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Simulations of weighted tree automata (wta) are considered. It is shown how such simu-

lations can be decomposed into simpler functional and dual functional simulations also

called forward and backward simulations. In addition, it is shown in several cases (fields,
commutative rings, Noetherian semirings, semiring of natural numbers) that all equiv-

alent wta M and N can be joined by a finite chain of simulations. More precisely, in

all mentioned cases there is a single wta that simulates both M and N . Those results
immediately yield decidability of equivalence provided that the semiring is finitely (and

effectively) presented.

1. Introduction

Weighted tree automata are widely used in applications such as model checking [1]

and natural language processing [25]. They finitely represent mappings, called tree

series, that assign a weight to each tree. For example, a probabilistic parser would

return a tree series that assigns to each parse tree its likelihood. Consequently,

several toolkits [24, 28, 10] implement weighted tree automata.

The notion of simulation that is used in this paper is a generalization of the

simulations for unweighted and weighted (finite) string automata of [6, 16]. The aim
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Automata. In Proc. CIAA, volume 6482 of LNCS, pages 321–330. Springer-Verlag, 2011].
†Partially supported by the National Foundation of Hungary for Scientific Research grant K 75249

and the Hungarian National Development Agency program TÁMOP-4.2.2/08/1/2008-0008.
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is to relate structurally equivalent automata. The results of Section 9.7 in [6] and

[26] show that two unweighted string automata (i.e., potentially nondeterministic

string automata over the Boolean semiring) are equivalent if and only if they can

be connected by a finite chain of relational simulations, and that in fact functional

and dual functional simulations are sufficient. An extension to finite semirings can be

found in [16]. Simulations for weighted string automata (wsa) are called conjugacies

in [3, 4], where it is shown for the semiring N of natural numbers and for certain

rings, including (skew) fields and the ring Z of integers, that two wsa are equivalent

if and only if they can be connected by a finite chain of simulations. It is also

shown that even a finite chain of functional (covering) and dual functional (co-

covering) simulations is sufficient. The origin of those results can be traced back to

the pioneering work of Schützenberger in the early 60’s, who proved that every

wsa over a field is equivalent to a minimal wsa that is simulated by every trim

equivalent wsa [5]. Relational simulations of wsa are also studied in [9], where they

are used to reduce the size of wsa. The relationship between functional simulations

and the Milner-Park notion of bisimulation [29, 30] is discussed in [6, 9].

In this contribution, we investigate simulations for weighted (finite) tree au-

tomata (wta). Schützenberger’s minimization method was extended to wta over

fields in [2, 8]. In addition, relational and functional simulations for wta are probably

first used in [13, 14, 21]. Moreover, simulations can be generalized to presentations

in algebraic theories [6], which seems to cover all mentioned instances. Here, we

extend and improve the results of [3, 4] to wta. In particular, we show that two wta

over a commutative ring, Noetherian semiring, or the semiring N are equivalent if

and only if they are connected by a finite chain of simulations. Moreover, we discuss

when the simulations can be replaced by functional and dual functional simulations,

which are efficiently computable [21]. Such results are important because they im-

mediately yield the decidability of equivalence provided that the semiring is finitely

and effectively presented.

2. Preliminaries

The set of nonnegative integers is N. For every k ∈ N, the set {i ∈ N | 1 ≤ i ≤ k} is

simply denoted by [k]. We write |A| for the cardinality of the set A. A semiring is an

algebraic structure A = (A,+, ·, 0, 1) such that (A,+, 0) and (A, ·, 1) are monoids,

of which the former is commutative, and · distributes both-sided over finite sums

(i.e., a ·0 = 0 = 0 ·a for every a ∈ A and a · (b+ c) = ab+ac and (b+ c) ·a = ba+ ca

for every a, b, c ∈ A). The semiring A is commutative if (A, ·, 1) is commutative. It

is a ring if there exists an element −1 ∈ A such that (−1) + 1 = 0. The set U is

the set {a ∈ A | ∃b ∈ A : ab = 1 = ba} of (multiplicative) units. The semiring A
is a semifield if U = A \ {0}; i.e., for every a ∈ A there exists a multiplicative

inverse a−1 ∈ A such that aa−1 = 1 = a−1a. A field is a semifield that is also

a ring. Let 〈B〉+ = {b1 + · · · + bn | n ∈ N, b1, . . . , bn ∈ B} for every B ⊆ A. If

A = 〈B〉+, then A is additively generated by B. The semiring A is equisubtractive if
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Fig. 1. Illustration of ‘equisubtractive’ and ‘simulation’.

for every a1, a2, b1, b2 ∈ A with a1 + b1 = a2 + b2 there exist c1, c2, d1, d2 ∈ A such

that (i) a1 = c1 + d1, (ii) b1 = c2 + d2, (iii) a2 = c1 + c2, and (iv) b2 = d1 + d2. We

illustrate equisubtractivity in Fig. 1. The semiring A is zero-sum free (zero-divisor

free, respectively) if a + b = 0 (a · b = 0, respectively) implies 0 ∈ {a, b} for every

a, b ∈ A. Finally, it is positive if it is both zero-sum and zero-divisor free. Clearly,

any nontrivial (i.e., 0 6= 1) ring is not zero-sum free, and any semifield is zero-divisor

free. An infinitary sum operation
∑

is a family (
∑
I)I , where I is an arbitrary index

set, such that
∑
I : AI → A. We generally write

∑
i∈I ai instead of

∑
I(ai)i∈I . The

semiring A together with the infinitary sum operation
∑

is complete [12, 20, 23] if

for all index sets I and (ai)i∈I ∈ AI

•
∑
i∈I ai = aj1 + aj2 if I = {j1, j2} with j1 6= j2,

•
∑
i∈I ai =

∑
j∈J
(∑

i∈Ij ai
)

for every partition (Ij)j∈J of I, and

• a ·
(∑

i∈I ai
)

=
∑
i∈I aai and

(∑
i∈I ai

)
· a =

∑
i∈I aia for every a ∈ A.

An A-semimodule is a commutative monoid (B,+, 0) together with an action

· : A×B → B, written as juxtaposition, such that for every a, a′ ∈ A and b, b′ ∈ B
we have (i) (a+a′)b = ab+a′b, (ii) a(b+ b′) = ab+ab′, (iii) 0b = 0, (iv) 1b = b, and

(v) (a · a′)b = a(a′b). The semiring A is Noetherian (see Chapter VIII, Section 1

of [22]) if all subsemimodules of every finitely-generated A-semimodule are again

finitely-generated.

In the following, we sometimes identify index sets of equal cardinality. Let

X ∈ AI1×J1 and Y ∈ AI2×J2 for finite sets I1, I2, J1, J2. We use upper-case let-

ters (like C, D, E, X, Y ) for matrices and the corresponding lower-case letters for

their entries. The matrix X is relational if X ∈ {0, 1}I1×J1 . Clearly, a relational X

corresponds to a relation ρX ⊆ I1× J1 (and vice versa) by (i, j) ∈ ρX if and only if

xij = 1. Moreover, a relational matrix X is functional, surjective, or injective if ρX
has this property. As usual, we denote the transpose of X by XT, and we call X non-

degenerate if it has no rows or columns of entirely zeroes. A diagonal matrix X is

such that xij = 0 for every i 6= j. Finally, the matrix X is invertible if there exists a

matrix X−1 such that XX−1 = I = X−1X where I is the unit matrix. The Kro-

necker product X⊗Y ∈ A(I1×I2)×(J1×J2) is such that (X⊗Y )i1i2,j1j2 = xi1j1yi2j2
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for every i1 ∈ I1, i2 ∈ I2, j1 ∈ J1, and j2 ∈ J2. Clearly, the Kronecker product

is not commutative and (1) ∈ A[1] acts as neutral element. We let X0,⊗ = (1) and

Xi+1,⊗ = Xi,⊗ ⊗X for every i ∈ N.

Finally, let us move to trees. A ranked alphabet is a finite set Σ together with a

mapping rk: Σ→ N. We often just write Σ for a ranked alphabet and assume that

the mapping rk is implicit. We write Σk = {σ ∈ Σ | rk(σ) = k} for the set of all

k-ary symbols. The set of Σ-trees is the smallest set TΣ such that σ(t1, . . . , tk) ∈ TΣ

for all σ ∈ Σk and t1, . . . , tk ∈ TΣ. If σ ∈ Σ0, then we identify σ() with σ. A tree

series [over Σ and the semiring A = (A,+, ·, 0, 1)] is a mapping ϕ : TΣ → A. The

set of all such tree series is denoted by A〈〈TΣ〉〉. For every ϕ ∈ A〈〈TΣ〉〉 and t ∈ TΣ,

we often write (ϕ, t) instead of ϕ(t). Tree series natuarally form an A-semimodule

and a Σ-algebra [17].

A weighted tree automaton (over A), for short: wta, is a system (Σ, Q, µ, F ) with

an input ranked alphabet Σ, a finite set Q of states, transitions µ = (µk)k∈N such

that µk : Σk → AQ
k×Q for every k ∈ N, and a final weight vector F ∈ AQ. Next,

let us introduce the semantics ‖M‖ of the wta M . We first define the mapping

hµ : TΣ → AQ so that hµ(σ(t1, . . . , tk)) =
(
hµ(t1) ⊗ · · · ⊗ hµ(tk)

)
· µk(σ) for every

σ ∈ Σk and t1, . . . , tk ∈ TΣ, where the final product · is the classical matrix product.

Then (‖M‖, t) = hµ(t)F for every t ∈ TΣ, where the product is the usual inner (dot)

product. The wta M is trim if every state is accessible and co-accessible [17, 19] in

the Boolean wta obtained by replacing every nonzero weight by 1.

3. Simulation

Let us introduce the main notion of the paper. From now on, let M = (Σ, Q, µ, F )

and N = (Σ, P, ν,G) be wta. Then M simulates N (cf., [6, 16], Def. 1 of [3], and

Def. 35 of [13]) if there is X ∈ AQ×P such that F = XG and µk(σ)X = Xk,⊗ ·νk(σ)

for every σ ∈ Σk. The matrix X is called transfer matrix, and we write M →X N

if M simulates N with transfer matrix X. Note that Xk,⊗
i1···ik,j1···jk =

∏k
`=1 xi`,j` .

We illustrate the notion of simulation in Fig. 1. If M →X M ′ and M ′ →Y N , then

M →XY N .

Theorem 1. If M simulates N , then M and N are equivalent.

Proof. Let M = (Σ, Q, µ, F ) and N = (Σ, P, ν,G), and let X ∈ AQ×P be a transfer

matrix. We claim that hµ(t)X = hν(t) for every t ∈ TΣ. We prove this by induction

on t. Let t = σ(t1, . . . , tk) for some σ ∈ Σk and t1, . . . , tk ∈ TΣ.

hµ(σ(t1, . . . , tk))X =
(
hµ(t1)⊗ · · · ⊗ hµ(tk)

)
· µk(σ)X

=
(
hµ(t1)⊗ · · · ⊗ hµ(tk)

)
·Xk,⊗ · νk(σ) =

(
hµ(t1)X ⊗ · · · ⊗ hµ(tk)X

)
· νk(σ)

=
(
hν(t1)⊗ · · · ⊗ hν(tk)

)
· νk(σ) = hν(σ(t1, . . . , tk))

With this claim, the statement can now be proved easily. For every t ∈ TΣ

(‖M‖, t) = hµ(t)F = hµ(t)XG = hν(t)G = (‖N‖, t) .
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Next, we prepare the result for functional simulations. To this end, we first need

to prove in which cases the transfer matrix is nondegenerate.

Lemma 2. Let M and N be trim and M →X N . If (i) X is functional or (ii) A
is positive, then X is nondegenerate.

Proof. Let M = (Σ, Q, µ, F ) and N = (Σ, P, ν,G). Moreover, let

J = {p ∈ P | ∀q ∈ Q : xqp = 0} .

Then νk(σ)w,j = 0 for every σ ∈ Σk, w ∈ (P \ J)k, and j ∈ J . This is seen as

follows. Since µk(σ)X = Xk,⊗ · νk(σ) we obtain∑
q∈Q

µk(σ)q1···qk,q · xqj = 0 =
∑

p1,...,pk∈P

( k∏
`=1

xq`,p`

)
· νk(σ)p1···pk,j (3)

for every q1, . . . , qk ∈ Q and j ∈ J . If X is functional, then∑
p1,...,pk∈P

( k∏
`=1

xq`,p`

)
· νk(σ)p1···pk,j = νk(σ)ρX(q1)···ρX(qk),j = 0 ,

which proves the claim. On the other hand, if A is positive, then (3) implies that∏k
`=1 xq`,p` · νk(σ)p1···pk,j = 0 for every p1, . . . , pk ∈ P . Since for every p` /∈ J ,

there exists q` such that xq`,p` 6= 0 and
∏k
`=1 xq`,p` 6= 0 by zero-divisor freeness, we

conclude that νk(σ)p1···pk,j = 0 for every p1, . . . , pk ∈ P \ J , which again proves the

claim. Consequently, all states of J are not accessible. Since N is trim, we conclude

J = ∅, and thus, X has no column of zeroes.

If X is functional, then it clearly has no row of zeroes. To prove that X has

no row of zeroes in the remaining case, let I = {q ∈ Q | ∀p ∈ P : xqp = 0}. Then

Fi = 0 and µk(σ)q1···qk,q = 0 for every σ ∈ Σk, q ∈ Q \ I, q1, . . . , qk ∈ Q, and i ∈ I
such that q` = i for some ` ∈ [k]. Clearly, Fi =

∑
p∈P xipGp = 0 for every i ∈ I.

Moreover, since µk(σ)X = Xk,⊗ · νk(σ) we obtain∑
q∈Q

µk(σ)q1···qk,q · xqp =
∑

p1,...,pk∈P

( k∏
`=1

xq`,p`

)
· νk(σ)p1···pk,p = 0 (5)

for every q1, . . . , qk ∈ Q, p ∈ P , and i ∈ I such that q` = i for some ` ∈ [k]. Since

A is positive, (5) implies that µk(σ)q1···qk,q · xqp = 0 for every q ∈ Q. However, for

all q ∈ Q \ I, there exists p ∈ P such that xqp 6= 0 because q /∈ I. Consequently,

µk(σ)q1···qk,q = 0 by zero-divisor freeness, which yields that all states of I are not

accessible. Since M is trim, we have I = ∅, and thus, X has no row of zeroes.

Now we relate functional simulation to forward simulation (see Def. 1 of [21]). A

surjective mapping ρ : Q→ P is a forward simulation from M to N if (i) Fq = Gρ(q)
for every q ∈ Q and (ii)

∑
q∈ρ−1(p) µk(σ)q1···qk,q = νk(σ)ρ(q1)···ρ(qk),p for every p ∈ P ,

σ ∈ Σk, and q1, . . . , qk ∈ Q. We say that M forward simulates N , written M � N ,

if there exists a forward simulation from M to N . Similarly, we can relate backward
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simulation (see Def. 16 of [21]) to dual functional simulation. A surjective func-

tion ρ : Q → P is a backward simulation from M to N if
∑
q∈ρ−1(p) Fq = Gp for

every p ∈ P and
∑
q1∈ρ−1(p1),...,qk∈ρ−1(pk) µk(σ)q1···qk,q = νk(σ)p1···pk,ρ(q) for every

q ∈ Q, σ ∈ Σk, and p1, . . . , pk ∈ P . We say that M backward simulates N , written

M � N , if there exists a backward simulation from M to N . Using Lemma 2 we

obtain the following statement.

Lemma 3. Let N be trim. Then M � N if and only if there exists a functional

transfer matrix X such that M →X N . Moreover, M � N if and only if there

exists a transfer matrix X such that XT is functional and N →X M .

Proof. Let M = (Σ, Q, µ, F ) and N = (Σ, P, ν,G). First suppose that M
X→ N

with functional X ∈ AQ×P . Then ρX : Q→ P is a surjective function by Lemma 2.

Conversely, if M � N with the forward simulation ρ : Q → P , then ρ induces a

surjective functional matrix X ∈ AQ×P such that ρX = ρ. Let X ∈ AQ×P be a

surjective, functional matrix. It remains to prove that the conditions that (1) “X is

a transfer matrix” and (2) “ρX is a forward simulation” are equivalent.

(i) F = XG if and only if Fq = Gρ(q) for every q ∈ Q.

(ii) for every σ ∈ Σk, q1, . . . , qk ∈ Q, and p ∈ P

(µk(σ)X)q1···qk,p =
∑

q∈Q : ρX(q)=p

µk(σ)q1···qk,q

(Xk,⊗ · νk(σ))q1···qk,p = νk(σ)ρX(q1)···ρX(qk),p .

Thus, X is a transfer matrix if and only if ρX is a forward simulation, which proves

the first part of the lemma.

Second, suppose that N
X→ M with the transfer matrix X ∈ AP×Q such that

XT is functional. Let Y = XT. Then ρY : Q → P is a surjective function by

Lemma 2. Conversely, if M � N with the backward simulation ρ : Q → P , then

ρ again induces a surjective, functional matrix X ∈ AQ×P such that ρX = ρ.

Let X ∈ AQ×P be a surjective, functional matrix. It remains to prove that the

conditions that (1) “XT is a transfer matrix” and (2) “ρX is a backward simulation”

are equivalent.

(i) G = XTF if and only if Gp =
∑
q∈Q : ρX(q)=p Fq for every p ∈ P .

(ii) for every σ ∈ Σk, p1, . . . , pk ∈ P , and q ∈ Q

(νk(σ)XT)p1···pk,q = νk(σ)p1···pk,ρX(q)

((XT)k,⊗ · µk(σ))p1···pk,q =
∑

q1,...,qk∈Q
ρX(q1)=p1,...,ρX(qk)=pk

µk(σ)q1···qk,q .

Thus, XT is a transfer matrix if and only if ρX is a backward simulation.

Next, we recall two important matrix decomposition results of [3], for which we

provide complete proof details for completeness’ sake.
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Lemma 4. If A = 〈U〉+, then for every X ∈ AQ×P there exist matrices C,E,D

such that (i) X = CED, (ii) CT and D are functional, and (iii) E is an invertible

diagonal matrix. If (a) X is nondegenerate or (b) A has (nontrivial) zero-sums,

then CT and D can be chosen to be surjective.

Proof. For every q ∈ Q and p ∈ P , let `qp ∈ N and uqp1, . . . , uqp`qp ∈ U be such

that xqp =
∑`qp
i=1 uqpi. In addition, let

J = {(q, i, p) | q ∈ Q, p ∈ P, i ∈ [`qp]} .

Finally, let π1 : J → Q and π3 : J → P be such that π1(〈q, i, p〉) = q and

π3(〈q, i, p〉) = p for every 〈q, i, p〉 ∈ J . Then we set CT and D to the functional

matrices represented by π1 and π3, respectively. Together with the diagonal ma-

trix E such that e〈q,i,p〉,〈q,i,p〉 = uqpi for every 〈q, i, p〉 ∈ J , we obtain X = CED.

For every q ∈ Q and p ∈ P we have

∑
j1,j2∈J

cq,j1ej1,j2dj2,p =

`qp∑
i=1

e〈q,i,p〉,〈q,i,p〉 =

`qp∑
i=1

uqpi = xqp .

It is clear that CT and D are functional matrices. Moreover, E is an invertible

diagonal matrix because EE−1 = I = E−1E where E−1 is the matrix obtained

from E by inverting each nonzero element. If X is nondegenerate, then CT and D

are surjective. Finally, if there are zero-sums, then for every q ∈ Q and p ∈ P there

exist u, v ∈ U such that xqp = 0 = u+ v, which yields that we can choose `qp > 0.

This completes the proof.

Lemma 5. Let A be equisubtractive. Moreover, let R ∈ AQ and C ∈ AP be such

that
∑
q∈Q rq =

∑
p∈P cp. Then there exists a matrix X ∈ AQ×P with row sums R

and column sums C.

Proof. If |Q| ≤ 1 or |P | ≤ 1, then the statement is trivially true. Otherwise, select

i ∈ Q and j ∈ P , and let Q′ = Q \ {i} and P ′ = P \ {j}. By assumption∑
q∈Q′

rq + ri =
∑
p∈P ′

cp + cj .

Thus, by equisubtractivity there exist a, c′j , r
′
i, xij ∈ A such that∑

q∈Q′
rq = a+ c′j ri = r′i + xij

∑
p∈P ′

cp = a+ r′i cj = c′j + xij .

Continuing the row decomposition, we obtain Y ∈ AQ
′

and R′ ∈ AQ
′

such that

rq = r′q + yq for every q ∈ Q′ and
∑
q∈Q′ r

′
q = a. In a similar manner we perform

column decomposition to obtain Y ′ ∈ AP ′ and C ′ ∈ AP ′ such that cp = c′p + y′p
for every p ∈ P ′ and

∑
p∈P ′ c

′
p = a. Thus, by the induction hypothesis, there
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exists a matrix X ′ ∈ AQ
′×P ′ with row sums R′ and column sums C ′ because∑

q∈Q′ r
′
q =

∑
p∈P ′ c

′
p. Then the matrix

X =

 X ′ Y

(Y ′)T xij


obviously has the required row and column sums R and C, respectively.

The following lemma observes a simple property that we use without further

mention. Its proof is simple and left as an easy exercise.

Lemma 6. If X ∈ AQ×P is functional (respectively, invertible diagonal), then

Xk,⊗ is functional (respectively, invertible diagonal) for every k ∈ N.

We can now obtain the main result of this section, which shows how we can

decompose a simulation into functional and dual functional simulations (or: forward

and backward simulations, respectively) and an invertable diagonal simulation.

Theorem 7. Let A be equisubtractive with A = 〈U〉+. Then M →X N if and only

if there exist two wta M ′ and N ′ such that (i) M →C M ′ where CT is functional,

(ii) M ′ →E N ′ where E is an invertible diagonal matrix, and (iii) N ′ →D N where

D is functional. If M and N are trim, then M ′ �M and N ′ � N .

Proof. Clearly, M →C M ′ →E N ′ →D N , which proves that M →CED N . For the

converse, Lemma 4 shows that there are matrices C, E, and D such that X = CED,

CT and D are functional matrices, and E ∈ AI×I is an invertible diagonal matrix.

Finally, let ϕ : I → Q and ψ : I → P be the functions associated to CT and D.

µk(σ)

νk(σ)

µ′k(σ)

ν′k(σ)

Ck,⊗ C

Ek,⊗ E

Dk,⊗ D

Y

Fig. 2. Relating the matrices.

It remains to determine the wta M ′ and N ′.

Let M ′ = (Σ, I, µ′, F ′) and N ′ = (Σ, I, ν′, G′)

with G′ = DG and F ′ = EDG. Then we have

CF ′ = CEDG = XG = F . Thus, it remains

to specify µ′k(σ) and ν′k(σ) for every σ ∈ Σk.

To this end, we determine a matrix Y ∈ AI
k×I

such that we have (1) Ck,⊗ · Y = µk(σ)CE and

(2) Y D = Ek,⊗ · Dk,⊗ · νk(σ). Let µ′k(σ) = Y E−1

and ν′k(σ) = (Ek,⊗)−1 · Y . Consequently, we have

µk(σ)C = Ck,⊗ · µ′k(σ), µ′k(σ)E = Ek,⊗ · ν′k(σ), and

ν′k(σ)D = Dk,⊗ · νk(σ). These equalities are dis-

played in Fig. 2.

Finally, we need to specify the matrix Y . For

every q ∈ Q and p ∈ P , let Iq = ϕ−1(q) and

Jp = ψ−1(p). Obviously, Y can be decomposed

into disjoint (not necessarily contiguous) submatri-

ces Yq1···qk,p ∈ A(Iq1×···×Iqk )×Jp with q1, . . . , qk ∈ Q
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and p ∈ P . Then properties (1) and (2) hold if and only if for every q1, . . . , qk ∈ Q
and p ∈ P the following two conditions hold:

(1) For every i ∈ I such that ψ(i) = p, the sum of the i-column of Yq1···qk,p is

µk(σ)q1···qk,ϕ(i) · ei,i.
(2) For all i1, . . . , ik ∈ I such that ϕ(ij) = qj for every j ∈ [k], the sum of the

(i1, . . . , ik)-row of Yq1···qk,p is
∏k
j=1 eij ,ij · νk(σ)ψ(i1)···ψ(ik),p.

Those two conditions are compatible because∑
i∈I

ψ(i)=p

µk(σ)q1···qk,ϕ(i) · ei,i =
(
µk(σ)CED

)
q1···qk,p

=
(
µk(σ)X

)
q1···qk,p

=
(
Xk,⊗ · νk(σ)

)
q1···qk,p

=
(
Ck,⊗ · Ek,⊗ ·Dk,⊗ · νk(σ)

)
q1···qk,p

=
∑

i1,...,ik∈I
∀j∈[k] : ϕ(ij)=qj

( k∏
j=1

eij ,ij

)
· νk(σ)ψ(i1)···ψ(ik),p .

Consequently, the row and column sums of the submatrices Yq1···qk,p are consistent,

so that we can determine all submatrices (and the whole matrix) using Lemma 5. If

M and N are trim, then either (a) A is zero-sum free (and thus positive because it

is additively generated by its units), in which case X is nondegenerate by Lemma 2,

or (b) A has nontrivial zero-sums. In both cases, Lemma 4 shows that the matrices

CT and D are surjective, which yields the additional statement by Lemma 3.

The decomposition of simulations into forward and backward simulation is effec-

tive and offers computational benefits because forward and backward simulations

can be efficiently computed [21]. To keep the presentation simple, we will continue

to deal with simulation in the following, although we could decompose them in

many of the following cases.

4. Category of simulations

In this section our aim is to show that several well-known constructions of wta

are functorial : they may be extended to simulations in a functorial way. Below

we will only deal with the sum, Hadamard product, σ0-product, and σ0-iteration

(cf. [17, 15, 19]). Scalar OI-substition, † (the dagger operation) [7], homomorphism,

quotient, and top-concatenation [15, 19] may be covered in a similar fashion.

In this section, let A be commutative. Moreover, let M = (Σ, Q, µ, F ),

M ′ = (Σ, Q′, µ′, F ′), and M ′′ = (Σ, Q′′, µ′′, F ′′) be wta. We already remarked that,

if M →X M ′ and M ′ →Y M ′′, then M →XY M ′′. Moreover, M →I M with the

unit matrix I ∈ AQ×Q. Thus, wta over the alphabet Σ form a category SimΣ.

In the following, let M = (Σ, Q, µ, F ) and N = (Σ, P, ν,G) be wta such that

Q ∩ P = ∅. The sum M ⊕ N of M and N is the wta (Σ, Q ∪ P, κ,H) where
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H = 〈F,G〉 = ( FG ) and

κk(σ)q1···qk,q = (µk(σ) ./ νk(σ))q1···qk,q =


µk(σ)q1···qk,q if q, q1, . . . , qk ∈ Q
νk(σ)q1···qk,q if q, q1, . . . , qk ∈ P
0 otherwise.

for all σ ∈ Σk and q, q1, . . . , qk ∈ Q ∪ P . It is known that ‖M ⊕N‖ = ‖M‖+ ‖N‖.
Next, we extend the sum construction to simulations. To this end, let M →X M ′

and N →Y N ′ with N ′ = (Σ, P ′, ν′, G′). The sum X ⊕ Y ∈ A(Q∪P )×(Q′∪P ′) of the

transfer matrices X and Y is X ⊕ Y = (X 0
0 Y ).

Proposition 8. We have (M ⊕N)
X⊕Y−→ (M ′ ⊕N ′).

Proof. For every σ ∈ Σk we have(
µk(σ) ./ νk(σ)

)
· (X ⊕ Y ) = µk(σ)X ./ νk(σ)Y

= Xk,⊗ · µ′k(σ) ./ Y k,⊗ · ν′k(σ) = (X ⊕ Y )k,⊗ ·
(
µ′k(σ) ./ ν′k(σ)

)
and 〈F,G〉 = 〈XF ′, Y G′〉 = (X ⊕ Y ) · 〈F ′, G′〉, which completes the proof.

Proposition 9. The function ⊕, which is defined on wta and transfer matrices, is

a functor Sim2
Σ → SimΣ.

Proof. It is a routine matter to verify that identity transfer matrices are preserved

and the interchange rule (X⊕Y ) · (X ′⊕Y ′) = XX ′⊕Y Y ′ holds for all composable

transfer matrices X,X ′, Y, Y ′.

Next, we treat the remaining operations. Let σ0 be a distinguished symbol in Σ0.

The σ0-product M ·σ0
N of M with N is the wta (Σ, Q∪P, κ,H) such that H = 〈F, 0〉

and for each σ ∈ Σk with σ 6= σ0,

κk(σ)q1···qk,q =


µk(σ)q1···qk,q if q, q1, . . . , qk ∈ Q
µ0(σ0)q · νk(σ)q1···qkG if q ∈ Q and q1, . . . , qk ∈ P
νk(σ)q1···qk,q if q, q1, . . . , qk ∈ P
0 otherwise.

Moreover,

κ0(σ0)q =

{
µ0(σ0)q · ν0(σ0)G if q ∈ Q
ν0(σ0)q if q ∈ P.

It is known that ‖M ·σ0 N‖ = ‖M‖ ·σ0 ‖N‖. Let M →X M ′ and N →Y N ′. We

define X ·σ0
Y = X+Y . The Hadamard product M ·HN is the wta (Σ, Q×P, κ,H)

where H = F ⊗ G and κk(σ) = µk(σ) ⊗ νk(σ) for all σ ∈ Σk. If M →X M ′ and

N →Y N ′, then we define X ·H Y = X ⊗ Y . Finally, let A be complete. Thus,
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(Q× P )k

Qk × P k Q× P

(Q′)k × (P ′)k Q′ × P ′

(Q′ × P ′)k

T−1T
κk(σ)

µk(σ)⊗ νk(σ)

µ′k(σ)⊗ ν′k(σ)

κ′k(σ)

X ⊗ YXk,⊗ ⊗ Y k,⊗

T ′ (T ′)−1

F ′ ⊗G′

F ⊗G

(X × Y )k,⊗

Fig. 3. Commutative diagram used in the proof of Proposition 10.

A allows the definition of the star operation a∗ =
∑
n∈N a

n for every a ∈ A. The

σ0-iteration M∗σ0 of M is the wta (Σ, Q, κ, F ) where

κk(σ)q1···qk,q = µk(σ)q1···qk,q +
(
‖M‖(σ0)

)∗ · (µk(σ)F
)
q1···qk

for all σ ∈ Σk \ {σ0} and κ0(σ0) = µ0(σ0). If M →X M ′, then we define X∗σ0 = X.

Proposition 10. The functions ·σ0
and ·H, which are defined on wta and trans-

fer matrices, are functors Sim2
Σ → SimΣ. Moreover, σ0-iteration is a functor

SimΣ → SimΣ if A is complete.

Proof. We only prove the first two statements. For the σ0-product, we claim that(
κk(σ) · (X ⊕ Y )

)
q1···qk,q

=
(
(X ⊕ Y )k,⊗ · κ′k(σ)

)
q1···qk,q

(15)

for every σ ∈ Σk and q, q1, . . . , qk ∈ Q′ ∪ P ′. We distinguish 4 cases:

• First, suppose that q, q1, . . . , qk ∈ Q′. Then both sides of (15) are equal to

(µk(σ)X)q1···qk,q = (Xk,⊗ · µ′k(σ))q1···qk,q.

• Similarly, in case q, q1, . . . , qk ∈ P ′, we have that both sides of (15) are equal

to (νk(σ)Y )q1···qk,q = (Y k,⊗ · ν′k(σ))q1···qk,q.

• If q ∈ Q′ and q1, . . . , qk ∈ P ′, then(
(X ⊕ Y )k,⊗ · κ′k(σ)

)
q1···qk,q

= µ′0(σ0)q ·
(
Y k,⊗ · ν′k(σ) ·G′

)
q1···qk

= µ′0(σ0)q ·
(
νk(σ) · Y ·G′

)
q1···qk

= µ′0(σ0)q ·
(
νk(σ) ·G

)
q1···qk
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=
(
µ0(σ0)X

)
q
·
(
νk(σ) ·G

)
q1···qk

=
(
κk(σ) · (X ⊕ Y )

)
q1···qk,q

• Finally, in all remaining cases, both sides of (15) are 0.

This establishes (15). Next, we observe that (X ⊕ Y ) · 〈F, 0〉 = 〈XF, 0〉 = 〈F ′, 0〉.
Finally, the functorial property follows again from the interchange rule (see proof

of Proposition 9).

The proof for the Hadamard product is indicated in the commutative dia-

gram of Fig. 3. It can be proved to be correct using the simulation properties, the

interchange rule, and the properties of the permutation matrices T and T ′.

5. Joint reduction

In this section, we will establish equivalence results using an improved version of

the approach called joint reduction in [4]. Let V ⊆ AI be a set of vectors for

a finite set I. The A-semimodule generated by V is denoted by 〈V 〉. Given two

wta M = (Σ, Q, µ, F ) and N = (Σ, P, ν,G) with Q ∩ P = ∅, we first compute

M ⊕N = (Σ, Q ∪ P, µ′, F ′) as defined in Section 4. The aim is to compute a finite

set V ⊆ AQ∪P such that

(i) (v1 ⊗ · · · ⊗ vk) · µ′k(σ) ∈ 〈V 〉 for every σ ∈ Σk and v1, . . . , vk ∈ V , and

(ii) v1F = v2G for every (v1, v2) ∈ V such that v1 ∈ AQ and v2 ∈ AP .

With such a finite set V we can now construct a wta M ′ = (Σ, V, ν′, G′) with

G′v = vF ′ for every v ∈ V and
∑
v∈V ν

′
k(σ)v1···vk,v · v = (v1 ⊗ · · · ⊗ vk) · µ′k(σ) for

every σ ∈ Σk and v1, . . . , vk ∈ V . It remains to prove that M ′ simulates M ⊕N . To

this end, let X = (v)v∈V where each v ∈ V is a row vector. Then for every σ ∈ Σk,

v1, . . . , vk ∈ V , and q ∈ Q ∪ P , we have

(ν′k(σ)X)v1···vk,q =
∑
v∈V

ν′k(σ)v1···vk,v · vq =
(∑
v∈V

ν′k(σ)v1···vk,v · v
)
q

=
(
(v1 ⊗ · · · ⊗ vk) · µ′k(σ)

)
q

=
∑

q1,...,qk∈Q∪P
(v1)q1 · . . . · (vk)qk · µ′k(σ)q1···qk,q

=
(
Xk,⊗ · µ′k(σ)

)
v1···vk,q

.

Moreover, if we let X1 and X2 be the restrictions of X to the entries of Q and P ,

respectively, then we have ν′k(σ)X1 = Xk,⊗
1 · µk(σ) and ν′k(σ)X2 = Xk,⊗

2 · νk(σ).

In addition, G′v = vF ′ =
∑
q∈Q∪P vqF

′
q = (XF ′)v for every v ∈ V , which

proves that M ′ →X (M ⊕ N). Since v1F = v2G for every (v1, v2) ∈ V , we

have G′(v1,v2) = (v1, v2)F ′ = v1F + v2G = (1 + 1)v1F = (1 + 1)v2G. Now, let

G′′(v1,v2) = v1F = v2G for every (v1, v2) ∈ V . Then

(X2G)v =
∑
p∈P

vpGp = v2G = G′′v = v1F =
∑
q∈Q

vqFq = (X1F )v

for every v = (v1, v2) ∈ V . Consequently, M ′′ →X1 M and M ′′ →X2 N , where

M ′′ = (Σ, V, ν′, G′′). This proves the next theorem.
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Theorem 11. Let M and N be equivalent. If there exists a finite set V ⊆ AQ∪P

with properties (i) and (ii), then a finite chain of simulations joins M and N . In

fact, there exists a single wta that simulates both M and N .

Let us first recall a known result [2] for fields. Note that, in comparison to our

results, the single wta can be chosen to be a minimal wta.

Theorem 12 (see p. 453 of [2]) Every two equivalent trim wta M and N over

a field A can be joined by a finite chain of simulations. Moreover, there exists a

minimal wta that simulates both M and N .

We can obtain a similar theorem with the help of Theorem 11 as follows. Let A
be a Noetherian semiring. Let V0 = {µ′0(α) | α ∈ Σ0} and

Vi+1 = Vi ∪
(
{(v1 ⊗ · · · ⊗ vk) · µ′k(σ) | σ ∈ Σk, v1, . . . , vk ∈ Vi} \ 〈Vi〉

)
for every i ∈ N. Then {0} ⊆ 〈V0〉 ⊆ 〈V1〉 ⊆ · · · ⊆ 〈Vk〉 ⊆ · · · is stationary af-

ter finitely many steps because A is Noetherian. Thus, let V = Vk for some

k ∈ N such that 〈Vk〉 = 〈Vk+1〉. Clearly, V is finite and has property (i). Trivially,

V ⊆ {hµ′(t) | t ∈ TΣ}, so let v ∈ V be such that v =
∑
i∈I(hµ(ti), hν(ti)) for some

finite index set I and ti ∈ TΣ for every i ∈ I. Then(∑
i∈I

hµ(ti)
)
F =

∑
i∈I

(‖M‖, ti) =
∑
i∈I

(‖N‖, ti) =
(∑
i∈I

hν(ti)
)
G

because ‖M‖ = ‖N‖, which proves property (ii).

In fact, since M ⊕ N uses only finitely many semiring coefficients, it is suffi-

cient that every finitely generated subsemiring of A is contained in a Noetherian

subsemiring of A. Then the following theorem follows from Theorem 11.

Theorem 13. Let A be such that every finitely generated subsemiring is contained

in a Noetherian subsemiring of A. For all equivalent wta M and N over A, there

exists a finite chain of simulations that join M and N . In fact, there exists a single

wta that simulates both M and N .

Note that Z is a Noetherian ring. More generally, every finitely generated

commutative ring is Noetherian (see Cor. IV.2.4 and Prop. X.1.4 of [27]).

Corollary 14 (of Theorem 13) For all equivalent wta M and N over a commu-

tative ring A, there exists a finite chain of simulations that join M and N . In fact,

there exists a single wta that simulates both M and N .

Finally, let A = N be the semiring of natural numbers. We compute the finite

set V ⊆ NQ∪P as follows:

(1) Let V0 = {µ′0(α) | α ∈ Σ0} and i = 0.

(2) For every v, v′ ∈ Vi such that v ≤ v′, replace v′ by v′ − v.

(3) Set Vi+1 = Vi ∪
(
{(v1 ⊗ · · · ⊗ vk) · µ′k(σ) | σ ∈ Σk, v1, . . . , vk ∈ Vi} \ 〈Vi〉

)
.

(4) Until Vi+1 = Vi, increase i and repeat step 2.
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Clearly, this algorithm terminates since every vector can only be replaced by a

smaller vector in step 2 and step 3 only adds a finite number of vectors, which after

the reduction in step 2 are pairwise incomparable. Moreover, property (i) trivially

holds because at termination Vi+1 = Vi after step 3. Consequently, we only need

to prove property (ii). To this end, we first prove that V ⊆ 〈{hµ′(t) | t ∈ TΣ}〉+,−.

This is trivially true after step 1 because µ′0(α) = hµ′(α) for every α ∈ Σ0. Clearly,

the property is preserved in steps 2 and 3. Finally, property (ii) can now be proved

as follows. Let v ∈ V be such that v =
∑
i∈I1(hµ(ti), hν(ti))−

∑
i∈I2(hµ(ti), hν(ti))

for some finite index sets I1 and I2 and ti ∈ TΣ for every i ∈ I1 ∪ I2. Then by

‖M‖ = ‖N‖ we obtain(∑
i∈I1

hµ(ti)−
∑
i∈I2

hµ(ti)
)
F =

∑
i∈I1

hµ(ti)F −
∑
i∈I2

hµ(ti)F

=
∑
i∈I1

(‖M‖, ti)−
∑
i∈I2

(‖M‖, ti) =
∑
i∈I1

(‖N‖, ti)−
∑
i∈I2

(‖N‖, ti)

=
∑
i∈I1

hν(ti)G−
∑
i∈I2

hν(ti)G =
(∑
i∈I1

hν(ti)−
∑
i∈I2

hν(ti)
)
G .

Corollary 15 (of Theorem 11) For all equivalent wta M and N over N, there

exists a finite chain of simulations that join M and N . In fact, there exists a single

wta that simulates both M and N .

For all finitely and effectively presented semirings, Theorems 12 and 13 and

Corollaries 14 and 15 also yield decidability of equivalence for M and N . Essentially,

we run the trivial semi-decidability test for inequality and a search for the wta that

simulates both M and N in parallel. We know that either test will eventually

return, thus deciding whether M and N are equivalent. Conversely, if equivalence

is undecidable, then simulation cannot capture equivalence [18].
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