c1,c2,a1, .., ak) o (B2,d1,d2,b1, .., bk); and, continuing, we
eventually get an elementary extension Bm  of B and d1, .., dm in Bm such
t h a t

( 2 6 ) (A,c1,..,cm ,a1, .., ak) o (Bm ,d1,..,dm ,b1, .., bk)

From (26) and (19) we infer that

( 2 7 ) Bm  D(x1,.,xm,y1,.,yk)[d1,..,dm,b1, .., bk]

So

( 2 8 ) Bm  x1 xm D(x1,.,xm,y1,.,yk)[b1, .., bk]

Since Bm is an elemrntary extension of B and b1, .., bk belong to B we
reach the desired conclusion:

( 2 9 ) B  x1 xm D(x1,.,xm,y1,.,yk)[b1, .., bk].
q.e .d.

We now come to the last step in our proof that TRea has QE. We have
seen that it suffices to show that TRea has the property (1).
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Let D(x,y1,.,yk) be a quantifier-free formula of LRea.  We must show that
there is a quantifier-free formula E(y1,.,yk) such that

( 3 0 ) TRea  y1 yk x D(x,y1,.,yk)  E(y1,.,yk))

Let 6 (y1,.,yk) be the set of all quantifier-free formulas 7 (y1,.,yk) of LR e a
such that TRea  x D(x,y1,.,yk)  7 (y1,.,yk)).  We show that the set
TRea 6 { x D(x,y1,.,yk)} is inconsistent.  Suppose the set was
consistent.  Then there would be a model B of TRea and elements b1,.,bk
of B such that

( 3 1 ) B  6 (y1,.,yk)[b1,.,bk] and B x D(x,y1,.,yk)[b1,.,bk].

Let Dia(B,b1,.,bk) be the set of all  quantifier-free formulas 8(y1,.,yk)
such that B  8(y1,.,yk)[b1,.,bk]. Then TRea Dia(B,b1,.,bk) 

{ x D(x,y1,.,yk)} is inconsistent.  For if the set were consistent, then
there would be a model A of TRea with elements a1,.,ak such that

( 3 2 ) A x D(x,y1,.,yk)[a1,.,ak]

( 3 3 ) A Dia(B,b1,.,bk)[a1,.,ak]

But (33) entails that (A,a1,..,ak) o (B,b1,..,bk). So by (16) and (32), it
follows that B x D(x,y1,.,yk)[b1,.,bk], which contradicts the
assumptions about B.

The inconsistency of TRea Dia(B,b1,.,bk) { x D(x,y1,.,yk)}
entails that there is a finite conjunction 8(y1,.,yk) (= 81(y1,.,yk) & .. &
8 r(y1,.,yk)) of formulas 8 i(y1,.,yk) from Dia(B,b1,.,bk) such that

( 3 4 ) TRea x D(x,y1,.,yk) 8(y1,.,yk)

This means that 8(y1,.,yk) belongs to the set 6 (y1,.,yk).  But according
to (33) B  6 (y1,.,yk)[b1,.,bk], so B  8 (y1,.,yk)[b1,.,bk]. But this is
impossible since on the other hand 8  is a conjunction of members of
Dia(B,b1,.,bk) .

This concludes the argument that TRea 6 { x D(x,y1,.,yk)} is
inconsistent.  From the inconsistency of TRea 6 { x D(x,y1,.,yk)}
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we infer that there is a finite conjunction 7 (y1,.,yk) (= 71(y1,.,yk) & .. &
7 s(y1,.,yk)) of formulas 7 i(y1,.,yk) from 6  such that

( 3 5 ) TRea 7(y1,.,yk) x D(x,y1,.,yk)

Since 7(y1,.,yk) # 6, we also have TRea x D(x,y1,.,yk) 7(y1,.,yk).

So we get

( 3 6 ) TRea y1 yk 7(y1,.,yk) x D(x,y1,.,yk))

which concludes the proof of (1) and thus of the fact that TRea has QE.

q.e .d.

Our only remaining task is to derive the completeness of TRea from the
fact that it has QE.  This is easy. Let a be any sentence of LRea. Then
there is a quantifier-free sentence B of LRea such that TRea A B. We
already saw in the proof of (6) that any atomic formula of LRea can be
transformed into a formulas of a very special form that is provably
equivalent to it in TRea: every such formula is equivalent to a
disjunction V j 1 j of conjunctions 1 j of atomic formulas.  In the present
case, moreover we are dealing with sentences.  That is, our quantifier-
free sentence B can be rewritten as an equivalent disjunction V j 1 j in
which each atomic conjunct of each 1 j is a sentence that is either of the
form .  = /  or of the form .  < / .  The terms .  and /  occurring in these
atomic sentences are all built up form the individual constants 0 and 1
with hte help of the functions constants + and . . It is not hard to verify
that each such term / can be transformed into a 'canonical' term / '
which is either 0 or 1 or a sum of the form 1 + .. + 1 involving two or
more 1's. ('Transformed' in the sense that the equation "/ = / ' " can be
proved from TRea.) it is also straightforward to verify that TRea enables
us to either prove or disprove any equation . ' = / ' and inequality . ' < / ' ,
when . ' and / ' are both canonical.

This means that TRea will either prove or refute B. TRea will prove B iff
there is at least one disjunct 1 j of its rewritten form V j 1 j such that TR e a
proves every conjunct of 1 j. Otherwise TRea refutes V j 1 j, and with it B.
The same is true for the sentence A we started with.  So TRea either
proves or refutes every sentence from LRea.

q.e .d.
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In the introduction to Section 2.6 we remarked on the intuitively
paradoxical result that the arithmetic of the reals admit formalisation
as a complete and decidable explicitly axiomatised theory, whereas the
arithmetic of the natural numbers does not.  Now that we have shown
the first of these two facts at the hand of the the theory TRea is, the
paradox may seem even more striking.  it is true that the axioms of
T Rea is that capture the behaviour of the operations + and . are quite
different from those of PA.  The latter cannot be used here, since -
obviously- there is no way of reducing what happens when these
operations are applied to numbers other than the natural numbers
recursively to what happens when one of the arguments is 0. But on the
other hand, it is not hard to see that the axioms of TRea force the
behaviour of + and . on the natural numbers to be the way that PA
describes them.  Specifically, let M be any model of TRea and let NM  be
the set of all elements of UM  that are the denotations of some closed
canonical term / ' of LRea.  Then the submodel N M of M with universe NM
will be isomorphic to the standard model N of PA. This might suggest
that it should be possible to translate every sentence A from the
language of PA into a sentence A' of LRea which talks only about the
submodels N M of models M of TRea.  However, that would give us a
method to check for any A whether or not it is true in N and that is
precisely what Gödel proved to be impossible.

What then is wrong with the suggestion?  The answer is - and must be -
that we cannot translate sentences from Peano Arithmetic intoi
sentences of LRea that 'speak only about the submodels N M . And that in
turn implies that there can be no formula N(x) of LRea that defines the
set of natural numbers in TRea, in the sense that

( 3 7 ) For all models M of TRea, NM = {d # UM: M  N(x)[d]}.

Exercise: Show that if there were a formula N(x) satisfying (39), then it
would be possible to define a translation function tr from LPA to LR e a
such that for every sentence A of LRea N  A iff TRea tr(A).

That the set of natural numbers cannot be defined in TRea in spite of
the fact that in every model M of the theory it consists (modulo
isomorphism) of precisely the denotations in M of canonical closed
terms of LRea, is itself a surprising result, which has to do with deep
properties of real-closed fields.  (It is a result that is entailed by Gödel's
Incompleteness Theorems and the completeness of but it does not in
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any direct and obvious way entail one of those two results given the
o the r . )

That the undefinability of the natural numbers within TRea is connected
with special properties of real-closed fields is indicated by the fact that
arithmetic on the rational numbers is crucially different in this respect.
It is possible to give a (necessarily incomplete) axiomatisation TQ  of the
arithmetic of the rational numbers - for instance in the language LRea -
and to define a formula N(x) such that (39) holds for models of TQ :

( 3 8 ) For all models M of TQ, NM = {d # UM: M  N(x)[d]}.

(This quite difficult result is due to (Robinson, 1949).)

(38) entails that TQ  must be undecidable and incomplete, just as PA and
all its axiomatisable extensions.
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2.2.6.        Rooted Feature Structures.

Let A be a set. An n-ary feature structure relative to  A is an algebra S =
<U, f1,.., fn>, consisting of a universe  U and n partial unary functions
f1 ,.., fn  over U such that

(i)   no feature fi is defined on any element of U that belongs 
to A

The elements of U  A are called the atoms of S.  We refer to the
members of U \ A as the variables  of S. S is said to be finite whenever U
is finite. Sometimes we will refer to the elements of U also as nodes .

We will be especially interested in rooted n-ary feature structures.
Suppose that  <U, f1,.., fn> is an n-ary feature structure relative to A, u
#  U and u has the property:

(*) for each v #  U, v  u, there is a composition f1o ....ofj of 
features such that u =  f1 o ....ofj(uo) and for each r = 1,...,k t h e r e

is an i n such that fr = fi (In other words, each element v of U can be
reached from u via a "feature path").

Then u is called aroot of <U, f1,.., fn>.  By a rooted n-ary feature
structure relative to A we understand an n+2-tuple <U, u, f1,.., fn>
such that <U, f1,.., fn> is an n-ary feature structure relative to A and u
is a root of <U, f1,.., fn> .

The relation "v can be reached from u' via some feature path" where u,
v are elements of the universe U of a feature structure, is clearly a
transitive relation.  We denote this relation as <S.  S is called well-
founded   if <S is irreflexive (or "has no loops", as it is also put).  Well-
founded feature structures are also called unfolded .  A well-founded
feature structure S is called a feature tree if for no u, u' #  U there are
distinct paths f1o ....ofj and g1o ....ogk such that u = f1o ....ofj(u') = g1o
....og k (u ' ) .

For any rooted feature structure S = <U, u, f1,.., fn> and any v #  U, let
S v (the restriction of S to  v) be the rooted structure <U', v, f '1 ,.., f 'n>
where U' consists of all w #  U such that there is a path from v to w and
for i = 1, ..., n  f 'i is the restriction of fi to U' - i.e. for any v #  U' f 'i(v) =
fi(v), provided fi(v) is defined, and f 'i is undefined otherwise.  (It is
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easily verified that <U', f '1 ,.., f 'n> is an n-ary feature structure relative
to A and that v is a root of the structure <U', f '1 ,.., f 'n> . )

Notation:  It is common in the feature structure literature to write
"u'f1 ....fj in stead of f1 o ....ofj(u) .

Often the root uo of a feature structure S is the unique element of S
which satisfies condition (iv).  But this need not be so.  It is not so, for
instance, for the 1-ary structure So = < {1,2}, 1, f1>, where f1 is the
function {<1,2>, <2,1>}.  So can be graphically represented as follows:

     f1

1     2

     f1

Here not only 1 but also 2 satisfies condition (*) of definition of rooted
feature structures; so < {1,2}, 2, f1> is a rooted feature structure as
well.

Note however that if <U, u, f1,.., fn> is well-founded, then u will always
be the unique element satisfying (*). (Show this!). So every well-
founded rooted feature structure has a unique root.

The first language we choose to describe n-ary feature structures is Ln =
{F1, .. , Fn, At}, where the Fi (i = 1, ... ,n) are "partial one-place
functors" and At (for "Atom"!) is a one-place predicate.  (Partial one-
place functors are really two-place predicate constants that are
consistently interpreted as partial one-place functions; given this
interpretative convention, it is possible to adopt a functor-like notation
for them; see below.) An n-ary feature structure S =
<U, f1,.., fn> relative to A can be regarded as a model <U,F>  for Ln,
where F(At) = U  A and F(Fi) = fi.

Exercise:    Formulate sentences of Ln which describe the following
feature structures up to isomorphism. (Letters in the first half of the
alphabet denote atoms - i.e. elements of A - letters in the second half
denote variables.)

Often feature structures are described with the help of languages L'n , B
that are minor variants of the languages Ln.  The languages L'n,B differ
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from their counterparts Ln in that they have, in lieu of the 1-place
predicate At, a set B of individual constants.  We will assume that these
sets B are subsets of some given set of "canonical names" of the
members of A.  That is, each constant in B is taken to denote that atom
in A of which it is the canonical name.  It will be harmless, and simplify
matters, to assume that the elements of A act as their own canonical
names, so that B is simply a subset of A.

Exercise.  For each of the feature structures of the last exercise, give a
uniquely identifying description of it by a sentence belonging to some
appropriate language L'n,B.

As is always the case for finite structures, every finite n-ary feature
structure can be uniquely described in Ln up to isomorphism.  The
same is true for models for Ln which consist of finite sets of disjoint
finite feature structures. Unique characterization up to isomorphism is
not possible, however, for "universal models" of finite feature
structures, models for Ln in which all and only the finite feature
structures are represented.  Let us have a closer look at such models.

To define such a universal model we have to confine the universes of
the feature structures it contains to some given set V.  We assume that
V is denumerably infinite.  An easy set-theoretical argument shows that
the set S (V) of all finite n-ary feature structures whose universes are
included in V is also denumerable.  To build a model in which all the
finite n-ary feature structures are represented we have to proceed
carefully.  We cannot simply form the union of the structures in S(V) ,
for then the elements in V would have to do multiple duty and that
would lead to conflicts; for instance, an element u would have to act in
one complex structure as a node on which the feature f1, say, is
defined and in some other feature structure as a node on which f1 is
not defined.  Clearly we cannot have it both ways.

To avoid this difficulty we can proceed in one of two ways.  The first
way is to make the variable parts of the universes of all the represented
finite structures disjoint.  Note that S (V) contains many copies of what
is intuitively just one feature structure.  We can get rid of such spurious
duplication by forming equivalence classes of ismorphic structures.
Since the set of equivalence classes is again denumerable, it can be
enumerated.  Using this enumeration we can then replace each
equivalence type in turn by an instance Si = <Ui,F i> of it such that the
"non-atomic part" Ui\A of Ui consists of elements of V\A that do not
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occur in any of the instances chosen for the equivalence types which, in
the enumeration, occur before it.  In this way we obtain representatives
of all the equivalence types no two of which share any variables (i.e.
elements that do not belong to A).  We can now form the model M1( V )

= <U,F> as the union of all the Si: U = Ui Ui  and F  (Fj) = Ui Fi(Fj).

Exercise:  Check whether the sentences you formulated in the two
preceding exercises are true in M1(V).  If not, then formulate other
sentences which also describe the given graphs up to isomorphism and
which are true in M1(V).

Just as one can construct a universal model of all finite n-ary feature
structures we can also construct, by the same method, a universal
model for all finite n-ary rooted feature structures.

The second way of constructing a universal model works smoothly only
for rooted structures <U, uo , f1,.., fn> with distinguished root uo .  This
time we let the finite n-ary rooted feature structures themselves be the
elements  of the model.  On this universe we must define interpretations
of At and of the features Fi.  We take as interpretation of At the set of
all feature structures that consist of single atoms, i.e. all structures
<{a}, F> such that a # A and F(At)  = F(F1)  =  F(F2)  = ... = .  (Note that
there is an obvious bijection between this interpretation of At and A.)
Furthermore, we define F  (Fj) as follows.  We put F  (Fj) = the set of all
pairs < S, S'> such that S = <U, uo, f1,.., fn>,  S' = <U', u'o , f '1 ,.., f 'n> ,
u'o  #  U and S' = S u'o .  We refer to the model thus constructed as
M2(V).

It is easy to see that neither the model M1(V) nor the model M2(V) is
identified up to isomorphism by the set of sentences true in it.  The
reason is a quite general one:  If a first order theory has models of
arbitrarily large finite size, it also has infinite models.  By the same
token, the sentences that are true in a model in which there are objects
of any finite size (no matter how large), will also have models in which
there are besides these finite objects also infinite objects which can be
regarded as "limits" of chains of ever larger finite ones.

The proof of this fact rests on the compactness of first order logic.  We
consider the model M1(V).  We extend Ln to a new language Ln' by
adding a new individual constant c and Th(M1(V)) to a new theory Th'
by adding an infinite collection of sentences which together express
that c is the root of an infinite feature structure.  There are many
different ways in which we can do this.  Perhaps the simplest way is to
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state that c is the root of an infinite path consisting exclusively of
applications of the feature f1.   That is, Th' =  Th(M1(V)) U {An}n  # %,
where An is the sentence
( x) (f1 o f1 o ... o f1(c) = x).  Clearly Th' is consistent.  For let G be a
finite subset of Th'.  Then G is consistent.  For among the sentences An
that it contains there is one with highest index, say Ano.  This sentence
will entail all other sentences An in the set.  It is clear, however that
A no is true in the model M for Ln' which we get by adding to M1(V) an
interpretation for c which makes c denote a feature structure that has
an f1-path of length at least no.  In this model all sentences from G
which belong to h(M1(V)) will be true as well.  So G is satisfiable.  By
compactness Th' is satisfiable.  So it has a model M'.  In this model the
denotation of c will be the root of an infinite f1-path.
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Exercises Ch. 2.

1 . a . Let {}  be the language {} which has no non-logical constants,
and let T be any complete consistent theory of {} .
Show that T is !-categorical for every cardinality !  (both finite 
and infinite)

b . Give a complete description of the complete theories of {}.
Which of these are finitely axiomatisable?

c. Show that for any first order language L there are complete
theories of L that have infinite models and that are ! -categorical
for all infintie cardinals ! .

Moreover, how that there  are such theories that finitely
axiomatisable whenever L is finite.

2 . Let L = {P}, where P is a 1-place predicate.

a . Define countably many complete theories of L that only have
infinite models and that are categorical for all infinite
cardinalities.

b . Specify a complete theory of L that is % -categorical but not 
! -categorical for uncountable cardinals ! .

Hint : One can express, by means of an infinite number of axioms
of L, that (i) the extension of P is infinite, and (ii) that the
complement of P's extension (the set of individuals that do not
satisfy P) is also infinite.  It is easy to show (i) that this theory has
infinite models; (ii) that any model of it is infinite; (iii) that any
two countable models of the theory are isomorphic; and (ii) that 
for any uncountable cardinality !  there are models of the 
theory of cardinality ! which are not isomorphic. (N.B. follows
from the fact that M is a model of the theory and |UM | is
uncountable, then the extension of P in M could be either
countable or uncountable.)

c . Let L' = {R}, where R is a 2-place predicate.

Define countably many complete theories of L' that only have
infinite models and that are % -categorical but not !-
categorical for uncountable cardinals ! .
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3 . Show that the theory Trat is not categorical for uncountable
cardinalities.

Hint: In view of Morley's Theorem it suffices to show this for just
one uncounbtable carfinality. Choose the cardinality 2%  of the set
R  of real numbers.
Compare the following two models for the language {<}:

M 1 = <R,<R>, where <R is the standard ordering of R .
M 2 = <Q R ,<'>, where Q  is the set of rational numbers and <' i s
the "alphabetic ordering of Q R induced by the standard
orderings of Q and R " - that is, for q,q' #  Q and r,r' #  R  <q,r> <'
<q',r'> iff (i) q <Q  q' or (ii) q = q' and r <R  r'.
It follows from general facts of set theory that M2 has cardinality 
2%  and thus that M1 and M1 are of the same uncountable
cardinality.
Show that M1 and M1 are not isomorphic.

4 . Let DS(T,L) be the lattice of all extensions of a given theory T of a
some 1-st order language L.

Show: If DS(T,L) is a boolean algebra, then DS(T,L) is finite.

5 . (Stone Representation Theorem for Boolean Lattices.)

Let BL = <U, > be any boolean lattice.  For each b # U, let
Ib = {d # U: d b}.  (Ib is called the prime ideal determined by b.)

Show that BL is isomorphic to the structure <U', >, where
U' = {Ib: b # U} and  is set-theoretical inclusion.

N.B. The intuitive significance of Stone's Representation Theorem
is that all different types of boolean lattices (and thus also all
types of all boolean algebras) are realised by set-theoretical
structures, whose universe consists of subsets of some given set
and in which lattice relation is set-theoretic inclusion.

(This is the purport of all representation theorems in
mathematics: Every structure satisfying some general
requirements (such as that of being a model of a given set of
axioms) is isomorphic to - and thus can be "represented" as - a
structure of some special form.)
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6 . Show that 0 and S are definable within PA in terms of +.

7 . Show that S is not definable within PA in terms of . (multiplic.).

(N.B. intuitively this means: the successor operation on the
natural numbers is not definable within PA just with the help of
multiplication.)

Hint: Let TPA,{ .} be the set of all sentences from the sublanguage
{.} of LPA that are theorems of PA.

i. Show that any denumerable model M of TPA,{ .} is isomorphic
to the model N { .} = <N,.N>, where .N  is the multiplication operator
from the standard model N of arithmetic.

To show this, first observe that "the number zero" and  "the
number one" are definable in PA from . alone (i.e. we can define
in terms of . the predicate "is equal to the number zero" and the
predicate "is equal to the number one"); and further that with .
we can also define the predicate "is a prime". Once this has been
established it is easily seen that among the things that TPA,{ .} 
asserts is that there are infinitely many primes and that these are
all different from both zero and one. This means that
denumerable model M of TPA,{ .} has a unique zero, a unique one
and infinitely distinct primes. it is then easy to show that any
bijection between the primes of M and the primes of the standard
model of arithmetic N is an isomorphism between M and the
model N{.}.

ii. Show that (i) entails the non-definability of S in TPA,{.}.

8 . Let L be the language (0, S}, with 0 a 0-place function constant and
S a 1-place  dunction constant.  Let T be the L-theory that is
axiomatised by the set { A1,A2}, where:

A1 := ( x)(x 0  ( y)(x = Sy))
A2 := ( x)( y)(S(x) = S(y)  x = y)

Let N  be the L-model <N, I>, where:

( i ) N is the set of natural numbers;
( i i ) I(0) = 0 (i.e. I(0) is the number zero);  and
(iii) for every natural number nm I(S)(n) = n+1.
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Evidently N  is a model of T.

Show:  There exist countably infinite models of T that are not
isomorphic to N  .

9 . Let L be the language {0, 1, S, P}, where 0 and 1 are individual 
constants and S and P are 2-place predicate constants.  LetT be the
theory of L that is axiomatised by the following set of axioms:

A1. ( x)( y) z)(S(x,y) & S(x, z)  y = z)
A2. ( x)( y) z)(S(y,x) & S(z, x)  y = z)
A3. ( x)(( y)(S(x,y))  x 1 )
A4. ( x)(( y)(S(y,x))  x 0 )

A5. ( x)( y) z)(P(x,y) & P(x, z)  y = z)
A6. ( x)( y) z)(P(y,x) & P(z, x)  y = z)
A7. ( x)(( y)(P(x,y))  x 0 )
A8. ( x)(( y)(P(y,x))  x 1 )

A9. ( x)(x 1  ( y)(S(x,y) & P(y,x))) &
( x)(x 0  ( y)(P(x,y) & S(y,x)))

(Intuitively the conent of T as as follows:

(i) (A1 -A4) say that S sdenotes a partial 1-1 function, such that
all elements of the universe U except for 1 belong to its 
domain and all elements of U except for 0 belong to its 
range;

(ii) (A5-A8) say that the same applies to P, except that in this 
case it is 0 that is missing from the domain and 1 that is 
missing from the range.

(iii) (A9) says that the function from U\{0} onto U\{1} that is 
denoted by P is the inverse of the function from U\{1} onto 
U\{0} that is denoted by S.)

1.  Show that T has an infirnite model and that all models of T
are infinite.
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2 . The constants 0, 1, P are all definable in T using just the
constant S.  (That is, for each of these three constants there
is an explicit definition in which the only non-logical
constant appearing on the right hand side is S.)

Give explicit definitions for 0, 1 and P in terms of S in T.

1 0 . Let L be the language {=, <, I, 0,S}, in which < is a 2-place
predicate, I a 1-place predicate, 0 an individual constant and S a
2-place predicate.  Let T be the theory of L that is axiomatised as
follows:

A1  x y (x < y  y < x)
A2 x y z (x < y & y < z x < z)
A3 9x y (x < y v x = y v  y < x)
A4 x y (x < y z (x < z & z < y)
A5 I(0)
A6 x y (S(x,y)   I(x) & I(y))
A7 x y z ( S(x,y) & S(x,z)  y = z)
A8 x y z ( S(x,z) & S(y,z)  x = y)
A9 x y (S(x,y)    x < y)

It is easily verified that T holds in the following model Mo:

(i) the universe of Mo is the set Q of rational numbers; 
(ii) <M o  is the "less than"-relation between rational numbers;
(iii) IM o  is the set of integers;
( iv) 0M o  is the number zero; and
(v) SM o  is the successor relation between integers.

Show that there is apart from Mo at least one ohter countable
infinite model of T which is not isomorphic to Mo .

1 1 . Let LPA (= {0, s, +, .}) be the language of Peano Arithmetic. Let  L1
be the extension LPA {c1,P} of LPA where c1 is an individual
constant and P a 2-place predicatem and let  L2 be the extension
L1 {c2} of L1 where c2 is an individual constant . (So L1 =
{0, s, +, ., <, c1} and L2 = {{0, s, +, ., <, c1, c2}.)
Let T1 = Cl(PA    {( x)( y)(x < y  ( z)( z 0 & x + z = y)} 

      {0 < c1, S0 < c1, SS0 < c1, ...}).
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Let T2 = T1  U {c1 < c2, Sc1 < c2, SSc1 < c2, ...}.  and let M1 be 
any model of T1.

Show that M1 dcan be expanded to a model M2 of T2 by adding a
suitable interpretation of the constant c2 .

1 2 . Let L be the language {<}, where< is a 2-place predicate constant
and öet L' = L {S}, with S a 1-place function constant.  Let T' be 
the theory CnL'({A.1, ..., A.4}), where:

A.1 ( x)( y) (x < y  (y < x))
A.2 ( x)( y)( z) ((x < y & y < z)   x < z)
A.3 ( x)( y) (x < y  v  x = y  v  y < x )
A.4 ( x)(x < S(x) &  ( z)(x < z  (S(x) < z  v  S(x) = z)))

Show that S is definable in T' (i.e. in terms of <).

1 3 . Deduce the fllowing statement from the axioms PA1-PA7:

( x)( ( y)(x = 2.y)    ( y)(x = 2.y + 1) )

1 4 . a . We extend the language of arithmetic LPA with a new 1-place
predicate G to the language L' = LPA  {G} and extend the theory
PA to a theory T' of L' by adding as a new axiom the following
definition D of G in terms of +:

( D ) ( x)(G(x)  ( y)( x = y + y))

(Intuitively D says that G denotes the property "is an even
number" . )

Show that the sentence ( x)(G(x) v G(S(x))) is derivable from T'.

b . This time we extend LPA with a new 2-place predicate < to
the language L'' = LPA  {<} and extend PA to a theory T'' of L'' by
adding as a new axiom the following definition D' of < in terms of
+ and 0:

(D ' ) ( x)( y)( x < y  ( z)(z  0 & z + x = y))
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Show that the sentence (1) is deducible from T''.

( 1 ) ( x)( y)( x < y  x  y)

(Hint: One way to show this is to prove first that  (1) is 
equivalent to (2)

( 2 ) ( x)( v)( x + Sv    0)

(Intuitively D says that G denotes the property "is an even
number" . )

Show that the sentence ( x)(G(x) v G(S(x))) is derivable from T'.

b . This time we extend LPA with a new 2-place predicate < to
the language L'' = LPA  {<} and extend PA to a theory T'' of L'' by
adding as a new axiom the following definition D' of < in terms of
+ and 0:

(D ' ) ( x)( y)( x < y  ( z)(z  0 & z + x = y))

Show that the sentence (1) is deducible from T''.

( 1 ) ( x)( y)( x < y  x  y)

(Hint: One way to show this is to prove first that  (1) is 
equivalent to (2)

( 2 ) ( x)( v)( x + Sv    0)

and then to prove (2) be mathematical induction.)

1 5 . Let L and L' be languages of first order logic and let T and T' be
theories of L and L', repsectively. Let I be a function from the sentences
of L to the sentences of L'. (We may call such a function I a "translation"
from L to L'.) We say that I interprets T in T' iff for every sentence A of
L such that T  A, T'  I(A). Second, let I be a set of translation finctions
from l to L'. Then we say that T is interpretable in T' relative to I iff
there is an I in I which interprets T in T'. i
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Let now T be the theory od stron partial orderings in the language L =
{<}, whose axioms are

( x)( y)( x < y   y < x )
( x)( y)( z)( x < y &  y < z  x <  z)

We can interpret T in the theory  PA formulated in the language LPA of
Section 2.6.1  by means of the function I which is "based on" the
following definition of "<" in LPA:

(D<) ( x)( y)(x < y  ( z)(z  0 & x + z = y))

Here, when we say that I is "based on" (D<) what we mean is that for
any sentence A of L, I(A) is the sentence which we get by replacing each
subformula "u < w" of A by the right hand side of (D<), replacing x by u
and v by w (and if necessary renaming z in order to avoid variable
clashes).

Show that I interprets T in PA (and therewith that T is interpretable in
PA relative to the set of all translations from L into LPA that are based
on possible definitions of "<" in LPA).

1 6 . Let T be a theory of some first order language L and let $ be a non-
logical constant of L. Let D be the set of all possible explicit definitions
of $ in terms of the remaining vocabulary of L. (That is, if $ is an n-
place predicate P, then D will be the set of all sentences of the form
( v1)..( vn)(P(v1,.,vn) A), where A is a formula of L \{$} in which
only  v1,.,, vn may have free occurrences; and if $ is an n-place function
constant f, then D is the set of all formulas ( v1)..( vn)(f(v1,.,vn) =
vn+1 A), where A is a formula of L \{$} in which the only free
occurrences are of the variables v1 ,.,, vn+1. )
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Let I be the set of all translations of L into L \{$} that are based on
definitions in D, where for a definjition d #  D with right hand side Ad
the translation Id  based on d is the one which replaces in any formula B
of L all occurrences of atomic formulas involving $ by the
corresponding instantiations of Ad. (See also the previous exercise.)

Let T' be the theory T {C: C is a sentence of L \{$}}

Show: T is interpretable in T relative to I iff $  is definable in T.
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Lösungen von einigen Aufgaben.

9 .  Wir bezeichnen das zu beweisende Theorem
( x)( ( y)(x = 2.y)    ( y)(x = 2.y + 1) )  als (*).

Wir verfahren nach Induktion und zeigen (*) indem wir zeigen:

(**) ( y)(0 = 2.y)    ( y)(0 = 2.y + 1)
(***)  (( y)(x = 2.y)    ( y)(x = 2.y + 1)) 

( y)(Sx = 2.y)    ( y)(Sx = 2.y + 1))

(**): Einerseits haben wir PA  0 = 2.0. Also auch PA  ( y)(0 = 2.y).  
Andererseits gilt: PA    ( y)(0 = 2.y + 1).  Denn nehmen wir an,
dass ( y)(0 = 2.y + 1), dann gibt es ein y, so daß 0 = S(2.y), was 
dem PA-Axiom widerspricht, dass 0 nicht von der Form Sx ist.

(***): Nehmen wir an: (( y)(x = 2.y)    ( y)(x = 2.y + 1)).  
Dann gilt also entweder

(i)  ( y)(x = 2.y) &  ( y)(x = 2.y + 1)    oder
(ii)  ( y)(x = 2.y) & ( y)(x = 2.y + 1)

Im ersten Fall gibt es ein n, so daß x = 2.n.  Also gilt Sx = S(2.n) = 
2.n + 1 und deshalb auch ( y)(Sx = 2.y + 1).  Wäre es der Fall, daß
( y)(Sx = 2.y), so gäbe es ein n, so daß Sx = 2.n.  Offenbar kann n
nicht gleich 0 sein. Also ist n = Sm für irgendein m.  Dann aber
Sx = 2. Sm = Sm.2 = Sm + Sm = S(Sm + m). Also ist x = Sm + m =
m + m + 1 = m.2 + 1 = 2.m + 1. Also ( y)(x = 2.y + 1), was dem 
zweiten Konjunkt in (i) widerspricht.  Also führt die Annahme,

d a ß
( y)(Sx = 2.y) zu einem Widerspruch.  Somit haben wir 
( y)(Sx = 2.y + 1) & ( y)(Sx = 2.y) und damit
( y)(Sx = 2.y + 1) ( y)(Sx = 2.y).

Der zweite Fall, (ii), erledigt sich ähnlich.

ii. Zu zeigen:

( x)( y)(Sx . Sx = (x . x) + y   ( u)(y = 2.u) )



1 8 6

(Intuitiv besagt diese Formel, daß die Differenz zwischen zwei 
aufeinanderfolgenden Quadraten immer eine ungrade zahl ist.)  
Wir agumentieren wie folgt:

Sx . Sx = (Sx . x)  + Sx = (x . Sx) + Sx = ((x . .x ) + x) + x + 1 
= (x . .x ) + (x + x + 1) = (x . .x ) + (2..x + 1).  Also, wenn 

Sx . Sx = (x . x) + y, dann ist y = 2..x + 1. (Siehe unten!).  
Wenn aber  y = 2..x + 1, dann gilt auch ( u)(y = 2.u + 1). 
Dann gilt aber nach (i), daß  ( u)(y = 2.u).

(Wir haben hier von dem Prinzip Gebrauch gemacht, nach dem
aus  x + y = x + z folgt, daß y = z.  Dieses Prinzip läßt sich leicht nach 

Induktion beweisen:

(i) Wenn o + y = o + z, dann natürlich y = z.
(ii)  Wenn gilt, dass (a) wenn x + y = x + z, dann y = z, dann gilt 

auch, dass (b) wenn Sx + y = Sx + z, dann y = z.  Denn sei
Sx + y = Sx + z.  Dann y + Sx = S(y + x) = z + Sx = S(z + x).

Dann aber y + x = z + x.  Also x + y = x + z und nach 
Induktionshypothese y = z.)


