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Chapter III  Set Theory as a Theory of First Order Predicate
Logic .

Here is an appealing and apparently clear picture of the "universe of all
sets":  Suppose that a set A of "individuals" or "Urelements" is given.
Then we can form sets from those individuals; these will be subsets of
A.  We can then form sets of which these subsets of A are in turn
members;. In fact, it seems reasonable to hold that we can form not
only such sets, but also sets which consist partly of subsets of A and
partly of members of A; the sets which have only individuals as
members and those which have only sets of individuals as members are
special cases of this more general category.  Having formed this second
tier of sets we can then proceed to form a third tier, a collection of sets
the members of which may be individuals, sets of individuals and sets
which themselves count sets of individuals among their members.
Carrying on in this manner ad infinitum we run through the so-called
"cumulative hierarchy (of sets)".  The structure which results in this
way is the subject of the theory of sets.  It is this structure that any
axiomatic set theory should try to capture.

It isn't quite right to speak of the  structure of set theory.  For what the
iterative process of forming sets produces evidently depends on the set
A with which we start.  But among the many different hierarchies which
are generated by different sets of Urelements there is one that is
special.  This is the hierachy which results when we start with nothing,
so to speak, i.e. when we begin with the empty set.  It may not be
immediately obvious that this will get us anything at all, but only a little
reflection shows that it does.  All that needs to be acknowledged is that
the empty set is fit to act as a member of other sets.  Once we accept
this, we see that there is at least one other set besides the empty set,
viz. the set whose only member is the empty set.  (Clearly this set is
different from the empty set, for it does have a member, whereas the
empty set itself has none.)  As soon as we have these two sets, it is
possible to form more sets, e.g. the set which has both these two sets as
members, etc.  In fact, even if we start with the empty set of
individuals, iterated set formation leads eventually to an unimaginably
huge universe, and one that is certainly big enough to model any
abstract structure - such as that of the real numbers, or of all functions
from real numbers to real numbers, etc., etc. - that pure mathematics
and the sciences which use mathematics as a tool ever made a topic of
investigation.  Because it gives us enough for these purposes, while on
the other hand it apparently does without "extra-logical" assumptions
(it does not involve the assumption of any "Urelements", which are
themselves not sets), the hierarchy which starts from the empty set has
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become the preferred object of study within mathematical logic.  It is
this structure that is usually referred to as the cumulative hierarchy.

The cumulative hierarchy, then, is that structure which we get when,
starting from the empty set, we generate sets by the iterative procedure
just sketched and carrying on "ad infinitum", as we just put it.  But
what is "ad infinitum"?  It may be that what is meant by this appwars
reasonably clear at first.  But upon reflection the illusion of clarity
quickly evaporates. The infinite, in all its different manifestations, is
one of the trickiest abstract concepts there are, and this applies to the
phrase "ad infinitum", as it figures in our informal description of the
cumulative hierarchy, no less than to any other manifestation of it.

Set Theory was invented in large part to analyse the concept of infinity,
and to develop systematic means of studying and describing its
different manifestations in different contexts.  Because of this it is in
the curious situation that what it has to say about infinity is
constitutive of the very structure of which it is meant to provide an
accurate description.  As a result there is, from the perspective we
adopted in Ch. 2 a certain kind of circularity here, which is unlike
anything we have found in connection with other theories discussed
there that aim at the description of a single structure, such as the
theory of the order of the rationals, or Peano Arithmetic, or the Theory
of Real Closed Fields.  In all those cases there was a well-defined, and
independently definable, structure against which the axioms of the
theory could be checked, so that various well-defined questions can be
raised about the relation beteen structure and theory, e.g. whether the
theory gives a complete, or a categorical characterisation of the
structure. (And as we saw it is often possible, if rarely simple to answer
such questions.)

Set Theory is different in this respect.  The very question what the
structure is like that it is its purpose to describe cannot be detached
from the description that the theory itself provides; for part of what
the theory asserts is what iteration of a given operation or set of
operations ad infinitum comes to, and thus what the structure is that is
the result of such an iteration ad infinitum.

One of the striking discoveries about infinity - which stood, one might
say, at the cradle of Set Theory as we know it today - was that it comes
in different 'degrees', or 'sizes'.  As we noted in Ch. 1, Cantor. the
founder of modern set Theory, showed that the power set P (X) of a set
X is of higher cardinality than X itself.  This is true for any set X
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whatever, and so in particular when X is infinite.  Consequently each
infinite set X is the starting point of an unbounded sequence X, P (X),
P (P (X)),.. of sets of ever larger infinite cardinality.  But havin
established that there is a multiplicity of different infinities, the set
theorist sees himself confronted with further questions, concerning (a)
the extent and (b) the structure of this multiplicity.  Two such
questions have dominated Set Theory for most of its history: (i) How
many different sizes of infinity - how many 'cardinalites' - are there
altogether? and (ii) are there any sets X whose cardinality |X| is between
that of the set N of the natural numbers and that of its power set P ( N ) ?
(This second question is known as the issue of the Cont inuum
Hypothesis . The Continuum Hypothesis (CH) is the statement that there
are no such sets X:  ( X)(|N| < |X| < |P(N)|).)

The investigations concerning the CH can be divided into three phases.
At first, the goal was simply to decide whether or not the Continuum
Hypothesis is true.  This is the way Cantor, the one who introduced the
issue of of the CH into Set Theory, understood it.  (Cantor seems to
have worked on this problem relentlessnly and the strain caused by his
failure to settle the matter is said to have contributed to his eventual
mental breakdown.) The second phase set in after, in the early parts of
the 20-th Century, Set Theory had been formalised and characterised as
a formal theory, given by a certain set of axioms.  At that point the
problem of the CH took on a correspondingly formal complexion:  Can
the CH be either proved or refuted from the axioms of formal Set
Theory1?  This question was settled in two stages.  First Gödel proved in
1940 that CH is consistent with formal Set Theory, and thus that the
axioms do not refute it.  Then, in 1963, Cohen proved that CH is
independent of this system, i.e. that it cannot be proved from its
axioms either.

Cohen's result was not only the conclusion of the second phase, but
also the point of departure for the third. This phase (which continues
to the present day and will quite possibly never be concluded) is
characterised by the search for new set-theoretical principles which
settle the CH one way or the other, and which at the same time can be
argued to be true on independent, intuitively persuasive grounds.

1 The formalisation of Set Theory didn't lead to just one set of axioms.
However, it became clear fairly soon that the major proposals do not differ from
each other as far as CH is concerned.  So we can, without serious distortion to what
actually happened, describe this phase in the history of  Chas the question
whether CH can be either proved or refuted from one of these axiomatic theories,
viz from the theory ZF, or 'Zermelo-Fraenkel',which will be presented in this
Chap te r .
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Though a number of formal results were achieved in the aftermath of
Cohen's result, involving new axioms which settle the CH one way or
thev other, none of the new axioms that were proposed seem to qualify
as unequivocally true.  So, from a conceptual point of view the CH is na
open question to this day

For our present purposes the first question - What is the total range of
infinite cardinalities? - is of more immediate importance.  Work on this
question has taken on a flavour much like that connected with CH:
Various axioms have been proposed, each of which tells us something
about the range of infinite cardinalities.  Most of these axioms are
'Large Cardinal Axioms', which when added to ZF guarantee the
existence of cardinalities larger then any that can be proved to exist
without them.  But the conceptual difficulty connected with these
results is much like the one we just mentioned in connection with CH:
In general it is difficult to persuade oneself that the proposed axioms
must be true.

Connected with the question how large infinities can get is the question
what should be understood by the phrase 'ad infinitum'.  Even the
multiplicity of cardinalites that is guaranteed by ZF by itself (i.e.
without the addition of any further axioms) implies that many different
answers are possible in principle here.  One possible interpretation of
ad infinitum is that "iteration ad infinitum" should be understood as
iteration going up to the first, or 'lowest', degree of infinity, viz. that of
denumerably infinity.  The structure which is obtained by iterating,
starting from the empty set, the set-forming operations up to this first
level of infinity is known as the Hierarchy of Hereditarily Finite Sets.  It
goes by this name because all its elements are sets that are hereditarily
finite  in the sense that (a) they are finite themselves, and (b) their
members are also finite sets, and likewise for the members of those
members, and so on all the way down.  It is clear, however, that this is
not  the structure that the axioms of Set Theory should try to capture.
It is of the essence of the "real" structure of sets that some of the sets
in it are inifinite.  Since the Hierarchy of Hereditarily Finite Sets doesn't
contain any such sets, not even the set of natural numbers, it cannot be
the the one we are after.

Even apart from this consideration, the Hierarchy of Hereditarily Finite
Sets should not qualify as the structure that Set Theory should describe
on the grounds that what we intuitively want  is the structure which
results from iterating the set-forming operations through all  infinite
cardinalities; teh itereation shouldn't be stopped at any earier stage,
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and stopping at the very first opportunity that offers itself is about as
far removed from this general desideratum as possible

As we already noted, there is no way to determine the properties of the
full structure of sets completely independently of what Set Theory says,
for it is the theory which asserts how large and complex sets can
become.  In the light of all the work that has been donme on the
question of large c ardinals there has been a growing impression that
what can be said about this must to some extent remain a matter of
stipulation.  The upshot of this is that there may be no one 'true'
structure of sets and therefore possibly also no one correct axiomatic
set theory.  The second question is complicated, however, by the c
ircumstance that axiomatic set theories like the Theory of Zermelo-
Fraenkel, or 'ZF', which we will present below, admit of so-called 'inner
models' - structures which satisfy all the axioms of the theory but
which are obtained be iterating the set formation operations only up to
the cardinality of some set whose existence the axioms enable us to
prove.2  For this reason the quest for th right axiomatisation of Set
Theory does not stand or fall with the quest for the true 'set-theoretical
universe ' .

Not only are first order axiomatic set theories like ZF exceptional from
the perspective adopted in Ch. 2, they also hold a unique position
within the landscape of logic, mathematics and the exact sciences in a
different sense.  As we noted in the Interlude on Set Theory in Ch.1, Set
Theory is indispensible in the formalisation of mathematics.  As we also
noted there, the insight that it is needed for this purpose is certainly
not self-evident; and as things actually happened, it was something that
was learned the hard way:  The insight emerged when Russell detected
the error which had slipped into Frege's attempt to reduce arithmetic
to 'pure logic' and which Russell exposed in the form of  what has come
to be known as 'Russell's Paradox'.

2 This sounds paradoxical, for how can a structure which verifies all the
axioms of the theory fail to contain sets that the theory claims to exist?  The
answer is that an inner model will in general not only lack the sets which would
be reached only by carrying the iteration beyond the point where th inner model
is reached, but also many of the functions which establish 1-1 correspondences
between sets that are part of the inner model.  This makes it possible for sets in the
inner model to appear from a perspective internal to the inner model as if they
had a larger cardinality than they can do from the external perspective of
'reality', - the functions that would establish them as being of the same cardinality
as certain other sets of the internal model (and thus as having no larger
cardinality than these), simply are not around.
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The need for set-theoretical principles arises in the formalisation of any
part of mathematics or science.  It arises in particular in the
formalisation of parts of metamathematics , i.e. of the discipline which
deals with the general properties (such as completeness , consistency,
soundness, compactness, etc.) of logical systems like the predicate
calculus.  And it is especially in such formalisations that the conceptual
implications of its use are most important.  For the point of such
formalisations is to make certain that the general framework of
mathematics and science does indeed have the general poperties of
soundness and consistency which we attribute to it. 3

When Set Theory is used as metatheory in formalisation, and especially
in its role as metatheory in the formalisation of parts of metamathe-
matics, it is of the outmost importance that its principles be
ascertainable as true.  For this reason formalisations in
metamathematics should try to make as parsimonious a use of set-
theoretic principles as possible, and to employ only those whose

3 To give an idea of what formalisations of parts of metamathematics come to,
here is an outline of the formalisation of the very first results we proved in Ch. 1,
the soundness and completeness of first order logic.  The formalisation of these
results will involve, first, formal definitions within the language of ZF of the
syntax, model theory and proof theory of first order predicate logic.  This means
that the languages of predicate logic, their symbols, formulas, and derivations as
well as the models for those languages and the sequencs of formulas that
constiotute correct derivations, are represented as set-theoretic objects, and that
soundness and completeness are formulated as statements - pertaining to those
objects - in the language of set-theory.  Second, the proofs of soundness and
completeness can then be turned into formal axiomatic derivations - in the sense
defined in CH.1, Sn 1 - from the axioms of set theory together with the mentioned
def in i t ions .

Note that such attemtps at providing additional support for the soundness of our
general logical framework are affected by an ineliminable element of ciruclarity.
For the fact that the soundness theorem can be demonstrated in the form of a
formal derivation provides support for its being true only to the extent that the
formal method of derivationthat is used in the demonstration can be trusted.  But
that is precisely the issue that the soundness proof is trying to establish.  It sould
be noted that this circularity will be there independently of whether the
formalisation of axioms of set-theory.  These only add a further element of
uncertainty insofar as there can be any doubt about the i r  truth.

Of special significance is the fact that Set Theory is needed in the formalisation of
the metamathematics of Set Theory itself.  Here Set Theory plays the double role of
object of investigation on the one hand and formalism within which the
formalisation is being carried out on the other.  This double role has given rise to
forms of argumentation in which systermatic switches are made back-and-forth
between the system as object- and as metaformalism.
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validity is beyond controversy.  As we will see, the axioms of ZF enjoy a
coniderable degree of intuitive plausibility, though even among them it
is possible to make out some differences in the kind or degree of self-
evidence that attaches to them.

As a matter of fact the set-theoretical principles that are needed to
formalise the more elementary parts of metamathematics (including all
the results that were presented in Chs. 1 and 2) seem to be self-evident
to a remarkable extent.  Even if the combination of these principles
with those of pure logic does go beyond what we now consider to be
within the scope of pure logic, this does not seem to seriously affect
the central purpose of the formalisation of metamathematics - to
provide a proper foundation of scientific thought and reasoning.

Set Theory, then, can be seen as occupying a position halfway between
logic and mathematics.  On the one hand it seems to be about some
particular matehamatical structure or structures, and as such it is on a
par with other branches of mathematics.  But on the other hand its
central concepts, and the analyses of them that it has provided, come
as close to what we would consider 'pure logic' as anything that doesn't
actually lie squarely within it.

2 . The Axioms of Set Theory.

In order to state the axioms of ZF we must first decide on a first order
language in which they are to be expressed.  We start with the
assumption that this language has only one non-logical constant, the 2-
place predicate ! , which designates the relation that holds between x
and y when x is a member, or element, of the set y.  As we go along, we
will extend this language with new vocabulary, but always giving explicit
definitions for the new notions in terms of the original ! .  Thus each
time a new predicate or function symbol is added to the language, the
theory we are building is extended through the addition of a
corresponding definition.  As we have seen in Section 2.3, these
additions always yield conservative extensions, which do not increase
the set of theorems expressible in the original vocabulary {!} .

The first principle that an axiomatic theory of sets should make explicit
is the one which states what makes for the identity of a set.  The
principle we adopt, and which is in a sense definitory of the concept of
set, is the principle of extensionality, according to which two sets are
identical if and only if they have the same members:
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SA 1. ( x)( y) (x = y  ( z)(z ! x  z ! y))

The next three axioms tell us something about how to make new sets
out of given sets.  They testify to the possibility of forming pairs ,
unions  and power sets, respectively

SA 2. ( x)( y)( z)( u)(u ! z    (u = x  v  u = y))
SA 3. ( x)( z)( u)(u ! z    ( v)(v ! x  &  u ! v))
SA 4. ( x)( z)( u)(u ! z   ( v)(v ! u  v ! x))

It is customary to denote the sets whose existence is asserted in SA2-
SA4 as {x,y},  (x) and P  (x).  Instead of ' (x)' and 'P  (x)' we also write

' x' and 'P  x'. {x} is short for {x,x},

N.B. these 'notational conventions' are our first examples of the
mentioned practice in Set Theory to extend the language of set theory
with new non-logical constants and the theory of set theory with
axioms that have the form of explicit definitions for those constants.
For instance, SA2 garantees the existence of an unordered pair for any
two entities x and y, and it is easy to see that this pair is also unique.
(This follows from the Extensionality Axiom SA1.)  In other words the
axioms so far adopted entail the following theorem:

( 1 ) ( x)( y)( z)(( u)(u ! z    (u = x  v  u = y)) &
    ( z')(( u)(u !  z'    (u = x  v  u = y)) z' = z)))

As we saw in Ch.2, (1) is the necessary and sufficient condition in order
that adding the following definition (2) of the function constant {-,-} to
any theory containing the axioms SA1 - SA2 yields a conservative
extension.

( 2 ) ( x)( y)( z)(z = {x,y} ( u)(u ! z    (u = x  v  u = y)))

The same comment applies to the introduction of   and P.

The next addition to our axiomatic theory is meant to capture the
Comprehension Principle, the principle that for every property there
exists a set which consists of just those entities which have the property
(cf. Sn. 1.3.1).  Here we encounter two difficulties.  One of them is the
problem that in this categorical form the Comprehension Principle
cannot be true.  (This is what Russell discovered when reading the ms.
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of Frege's Grundgesetze der Arithmetik and explained in terms of
'Russell Paradox'.)  So the best we can hope for is to adopt the principle
in some weaker form.

In fact, there are two weakened versions of the Comprehension
Principle which play a part in modern set theory.  The first of these is
due to Zermelo and the second to Fraenkel.  Although the first version
is logically entailed by the second, and thus the second sufficient by
itself, we follow tradition in presenting both.

The first version is known as the Aussonderungsaxiom .  This principle
says that for any property P and any set x we can form the set of those
members of x which have P.  (That this is indeed a (weak) version of
the Comprehension Principle follows if we assume that for each set
there is the corresponding property of being a member of that set.  For
in that case we can form the complex property of (i) satisfying p and
(ii) being a member of x; the set of all things satisfying this complex
property is then the set which the Aussonderungsaxiom postulates for P
and x.)

In trying to state the Aussonderungsaxiom within our language {!} we
encounter the second problem.  Since we are working within first order
logic, we do not have the means of quantifying over properties, and so
wwe must make do with those properties which can be expressed
within our language.  So, just as for the Principle of Mathematical
Induction in our formulation or Peano Arithmetic in Ch. 2, the best we
can do is to specify the Aussonderungs-principle in the form of an
axiom schema, i.e. as an infinite set of axioms, one for each formula
A(u) of the language.  As in the case of the Induction Schema PA7, we
allow additional free variables y1,.., yn in A.  Thus the
Aussonderungsaxiom takes the form given in SA5.4

SA 5. ( x)( y1)...( yn)( z)( u)(u ! z    (u ! x & A(y1,..,yn,u)))

4 One might have thought that in the case of Set Theory there is no need to
opt for an axiom schema:  Instead of adopting an axiom for each formula A could
we not quantify over sets, since sets are after all what Set Theory is about?
Unfortunately this will not do.  The claim - which would correspond to the
categorical form of the Comprehension Principle - that for any set p there is a set
z consisting of the members of p is a tautology; and the principle - corresponding
to the Aussonderungsprinzip - that for any sets x and p there is a set z consisting
of the members of x which are also members of p, while not actually tautologous,
only asserts that the intersecion of two sets exists.  This proves to be much weaker
than the claim made by SA5 that every describable subset of a given set x exists.
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Note that SA5. entails the existence of the intersection x y of two sets
x and y.  We obtain x y by applying SA5. to the formula 'u ! y'.  It is
easily seen, moreover, that (4) satisfies the conditions for a definition
of a 2-place function constant, and thus that we can extend our theory
conservatively by adopting this defintion.  (From now on we will adopt
new vocabulary without making an explicit note that doing so is correct
when this is obvious and/or the notation is familiar from informal
treatments of Set Theory. )

( 4 ) ( x)( y)( z)( u)(u ! z    (u ! x & u ! y)))

The restriction which SA5 imposes on the Comprehension Principle is
too severe and a set theory powerful enough to serve as framework for
the formalization of mathematics and other areas of knowledge and
reasoning needs something stronger.  More specifically, we need a
principle with the power to yield sets which are not subsets of sets that
have already been constructed. The principle that has been adopted to
this end, known as the "Replacement Principle"5, is that the range of a
function whose domain is a set is a set too.  The Replacement principle
too is a weakened version of the Comprehension Principle and one that
(for all we know) is consistent.

In the formalisation of the Replacement Principle we have to deal with
the same difficulty that we encountered in connection with the
Aussonderungsaxiom.  To state the principle we must speak about
functions.  But what is a function?  Within set theory it is common to
identify a function with its "course of values", i.e. with the set of all
ordered pairs <a,b>, where a is an argument of the function and b is
the corresponding value.  Thus functions are sets, and if we make the
usual identification of the ordered pair <a,b> with the unordered pair
construct {{a}, {a,b}}, then functions are sets which are built out of
their arguments and values by means that are entirely within the set
formation repertoire we have already accepted in that it is entailed by
the axioms SA1-SA5 already adopted.

If we were to formulate the Replacement Principle as involving
functions in this sense, then we wouldn't get any sets whose existence
cannot be proved from SA1-SA5.  For suppose f is any function in this
sense, i.e. a function-representing set of ordered pairs.  Then the
existence of a set consisting of the range of f is secured in any case by

5 The replacement Axiom is the axiom of ZF that is due to Fraenkel.  It is also
sometimes referred to as"Fraenkel's Axiom".
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SA5, viz as the set of all u such that u ! x and A, where x is the set f
and A(v) is the formula ( z)( v)(z ! f & z = <v,u>).  The existence of x
is guranteed by SA3.

In order to get a version that enables to infer the existence of
something whose existence isn't ascertainable in any case, we must
once more make use of what can be described in our language of
axiomatic set theory.  This time what we want are descriptions of
functions.  That is, we need formulas A(u,v) with two free variables u
and v, u for the argument of the function and v for the corresponding
value.  As in the case of SA5 we allow additional free variables y1,.., yn
in A.

This time we must be careful to make sure that our axiom schema does
not overgenerate.  If we allow aribitrary formulas A(u,v), then we are
back at the contradiction that comes with the Comprehension Principle
(e.g. by using for A(u,v) the formula '(u = u & v !  v)'.  In order to
avoid this we must restrict the A's that are permissible in the schema,
to those which are 'functional for arguments which belong to the given
set x':

( 3 ) ( u)( v1)( v2)(u ! x & A(y1,,yn,u,v1) & A(y1,,yn,u,v2)  v1= v2))

Restricting the instances of A in the sense of (3) we obtain SA6 as
formulation of the Replacement Schema

SA 6. ( x)( y1)..( yn)(( u)( v1)( v2)(u ! x & A(y1,,yn,u,v1) & 
        A(y1,,yn,u,v2)  v1 = v2))

( z)( v)( v ! z  ( u) (u ! x & A(y1,,yn,u,v))))

The axioms we have formulated so far represent a powerful set of
principles to generate new sets from old ones.  However, most of this
power becomes relevant only when the sets involved are infinite.
Generation of finite sets (more precsiely: the hereditarily finite sets)
can be accomplished just with the axioms of pair formation and union,
SA2 and SA3.  However, there is nothing in the axioms we have so far
adopted which entails the existence of any infinite set.  One way in
which this can be shown is to note that one the models for these
axioms is the one we get when we iterate the operation O(x)   x   P  x
an infinite number of times, but stop at the first opportunity.  As we
observed earlier, the elements of this model are the hereditarily finite
sets and it is straightforward to show that this is a model of SA1-SA6
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So we need a further axiom - an "Axiom of Infinity" - to guarantee the
existence of infinite sets.  Interestingly, we need to postulate the
existence of only one infinite set, for once such a set has been given,
the axioms we have adopted generate a large (in fact, dazzlingly large)
multitude of such sets.6  There is a large number if different ways in
which this requirement could be fulfilled.  The form in which the axiom
is usually giv en is as the claim that there is a set which (i) contains the
empty set and (ii) contains for each of its members w  also the
'successor' of w, i.e. the set w  {w}.

SA 7 ( y)(  ! y  &  ( w) (w ! y   (w  {w}) ! y))

It should be intuitively clear that any set y which (i) contains  and (ii)
contains w  {w} whenever it contains w must be infinite.  In fact, we
can prove that the sets  ,  { },  { }  {  { }}, ... are all
members of such a y and also that they are all distinct from each other.
In this way we can show that y has more elements than any finite
number n.

It is easy to show that among the sets y which satisfy conditions (i) and
(ii) there must be a minimal one.  Let y1 be any set satisfying (i) and
(ii).  If there is any other set y2 which also satisfies these conditions,
then the intersection y1 y2 satisfies the conditions as well.  So the
smallest subset of y1 which satisfies the conditions will necessarily be
the smallest such set in absolute terms.  Let S be the set of all subsets y
of y1 such that (i)   ! y  and (ii) ( w) (w ! y   (w  {w}) ! y) and let
yo be the set defined by

( v)( v ! yo   (v ! y1 & ( y) (y ! S   v ! y)))

Then clearly yo satisfies (i) and (ii) and furthermore yo y for every
subset y of y1 satisfying (i) and (ii).7  So yo is indeed the smallest set
with these properties.  An informal argument shows that yo consists
just of the sets (= "0"),  { } (= "1"),  { }  {  { }} (= "2"),.. .

6 The need to postulate the existence of an infinite set was one of the
disappointments of the so-called 'logicist programme', of which both Frege and
Russell were advocates, to reduce mathematics to logic.  It is hard too accept the
existence of infinite sets as a principle that is valied for logical reasons.
7 Here of course "yo y" is short for "( z) (z ! yo   z ! y)".
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It should be clear that the set yo  is uniquely determined by the
conditions we have used to define it.  yo is usually referred to as "" " .
The set " plays a pivotal role in Set Theory. We will soon meet it again
when we will develop the concept of an ordinal. " will be the first
transfinite ordinal.

We are now in a position to give an impression of the importance of
SA6.  Given the existence of " we can of course prove, using SA2 and
SA3, that the sets "  {"} (= "" + 1"), ("  {"})  {"  {"}} (= "" + 2"),
" +3, etc. exist as well.  These sets form another infinite sequence, and
it seesm reasonable to assume that this sequence too has a 'limit', just
as the sequence 0, 1, 2, ...  has the limit " .  But it is only with the help
of SA6. that can show that this limiting set actually exists.

The argument goes as follows.  Let A(x,y) be the formula:

(x =  & y = ") v (( u)(x = u  {u} & ( w) (A(u,w) y = w  {w}))

It is easy to show that for all n ! ", (i) ( v) A(n,v) and
(ii) ( v) ( w)(A(n,v) & (A(n,w) v = w).  To see this it is enough to
observe that (a)  is a set n satisfying (i) and (ii) and (b) if any set n
satisfies (i) and (ii), then so does n  {n}.  Since "  is by definition the
smallest set S with the properties that ! S and that whenever n ! S then
n  {n} ! S, it follows that all members of "  satisfy (i) and (ii).  To show
(a) and (b) we proceed as follows.  First, it is clear that there is exactly
one set v such that A( ,v), viz. " . for when n = only the first disjunct
of A is relevant. So (a) holds. Second, suppose that n satisfies (i) and
(ii).  Let y be the unique v such that A(n,v).  To see that n  {n} also
satisfies (i) and (ii), note that now only the second disjunct of A is
relevant.  But from the second disjunct of A it is obvious that there is
exactly one z such that A(n  {n}, z), viz. the set y  {y}.

This shows that for all n ! " there is exactly one w such that A(n,w).  So
we can apply SA6. with "  for x and the given formula A.  The resulting
instance of SA6. allows us to conclude that there is a set S which
contains the sets ""+ n" for all n ! ".

The Axioms SA1-SA7 make up what is often identified as "Zermelo-
Fraenkel Set Theory" or ZF, after Ernst zermelo and Abraham Fraenkel,
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the two mathematicians who were responsible for its formulation.8
Often one adds to this system two additional axioms.  The first seems to
be evidently true of the structure of all sets as we intuit it, and so
should, from our perspective, be included.  This axiom expresses the
idea that all sets are "built up from below".  The idea is that when you
take any set and try to make your way down to its "foundation" - by
taking a member of the set, then a member of this member, then a
member of that member, etc. - you must come to an end after a finite
number of steps: There are no inifinite descending '!-sequences ' .

That the following axiom expresses this intuition is not immediately
obvious.:

SA 8. ( x) (x    ( y)(y ! x & y x = ))

In fact, that SA8 does indeed prevent the existence of any infinite chain
of sets sn such that for all n sn+1 !  sn , is quite involved and exploits
deduction strategies that are specific to formal set theory and that it
would carry us too far at this point to explain in sufficient detail.
Sometimes one distinguishes explicitly between the theory axiomatised
by SA1-SA7 ("ZF without Foundation“) and the one axiomatised by SA1-
SA8 ("ZF with Foundation").  We will assume that SA8 is part of what we
call ZF.

The last axiom - the Axiom of Choice (AC) - is generally regarded as
more difficult to justify on intuitive grounds than those we have already
considered.  For this reason it is usually not considered as an integral
part of ZF as such.  But it has a reasonable degree of plausibility
nonetheless, and it entails a large number of important set-theoretic
results which cannot be proved without it.  For this reason it has
become standard practice to distinguish between ZF with and without
AC.  (The combination wird usually denoted as ZF+AC.)

The Axiom of Choice can be formulated in an astoundingly large
number of different ways, some of which are very different from each
other.  But all of them can be shown equivalent on the basis of the
axioms SA1 - SA7, so which formulation one chooses doesn't really
matter in the end.  In its perhaps most familiar form the axiom says
that for any set x whose members are non-empty sets there exists a

8 Fraenkel's only contribution to ZF is the Replacemernt Schema.  We have
just had a glimpse of the importance of this axiom, and we will soon have plenty of
additional evidence.  In fact the role of SA6 within ZF is so crucial, that it fully
justifies the inclusion of Fraenkel's name in the designation of the theory.
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function f with domain x which selects for each y in x a value f(y) that
is an element of x.  Note well that in this case the function which the AC
asserts to exist is a function in the sense of set-theoretic object, i.e. a
set of ordered pairs.

SA 9. ( x) (( y) (y ! x  y  ) ( f)(function(f) & Dom(f) = x &
      ( y) (y ! x  f(y) ! y))9

Experience with the theory ZF has shown that essentially all the
theorems of set theory that have been proved by methods accepterd
within mathematics can be formulated and formally derived within it.
As an example, consider Cantor's Theorem, according to which there
exists no injection of the power set P (x) of a given set x into x.

Cantor's Theorem asserts that there exists no function of a certain
kind.  This involves quantification over functions.  Since in ZF we can
quantify only over sets we must once again make use of the set-
theoretical concept of a function according to which it is a set of
ordered pairs. Thus we come to the following formal statement (4) of
the theorem.

( 4 ) ( x) ( f)(Dom(f) = P(x) & Ran(f) x )

(Here "Dom(f) = P (x)" is to be understood as in the explanation of SA9.
and "Ran(f) x" is short for ( v)( u) <u,v> ! f  v ! x) ).

Within ZF the proof of Cantor's Theorem goes roughly as follows.
Suppose that f were an injection of P (x) into x, for some set x.   Let S be
the set of all u ! P (x) such that (f(u) !  u) - formally:

( 5 ) ( u)( u ! S    u ! P(x) & (f(u) ! u) .

That this set exists follows from SA5, taking P (x) as x and (f(u) ! u) as
A(u).  But now we can prove:  f(S) ! S   (f(S) ! S).  Since this is a
contradiction, the assumption that there exist x and f as hypothesized
has been refuted; thus Cantor's Theorem has been proved.

9 The part beginning with "( f)" would, in basic notation, be:
( f)(( u)(u !  f  ( v)( w)(v ! x & u = <v,w> ) &
( y) (y ! x  ( w)(<v,w> ! f & w ! y)))
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This 'proof' of Cantor's Theorem looks superficially very much like the
proof that was presented in Ch. 1.  But there is a difference of purport.
The argument we have just presented is to be seen as an outline of what
can be turned into a formal (i.e. axiomatic) derivation of the formal
statement of Cantor's Theorem from the Axioms of ZF.
It should be emphasised that all proofs offered in this chapter should
be understood in this way; they are all sketches of proofs that can be
implemented as axiomatic derivations from ZF.  In practice it hardly
ever makes sense to carry out such derivations in full detail.  Such
derivations tend to conceal the ideas on which the proof is based
behind a welter of formally necessary but intuitively trivial inference
steps with which the intuitive ideas have next to nothing to do.

# #

Since ZF is a first order theory, it is subject to all the general results
that apply to such theories.  In particular, it is subject to the downward
Skolem-Löwenheim Theorem.  In the case of set theory this seems
particularly puzzling.  For suppose that ZF is consistent.  (This is
something we cannot prove. But now, after many decades of intimate
experience with the theory which should have given much opportunit
which should have given much opportunity to discover an
inconsistency if indeed there was one, it seems very unlikely that the
theory would be inconsistent after all.)  Then ZF has a model (which, as
can easily be shown, must be infinite) and so by Skolem-Löwenheim it
must have a denumerable model - M, say.  Clearly M is not the intended
model of ZF.  For the "real" structure of all sets is surely non-
denumerable.  For one thing, any model of ZF must, in view of the
axiom of infinity, have a set """ and this set will be infinite, since it
contains each of the sets  ,  { },  { }  {  { }}, ... and such
sets will also be elements of the model and will all be distinct.  But
when " belongs to the model, then so does P (" ) and this set is, by
Cantor's Theorem, non-denumerable.  In other words, there should be
non-denumerably many elements in the model which all stand in the ! #
relation to P (" ).  But how can that be if M is only denumerable?

The paradox dissolves when we reflect on the exact meaning of Cantor's
Theorem in the ZF formulation given above.  In this formulation the
theorem says that there is no "functional" set of ordered pairs which
maps P (" )1-to-1 into " .  But does this really mean that P (" ) is non-
denumerable?  Well, it wouldn't if there weren't all that many functions
within the model M, so that even if P (" ) is denumerable from an
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external point of view, this fact could not be established within M for
lack of the right function.

The existence of such models as M is thus no contradiction after all.  It
isn't a contradiction, because the axioms of ZF, while truly asserting the
existence of such infinite sets as " , do not succeed in truly asserting the
existence of non-denumerably infinite powersets, such as P (" ).  A
denumerable set may behave, from the internal perspective of a given
model, as non-denumerable simply because there are too few functions
to expose it as a "fake non-denumerable" set, even though from an
external perspective that is what it is, since an injection of it into "
does in fact exist.

Ordinals and Cardinals

We now proceed to develop the basics of an important part of set
theory, the theory of ordinals and cardinals.  We follow the now
generally adopted approach originally due to Von Neumann.

Both the notion of an ordinal and that of a cardinal were invented by
Cantor, as part of his attempts to develop a general consistent theory of
infinite sets.  Cantor was interested in particular in distinguishing
between different kinds of infinity, something for which Cantor's
Theorem provides the basis:  The power set of any infinite set is x of a
different, "higher" degree of infinity than is x itself.  This distinction
gives rise to the notion of cardinality  and of cardinal number.  Two sets
have the same cardinality iff they can be injected into each other.  Thus
a set and its power set are always of distinct cardinality.  Cantor then
tried to develop a notion of cardinal number such that two sets have
the same cardinal number iff they have the same cardinality.

Cantor also developed a more fine-grained method of counting infinite
sets, which applies directly only to sets whose members are given in
some order.  The members of such sets would then be each assigned an
ordinal number, and the set as a whole would be assigned the first
ordinal number after all those assigned to members in it.  Thus ordinal
numbers were meant to be used as means of "counting" infinite sets in
much the same ways as the natural numbers are used to count finite
sets.  This role that ordinal numbers were meant to play led to the idea
that the class of all ordinals can be generated by the same kind of
iterative procedure that is also assumed to generate the stucture of all
sets:  Each ordinal x gives rise to a next ordinal, the successor  of x; and
whenever a certain unbounded family of ordinals has been constructed,
the limit of this family will once again be an ordinal, the first ordinal
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after all the members of the family.  The problem with such an
inductive characterization of the generation process is that it is not
quite clear how far it goes.  For it is clear that not every unbounded
family of ordinals will have an ordinal as limit.  In particular the family
of all ordinals - which is unbounded, as for each ordinal there is also its
successor - cannot have such a limit.  For if $  were this ordinal, then $
would be a member of the family of all ordninals and so would its
successor.  But then $  would not come after all ordinals in the family:
contradict ion.

So, for which unbounded families of ordinals may it be assumed that
limits exist?  There seems no easy answer to this question.  However,
Von Neumann came up with a very ingenious solution, which consists in
giving an explicit definition of a concept of "ordinal number", which
apparently satisfies all the intuitive requirements that Cantor and the
set theorists coming after him demanded of it.  In this definition the
successor of an ordinal x is defined by the operation we have already
encountered a number of times, viz. as x  {x}.  Von Neumann's explicit
definition of the property of being an ordinal identifies the ordinals
with those sets which are (i) linearly ordered by !  and (ii) are transitive
- a transitive set being one which has the property that the members of
its members are also members of it.  Here is the formal definition:

Definition. A set x is an ordinal iff
( i ) x is linearly ordered by ! , i.e. we have for all 

members u, v, w of x:

(a) (u ! v & v ! w)    u ! w
( b ) u ! v  v  u = yv v  v ! u

( i i ) x is transitive, i.e. for any y and z such that y !  x 
and z ! y, we have z ! x.1 0

10 In the version of ZF we have presented here, in which the well-
foundedness axiom SA8 is one of the axioms, this definition is adequate in the
sense that oit supports all the theorems about ordinaly which follow.  There also
developments of set theory in which well-foundedness is not taken for granted -
that is, SA8 is not adopted aas an axiom, or at least not from the outset.  Withn such
a weaker set-theory it is still possible to develop the theory of the ordinals on the
basis of an explicit defintion, but now this definition must include the clause that
an ordinal x is a set of sets which is well-ordered by !  - that is: if x is not empty,
then there is a member of x which contains no member of x.  (Exercise: Check that
with this extra clause in the definition of 'ordinal' all the proofs which follow can
be carried out without the use of SA8)



1 9

We write "Ord(x)" to express that x is an ordinal.

We can prove, in the order in which they are listed, the following
theorems about ordinals:

Theorem O1. Ord( ); Ord({ }); Ord({ ,{ }}); etc.

Theorem O2. ( x)(Ord(x)  Ord(x  {x}))

Proof. Suppose that Ord(x).  So x is transitive and linearly ordered
by !.  We must show (i) that x  {x} is linearly ordered by ! and (ii) that

x U {x} is transitive.  (ia).  Let u, v, w ! x  {x} such that u ! v ! w.  When
u, v, w ! x, then u ! w, since Ord(x).  If u = x or v = x then we have a
violation of axiom SA 8.  So the only remaining possibility is that where
u, v ! x and w = x.  But then again u ! w. (ib)  Suppose that u, w ! x  {x}.
We want to show that  u ! w   v  u = w   v   w ! u.  If u, w ! x , this follows
from the fact that Ord(x).  If u = x  & w = x then u = w; if u ! x & w = x,

then u ! w; if w ! x & u = x, then w ! u.  (ii) Let u ! w ! x  {x}.  We want

to show that u ! x  {x}.  If w ! x , then u ! x because x is transitive, so u

! x  {x}. If w = x, then again u ! x and so u ! x  {x}.

Theorem O3. ( x)(Ord(x)  ( y)(y ! x  Ord(y))

Proof:  Exercise

Theorem O4. ( x)( y)((Ord(x) & Ord(y))  (x ! y  v  x = y
   v  y ! x))      (1)

Proof. Suppose the theorem does not hold.  Then there is a
counterexample to (1), i.e. there are x, y such that

( 2 ) (Ord(x) & Ord(y)) & (x ! y)  &  x  y  & (y ! x).

With regard to x there are two possibilities: (a) there is no x' ! x such
that (2) holds with x' for x and some y' or other for y. (b) there exists
such an x'.  In this second case we can form the set of all those x' ! x for
which there is a y' so that x' and y' satisfy (2).  Since this set is by
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assumption non-empty, it has by SA8, a member xo whose intersection
with the set is empty.  For this xo we are then in case (a).   Having thus
obtained a minimal xo we can now also find a minimal yo among the y
which jointly with xo provide a counterexample to (1).  Now let u be
any member of xo.  Then, since Ord(xo), Ord(u).  Since also Ord(yo)
and xo, yo form a minimal counterexample to (1), we have: u ! yo  v  u
= yo  v  yo ! u.  When    u = yo  v  yo ! u, then  yo ! xo, contrary to
assumption.  So u ! yo.  Since this holds for arbitrary u ! xo, we have

( 3 ) ( u)(u ! xo  u ! yo)

Now let w be any member of yo.  Then as above we infer from
minimality of yo that w ! xo  v  w = xo  v  xo ! w, and, again as above,
that of these three possibilities only w ! xo is a live option.  So we get

( 4 ) ( w)(w ! xo  w ! yo)

From (3) and (4) we get by extensionality: xo = yo, which contradicts
the assumption that xo , yo  satisfy (2).  So (1) holds without exception.

Theorem O5. ( x)(( y)((y ! x  Ord(y))  Ord( x ) )

Proof: Exercise.

Theorem O6. Ord(" )

Proof. The strategy we will follow is to show that (a) all members
of "  are ordinals and (b) that "  = U" . Since by Theorem O5 and (a)
Ord(U" ), (b) completes the proof.

( a ) Let S be the set of all x ! " such that Ord(x).  (This set exists in
virtue of SA5.)  It is easy to show that S satisfies the conditions (i) ! S

and (ii) ( w)(w ! S  w  {w} ! S).  So, since "  is the smallest set
satisfying these conditions, "  S.  This concludes the proof of (a).

( b ) First suppose that u  !  " .  Then u  {u} !  " .  so there is a y such

that u  ! y  !  " .  So u  !  " .  To show that "  "  we proceed as under
(a):  Let S' be the set of all x in "  such that ( w)(w ! x  w  ! ").  Again
we can show that S' satisfies the two conditions (i) and (ii) mentioned
under (a).  So "  S'.  So if u  ! y  !  ", then u  !  ".  %ow suppose that
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u  !  " .  Then for some y, u ! y ! " . So u  !  " .

"  is our first example of an ordinal which is unbounded, in the set that
for each x ! " there is a y ! " such that x ! y.  Such ordinals are also
called limit ordinals.  If an ordinal is not a limit ordinal. it is, according
to Thm O7 below, always of the form w  {w}.  Such ordinals are called
successor ordinals:

Definition. LimOrd(x) iff Ord(x) & x   & ( w)(w ! x  ( v)( w ! v 
               & v ! x))

SuccOrd(x) iff Ord(x) & ( v)( x = v  {v})

Theorem O7. If Ord(x), then either (i) x = or (ii) SuccOrd(x) or 
(iii) LimOrd(x).

Proof: Exercise.

We already showed that with the help of SA7 we can prove the
existence of the limit of the ordinals " , " + 1, " + 2, ...  (This is the
ordinal we denoted as " + " .)  In fact, SA7 makes it possible to prove
the existence of a huge, barely surveyable, spectrum of limit ordinals
beyond " .  Nevertheless, all ordinals that can be obtained by such
methods are denumerable, i.e. stand in one-one correspondence with " .
To prove the existence of non-denumerable ordinals we have to appeal
to a principle of a very different sort, which is implicit in the Axiom of
Choice SA9.  To establish this principle, the so-called Well-ordering
Theorem, we need another, equally fundamental result, known as the
Recursion Theorem.

The Recursion Theorem says, roughly, that recursive definitions along
the ordinals constitute a valid means of defining functions.  The
theorem can be stated in a variety of ways.  The one chosen here is
inspired partly by the specific use to which we will put the theorem
below.

In order to facilitate the statement of the theorem and the formulation
of its proof, we introduce two notatonal devices.  The first is a matter
of strightforward definition.  It will be conventient to have a compact
notaton for the restriction of a function f to a certain set X.  This
restriction is the function whose domain is the intersection of X with
the domain of f and which assigns to the arguments in its domain the
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same values as f.  To indicate restriction we use the symbol " ".  Thus
"f X" stands for the set of all pairs <x, y> such that <x, y> ! f and x ! X.

The second bit of notation is a little more involved and needs to be
handled with more care.  One of the most common devices in natural
language is the definite dscriptive term, such as "the King of France" or
"the smallest perfect number" or "the empty set".  The semantics of
such terms is apparently that they denote the unique thing satisfying
their descriptive content (i.e. the property expressed by their common
noun phrase), provided there is just one such thing; but when there is
no such thing, or if there is more than one, then there seems to be
something wrong with the description - it is no longer clear what the
description denotes; arguably it doesn't denote anything.  Because of
the danger of denotation failure, the device of definite description
isoften excluded from the notational repertoire of formal logic, a policy
which we have been following here too.  But sometimes the device is
handy and allows for more perspicuous formulas than would be
availableotherwise.  And since that will be the case in the Recursion
Theorem to be stated presently, we introduce the device now.

For any variable x and formula A (typically, with free occurrences of
the variable x, though strictly speaking we do not need to make this
restriction) let "(Tx)A" stand for the unique x such that A(x).  We will
use this expression as a term, i.e. as occupying argument positions of
predicates.  Thus we will write for instance "P(c, (Tx)A)" to express the
proposition that c stands in the relation P to the unique x such that A.
However, we will only do so in contexts in which the unique existence
of such an x is guaranteed, i.e. where the formula

(*) ( x) (A(x) & ( y) (A(y) x = y))

holds.  Note that where this conditon is fulfilled we can eliminate every
occurrence of (Tx)A using notaton we already have.  For instance, "

P(c, (Tx)A)

can then be rewritten as

( x) (A(x) & ( y) (A(y) x = y) & P(c, x)).

When the formula in which the term "(Tx) A" occurs is complex, there
are usually a numer of different ways in which its elimination might be
carried out.  For instance, we might get rid of the term from the
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sentence P(c, (Tx)A) either by placing the quantificational complex
inside the scope of or outside it, getting, respectively, (a) and (b):

( a ) ( x) (A(x) & ( y) (A(y) x = y) & P(c, x)).
( b ) ( x) (A(x) & ( y) (A(y) x = y) & P(c, x)).

But under the required conditions (i.e. that (*) holds) such alternative
eliminations are provably equivalent.

Exercise.  Show that
(*)   ( (a)  (b) )

Equipped with these additrional means of notation we return to the
Recursion Theorem.  Suppose we want to define a function f(& , x1,...,
xn), where & ranges over an ordinal ' and the xi over some set X, and
that we want to do this by (i) specifying, for arbitrary x1,..., xn ! X, the
values of f(0, x1,..., xn); (ii) specifying for arbitrary x1,..., xn ! X and
successor ordinal &  + 1 ! ' , the values of f(&  + 1, x1,..., xn) on the basis
of those of f(& , x1,..., xn); and (iii) specifying  for arbitrary x1,..., xn ! X
and limit ordinals (  ! ' , the values of f(( , x1,..., xn) on the basis of the
set of all f() , x1,..., xn)  with ) ( , (  and x1,..., xn.  Then a function f
satisfying just those stipulations will indeed exist.  (In fact, the proof of
the theorem indicates a method for constructing an explicit definition
of this function and prove of this definition that it is a proper defnition
in the sense that it is satisfied by exactly one object, which satisdfies
the imposed criteria.  But this is an further aspect of the Recursion
Theorem that we will notgo into here.)

More precisely, let A(x1,..., xn, y) be a formula which is "functional in
y" provided the x1,..., xn are taken from X1,..., Xn, i.e.

( 1 ) ( x1)( x2)..( xn)( y)( z)(x1 ! X1 & ...& xn ! Xn  
(A(x1,..., xn, y) & A(x1,..., xn, z)  y = z) )

Similarly, let B(x1,..., xn, u, v, y) and C(x1,..., xn, u, v, y) be formulas
which express a functional dependency of y on any x1,..., xn ! X 1,..., Xn,
arbitrary u and &  ! ':

( 2 ) ( x1)( x2)..( xn)( u)( &)( y)( z)(x1 ! X1 &..& xn ! Xn &
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&  +1 ! '   (B(x1,...,xn,u, &  +1, y) & B(x1,...,xn,u,&  +1, z)  y = z))

( 3 ) ( x1)( x2)..( xn)( u)( ()( y)( z)(x1 ! X1 &..& xn ! Xn &  ( ! '
& limord(()   (C(x1,...,xn, u, ( , y) & C(x1,..., xn, u, ( , z)  y = z))

Then there is a unique function f which is defined on the X1,..., Xn and
and which, for arbitrary x1 ! X1,. .., xn ! Xn, and )  +1, (  ! '  satisfies the
following three conditions:

( i ) f(0, x1,..., xn)  =  Ty A(x1,..., xn, y)
( i i ) f()  +1, x1,..., xn)  =  Ty B(x1,...,xn, f ()+1), ) , y)
(iii) f(( , x1,..., xn)  =  Ty C(x1,...,xn,f ( , (� , y)

Proof of the Recursion Theorem:

We begin by proving that

(*) For fixed x1 ! X1,. .., xn ! Xn  there exists a function f{x1,..., xn} 
defined on '  such that the clauses (i), (ii) and (iii) hold for the
given x1,..., xn and arbitrary )  +1, (  ! ' .
(We omit the subscript {x1,..., xn} for ease of notation).

We prove by induction on ordinals ) < '  the following statement:

( 4 ) ( 1 ) There exists exactly one function f)  with domain equal 
to ) + 1 and which, for ordinals belonging to )  + 1 

satisfies the clauses (i), (ii), (iii); and
( 2 ) whenever * < ) , then f* f) .

We consider the three cases (a) )  = 0; (b) )  = &  +1; and (c) )  = ( , where
limord(( )

( a ) Let

( 5 ) f0  = {<0, Ty A(x1,..., xn, y)>}.

It is easy to verify that (4.1) and (4.2) are both satisfied.

( b ) Assume (4) for ordinals <  &  +1.  Let

( 6 ) f&+1   =   f& U {< & + 1, Ty B(x1,..., xn, f&, & +1, y) >}.
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It is easy to see that f&+1 satisfies the conditions (i)-(iii).  To see that it
is the only such function, suppose there are two such functions, g and
g'.  Then for some ) ,  g())    g'()).  Let * be the smallest such ) .  If * < &
+1 then g (*  +1)    g' (*  +1).  But it is easy to verify that both g (*  +1)
and g' (*  +1) are functions with domain *  +1 which satisfy conditions
(i)-(iii).  So by induction hypothesis they are both identical to f* , and
so must be identical to each other: contradiction.  The remaining
possibility is that * = &  +1.  But then g (*  +1) = g' (*  +1) =  f& .  Since g
and g' also satisfy clause (ii) for the case where )  = & , it is easily
verified that they are both equal to f&+1 as defined in (6).
Finally, let * be any ordinal < &  +1.  Since f (*  +1) has domain *  +1 and
evidently satisfies (i)-(iii), it follows by induction that

( 7 ) f* = f (* +1)  f&+1.

(c)  Let ( be a limit ordinal < ' and assume (4) for all ordinals < ( .  We
p u t

( 8 ) f(   =   )<( f)   {< (, Ty C(x1,..., xn, )<( f), (, y) >}.

Note that since for all * < ) < (, f*  f),  )<( f)   is a function.  So f(  is a
function too.  Again it is easy to verify that this function satisfies (i)-
(iii), that its domain is (  +1.  To show that it is the only function with
these properties and that for ) < ( , f)  f( , one proceeds as under (b).

To obtain the existence of a function f defined on X1 ...  Xn ' which
satisfies (i) - (iii) for arbitrary x1 ! X 1,..., xn ! X n, and arbitrary &  ! ', we
observe that we could have proceeded just as well in the proof just
given by adding at each stage pairs of the forms (5), (6) and (8),
resepctively for all possible combinations of x1 ! X1,..., xn ! Xn.  It is
easily seen that the above proof goes through essentially unchanged.

The recursion Theorem enables us to assert the existence of, among
many other things, certain "arithmetical" operations on ordinals, in
particular ordinal addition and multiplication.  That is, for any ordinal '
there are 2-place functions +' and .' defined on '   '   such that the
following holds for ordinals &, ) < ' :

(i+ ) & +' 0 = &
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(ii+) & +' ()+1) = (&+' )) +1

(iii+) & +' (() = ) ! ( (&+' ))

( i .) & .' 0 = 0
(ii .) & .' ()+1) = (& .' )) + &

(iii .) & .' (() = ) ! ( (&.' ))

For finite ordinals these operations are just the addition and
multiplication familiar from ordinary artihmetic.  To be precise, +'   is
the set of all triples <<n,m>, n + m>, where n and m are finite ordinals
and "+"  is the operation of ordinary arithmetical addition on the
natural numbers (which according to the set-theoretical perspective
just are the finite ordinals); and similarly for .' . However, for infinite
ordinals the operations behave in a way which is quite surprising for
someone used to the "plus" and "times" on the natural numbers.  For
instance, neither additoion nor multiplication are in general
commutative.  This is a consequence of a kind of absorption that
happens when the left argument the operation is much smaller than its
right argument.  Thus we have in particular:

(OA.1) If n is finite and & is infinite, then
( i ) n + &  = &
( i i ) n . &  = &

So we have for instance: 1 + "  = " and 2 . "  = " ; and since "  "  + 1 and
"   " . 2, the commutative laws "&  + )  = )  + &" and "&  . )  = ) . &" and
are not generally valid.

Exercise:  prove (OA.1) and the inequalities following it.

On the other hand the associative laws hold without exception:

(OA.2) ( i ) (&  + )) + ' = & + () + ')
( i i ) (&  . ) ) . '  = & . ()  . ')

Exercise:  Of the following two putative laws one is generally valid while
the other is not.  Prove the validity of the valid one and give a counter-
example to the other one:

(OA.3) ( i ) (&  + )) . ' = (&  . ') + ()  . ')
( i i ) & . ()  + ') = (&  . )) + (&  . ')
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Well-Foundedness and the Well-Ordering Theorem.

The next important theorem we need to establish is the so-called Well-
ordering Theorem, which asserts that every set can be put into a 1-1
correspondence with some ordinal.  We can also express this using the
term equipollent .

Def.  Let X and Y be sets.  X and Y are equipollent iff there exists a
bijection from X to Y.

So we can also express the Well-ordering Theorem by saying that every
set is equipollent with some ordinal.

The Well-ordering Theorem implies - and this is what has given it its
name - that every set X can be well-ordered, i.e. that there exists for X a
binary relation (i.e. a set of ordered pairs) R which (i) is transitive, (ii)
asymmetric and (iii) has the property that for every non-empty subset
Y of X there is a y ! Y such that for all z ! Y, if z  y then yRz.  (N.B  a
relation R with these three properties is in particular linear, i.e. for
each x, y in the field of R, we have xRy  v  x = y  v  yRx.  Show this.)  For
evidently the correspondence between X and some ordinal entails the
existence of such a well-ordering.  (Exercise: Show this.)

Well-ordering Theorem.

Every set X is equipollent to some ordinal.

Proof.  Let X be any set.  If X is the empty set there is nothing to prove.
So we assume that X is non-empty.  We proceed as follows.  We
consider the set R of all well-orderings of subsets of X.  (That this set
exists is easily seen.  For each well-ordering of a subset of X is a set of
ordered pairs of members of X.  Since the ordered pairs of members of
X form a definable subset Z of P (P (X)), the set of all well-orderings of
subsets of X is a subset of P (Z).) Moreover, this subset is definable (by
the three properties (i), (ii), (iii) mentoned in the definition of well-
ordering above).  So R is a set.)

We first show that each such well-ordering R determines a unique order
preserving map from R onto some ordinal &R, i.e. a unique 1-1 function
fR onto &R such that for all x, y in the field of R, xRy iff fR(x) ! fR(y).
We argue as follows. Let Y be the field of R.  For each y ! Y understand
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by the R-initial segment of Y determined by y that subset Z of Y which
consists of y and all z !  Y such that z R y. It is enough to show that for
each y !  Y there exists a unique order-preserving map fy from the R-
initial segment determined by y onto some ordinal &y and that
moreover the fy are nested, i.e. that if z R y, then fz  fy .  (For either
there is an R-last element u in Y, in which case Y is identical with the R-
initial segment of Y determined by u; or else there is no last element,
but then the union of all the functions fy for y !  Y will be, since the fy
are nested, an order-preserving map from Y onto the union of the &y. )
Suppose there is a y for which there is no fy as described. Then, since R
is a well-ordering, there is a R-first such y.  Either this y has an
immediate R-predecessor z in Y.  But then there is a unique order-
preserving map fz from the segment determined by z onto some
ordinal &z.  So if fy = fz U {<y, &z>}, then fy is a unique order-
preserving map from the segment determined by y onto &z +1.  If y
does not have an immediate R-predecessor, then we put fy = U zRy fz  U
{<y, UzRy &z>}.  Again we conclude, now also using the nestedness of
the fz, that fy  is a unique order-preserving map from the segment
determined by y to some ordinal.  So in both cases we get a
contradict ion.

Let ' = UR ! R &R.  We now make use of the Axiom of Choice, assuming
that there exists a function g defined on the set of non-empty subsets
of X such that for any such subset Z, g(Z) ! Z.  We also use the
Recursion Theorem.  This allows us to assert that there exists a function
f defined on ' + 1 which satisfies the following clauses:

( i ) f(0)  =  g(X)

( i i ) f(&+1)  =  g(X - Ran(f (&+1)), if X - Ran(f (&+1)  
X otherwise;

(iii) f(( )  =  g(X - Ran(U)<( f ))), if Y - Ran(U)<( f ))   
X otherwise.

Note that once f(& ) = X then this will remain so for )  > &  - i.e. we also
have f()) = X.  For "f(&) = X" means that all of X has been exhausted by
the time we reach & (i.e. X f & ).  Moreover, for each & such that f(& ) 
X the relation R&  defined by:

<u,v> ! R&  iff there are * , )  such that * < ) , f(*) = u and f()) = v
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 is a well-ordering and & is the ordinal & (R& ) corresponding to this well-
ordering in the sense of the first part of the proof.  Therefore & ! '.  So
f(') = X and consequently the first ordinal )  such that  f()) = X belongs
to ' + 1.  But this means that X - Ran(f )) is empty. So f )  is a 1-1 map
from ) onto X. q.e .d.

The Well-ordering Theorem makes it possible to compare all sets
according to size, in the following sense.  For each set X let |X| denote
the smallest ordinal & such that & is equipollent with X.  Since any two
ordinals &, ) are comparable as to size - we have either & ! ) or & = ) or

) ! & - the relation "X < Y" defined by

X < Y iff |X|  ! |Y|

is a strict linear order on the totality of all sets.  |X|  is also called t h e
cardinality of X, or the cardinal of X.  And by a cardinal, orcardinal
number , we understand any ordinal that is equal to its own cardinality,
i.e. any ordinal &  such that & = |& |.  Note that every finite ordinal is also
a cardinal, but that among the infinite ordinals cardinals are extremely
rare.  For instance, " is a cardinal, but " + 1 , " + 2,..., " + " , " .3, ... " ." ,
... are all of the same cardinality as "  and thus are not cardinals.
Nevertheless we do know that there are also larger cardinals than " .
For according to Cantor's Theorem no set is equipollent with its power
set.  So in particular the cardinal number of P(" ) - it is often referred to
as "beth1" - is different from, and thus is larger than, " ; and the
cardinal of the power set of the power set of "  is bigger than and so
forth.  But how much bigger is beth1 than "?  In particular, is it the
next cardinal after or are there other cardinals in between?  This
question, which was already raised by Cantor, can be said to have been
the single most important question in set theory since Cantor,
Dedekind and others first laid its foundations in the second half of the
nineteenth century.  (Cantor himself is said to have worked on this
question with such desperation that it led, or at any rate significantly
contributed, to a condition of clinical depression)  The hypothesis that
beth1 is the first cardinal after "  is known as the Cont inuum
Hypothesis .  (It is called this because, as can be shown without too
much difficulty, is also the cardinality of the "mathematical
continuum", i.e. of the set of all real numbers.)  After many fruitless
attempts to prove the Continuum Hypothesis (from the Axioms of ZF,
or from other, intuitively plausible axioms), Gödel succeeded in 1940
to prove at least that the Hypothesis was consistent with ZF (in fact,
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with a somewhat stronger theory known after its architects as "Gödel-
Bernays")  It was not until 1961 that Paul Cohen showed that the
Continuum Hypothesis is independent from ZF, i.e. that its negation is
consistent with ZF.  Since then various attempts have been made to
think of intuitively valid principles which would settle the question,
even if the search for such principles has produced many  intreresting
results about ZF and its possible models.

With the cardinal numbers comes a "cardinal arithmetic" which must
be sharply distinguished form the ordinal artithmetic mentioned
earlier.  We give just two operations here, cardinal addition, + , and
cardinal multiplication, :

For any cardinals +, µ

(1) + +  µ  = |X  Y|, where X and Y are any sets such that |X{ = +, 
      |Y| = µ and X  Y =  .

( 2 ) +  µ  = |X . Y|, where X and Y are any sets such that |X{ = + 
       and |Y| = µ

Some results about cardinal arithmetic:

( 3 ) For arbitrary cardinals + and µ

( i ) + + µ  = µ + +

( i i ) +  µ  = µ  +

( 4 ) For all infinite cardinals µ  and arbitrary cardinals +

( i ) if +  µ then + +  µ  = µ
( i i ) if X is a set of cardinality  µ and for each x ! X, x is of 

cardinality  µ, then x!X x has cardinality  µ.
 (5) if +  µ, then +  µ  = µ

Of these only (3), (4) and (5) deserve careful attention.  The other
properties are left as exercises.  We begin with the comparatively
simple (3).

Our proof of (3) is based on the following three observations.  The first
is:
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( 6 ) Every cardinal is a limit ordinal.

(Exercise:  Prove this.)

The second observation is closely related to the second:

( 7 ) Every infinite ordinal &  can be written in exactly one way as t h e
ordinal sum ( + n of a limit ordinal ( and a finite ordinal n.

(7) is proved by an easy induction on ordinals.  For &  = 0 the assertion
is trivial.  Suppose that &  = ) +1 and (6) holds for ) .  Then there are
unique (  and n such that )  = ( + n.  Then clearly &  = ( + (n+1).
Moreover, if &  = ) +1 for some other pair of a limit ordinal  µ and a
finite ordinal m, then (i), as & is a successor ordinal, m = k + 1 for
some finite ordinal k.  But then )  = µ +k.  Since by assumption the
decomposition of is unique, µ = ( and k = n.  Finally assume that & is a
limit ordinal.  Then obviously
&  = & +0.  Moreover, if for any (  and n,  &  = ( + n, then n = 0; for
otherwise & would be a successor ordinal.  So & = ( + 0 = ( .

The third observation requires the following definition.  For any limit
ordinal (  let the  " -sequence generated by (  be the set
{( + n}n ! ".  We denote this set as $ ((). Note that if ( , µ are distinct
limit ordinals, then $ (() $ (µ) = 0.  Using this notion, we claim:

( 8 ) For every limit ordinal ( ,

( i ) ( = "  ) ! Z $()),
where Z is the set of limit ordinals < ( .

(8) is fairly obvious:  The members of a limit ordinal are either limit
ordinals or successor ordinals.  Clearly every limit ordinal is the only
limit ordinal in its " -sequence, all the other members of the sequence
being successor ordinals.  The limit of the sequence is again a limit
ordinal.  The successor ordinals, moreover, are, according to (7), all of
the form µ + n , where µ  is a limit ordinal and n is some finite ordinal >
0. So it should be evident that the right hand side of (i) exhausts ( .

Now let X and Y be a pair of disjoint sets of cardinal ( and let f and g be
bijections from X and Y to ( , respectively. These functions assign
edach member x of X and each member y of Y unique ordinals &x a n d
&y belonging to ( .  By (7) these ordinals have unique representations &x
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= µx  + nx and &y = µy  + ny. We must construct a bijection of X  Y to ( .
The trick is to map X onto the "even" members of (  and Y onto the
"odd" members.  That is, we let h be the function which maps each x ! X
to the ordinal µx  + 2.nx and each y ! Y  to the ordinal µy  + (2.ny + 1).  It
should be obvious (i) (using (7)) that h is a 1-1 and (ii) (using (8)) that
h is onto ( .

(4) and (5) are proved together.  In the proof we make use of the fairly
obvious inequality:

( 9 ) if X is a set of cardinality  + and for each x ! X, x is of cardinality
 µ, then | x!X x| has cardinality  |+ . µ |.

(Exercise:  Prove this)

We prove by induction on infinite cardinals µ  that whenever + is a
cardinal   µ, then +  µ  = µ .  We distinguish between three cases; (a) µ  =
" ; (b) µ  = ++ , where ++ is the first cardinal after + ; (c) µ  is a limit
cardinal, i.e. for each cardinal +  < µ  we also have ++  < µ .  Case (a) is left
as an exercise.  We consider case (b).  Let X be the set of all limit
ordinals between +  and ++ .  X is well-ordered by !  and so there is a
(unique) ordinal ) and 1-1 !-preserving map fX  from )  onto X.  Using
the Axiom of Choice (henceforth: AC) we assume that h is a function
defined on all subsets Y of µ  such that |µ - Y|  = +  which assigns to each
such Y a subset h(Y) of µ - Y of cardinality +. Similarly, using AC
together with the Induction Hypothesis, we assume that bi is a function
which assigns to any pair <Y,Z> of subsets of µ  both of which are of
cardinality +  a bijection bi(Y,Z) from Y to Z.  For any ordinals *, ' such
that *  < ' let [* , ') be the set of all ordinals & such that *  & < '.
We define the function g by recursion on )  as follows:

( i ) g ( 0 )   =   bi( fX(0) . fX(0),  fX(0) )
( i i ) g(&+1) =   g(&)  bi( ((fX(& +1) . [fX(&), fX(& +1)) 

       ([fX(&), fX(& +1)) . fX(& +1))) , h(Ran(g(&)) )
(ii i) g(()    =   *<( g(*)

With regard to (ii) it is important to note that the two arguments of bi
are indeed both of cardinality +  and that if g(& ) is a bijection between
fX (& ) fX (& ) and some subset of µ , then g(&  +1) is a bijection between
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fX(&  +1) fX(&  +1) and some subset of µ .  With regard to (iii) we may
note that g(() is a bijection from fX (() fX (() to some subset of µ o f
cardinality + .  The conclusion that the range of g(( ) is of cardinality +
we use the Induction Hypothesis together with (9).
It is easily seen that, as &<) fX(&) = µ , g is a bijection from µ  µ  to
some subset of µ .  It follows that µ  µ  and µ are equipollent.

The proof for case (c) is similar to that for case (b).  This time let X be
the set of all infinite cardinals < µ .  Let fX  and )  be defined as before.  It
is easily verified that )  µ.  Let h be a function which asigns to pair
consisting of a subset Y of µ  with |Y|  < µ and an infinite cardinal & < µ a
subset of µ  - Y of cardinality & , and let bi be a function which assigns to
each pair of sets Y, Z of the same cardinality & < µ  a 1-1 map bi(Y, Z)
from Y onto Z.  (Again the existence of such a function is entailed by
the Induction Hypothesis.) This time let g be the function with domain
) defined by the clauses (i) and (iii) above together with the clause

( i i ' ) g(& +1) =   g(&)  bi( ((fX(& +1) . [fX(&), fX(& +1)) 
([fX(&), fX(& +1)) . fX(& +1))) , h(Ran(g(&)), fX(& +1))

It is easy to verify that in (ii') both arguments of bi are of cardinality
fX (& +1) and thus that if g(& ) is a 1-1 function from fX (& )  fX (& ) to
some subset of µ  (of cardinality fX (& )), then g(& +1) is a 1-1 function
from fX(&  +1)  fX(&  +1) to some subset of µ  (of cardinality fX(&  +1)
).  With regard to (iii) note that since ( < )  µ, |( | < µ . So, using (9) we
can once again conclude that the range of *<( g(*) has a cardinality
not greater than the maximum of |( | and fX (( ) and thus of cardinality <
µ.

The set-theoretical results we have mentoned here are only a small
excerpt from the vast stock of theorems of this theory (some of them
extremely difficult) that are known.  Our selection has been governed
primarily by the need to provide a certain impression of the two
principal ways of "counting the infinite" which set theory has made
precise and which are associated with the concepts of ordinal  and
cardinal , respectively.  More specifically - and this is true in partiuclar
for the last few results - we have aimed at providing the set-theoretical
underpinnings for the following "converse" of the Downward Skolem-
Löwenheim Theorem, which was preeented on p. .  This converse, the
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"Upward Skolem-Löwenheim Theorem", says that if a set of sentences ,
has a denumerably infinite model, then for every infinite cardinal
+, , has a model whose universe is of cardinality + .

Theorem. (Upward Skolem-Löwenheim Theorem.)
Let ,  be a set of sentence of some language L, let M be a model for L
such that |UM | = "  and M  , .  Let k be any infinite cardinal > " .  Then
there exists a model M' such that M  ,  and |UM | = + .

Proof.  The proof is similar to that of the Completeness Theorem.  Let
, , M and +  be as in the statement of the theorem.  To show that , has a
model M' of cardinality +  we extend L to the language L' by adding to it
a set of cardinality +  of new individual constants.  We shall show
presently that the sentences of L' can be enumerated in a sequence the
length of which is exactly + .  (To be precise, that there exists a 1-1
function from +  to the set of sentences of L'.)  But before we do this, a
remark is in order about "languages" with a non-denumerably infinite
vocabulary.  So far we have considered only languages whose
voacabulary was at most denumerable.  Even a denumerably infinite, as
opposed to a finite, vocabulary may perhaps seem a little
counterintuitive from the perspective of our experience with actual
languages.  For the vocabularies of those languages, as normally
understood, do appear to be finite.  However, it is clear how a
denumerbly inifinite vocabulary can be "simulated" with the help of a
finite number of signs.  As an eaxmple we may consider the vocabulary
consisting of all numerals , i.e. all canonical names of natural numbers.
Our standard decimal notation provides such names as combinations of
the ten signs "0", "1", ... , "9".  Alternatively, we can use, as numeral for
the number n, the complex sign consisting of a "0" followed by n "1"s.

But a non-denumerable vocabulary cannot be simulated in this way, for
the  set of all finite sequences over some finite "aphabet" of signs will
always be denumerable.  (Exercise:  Show this.)  So the concept of a
language with a non-denumerable vocabulary is an abstraction, or
extrapolation, from our intuitive concpet of a language in a way that
languages with denumeranbly infinite vocabularies are not.  So what
should we understand by such a non-denumerable language?

To focus on this question, we should be clear of the kind of abstraction
involved in the notion of a non-denumerable set - such as. for instance,
the cardinal + .   The existence of such sets follows from our axioms of
set theory; and set theory offers various constructs to form non-
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denumerable sets out of others (as well, of course, as out of
denumerable sets). But obviously we are never in a position to actually
display or enumerate such a set explicitly - that is precisely what the
term "non-denumerable" conveys.  In the light of these considerations
it is reasonable to see non-denumerable languages also as set-
theoretical constructs, or, more accurately, to see the sentences and
other well-formed expressons of such languages as constructs from
finite subsets of their non-denumerable vocabularies.  But in what
sense can a well-formed expression of a language L - i.e. a sequence of
"words" of L, i.e. of items from L's vocabulary - be a set-theoretic
object?  The natural answer to this question would seem to be:  To the
extent that sequences are, or can be considered, set-theoretical objects.

So what is a sequence in the set-theoretical sense?  Set Theory suggests
two possible asnwers to this question.  According to the first answer a
sequence of two elements will be an ordered pair-  thus <a,b> is the
sequence consistingof the elements a and b.  Similarly a sequence
consisting of three elements, a, b and c, say, will be a triple, e.g. the
pair consisting of <a,b> and c: <<a,b>,c>, etc.  The second answ<er is
that a sequence is a functon the domain of which is an ordinal, and
whose values are the members of the sequence.  Thus the sequence
consisting of a and b is the function {<0,a>,<{0},b>}, or {<0,a>,<1,b>} -
a function the domain of which is the ordinal 2 (i.e. the set {0,{0}}).
Similarly the sequence consisting of a,b and c is the function
{<0,a>,<1,b>, <2,c>}, etc.  This second notion of sequence has the
advantages that it can be defined once and for all by a single, simple,
explicit definition and (ii) that it generalizes straightforwardly to the
infinite: a sequence in this sense can be finite or infinite according as
the ordinal that is its domain is finite or infinite.

Adopting this second notion of sequence, we come to the following
characterization of non-denumerable languages.  As before a language L
is a function from symbols to signatures (see p. 1), where the
possibility that the domain of L is non-denumerable is explicitly
included.  The terms and sentences of L are then finite sequences of
members of the domain of L, where "sequence" is to be understood in
the set-theoretical sense just indicated, which satisfy the clauses (i) and
(ii) of the definition of term  and the clauses (i)-(v) of the definition of
formula  on p.1.

Now that we have made precise what should be understood by the
language L' and its terms and sentences, we return to the proof of our
theorem.  We first divide the set C of new constants into two sets C1
and C2 , each of cardinality k. Let , ' = ,   { (c = c'): c and c' are



3 6

distinct constants in C1}.  It is easily seen that , ' is consistent.  For let A
be a finite subset of , '.  A will consist of some finite subset of ,
together with finitely many sentences of the form " (c = c')".  In the
model M the former are true by assumption.  Moreover, since UM  is
infinite, it is possible to chose distinct denotations in UM  for each of
the finitely many new constants that occur in sentences in , ' of the
second kind.

We now come to the point where we need some of the cardinal
arithmetic we have presented here and all that was required to get that
far.  It is clear that the cardinality of the sentences of L' is at least + , for
even the sentences which have the form "c = co", where co is some
particular new constant and c is any new constant, already has
cardinality + .  But is the set of sentences of L' exactly  of cardinality +?
To see that this is so, we first observe that the set of symbols of L' has
cardinality + .  This follows directly from (3) on p.44.  Our second
observation is that for each n the set of n-place sequences of members
of L' has cardinality + .  For n = 1 this is obvious. Suppose the claim is
true for n = m.  To see that it is then also true for n = m + 1, note that
every m+1-place sequence of members of L' is decomposable, in a
unique way, into (i) an m-place sequence of members of L' and (ii) a
member of L'.  Thus the set of all m+1-place sequences is equipollent
with the cardinal product of the cardinal of the set of m-place
sequences and the cardinality of L'.  By induction hypothesis this is
equal to + . + , which according to (4) on p. 44 is equal to + .  Our last
observation is that the set of all finite sequences of members of L' has
cardinality + .  This follows from the fact that this set can be written as

n  ! " Xn, where for n = 1,2,...  Xn is the set of all n-place sequences of
members of L'.  It follows from (5) on p. 44 that this set is again of
cardinality + .  Since teh set of sentences of L' is a subset of this set, its
cardinaltity is at most + .  We already know that its cardinality is at least
+ .  So it is exactly + .

From here on the proof closely follows the completeness proof we gave
earlier.  Let {A)}) ! + be an enumeration of length + of all the sentences
of L'.  We use this enumeration to construct a sequence {,)}) ! + o f
extensions of , '.  As in the completeness proof, the union ,+ of this
sequence will determine a model M' of , ' and this M' will be the model
we are looking for.  We define by means of the clauses:
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( i ) ,0      =      , '
(a)  ,)  {A)}, provided ,)  {A)} is 
consistent and A)  is not of the form ( vj) B

(i i ) ,)+1  =   (b)   ,)  {A), B(c/vj}, provided ,)  {A)} is 
consistent, A)  is of the form ( vj)B and c is a 
constant from C2 which occurs neither in ,)  
nor in A) .
(c)   ,), provided ,) U {A)} is 
inconsistent .

(ii i) ,(     =       ) ! ( ,)

Note (i) that for all ) ! + there is a c not occurring in ,)  or A) .  For only
|) | new constants can have been introduced into ,) and only finitely
many such constants can occur in A) .  Since there are +  new constants
in all and |) | < + , it follows that there are still +  constants left.  Note (ii)
that by the Recursion Theorem the clauses (i)-(iii) define a function
defined on + .  The range of this function is a set and so is its union.
Call this union ,+ .

As in the completeness proof one shows that ,+  is consistent and
complete in L'.  Also, defining once more the relation  between
individual constants of L' by:

c  c'  iffdef the sentence c = c' belongs to ,+

we show as before that is an equivalence relation and that whenever
c  c' and P(t1,.., c,..,tn) ! ,+ , then P(t1,.., c',..,tn) ! ,+ .
Moreover, since for any pair c, c' of distinct new constants the
sentence (c = c') belongs to , all new constants belong to distinct
equivalence classes under .  So, if we define the model M' in the same
way as in the completeness proof, then |UM' | = + .  As before one shows
that for every sentence A in ,+ , M  A.
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The Interpretation of Number Theory in Set Theory.

It is common to think of the members of the set " as the "natural
numbers".  "   has a number of properties that suggest such an
identification.  For instance, as we have seen, "  is linearly ordered by !
and this order has the same structure as the set on natural numbers:
(i) it begins with the empty set (which it is therefore natural to identify
with the number 0), (ii) has the property that each "number" n has an
immediate successor n U {n}, as well as, if it is different from , an
immediate predecessor, and (iii) it runs on forever.  However, a proper
identification of " with the natural numbers requires that we interpret
all operations and relations of number theory as operations and
relations on " , and in such way that number-theoretic laws turn into
theorems of set theory.

In this section we formulate such an interpretation of number theory
within set theory. It will have the property that for any theorem of our
axiom system of Peano arithmetic the interpretation of that theorem (a
sentence in the language of set theory) will be a theorem of the set-
theoretical axioms SA1 - SA7.

Before we do this, we will define in more general terms the notion of an
interpretation of a theory T1, formulated in a first order language L1,
within a second theory T2, formulated within a first order language L2.
Any such interpretation will be based on interpretations of all the non-
logical constants of L1 by formulae of L2.  For instance, if R is a 2-place
relation of L1, then an interpretation of R in L2 will take the form of an
L2 formula AR(v1, v2) in which v1 and v2 are the only free variables.
An example which we have encountered already in a somewhat
different context is the interpretation of the relation of the theory of
Boolean lattices in terms of the operation U of Boolean Algebras.  We
can interpret the theory of Boolean lattices within the theory of
Boolean Algebras by interpreting by means of the formula v1 v2 =
v2.
For function constants of L1 the matter is a little more complicated.
Since function constants form terms, and not formulas, interpreting an
L1 function by means of an L2 formula makes no direct sense; rather
the interpreting formula should be thought of as interpreting certain
atomic formulae in which the function constant occurs.  For instance,
an interpretation of the theory of Boolean Algebras within the theory of
Boolean lattices must be based on, among other things, an
interpretation of the2-place function constant U.  This interpretation is
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to be understood as the interpretation of the atomic formula   v1  v2
= v3.  A natural choice (also encountered earlier) would be the formula

( 1 ) v1  v3 & v2  v3 & ( v4)(v1  v4 & v2  v4  v3  v4)

In general, to interpret an n-place function constant we need an n+1-
place formula AC (v1, ... ,vn,vn+1).  Note well that in order that for
A C (v1, ... ,vn,vn+1) to be suitable as the intepration of an n-place
function constant, the last argument most be functional in the first n
arguments, that is, we must have that for all relevant values of the
ariables the following open formula is satisfied:

( 2 ) AC(v1, ... ,vn,y) & AC(v1, ... ,vn,z)   y = z

In general, interpretation of T1 within T2 involves yet another L2
formula, viz one which demarcates the universe of T1 within the
universe of T2.  The case before us, the interpretation of number
theory within set theory, is an example.  It is only the members of "
that are to be the "natural numbers" in our interpretation, not the
entire universe - consisting of all sets - that our set theory talks about.
The interpretation of the "universe of T1" is a formula AU (v1) with
only v1 free.  In the interpretation of Peano Arithmetic within ZF this
formula should of course say that v1 belongs to " .  We will give this
formula as "v1 ! ""; but of course, if the target language of our
interpretation is our original, "minimal" language of set theory whose
only non-logical constant is ! , then this formula must be seen as
abbreviation of a much more complicated formula from which the "" "
has been eliminated, using the defintions by means of which it was
in t roduced.

Intuitively, AU (v1) should define a non-empty universe, i.e. the
sentence ( v1)AU (v1) ought to be true.  As for the unique condition on
interpretations for function constants, we will impose this condition
when we wil need it.

These preliminaries should suffice to make sense of the following
definition:

Def. 1  Let L1 and L2 be first order languages.  A translation base for
interpreting L1 in L2 is a pair consisting of (i) a formula AU(v1) of L2
with only v1 free and (ii) a function which maps each non-logical
constant C of L1 onto a formula AC(v1, ... ,vk) of L2 in which v1, ... ,vk
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are the only free variables and where (a) if C is an n-ary predicate
constant, then k = n and (b) if C is an n-ary function constant, then
k = n+1.

Each translation base for interpreting L1 in L2 induces a function which
maps arbitrary formulas of L1 onto formulas of L2, so that in particular
sentences form L1 turn into sentences of L2.  In case L2 has only
predicate, but no function constants, the translation is quite
straightforward: Basically all one needs to do to translate any formula B
of L1 is to replace each atomic subformula P(x1, ... ,xk) by AP(v1, ...
,vk) (making sure to rename bound variables where necessary).  But
when L1 contains function constants the matter is more complicated.
For how are we to translate an atomic formula P(t1 , ... ,tk) where all or
some of the ti are terms other than variables. To see what the problem
is, consider once more the above interpretation of the union operation
of the language of Boolean Algebras given in (1).  Suppose we want to
translate the formula

( 3 ) (x  y) z =  x  y z).

Here we have a predication involving the special predicate symbol =
and two complex terms.  Since (1) applies directly only to atomic
formulas of the form x  y = z, there is no direct way in which it can
be applied to (3).  One way in which we can make it apply is to rewrite
(3) into an equivalent formula in which all atomic subformulas are of
the form to which (1) can be applied directly:

 (4) (3)    
( u)(u  = x   y & u  z =  x  y z))        
( u)( v)(u  =  x  y & v = y z &  u z =  x   v)  
( u)( v)( w)(u  = x  y & v = y z & w =  x   v & u z =  w)

The last formula of (4) can now be translated by replacing its atomic
formulas with suitable variants of (1).

An alternative way of dealing with this problem is to associate with
each term t a formula At(v1) of L2 which represents t in the sense that,
intuitively speaking, it is satisfied uniquely by the "value of the
intrerpretation of t"; thus At(v1) serves as the translation of the
formula t = v1.  As can be seen from Definition 2 below, the definition
of At(v1) has teh reduction illustrated in (4) built into it.
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Def. 2  Let T1 be a theory of the first order language L1 and T2 a theory
of the first order language L2.  Let < AU , I> be a translation base for
interpreting L1 in L2.

1 . < AU, I> is suitable according to T2 iff
( i ) T2 ( v1)AU(v1)
( i i ) For each n-place function constant F of L1

( 5 ) T2 ( v1) .. ( vn)( y)( z)(AC(v1, ... ,vn,y) &
AC(v1, ... ,vn,z)    y = z)

2 . Suppose that  < AU , I> is suitable for T2.  The interpretations o f
terms and formulas of L1 in L2 based on < AU, I> are defined as follows:

1.  Terms .    For each term t the interpretation of t based on
< AU, I> is the formula At(v1) defined as follows

i. If t is the variable x, then At(v1) is v1 = x
ii. If t is the term F((t1 , ... ,tn ), then At(v1) is the formula

( x1).. ( xn)(At1(x1) & .. & Atn(xn) & AF(x1, ... ,xn,v1) )

2.  Formulas.  For each formula B the interpretation of B based 
    on < AU, I>, I*(B), is defined by:

i. I*(P(t1, ... ,tn))  =
( x1)..( xn)(At1(x1) & .. & Atn(xn) & AP(x1, ... ,xn) )

ii. I*( B) = I*( B); I*(B & C) = I*(B) & I*(C); I*(B v C) = I(B) `
v I*(C); I*(B  C) = I*(B)  I*(C); I*(B  C) = I*(B)  

I*(C);
(iii) I*(( vi)B) = ( vi)(AU(vi)   I*(B));

I*(( vi)B) =  ( vi)(AU(vi) &  I*(B))

3. The translation base  <AU , I> is an interpretation of T1 within 
T2  iff  (i)  <AU , I> is suitable according to T2;  and

  (ii) For any sentence B of L1, if T1 B, then T2 
I*(B).

N.B. If T1 is given by a set of axioms, then to check that 3.ii. is satisfied
it suffices that each of these axioms translates into a theorem of T2.
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We now turn to the interpretation of Peano Arithmetic in ZF Set Theory.
After the general foundations we have just discussed, this is now quite
straightforward.  All we need to do is define a translation base for
interpreting the language LPA into the language of set theory {!}, and
then check that it satisfies the conditions (i) and (ii) of Def. 3.2.

In defining the translation base, we will continue with the convenient
device of specifying the interpretations of the non-logical constants of
Peano Arithmetic in the definitionally extended language of set theory
we have been using.  As with the formula
v1 ! " , an interpretation in the language {!} can be obtained from the
fomula thus specified by elimination of the defined function constants
and predicates.

The interpretation of the constants = and S is straightforward.  But
those of + and . require some thought.  What needs to be done is to
mimick the recursive defintions of + and . given by the Peano axioms
PA3- PA6.  We accomplish this by using the familiar trick of quantifying
over finite functions which encode initial segments of the relevant
recursion.  Thus the interpretation of + has the following form.

( 6 ) ( f)(Fn(f) & Dom(f) = v2  {v2} &  f( ) = v1 & ( n)(n !  v2  
f(n {n}) = f(n) {f(n)}) & f(v2) =  v3)

The function f defined in the quantifier-free part of (6) is intuitively the
function which assigns to each of the numbers n from 0 to v2 as values
the numbers v1  + n.  This has the effect that in particular v3  is the
number v1 + v2 .  The interpretation of . is constructed along the same
lines; the formula looks a little more complicated because the recursive
clause for . makes use of +.

Def. 3   Translation Base for interpreting Peano Arithmetic in ZF:

( i ) AU(v1)  :=   v1 ! "
( i i ) I(0)   :=   v1  = 
(iii) I(S)  := v2  = v1  {v1}
( iv) I(+)   := ( f)(Fn(f) & Dom(f) = v2  {v2} &  f( ) = v1 & 

( n)(n !  v2  f(n {n}) = f(n) {f(n)}) & 
f(v2) =  v3)
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( iv) I( .)   := ( f)(Fn(f) & Dom(f) = v2  {v2} &  f( ) =  & 
( n)(n !  v2  I(+)( f(n), n, f(n {n})) & 

f(v2) =  v3)

Theorem.  The translation base of Def. 3 is an interpretation of 
Peano Arithmetic within ZF, in the sense of Def. 2.3.

# #

Let us call an interpretation of T1 within T2 absolute  iff the first
member of its translation base (i.e. the formula AU (v1) ) is true of all
things in the "universe of T2", that is, if T2 ( v1)AU (v1).  The
situation where there is an absolute interpretation of T1 in T2 can also
be described as follows:  For each non-logical constant C of T1 there is
an explicit definition BC of C in T2, such that, if T2 is the theory in the
language L2 L1 which we obtain by adding all these definitions to T2,
then T2' T1 .

An important relationship between theories T1 and T2 is when each is
absolutely interpretable within the other.  In such a situation T1 and T2
can be regarded as different formalizations of the same "conceptual
structure" - whether one starts from the notions that are primitive in
T1 (i.e. the non-logical constants of L1)  or from those that are
primitive in T2, the other notions can always be obtained from these by
explicit definition so that the axioms of the other theory become
theorems of the first.  A very simple (and quite uninteresting) example
is provided by the theory of partial order, which can be formulated
either in the language {<} with the axioms PO1 and PO2 above - let this
theory be TPO1 - or in the language { }, with the axioms (PO1')
( x)( y) z)(x  y & y  z  x  z) and (PO2') ( x)( y)(x  y & y  x
x= y) - let this theory be TPO2.  Then TPO1 is absolutely interpretable
wihin TPO2 and TPO2 is absolutely interpretable within TPO1.

Exercise.  Prove this by formulating definitions of   in TPO1 and < in
TPO2 and then showing that each definition turns the axioms of one
theory into theorems of the other.

A more interesting example is provided by the theory of groups.  The
formalization that we gave here, with .  and -1 as primitives, constitutes
only one of many possibilities.  Another version one often encounters
in the literature starts with . and e as primitives and takes as axioms
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(for instance) (i) ( x)(x . e = x); (ii) ( x)(e . x = x). (iii) ( x)( y)( z ) (
(x . y) . z = x . (y . z) ); (iv) ( x)( y)(x . y = e).

It is not hard to show that (i) - (iv) entail that the y of (iv) is unique.
(Argument:  Suppose that x . y = e and that y . u = e.  Then x  =  x . e  =
x . (y . u)  =  (x . y) . u  =  e . u  =  u.  So y . x =  y . u = e.  Now
suppose that y and z are both such that x . y = e and x . z = e.  Then y
=  y . e  = y . (x . z )  =  (y . x) . z  =  e . z  =  z.)  So we may define
( x)( y) ( x -1 = y    x . y = e).  it is eaasy to check that with this
definiton all axioms of the version of group theory given in the text
follow from (i) - (iv) above.

Exercise.  It is also possible to formulate the theory of groups with just
one 2-place operation / as primitive.  Intuitively x/y means the same as
x . y-1.

(i) Show that if we add to our original formulation of the theory of
groups (8) as additional axiom, then the sentences (9) - (12) are
derivable as theorems

( 8 ) ( x)( y)( z)(x / y = z   z = x . y -1)
( 9 ) ( x)( y)( x/x  =  y/y)
( 1 0 ) ( x)( y)( x  =  x/(y/y) )
( 1 1 ) ( x)( y)( (x/x)/(x/y)  =  y/x )
( 1 2 ) ( x) ( y) ( z)((x/y)/z  =  x/(z/((y/y)/y)) )

(ii)  Let TG' be the theory given by (9) - (12). Show that the formulas
(13) - (15) are definitions in TG' (i.e. show that the relevant existence
and uniqueness conditions for the definientia of (13) - (15) are
theorems of TG')

( 1 3 ) ( z)(e = z  ( y)(z = y/y))
( 1 4 ) ( x)( y)(x -1 = y y = e/x))
( 1 5 ) ( x)( y)( z)(x . y = z  z = x/y -1) )

(iii) Show that all axioms of our original formulations of the theory of
groups are derivable from (9) - (15).


