Discourse Representation Theory
an Updated Survey

ESSLLI 2003

Vienna
Agnes Bende-Farkas, Hans Kamp

Institut fiir Maschinelle Sprachverarbeitung IMS
Universitat Stuttgart, Germany
agnes,hans@ims.uni-stuttgart.de

Josef van Genabith

School of Computing
Dublin City University, Ireland
josef@compapp.dcu.ie

3. September 2003

Overview

Monday: Bottom-up DRS Construction J

Underspecification
Tuesday: Presupposition J
Wednesday: Intensionality A
Thurday: Propositional Attitudes H
Friday: Information Structure A
Discussion

Reading: H. Kamp, U. Reyle and J. van Gena-

bith, Discourse Representation Theory, Hand-
book of Philosophical Logic, (ed.) D. Gabbay,
Kluwer Academic Press, (rough draft ;-).

http://www.ims.uni-stuttgart.de/ "hans

2

Bottom-Up DRS Construction

e new DRT architecture

e presupposition [Heim,83], [Zeevat,92], [van
der Sandt,92]
— from: obstacle to logical transparency
— to: centre stage in dynamic semantics

— presupposition /anaphora: different aspects
of single process

e two stage processing architecture:

— presupposition computation

— presupposition justification /accommodation

Bottom-Up DRS Construction

The Plan ...

e “old” top-down DRS construction algorithm
[Kamp,81] [Kamp & Reyle,93]

e presupposition (“a taste”)
e underspecification
— storage [Cooper,83]
— UDRT [Reyle,92,93]
e presupposition (“main course”)

e “new’ bottom-up DRS construction

— presupposition computation (prelimina-
ry representations)

— presupposition justification/accommodation

e o P-UDRT fragment (generic unification for-
malism)

e DRT calculus

Top-Down DRS Construction

(1) A delegate! arrived. She; registered.

XYy
delegate(x)
(2) arrive(x)
register(y)

y=X

Top-Down DRS Construction

DRSS construction rules, CR-NP, qof; CR-VP1Ty,

..., triggering configurations

(3) A delegate arrived.

X
q delegate(x)

— S

@ | NP VP e T
Det N \Y% & |

| | J \Y%

a delegate arrived |
arrived

X

~» | delegate(x)
arrive(x)

Top-Down DRS Construction

ProN V
She registered

X

delegate(x)

arrive(x)

S

/\

VP

Xy

delegate(x)
arrive(x)
y =7
S
y VP
v

\
registered

XYy

delegate(x)
arrive(x)
y =X
S
y VP
v

i
registered

XYy

delegate(x)
arrive(x)
y = X
register(y)

Top-Down DRS Construction

o <:S’1,...,S@,Si+1---7sn>

~~

Ky,

e insert tree(S;y1) into context DRS Kj ; as
decomposable condition

e construction rules
— triggering configurations

e rational reconstruction of on-line incremen-
tal interpretation by human interpreter

e meaning: instruction to dynamically update
mental representation

e meaning: complete(ed) DRSs: truth condi-
tions

e practical and theoretical reasoning

Bottom -Up DRS Construction

Sneak Preview: preliminary DRSs

(6) A delegate! arrived. She; registered.

: y
delegate(x) < Vo .
7 arrive(x) fem(y) register(y)

context DRS preliminary DRS

Bottom -Up DRS Construction

Presuppositions
e multiple
e nested

Two stage processing architecture:

1. Construction (of P-DRSs)

e make presuppositions (demands on con-
text) explicit

e presuppositional /non-presuppositional part
2. Resolution (of presuppositions)

e presupps. need to be satified by context

e or context accommodated so that satis-
fies presupps.

Resolution involves world knowledge . ..

If (2) succeeds presupps “disappear” from P-
DRS, merge of non-presupp part with context

10

Bottom -Up DRS Construction

Sneak Preview (contnd):

X
y
delegate(x) .
arrive(x) Y reglst_er(y)
fern (x) y=
context DRS non-presuppositional
DRS
(8)
Xy
delegate(x)
| arrive(x)
| fem(x)
register(y)
y =X

11

Underspecification

e ambiguity ...

e lexical (POS, word class)
following: V, ADJ, N

e structural

unpackable

conservative party leader

crazy sematicists and syntacticians
A saw B with a telescope...

e semantic (word sense, scope ...)

bank

every candidate made a crucial mistake
take two pills with a glass of water
every day for three weeks

John rang Tom. He was furious.

e ambiguities can multiply !

12

Underspecification

e ambiguity (contnd):

e Montague Grammar: different derivation trees
+ quantifying in

e Cooper storage (procedure to construct LFs)

— Keller storage

e underspecification (partial descriptions of

LFs)

— UDRT [Reyle, 92,93, ...]

— QLF [Alshawi & Crouch, 92]

— Hole Semantics [Bos,96], linear logic (glue)
semantics [Crouch et. al, 01], Ambiguous
Logical forms [Muskens, 95|, Constraint Lan-

guage for Lambda Structures (CLLS) [Egg
et. al, 98], MRS [Copestake et. al, 95], . ..

13

Cooper Storage

FOPL LF construction:

(9) Every candidate made a mistake.

o Vx(cand(x) — Jy(mis(y) A make(x,y)))
o Jy(mis(y) A Vz(cand(x) — make(x,y)))

S
NP VP
/\ /\
D N V NP

14

Cooper Storage

FOPL LF construction:

Normally:

FORMATION

S
N

<

<2200
L4l 1l

g
L1

=
Z Z <
O

< O =z
o

a

every
candidate
mistake
made

INTERPRETATION
S° = NP° VP°
NP° = D° N°

VP® = Az.NP°(V° z)

APAQdx(P(z) A Q(x))
APAQVx(P(z) — Q(x))
Azx.cand(x)

Ax.mis(x)

Az Ay.make(z,y)

15

Cooper Storage

S
Vz(c(z) = Ju(m(u) A mk(z,u)))

T

NP VP
AQVz(c(z) = Q(z)) AxTJu(m(u) A mk(z,u))

D/\N /\

| | V NP
every candidate | AQFu(m(u) A Q(u))
made P
D N
| |
a mistake

Surface scoping only . ..

16

Cooper Storage

Complicate semantic representation!

e cach synactic node is associated with two
semantic components

— Store
— Core
— (Store , Core)

e Store 1s a set of store elements of the form

<£IJZ', Sem)
where x; 1s an indexed variable and Sem is a
semantic representation (usually of a quan-

tified NP)

e Core is a “dummy” semantic representation
containing occurrences of indexed variables

17

Cooper Storage

Trick: complicate semantic representation

(Store , Core)

FORMATION INTERPRETATION
S — NP VP S§* = NP°*UVP?
S¢ .= NP¢VP*

VP —» V NP VP := V®U NP
VPe = NPeVe

NP - D N NP®:= { (K DNe)}
NP¢ := AP.P(z;)

a (0, \PAQ3z(P(z) A Q(x)))
every (D, \PAQVx(P(z) = Q(x)))
candidate (0, \x.cand(z))
mistake (0, \x.mis(x))

made (0, A\yAz.make(x,y))

<2200
L4l il

18

Cooper Storage

NP

(Uz, AQVz(c(2) = Q(2)))], >

N

(D, A\PAQVz(P(z) = Q(2))) (0, Az.c(x))

every candidate

NP

({22, AQFu(m(u) A Qu)))} >

T

D N
(D, APAQAU(P(u) A Q(w))) (0, Ax.m(x))

mistake

19

Cooper Storage

VP
< {(22, AQTFu(m(u) A Q(u))) } >

Az.make(x, xo)

V NP
(0, \y\x.make(z,y)) < {{x9, \QIu(m(u) A Q(u)))} >
| AP.P(z»)
made N

20

Cooper Storage

S

{enGtmma)

make(x1,)

T

Uz, AQVZ(i\(I; — Q(2)))}, (=2, AQHU(::LI(DU) AQ(u)))}
() | ;

AP.P(z1) Az.make(z, x2)
/\
D N \Y NP
| | | N
every candidate made D N

a mistake

21

Cooper Storage

Retrieval:

given (Store , Core)
where Store = {(v, NP}), ... (v,, NP)}

e repeat until Store = (:

— Store := Store — {(v;, NP;)}
— Core := NP7 (Av;.Core)

e write Store

Different orders of retrieval will give different
scopes: if |Store| = n then n! scopes.

A form of underspecification . ..

22

Cooper Storage

(21, AQVz(c(2) = Q(2)
X { (w2, AQTu(m(u) A Q(u) })

make(xy, xo)

— AQVz(c(2) = Q(2))(Az1.make(xy, z9))
~ Vz(c(z) = make(z,)

. { { (22, 2QFu(m(u) A Q(u))) | >

Vz(c(z) — make(z, x9)

— AQAu(m(u)AQ(u))(Ax2.Vz(c(z) = make(z, x3))
~ Ju(m(u) AVz(c(z) = make(z,u)))

)
* < Ju(m(u) AVz(c(z) = make(z,u))) >

A procedure to compute fully scoped LFs.

23

UDRT

(10) Every candidate made a mistake.

- y
| (V3)
candidate(x) Ennliil({i(;))
y
mistake(y)
. ()

candidate(x) make(x,y)

24

UDRT

(11) Every candidate made a mistake.

/Q\

y
X .
candidate(x) E mistake(y)

make(x,y)

e graphical representation of UDRS shows what
the two fully scoped reps have in common

e this 1s not what is constructed in semantics
construction . ..

e but descriptions of it ... how? Labels ...

25

UDRT

X
S candidate(x) l12 [

: | make(x,y)

ls :

y
mistake(y)

e

UDRS = {{Structural Constr.}, {Content Constr.})

{lh <l 1o < 7,13 < ligyls < lo},

< { ll . 111112, l11 - X, l11 : Candidate(x),

ls v, 15 : mistake(y), l3 : make(x,y)

}>

plus closure under transitivity of < and subor-
dination constraints induced by complex condi-

tions.

26

UDRT

Disambiguation: add structural subordination constraints:

I

ly

Monotonic process (both on representation and interpre-

tation).

27

UDRT

Satisfiability of dominance constraints (as logi-

cal descriptions) NP-hard [Koller, Niehren, Trei-

nen, 01]. Normal dominance constraints . . . polynomial
algorithms [Althaus et al.,?7].

28

Presupposition

e obstacle to logical transparency

e presuppostion is about interpretation in con-
text

e strongly contributes to text cohesion
e parallels with anaphora ..

e = presuppostion occuples centre stage in
dynamic semantics

o cf. [Heim, 83|, [van der Sandt,92], [Zeevat,92]

= Motivates architectural changes in the DRT
setup (DRS construction).

Two stage process

e presupposition computation

e presupposition resolution

29

Presupposition

What is presupposition?
e in most general terms: “a demand /requirement
on context”

e presuppostion triggers

— lexical /syntactic
* again, also,
* different,
* surprise, regret ... (factive verbs)

x definite NPs: definite descriptions, pro-
per names, demonstratives, pronouns

e presuppositions need to be

— satisfied by (local) context
— (local) context is accommodated
— or a mix of the two (“justification”)

e projection problem

30

Presupposition

Definite description “the Ngg”

context sent. with presupp.

Walter has(a rabbit The rabbit) s whate.

and a guinea pigq.

Presupposition: (local/relevant) context provi-
des exactly one rabbit (existence and uniquen-
ess) and this is what definite description “the
rabbit’ refers to.

If presupposition not satisfied sentence fails to
have truth value.

Here context (together with world knowledge)
satisfies presupposition:

Cntxt l_wk Prs

31

Presupposition

Proper names

context sent. with presupp.
@ has a rabbit and a
guinea pig.
accommodated
context

Presupposition: individual named Walter provi-
ded by context.

Accommodation: context is adjusted so that

ACC(Cntxt) by Pres

32

Presupposition

again
John made a mistake again

Presupposition: John already made a mistake
before the mistake talked about here.

33

Presupposition

Test(s) for presupposition

Negation:

e presuppositions of S are the presuppositions

of =S: P(S) = P(=S)

e negation “hole” for presuppositions

P(S)

-5

P(=5) |

. There is exactly one rabbit.

Walter overfeeds the rabbit.

. There is exactly one rabbit.

Walter doesn’t overfeed the rabbit.

. John made a mistake again.

. John didn’t make a mistake again.

34

Presupposition

Presupposition filtering/projection

Logically complex sentences

S: If a friend of mine has both a rabbit and
a guinea pig, he overfeeds the rabbit.

P(S) # there is exactly one rabbit ...
Presupposition absorbed /satisfied by local (sen-
tence internal) context: antecedent of implicati-

on.

Basic projection facts follow in dynamic seman-
tics setting [Heim,83].

35

Presupposition

Presupposition projection/ anaphoric
pronouns

S: Fvery friend of mine who has a rabbit
overfeeds it

= close parallel between presupposition and
anaphoric pronouns [van der Sandt,92], [Zee-

vat,92)]
= instances of same general process

= naturally accounted for in dynamic seman-
tics setting

36

Presupposition

John owns a rabbit and a cat. The cat
1s overfed.

John made a mistake again.
John made a different mistake.

Carl is surprised that John made a mi-
stake.

If John makes a mistake, the mistake
is desasterous.

John owns a cat. It is overfed.
John is a cat owner. The cat is overtfed.

?? John 1s a cat owner. It is overfed.

37

Presupposition

Consequences for DRT architecture:
Presuppositions have to be

e computed

e justified (i.e. satisfied, accommodated or both)

That suggests a 2-stage processing architecture
[van der Sandt,92]. Given a context DRS Kj
for the first n sentences in a discourse we

1. compute a preliminary DRS K/, for
sentence S, (in isolation) that makes fully
explicit the presuppositional and the non-
presuppositional content of S, 41

2. we then justify all presuppositions of DRS
K/, .1 in the available context (satisfaction
or accommodation or both)

If (2) succeeds we merge nonpresuppositional
part of K7 ,; with K, to get updated context
K1 41 for next sentence in discourse.

38

Presuppositions

Such an architecture is naturally implemented
through a bottom-up DRS (or a constraint-based)
construction process.

Sources of complexity:

e multiple presuppositions (generated within
same sentence)

e nested presuppositions

e interaction with other sources of complexi-
ty /ambiguity

= storage mechanisms and UDRSs!

39

Presuppositions

First some examples of preliminary representa-
tions in the pictorial DRS box notation ...

From sneak preview ...

(20) A delegate! arrived. She; registered.

: y
delegate(x) < o SIS
(21) | arrive(x) fem(y) register(y)

context DRS preliminary DRS

40

Presuppositions

(22) Walter has a rabbit and a guinea pig. The
rabbit is white.

WY Z

Walter(w)
rabbit(y)
guinea pig(z)
have (w.y)
have (w,z)

(23)

u

rabbit(u)
C(u)

/

(24) 4

rabbit(u’) ,
C(u')

41

Presuppositions

(25)

Aside (justification):

u=1

C(u)

rabbit(u)

Cr

< S0 Cfr)

rabbit (r)

u=1

rabbit(u)
ue{w,y,z}

rabbit(v)

ve{w,y,z}
white(v)

42

v

rabbit(v)
C(v)
white(v)

Presupposition

Aside (justification contnd):

WYZV

Walter(w)
rabbit(y) ; guinea pig(z) ; rabbit(v)
have (w,y) ; have (w,z)
ve{w,y,z}
white(v)

(26)

43

Presupposition

(27) Walter has a rabbit and a guinea pig. His

rabbit is white.

Cr

(<{ I;l:j}é;; }=< e

have(x,r)

u=t

rabbit(u)
C(u)

have(x,u)

Aside (justification):

WYZXV

Walter(w)
rabbit(y) ; guinea pig(z)
have (w,y) ; have (w,z)
X =W

rabbit(v)

ve{w,yz}
have (x,v)
white(v)

44

))

rabbit(v)
C(v)

have(x,v)

white(v)

Presupposition

(28) (It is a peculiar fact, but) If Walter has
both a rabbit and a guinea pig, the rab-

bit is white.

W
Walter(w)
y 7z
rabbit(y) ; guinea pig(z)| = K
have(w,y) ; have(w,z)
Where K =
X Qr u:1
< < { mal_e(X) } ’ < gér t)() rakékzit)(u)
pers(x) lizzwezx,i) ha"e(l)l(au)

Ctf. example 27 previous slide

45

rabbit(v)
C(v)

have(x,v)

white(v)

Presupposition

(29) Every friend of mine who has a rabbit
overfeeds 1it.

XYy

friend-of(x,m)

m

speaker(m)

friend-of(x,m)
rabbit(y)
have(x,y)

&

u

u=y
overfeed(x,y)

46

u
rabbit(y) < ’
have(x,y) non-pers(u) overfeed(x,u)
m
speaker(m)
Xy

Presupposition

(30) Bill is surprised that he is late.

SRS

b
Bill(b)

be-surpr. (b,< 4

u

male(u) | ¢,

person(u) be-late” (u)

U_l

where K is < | male(u’)

person(u’)

" “be-late” (u') >

(31) John was late and thats what he told Bill.
Bill isn’t surprised that he was late.

Copying, parallelism (ellipsis)

47

Presupposition

(32) John made a mistake again.

)
John(j)
teyn
t/ e/ y/

mistake(y)
< < mistake(y’) | e:make(j,y)

¢'make(j,y')| || eCt

e Ct t <n

th <t

48

Presupposition

Presuppositional account of anaphoric proper-
ties of tense ...

(33) Contribution of tense:
past pres fut
by by by

t, <n| |t,=n |n<t

49

(Preliminary) DRS Construction

e unification based

— simple, efficient
— LFG, HPSG, PATR-II . ..

— problems: no clean distinction between
“unification variables” and “semantic va-
riables”, coordination

— hacks to get around this in implemen-

tations (copying) or complex underlying
logic (HPSG)

e lambda calculus based

— clean

— bulky ...
= simple, generic approach in PATR-II

a0

(Preliminary) DRS Construction

e FOPL semantics construction in PATR-II
e UDRS construction in PATR-II

— UDRT in HPSG [Frank & Reyle,95]
e syntax Preliminary DRSs

— based on (some basic) DRS language L
— PR-DRS is DRS of L or pair (I, K) whe-
re IC set of PR-DRSs and K a PR-DRS

— (preliminary conditions .. .)

e P-UDRS (Preliminary UDRS) construction
in PATR-II

— left adjunction of presupposition set to
(labelled) content conditions

e construction principles

o1

PATR-II Semantics Construction

(34) Every candidate made a mistake.

o Vx(cand(z) — Jy(mis(y) A make(x,y)))
o Jdy(mis(y) A Vz(cand(x) — make(x,y)))

S
NP VP
/\ /\
D N V NP

52

PATR-II Semantics Construction

Need some lexical entries and rules:

N

NP

VAR
SEM cand((1J)

— candidate/mistake

'VAR
RES —> ever
300 Ve
SEM ¥I(2 —[3)
'VAR
RES R
SCO N
SEM J1(2 AB)
VAR
gé‘g _)DRES N[VAR]
SEM SCO SEM

SEM

23

PATR-II Semantics Construction

NP
VAR
SCO
SEM

T

D _ N
VAR {VAR]

RES SEM [cand(T) |2
SCO |

SEM | V(@ —[3) |@ candidate
| ‘ |

every

NP (every candidate)
VAR
SCO
SEM W1l (cand([1l) — [3])

o4

PATR-II Semantics Construction

NP
VAR
SCO
SEM
_ D N
VAR VAR
RES SEM | mist(T) |2
SCO | |
SEM |3IL@ AB) |@ mistake
_ ‘ |
a
NP (a mistake)
VAR
SCO

SEM F1l(mist(1]) A 3])

95

PATR-II Semantics Construction

VAR1
V |VAR2 — made
SEM make((1],[2])
VARI1 VAR
VP [ggl\l}] — V |VAR2 NP |SCO
SEM SEM
VP
VAR
SEM
\Y NP
VAR1 VAR
VAR2 SCO

SEM [make(T],[2]) |3

|
made D N
|
a

SEM [32 (mist(2) AB)) | @
P

mistake

26

PATR-II Semantics Construction

VP (made a mistake)
VAR
SEM 2| (mist(2]) A make([1],[2]))

o7

PATR-II Semantics Construction

VAR
SCO
SEM

S[SEM B| — NP

VAR
Ve [SEM]

[SEMS]

T

NP VP
[VAR]

SEM [35/ (mist ([5]) A make((T], [5])) }

VAR
SCO

SEM [VI (cand(@) — @) | 3

\Y NP

D N | N
| | made D N

every candidate | . |t k
a mistake

S
{SEM VI (cand(@]) — 32 (mist(2]) A make(d],2])))]

o8

PATR-II Semantics Construction

VAR . .
S[SEM B]] — NP |SCO VP ;/EA;Z
SEM : :
VAR1 VAR [2]]
VP gﬁﬁ] — V |VAR2 NP |SCO
SEM 'SEM [|
VAR
Nngg —>DRES NVAR
SEM SCO SEM
SEM
['VAR .
N _SEM can d() — candidate
['VAR
D RES — ever
SCO VeLy
SEM VI (2 — 3)
['VAR1
V |VAR2 — made
SEM make((1], [2])

29

PATR-II UDRS Construction

(35) Every candidate made a mistake.

X

: candidate(x)

: | make(x,y)

122

y
mistake(y)

v

UDRS = ({Structural Constr.}, {Content Constr.})

{lh <lv,lo <7l < g, ls < 1o},

< { Iy : 113V xll19, 117 @ x, [11 : candidate(x),

ls v, 15 : mistake(y), l3 : make(x,y)

UDRSs are descriptions of logical forms . ..

60

PATR-II UDRS Construction

First some lexical entries . ..

D — every ll X lll : = 112 : D
B [
RES [i;
SCO [

D DDR }1: — every
CC {ll . lllllg, l11 . X}
SC {ln <l < it}

Note that the [, here are meta-variables over
label names to aid readability (i.e. each [; should
properly be a tag lil).

61

PATR-II UDRS Construction

LB [
RES 1[4
SCO 1[4
DDR x
CC {l;:x}
SC 0

LB [
DDR x :
N CC (L : cand(x)} — candidate

SC ¢

62

PATR-II UDRS Construction

LB [
SCO
NP |DDR 4
CC [EulE
SC MUl |

LB [
SCO [9
NP |DDR x

%

— every candidate

NP — every candidate

l12

LB

CC
SC

RES
SCO
DDR

]

|

CC {ll : 111l12, 111 - X, l11 : cand(x)}
SC {ln <, e <lin}

LB 2]
DDR [4
CC [

sc § |

111 .

cand(x)

lmiD

63

PATR-II UDRS Construction

LB [
SCO [
NP |DDR x — a mistake
CC {ly:x,l; : mist(x)}
SC 0

NP — a mistake li:] .
mist(x)

64

PATR-II UDRS Construction

Verbs do a lot of work in this approach ...

LB [
CC {l; : make(3] [4])}
SC {h <0, <2}

v
SCO SCO
_SUBCAT <{DDR]S’ {DDR]O>
— made
CC [Dul2 CC
VP |sc @um |-v|sc NPlgg]@
SUBCAT (5) SUBCAT (5,[8)

65

PATR-II UDRS Construction

VP

SC {l3 <06, I3 <o}

DDR [6]

SUBCAT <{SCO]s>

— made a mistake

|

CC

CC Dul
SC

sc mum| NP{

66

(CC {ly:y,1: mist(y), I3 : make(6l,y)} |

ERG

CC
SC
SUBCAT (5)

PATR-II UDRS Construction

oo l1 : 111V xll19, 117 : X, 111 - cand(x),
S ls : v, 1o - mist(y), I3 : make(x,y)
SC {lin <l le Sl ls <o, I3 < o}

— every candidate made a mistake

UDRS = ({Structural Constr.}, {Content Constr.})

{lh <lt,lp <lt,l3 < lig, I3 < 1o},
< I 111V xllq9, 117 : X, 111 : candidate(x), >
ls v, 15 : mistake(y), l3 : make(x,y)

Spot the difference: a UDRS is an upper semi-
lattice ...use max projection of verb ...

67

PATR-II UDRS Construction

[cC
[BB - w[E e wlx
|SUBCAT ([5])
[cC dul2 [CC CC
VP |SC BluM | — V |SC NP o]@
|SUBCAT (5]) |SUBCAT (35, [6]) -
i LB |
oo RES LB
NP |DDR — D SO N DDR
DDR CcC [l
CC [Eulel
e UB CC SC
L SC |
[LB 14
RES [LB [
SCO 512 DDR x .
D DDR x —every N CC {l; : cand(x)} — candidate
CC {ll B lllllg,lu IX} SC (Z)
1SC {li1 <1, he < it}

LB [y
CC {l; : make([3],4])}
sC {i, <l <2}

— made

DDR DDR

s (93], (523

68

PATR-II P-UDRS Construction

Presuppositions in UDRT - Preliminary UDRS
(P-UDRS) construction based on previous UDRS

construction.

Recall what preliminary DRSs looked like:

X
e NP — John < < John(x) 3 >
u=! X

e NP — the cat < cat(u) | [cat(x) >

69

PATR-II P-UDRS Construction

e syntax Preliminary DRSs

— based on (some basic) DRS language L

— P-DRS is DRS of L or pair (K, K) where
KC set of P-DRSs and K a P-DRS

— (preliminary conditions ...)

e P-UDRS (Preliminary UDRS) construction
in PATR-II

— left adjunction of presupposition set to
(labelled) content conditions and sub-DRSs
of such conditions

e construction principles

70

PATR-II P-UDRS Construction

X

Kvs K candidate(x)

ICQ:

y
mistake(y)

-

Add set valued PR (presuppostion) feature to

representation:

Some definite NP examples . ..

cC {1}
sC {1}
PR { ..}

71

PATR-II P-UDRS Construction

Proper names go into the “top level” DRS uni-
verse.

Use designated label [

X
NP — John { S
John(x)| |’
LB [T
SCO [T
DDR x
CC @
SC 0
NP (B [T 1y | — John
SCO [T
PR <(|DDR x >
CC {i" :x,I" : John(x)}
[|sc 0

72

PATR-II P-UDRS Construction

Definite descriptions: existential and uniquen-
ess presuppositions:

u X
NP — the cat < ; cat(u) 2 cat(x) >
Abbreviation:

u
u=t cat(u)
~ u’
cat(u)
cat(u’) u' =u

73

PATR-II P-UDRS Construction

How do we implement this? We'll make the de-
terminer (the) do the work . . .:

LB
RES
SCO
DDR
cc {i:2}uld
SC
([LB
D SCO — the
PR {|DDRE :
CC {I : 2=} Ul
|sc
LB 1 |
DDR
SUBCAT <cc >
sc @y

by subcategorising for the noun argument.

74

PATR-II P-UDRS Construction

: : LB [
LB !
SCO 2
SCO 2
DDR B DDR [3
NP — D [CC [N| |B
CC @
SC [
SC B
PR [PR ©
: ! SUBCAT (8]) |

and copy ([6/,[7]) to get an instance of PR with
fresh variables ... outside pure unification!!

LB

SCO

DDR

CC {2, : cat(2)}
S0 , B 1y | = thecat
SCO
PR {|DDR[@ >
CC {B :[617",B : cat(@)}
[|SC 0

NP

75

PATR-II P-UDRS Construction

(36) his rabbit

i

male(x)
pers(x)

simplified:

o<

male(x)
pers(x)

o

v

rabbit(v)

C(v)

have(x,v)

Cr =
C(r) rabbit(u)
rabbit(r) "I C(u) > >
have(x,r) have(x,u)
u=t A
rabbit(u) rabbit(v)
have(x,u) have(x,v)

76

PATR-II P-UDRS Construction

LB
RES [1]
SCO
DDR [2]
CC { : 21, have(6],2])} U3
SC
([LB
SCO
DDR [2]
CC {[: 27!, have(i6],[2])} U 3]
SC
DDR [6]

PR

| { CC {[@ :16],[7 : male(6]),[7 : pers([6])}
LB

DDR 2] >

CC

SC N

PR [«
LB [T

|

SUBCAT <

— his

modulo copying!

7

PATR-II P-UDRS Construction

(37) John made a mistake again.

S
S/\ADV
T)
NP VP agailn
| TN
John V NP
N

78

PATR-II P-UDRS Construction

J

John(j)
teyn
t/ e/ y/
mistake(y)
< < mistake(y’) e:make(j,y) >
¢make(jy)| ['] eCt
e C t t <n
t' <t

79

Implementation (alternative)

P. Blackburn and J.Bos, Representation and In-
ference for Natural Language, draft at
http://comsem.org

P. Blackburn and J.Bos, Working with Discour-

se Representation Theory, draft at
http://comsem.org

DORIS system
http://www.coli.uni-sb.de/"bos/doris/

Frank, A. and Reyle, U., Principle Based Se-
mantics for HPSG, Proceedings of the 7th Con-
ference of the EACL, March 27-31, Dublin, 1995,
9-16

80

