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Abstract. Synchronous tree-adjoining grammars have been given two
types of semantics: one based on bimorphisms and one based on syn-
chronous derivations, in both of which the input and output trees are
constructed synchronously. We introduce a third type of semantics that
is based on unidirectional derivations. It derives output trees based on a
given input tree and thus marks a first step towards conditional proba-
bility distributions. We prove that the unidirectional semantics coincides
with the bimorphism-based semantics with the help of a strong corre-
spondence to linear and nondeleting extended top-down tree transducers
with explicit substitution. In addition, we show that stateful synchronous
tree-adjoining grammars admit a normal form in which only adjunction
is used. This contrasts the situation encountered in the stateless case.

1 Introduction

A major task in natural-language processing is machine translation [17]; i.e., the
automatic translation from one language into another. For this task engineers
use a multitude of formal translation models such as synchronous context-free
grammars [1, 4] and extended top-down tree transducers [22, 29, 16, 14]. Shieber
claims [27] that these formalisms are too weak to capture naturally occurring
translation. Instead he suggests synchronous tree-adjoining grammars [28, 27],
which are already used in some machine translation systems [30, 21, 6].

Here we consider synchronous tree-adjoining grammars with states (STAGs)
as defined by Büchse et al. [2], who added states to traditional synchronous tree-
adjoining grammars in the spirit of [11]. Product constructions and normal forms
require states to maintain appropriate pieces of information along a derivation.
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Computational Linguistics, pages 1067–1076, 2010].

?? The first and second author were supported by the German Research Founda-
tion (DFG) grants VO 1011/6-1 and MA 4959/1-1, respectively.



rules ρ1 : q →
〈 σ

x1 x2

α

σ

� x1

x2

, qp
〉

ρ2 : q →
〈
α�, ε

〉

derivation
(
q,

σ

α γ

α

)
ρ1⇒

σ

� (q, α)

(
p,
γ

�

) ρ2⇒

σ

�

(
p,
γ

�

)

Fig. 1. State q has input rank 0 and output rank 1. In the first step of the derivation,
the variables x1 and x2 are bound to α and γ(�), respectively.

In addition, states permit equivalence results without resorting to relabelings,
which appear frequently in the literature on stateless synchronous tree-adjoining
grammars [25, 26].

Roughly speaking, a STAG is a linear nondeleting extended top-down tree
transducer that additionally can use adjunction [15] (monadic second-order sub-
stitution). Two example rules of a STAG are illustrated in Fig. 1. In general,
a STAG rule is of the form q → 〈ζζ ′, q1 · · · qm〉, in which the input tree ζ and
the output tree ζ ′ are trees over the terminal symbols, the nullary substitution
symbol �, and the variables x1, . . . , xm. Each variable establishes a (one-to-one)
synchronization link between ζ and ζ ′, and the states q1, . . . , qm govern the
links x1, . . . , xm. Every state has an input rank i and an output rank j where
i, j ∈ {0, 1}. If state q has input rank i, then the input tree of every rule with
left-hand side q contains � exactly i times. The same interpretation applies to
the output rank and the output tree. For example, the state q in Fig. 1 has
rank (0, 1). In this sense, we allow heterogeneous states with input rank 0 and
output rank 1 (or vice versa).

We introduce a STAG semantics based on unidirectional derivations (see
Fig. 1). This semantics processes the input tree and produces output trees in
the same manner as the classical derivation semantics for tree transducers [22, 29,
8, 10] and thus marks a first step towards conditional probability distributions;
i.e., the probability of an output tree given an input tree. More precisely, given
an input tree, the unidirectional derivation semantics precisely determines the
decision tree containing all leftmost derivations, which corresponds to a Markov
process. It remains a challenge to find a proper probability assignment for the
rules because the input trees of different rules may overlap.

As usual in a derivation-based semantics, the application of a rule consists
of a matching and a replacement phase. In the matching phase, we select a rule
with left-hand side q and a pair consisting of state q and an input tree fragment
in the sentential form (shaded in Fig. 1). Then we match the input tree fragment
to the input tree of the rule by matching variables governed by states with input



rank 0 using first-order substitution, and second-order substitution otherwise.
This yields a binding of the variables in the rule. In the replacement phase, the
pair is replaced in the sentential form by the output tree of the rule, in which
the variables are substituted appropriately and paired with the governing state.
The derivation process is started with the pair consisting of the initial state and
the input tree, and we apply derivation steps as long as possible. In the end,
we obtain a sentential form of exclusively terminal symbols, which represents an
output tree. In this way, every STAG computes a tree transformation, which is
a binary relation on unranked trees.

To relate our semantics to the literature, we adapt the conventional bi-
morphism-based semantics for STAG [2], which develops the input and output
tree synchronously. It coincides with the bimorphism semantics of [26], which in
turn coincides with the conventional synchronous derivation semantics [7]. Our
goal is to show that the unidirectional semantics coincides with the bimorphism
semantics. We achieve this in three steps.

First we define (linear and nondeleting) extended top-down tree transducers
(XTOPs) as particular STAGs, and we establish the equivalence of STAGs and
certain XTOPs using explicit substitution under the unidirectional semantics.
Second, it is known that every XTOP computes the same tree transformation
using the bimorphism and the unidirectional derivation semantics [18]. This re-
mains true for our particular unidirectional derivation semantics, which uses a
leftmost derivation strategy. Third, we establish the equivalence corresponding
to the first step under the bimorphism semantics. This last result was already
announced in [19]. In contrast to [19], we present a full proof of it, and we make
the restrictions on the XTOP obvious by avoiding partial evaluations of explicit
substitutions.

All our results are contained in Corollaries 15 and 16. In particular, they
show that stateful STAGs allow a normal form that uses only adjunction. Con-
sequently, our STAGs with potentially heterogeneous states have the same ex-
pressive power as the STAGs of [2], which only have homogeneous states.

2 Preliminaries

The set of all nonnegative integers is IN. An alphabet is any finite nonempty set Σ
of symbols. A (monadic) doubly ranked alphabet (Q, rk) is a finite set Q together
with a rank mapping rk: Q → {0, 1}2. We also write Q(m,n) = rk−1(m,n) for
all m,n ∈ {0, 1}. We just write Q for the doubly ranked alphabet, if the ranking
is obvious. We set Q(m,∗) = Q(m,0) ∪Q(m,1) and Q(∗,n) = Q(0,n) ∪Q(1,n).

The set UΣ of all (unranked) trees over Σ is inductively defined to be the
smallest set U such that σ(t1, . . . , tk) ∈ U for every k ∈ IN, σ ∈ Σ, and
t1, . . . , tk ∈ U . To avoid excessive quantification, we often drop expressions like
“for all k ∈ IN” if they are obvious from the context. Sometimes we assign a rank
k ∈ IN to a symbol σ ∈ Σ and then require that every occurrence of σ in a tree
has exactly k successors. The set CΣ contains all trees t ∈ UΣ∪{�} in which the
nullary symbol � occurs exactly once.
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Fig. 2. Illustration of the two forms of substitution.

For a tree t ∈ UΣ , we denote the set of its positions by pos(t), where each
position is encoded in the usual way as a sequence of positive integers; i.e.,
pos(t) ⊆ IN∗ (Gorn’s notation). The label of t at v ∈ pos(t) is t(v). Given
∆ ⊆ Σ, we let pos∆(t) = {v ∈ pos(t) | t(v) ∈ ∆}. If v ∈ pos(t) has no successors,
then tLuM0v denotes the tree that is obtained from t by replacing the leaf at v by
the tree u ∈ UΣ (first-order substitution). If v has exactly one successor namely
the subtree t′, then tLuM1v denotes the tree that is obtained from t by replacing
the subtree at v by uLt′M0v′ where u ∈ CΣ and v′ = pos{�}(u) (monadic second-
order substitution). If the symbol t(v) occurs exactly once in t, then we also write
tLt(v)/uMi instead of tLuMiv. Figure 2 illustrates the two forms of substitution.

A regular tree grammar (in normal form) [12, 13] is a tuple H = (P,Σ, p0, R)
where P is a finite set (states), Σ is an alphabet with P ∩Σ = ∅, p0 ∈ P (initial
state), and R is a finite set of rules; every rule has the form p → σ(p1, . . . , pk)
where p, p1, . . . , pk ∈ P and σ ∈ Σ (note that σ(p1, . . . , pk) is a tree over Σ∪P ).
The derivation relation induced by H is the binary relation ⇒H over UΣ∪P
such that s ⇒H t if and only if there are a rule p → σ(p1, . . . , pk) in R and
a position v ∈ pos{p}(s) such that t = sLσ(p1, . . . , pk)M0v. The tree language
generated by H is L(H) = {t ∈ UΣ | p0 ⇒∗H t}.

3 Synchronous Tree-Adjoining Grammars

We extend the STAG syntax of [2] to allow heterogeneous states. Recall that
occurrences of xj can have different rank in different trees. We denote states by
variants of q.

Definition 1. A synchronous tree-adjoining grammar with states (STAG) is a
tuple G = (Q,Σ, q0, R) where

– Q is a monadic doubly-ranked alphabet (of states),
– Σ is an alphabet (terminal alphabet),
– q0 ∈ Q(0,0) (initial state),
– R is a finite set of rules of the form q → 〈ζζ ′, q1 · · · qm〉 where the following

holds for ζ (and the same holds for ζ ′ with Q(∗,i) instead of Q(i,∗)):
• ζ is a tree over Σ ∪ {x1, . . . , xm} ∪ {�},
• � occurs exactly i times in ζ if q ∈ Q(i,∗),
• every xj occurs exactly once in ζ, and it has rank i in ζ if qj ∈ Q(i,∗). �
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Fig. 4. Example derivation of the STAG Gex of Fig. 3.

The STAG G = (Q,Σ, q0, R) is a (linear and nondeleting) extended top-down
tree transducer (XTOP) if Q = Q(0,0). Figure 3 shows the rules of the example
STAG Gex, which is taken from [3, Fig. 2(a)]. It is not an XTOP. Next, we
introduce the unidirectional derivation semantics for STAG. To this end, let
G = (Q,Σ, q0, R) be a STAG and ∆ = Q× UΣ∪{�}.

Definition 2. Let ρ be the rule q → 〈ζζ ′, q1 · · · qm〉 in R. We define the binary

relation
ρ⇒ over UΣ∪{�}∪∆ as follows: ξ1

ρ⇒ ξ2 (or: ξ1 ⇒ ξ2 via ρ) if and only
if there is a minimal element v ∈ pos∆(ξ1) with respect to the lexicographic
ordering and there are t1, . . . , tm ∈ UΣ ∪ CΣ such that

1. � occurs exactly i times in tj if qj ∈ Q(i,∗),
2. ξ1(v) = (q, ζθ1 · · · θm) with θj = Lxj/tjMi for qj ∈ Q(i,∗), and
3. ξ2 = ξ1Lζ ′θ′1 · · · θ′mMiv for q ∈ Q(∗,i), where θ′j = Lxj/(qj , tj)M0 if qj ∈ Q(∗,0)

and θ′j = Lxj/(qj , tj)(�)M1 otherwise.

For every ρ1, . . . , ρn ∈ R, we let
d⇒ =

ρ1⇒;· · ·;ρn⇒ where d = ρ1 · · · ρn and semicolon
denotes the composition of binary relations. For every p ∈ Q(0,0) we define the
tree transformation

κpG = {(s, t) ∈ UΣ × UΣ | ∃d ∈ R∗ : (p, s)
d⇒ t} .

The STAG G derivation-induces the tree transformation κG = κq0G . �

An example derivation is demonstrated in Fig. 4. In the second step, we have
ρ = ρ3 with input tree ζ and output tree ζ ′, m = 1, ξ1 and ξ2 as in the figure,
and t1 = �. Consequently, θ1 = Lx1/�M1 and θ′1 = Lx1/(q,�)(�)M1.
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4 Relating STAG and XTOP

In this section, we show that STAGs are essentially as powerful as XTOPs using
explicit substitution (both with respect to the unidirectional derivation seman-
tics). Our construction builds on the ideas of [9, Thm. 3] and [5, Prop. 4.19].

We begin by defining explicit substitution [19]. Let ·[·] be a special binary
symbol, which indicates the substitution replacing all © in its first child by its
second child. For every alphabet Σ with ·[·],© /∈ Σ, let Σ = Σ ∪ {·[·],©} where
© is nullary. The evaluation ·E : UΣ → UΣ∪{�} is inductively defined by ©E = �,
σ(t1, . . . , tk)E = σ(tE1 , . . . , t

E
k ) for every σ ∈ Σ and t1, . . . , tk ∈ UΣ , and for every

t, u ∈ UΣ the tree ·[·](t, u)E is obtained by replacing all occurrences of © in tE

by uE. We lift ·E to a tree transformation τ by τE = {(sE, tE) | (s, t) ∈ τ}.
Figure 5 shows the rules of the XTOP Mex using explicit substitution. We

claim that (κMex
)E = κGex

, and we will provide a proof of this claim in this
section. In the following, let M = (P,Σ, p0, R

′) be an XTOP using explicit
substitution. The next definition essentially captures the appropriate use of the
substitution symbol.

Definition 3. A tree t ∈ UΣ is well-behaved (under ·E) if tE ∈ UΣ and tE1 ∈ CΣ
for every subtree of the form ·[·](t1, t2) in t. A tree transformation τ ⊆ UΣ ×UΣ
is well-behaved if it only contains pairs of well-behaved trees. Finally, M is well-
behaved if κM is well-behaved. �

We observe that tE ∈ UΣ if and only if each occurrence of © in t is inside the
first subtree of some occurrence of ·[·], which is clearly a regular (or, equivalently,
recognizable) property. Similarly, tE ∈ CΣ if and only if all but exactly one
occurrence of © fulfill the previous condition. This is again a regular property.

Next, we distinguish four types of states to establish a normal form for well-
behaved XTOPs.

Definition 4. A state q ∈ Q is an input i-state with i ∈ {0, 1} if tE contains �

exactly i times for every (t, u) ∈ κqM . The same notions are defined for the output
side. �



Recall that both the domain and the range of κM are effectively regular (by
a combination of [8, Cor. 3.11] and [18, Thm. 4]). By the remarks below Def. 3
and the decidability of inclusion for regular tree languages [12, Thm. II.10.3], we
can decide whether a state is an input 0-state or an input 1-state (or neither).
Thus, we can effectively compute the following subsets of P :

Pi,j = {p ∈ P | p is an input i-state and an output j-state} .

Definition 5. The XTOP M is substitution normalized if p0 ∈ P0,0, the sets
Pi,j form a partition of P , and for every rule p → 〈ζζ ′, p1 · · · pm〉 in R′ and
position v ∈ pos(ζ):

– if ζ(v) = ·[·], then ζ(v1) = xj with input 1-state pj , and
– if ζ(v) = xj with input 1-state pj , then v = v′1 for some v′ and ζ(v′) = ·[·].

The same conditions are required for the output side. �

Lemma 6. For every well-behaved XTOP M there is a substitution normalized
XTOP M ′ with κM = κM ′ and vice versa.

Proof. Here we only show how to rearrange the input trees in the rules to ob-
tain the form required in a substitution normalized XTOP. In essence, we push
each occurrence of the substitution symbol ·[·] down towards a © or a variable
corresponding to an input 1-state. This is achieved by replacing

– ·[·](·[·](t1, ti), t2) by ·[·](t1, ·[·](ti, t2))
– ·[·](σ(t1, . . . , tk), t′) by σ(t1, . . . , ti−1, ·[·](ti, t′), ti+1, . . . , tk)
– ·[·](©, t′) by t′

if © or a variable corresponding to an input 1-state occurs in ti. These replace-
ments are iterated. Finally, if xj with an input 1-state qj occurs outside the first
subtrees of all occurrences of ·[·] (which may happen in rules for input 1-states),
then we replace xj by ·[·](xj ,©). Clearly, these transformations preserve the se-
mantics. ut

Now we can make our claim more precise. We want to show that for every
STAG G there is a well-behaved XTOP M such that κG = (κM )E and vice versa.
To this end, we first relate the STAG G = (Q,Σ, q0, R) and the substitution
normalized XTOP M = (P,Σ, p0, R

′).

Definition 7. The STAG G and the substitution normalized XTOP M are
related if Q(i,j) = Pi,j , q0 = p0, and

R = {p→ 〈tr(ζ) tr(ζ ′), p1 · · · pm〉 | p→ 〈ζζ ′, p1 · · · pm〉 ∈ R′} ,

where the partial mapping tr : UΣ∪Xm → UΣ∪Xm∪{�}, with Xm = {x1, . . . , xm},
is given by (note that variables may occur with different rank in tr(t) and t)

tr(©) = � tr(σ(t1, . . . , tk)) = σ(tr(t1), . . . , tr(tk))

tr(xj) = xj tr(·[·](xj , t)) = xj(tr(t)) . �
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Fig. 6. Derivation of the XTOP Mex of Fig. 5, where tr(ρ′j) = ρj . It corresponds to
the derivation of Fig. 4 via ‘eval’.

It is simple to check that Def. 7 is constructive. The STAG Gex of Fig. 3 and
the XTOP Mex of Fig. 5 are related. We note that the mapping ‘tr’ is similar
to the mappings ‘ateb’ in [5, Prop. 4.10] and YIELDf in [10, Lm. 5.8]. Next, we
show that the second-order substitution (adjunction) of a STAG can be delayed
in the same manner as for macro tree transducers [10, Lm. 5.5].

Lemma 8. If the STAG G and the XTOP M are related, then κG = (κM )E.

Proof. First we lift the evaluation ·E to sentential forms. Let ∆ = Q× UΣ∪{�}.
We define the mapping eval : UΣ∪∆ → UΣ∪{�}∪∆ as follows:

eval(©) = � eval(σ(t1, . . . , tk)) = σ(eval(t1), . . . , eval(tk))

eval((q, t)) = (q, eval(t)) eval(·[·](t, t′)) =

{
eval(t)(eval(t′)) if t ∈ ∆
eval(t)L�/ eval(t′)M0 if t 6∈ ∆

The derivations of Figs. 4 and 6 are related via ‘eval’.
Second we prove the equation κG = (κM )E in five steps (using ⇒G and ⇒M

to denote the derivation relations of G and M , respectively).

1. We can uniquely reconstruct from any (successful) derivation of G or M the
pair of input and output tree.

2. Since the state behavior is preserved, any derivation d is successful for M
if and only if tr(d) is successful for G, where we lift ‘tr’ from trees to rule
sequences in the obvious manner.

3. ξ1 ⇒M ξ2 via ρ implies eval(ξ1)⇒G eval(ξ2) via tr(ρ) (by construction).
4. We prove κG ⊆ (κM )E. For this let (s, t) ∈ κG. By definition, there is a

sequence d ∈ (R′)∗ of rules such that (q0, s)⇒G t via tr(d). By Statement 2,
there are s′ and t′ such that (p0, s

′) ⇒M t′ via d. The inductive extension
of Statement 3 yields that (q0, eval(s′)) ⇒G eval(t′) via tr(d). Finally, we
obtain eval(s′) = s and eval(t′) = t from Statement 1.

5. The statement (κM )E ⊆ κG follows directly from the inductive extension of
Statement 3. ut



Theorem 9. For every STAG G there is a well-behaved XTOP M such that
κG = (κM )E, and vice versa.

Proof. The statement follows directly from Def. 7 and Lemmas 6 and 8. ut

5 Bimorphism Semantics

ρ1

ρ2 ρ3

ρ4

Fig. 7. Derivation tree.

Now we define a semantics for STAGs in terms of bi-
morphisms [26], which we adapt from [2]. As before,
let G = (Q,Σ, q0, R) be a STAG. First, we define the
regular tree grammar DG, which generates the deriva-

tion trees of G. Second, we define two mappings h
(0)
1

and h
(0)
2 , which retrieve from a derivation tree the de-

rived input tree and output tree, respectively.

Definition 10. For every p ∈ Q the p-derivation grammar of G is the regular
tree grammar Dp

G = (Q,R, p,R′′) where

R′′ = {q → ρ(q1, . . . , qm) | ρ = q → 〈ζζ ′, q1 · · · qm〉 ∈ R} .

For the input side, we define the embedded tree homomorphisms

h
(0)
1 :

⋃
q∈Q(0,∗) L(Dq

G)→ UΣ and h
(1)
1 :

⋃
q∈Q(1,∗) L(Dq

G)→ CΣ ,

simultaneously as follows. Let ρ be a rule q → 〈ζζ ′, q1 · · · qm〉 in R with q ∈ Q(i,∗).

Then h
(i)
1 (ρ(d1, . . . , dm)) = ζθ1 · · · θm with θj = Lxj/h

(k)
1 (dj)Mk for qj ∈ Q(k,∗).

For the output side, the embedded tree homomorphisms h
(0)
2 and h

(1)
2 are

defined in the same way, but using the output tree ζ ′ of ρ and Q(∗,i) instead
of Q(i,∗). For every p ∈ Q(0,0) we define the tree transformation

τpG = {(h(0)1 (d), h
(0)
2 (d)) ∈ UΣ × UΣ | d ∈ L(Dp

G)} .

The STAG G bimorphism-induces the tree transformation τG = τ q0G . �

Figure 7 shows the derivation tree corresponding to the derivation of Fig. 4.

We note that if G is an XTOP, then h
(0)
1 and h

(0)
2 are linear nondeleting tree

homomorphisms in the sense of [12]. For XTOPs we recall the following theorem.

Theorem 11. We have that τM = κM for every XTOP M .

Proof. The proof of [18, Thm. 4] also applies to our (leftmost) unidirectional
derivation semantics. ut

6 Relating STAG and XTOP, again

In this section, we compare STAG and XTOP with explicit substitution, this
time with respect to the bimorphism semantics.



Lemma 12. If the STAG G and the XTOP M are related, then τG = (τM )E.

Proof. Since ‘tr’ is bijective between R and R′, it is also bijective between
L(DG) and tr(L(DM )), where ‘tr’ is extended in the natural fashion to a de-
terministic relabeling. Hence, we can restrict our attention to the embedded tree
homomorphisms. For reasons of symmetry we only consider the input side. To
avoid confusion, we augment the subscript of the embedded tree homomorphisms
by the respective grammar.

We prove the following statement by structural induction on d: for every

d ∈
⋃
p∈P L(Dp

M ) we have that hG,1(tr(d)) = (h
(0)
M,1(d))E with hG,1 = h

(0)
G,1∪h

(1)
G,1.

To this end, let d = ρ(d1, . . . , dm) with ρ = p→ 〈ζζ ′, p1 · · · pm〉 in R′. Then

hG,1(tr(d)) = tr(ζ)θ′1 · · · θ′m
(?)
= (ζθ1 · · · θm)E = (h

(0)
M,1(d))E ,

where θ′j = Lxj/h
(k)
G,1(tr(dj))Mk for qj ∈ Q(k,∗). For (?), we prove the following

statement: for every ζ ∈ UΣ∪Xm such that each element of Xm = {x1, . . . , xm}
occurs at most once, we have that tr(ζ)〈θ′j〉xj∈var(ζ) = (ζ〈θj〉xj∈var(ζ))

E where
var(ζ) is the set of all variables that occur in ζ. ut

Theorem 13. For every STAG G there is a well-behaved XTOP M such that
τG = (τM )E, and vice versa.

Proof. The statement follows from Def. 7, Lm. 12, Lm. 6, and Thm. 11. ut

7 Results

In this section, we summarize our results. First we prove a normal form theorem.
Its construction is inspired by the lexicalization of tree substitution grammars
via tree-adjoining grammars [24, 15, 20]. As before, let G = (Q,Σ, q0, R) be a
STAG. It is uniform if Q = Q(1,1) ∪ {q0} and the initial state does not occur in
the right-hand side of any rule.

Theorem 14. For every STAG G there is a uniform STAG G′ with τG = τG′ .

Proof. Without loss of generality, let G be such that q0 does not occur in the
right-hand side of any rule of R. As an intermediate step, we construct an input-
uniform STAG G′ with states P = P (1,∗) ∪ {q0} such that τG = τG′ .

We set G′ = (P,Σ, q0, R
′) with P (0,0) = {q0}, P (1,i) = Q(1,i) ∪

(
Σ ×Q(0,i)

)
,

and the rules are defined as follows. Let ρ be a rule q → 〈ζζ ′, q1 · · · qm〉 in R,
and α1, . . . , αm ∈ Σ. We distinguish three cases.

– Case 1 (initial): Let q ∈ Q(1,∗) or q = q0. Then q → 〈ζ̄ζ ′, q̄1 · · · q̄m〉 is
in R′ where for every j we set q̄j = (αj , qj) if qj ∈ Q(0,∗) and q̄j = qj if
qj ∈ Q(1,∗), and ζ̄ is obtained from ζ by replacing every nullary occurrence
of xj by xj(αj).



– Case 2 (transport): Let q ∈ Q(0,∗), q 6= q0, and i such that xi occurs nullary
in ζ. Then (αi, q) → 〈ζ̄ζ ′, q̄1 · · · q̄m〉 is in R′ where q̄j is as in Case 1 and
ζ̄ is obtained from ζ by replacing xi by xi(�) and replacing every nullary
occurrence of xj by xj(αj) for j 6= i.

– Case 3 (check): Let q ∈ Q(0,∗), q 6= q0, and xj occurs unary in ζ for every j.
For every leaf v ∈ posΣ(ζ), the rule (ζ(v), q)→ 〈ζL�M0v ζ ′, q1 · · · qm〉 is in R′.

– No further rules are in R′.

We omit the proof that τG′ = τG. For reasons of symmetry, a version of the
construction can be defined that produces an output-uniform STAG. Note that
both constructions preserve input- and output-uniformity. We obtain the desired
uniform STAG by applying both constructions in sequence. ut

Corollary 15. For every STAG G we have τG = κG.

Proof. The construction in Def. 7 is bijective between substitution normalized
XTOPs and STAGs. We obtain the result by Lemmas 8 and 12 and Thm. 11. ut

Corollary 16. Let τ ⊆ UΣ × UΣ. The following are equivalent:

1. There is a STAG G with τ = κG.
2. There is a well-behaved XTOP M with τ = (κM )E.
3. There is a well-behaved XTOP M with τ = (τM )E.
4. There is a STAG G with τ = τG.
5. There is a uniform STAG G with τ = τG.

Proof. The equivalences (1⇔ 2), (2⇔ 3), (3⇔ 4), and (4⇔ 5) are Theorems 9,
11, 13, and 14, respectively. ut
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