
Composition Closure of ε-free
Linear Extended Top-down Tree Transducers

Zoltán Fülöp1,? and Andreas Maletti2,??

1 Department of Foundations of Computer Science, University of Szeged
Árpád tér 2, H-6720 Szeged, Hungary

fulop@inf.u-szeged.hu
2 Institute for Natural Language Processing, University of Stuttgart

Pfaffenwaldring 5b, 70569 Stuttgart, Germany
maletti@ims.uni-stuttgart.de

Abstract. The expressive power of compositions of linear extended top-
down tree transducers with and without regular look-ahead is investi-
gated. In particular, the restrictions of ε-freeness, strictness, and non-
deletion are considered. The composition hierarchy is finite for all ε-free
variants of these transducers except for ε-free nondeleting linear extended
top-down tree transducers. The least number of transducers needed for
the full expressive power of arbitrary compositions is presented.

1 Introduction

The top-down tree transducer is a simple formal model that encodes a tree
transformation. It was introduced in [21, 22] and intensively studied thereafter
(see [13, 14, 12] for an overview). Roughly speaking, a top-down tree transducer
processes the input tree symbol-by-symbol and specifies in its rules, how to
translate an input symbol into an output tree fragment together with instructions
on how to process the subtrees of the input symbol. This asymmetry between
input (single symbol) and output (tree fragment) was removed in extended top-
down tree transducers (xt), which were introduced and studied in [1, 2]. In an xt
the left-hand side of a rule now contains an input tree fragment, in which each
variable can occur at most once as a placeholder for a subtree. In particular, the
input tree fragment can even be just a variable, which matches every tree, and
such rules are called ε-rules. We consider linear xt (l-xt), in which the right-hand
side of each rule contains each variable at most once as well. Restricted variants
of l-xt are used in most approaches to syntax-based machine translation [16, 17].

We also add regular look-ahead [6] (i.e., the ability to check a regular property
for the subtrees in an input tree fragment) to l-xt, so our most expressive model
is the linear extended top-down tree transducer with regular look-ahead (l-xtR).
Instead of variables in the left-hand side and a state-variable combination in the

? Supported by the program TÁMOP-4.2.1/B-09/1/KONV-2010-0005 of the Hungar-
ian National Development Agency.

?? Supported by the German Research Foundation (DFG) grant MA/4959/1-1.

right-hand side of a rule, we only use states with the restriction that each state
can occur at most once in the left-hand side and at most once in the right-hand
side. Moreover, all states that occur in the right-hand side must also occur in the
left-hand side. In this way, for each rule the states establish implicit links (a state
links its occurrence in the right-hand side with its occurrence in the left-hand
side), which form a bijection between a subset of the state occurrences in the left-
hand side and all state occurrences in the right-hand side. The state occurrences
(in the left-hand side) that do not participate in the bijection (i.e., those states
that exclusively occur in the left-hand side) can restrict the acceptable subtrees
at their position with the help of regular look-ahead. The implicit links in a rule
are made explicit in a derivation, and a rule application expands (explicitly)
linked state occurrences at the same time. Example 2 shows an l-xtR, for which
we illustrate a few derivation steps in Fig. 1. We use l-XTR and l-XT to denote
the class of all tree transformations computed by l-xtR and l-xt, respectively.

The expressive power of the various subclasses of l-XTR is already well un-
derstood [15, 11]. However, in practice complex systems are often specified with
the help of compositions of tree transformations [20] because it is much easier
to develop (or train) small components that manage a part of the overall trans-
formation. Consequently, [17] and others declare that closure under composition
is a very desirable property for classes of tree transformations (especially in the
area of natural language processing). If C represents the class of all tree transfor-
mations computable by a device, then the fact that C is closed under composition
means that we can replace any composition chain specified by several devices by
just a single device, which enables an efficient modular development. Unfortu-
nately, neither l-XTR nor l-XT is closed under composition [2, 3, 15].

For a class C of tree transformations we obtain a composition hierarchy
C ⊆ C2 ⊆ C3 ⊆ · · · , where Cn denotes the n-fold composition of C. The class C
might be closed under composition at a power n (i.e., Cn = Cn+1) or its hierarchy
might be infinite (i.e., Cn (Cn+1 for all n). The classes that are closed at a low
power are also important in practice. We investigate the composition hierarchy
of the classes l-XTR and l-XT together with various subclasses determined by
the properties: ε-freeness, strictness, and nondeletion, abbreviated by ‘ 6 ε’, ‘s’,
and ‘n’, respectively. We use these symbols in front of l-XTR and l-XT to obtain
the class of all tree transformations computable by the corresponding restricted
l-xtR and l-xt, respectively. In this paper we consider in detail the closure of the
classes 6εl-XTR, 6εl-XT, 6εsl-XTR, and 6εsl-XT under composition.

It is known that none of our considered classes is closed under composition [3].
In addition, it is known [3] that 6εsnl-XT = 6εsnl-XTR is closed at power 2. We
complete the picture by providing the least power at which the above classes are
closed under composition in the following table.

Class Least power of closedness Proved in

6εsl-XT, 6εsl-XTR 2 Theorem 14
6εl-XT 3 or 4 (4) Theorem 17 (Conjecture)

6εl-XTR 3 Theorem 17

otherwise ∞ [9, Theorem 34]

2

2 Notation

We denote the set of all nonnegative integers by IN. Every subset of S × T
is a relation from S to T . Given relations R1 ⊆ S × T and R2 ⊆ T × U , the
inverse of R1 and the composition of R1 and R2 are denoted by R−11 and R1 ;R2,
respectively. These notions and notations are lifted to classes of relations in the
usual manner. Moreover, the powers of a class C are defined by C1 = C and
Cn+1 = Cn ; C for n ≥ 1. The composition hierarchy [resp. composition closure]
of C is the family (Cn | n ≥ 1) [resp. the class

⋃
n≥1 Cn]. If Cn+1 = Cn, then

C is closed under composition at power n. A ranked alphabet is a finite set Σ,
which is partitioned by Σ =

⋃
k∈INΣk into subsets Σk containing the elements

of rank k. We also write σ(k) to indicate that σ ∈ Σk. For the rest of this
paper, Σ, ∆, and Γ will denote arbitrary ranked alphabets. For every set T , let
Σ(T) = {σ(t1, . . . , tk) | σ ∈ Σk, t1, . . . , tk ∈ T}. Let S be a set with S ∩Σ = ∅.
The set TΣ(S) of Σ-trees with leaf labels S is the smallest set U such that S ⊆ U
and Σ(U) ⊆ U . We write TΣ for TΣ(∅), and we use pos(t) ⊆ IN∗ to denote the
positions of t ∈ TΣ(S). For words v, w ∈ IN∗, we denote the longest common
prefix of v and w by lcp(v, w). The positions pos(t) are partially ordered by the
prefix order � on IN∗ [i.e., v � w if and only if v = lcp(v, w)]. The size |t| of the
tree t ∈ TΣ(S) is |pos(t)|. Let t ∈ TΣ(S) and w ∈ pos(t). We denote the label
of t at w by t(w), and the w-rooted subtree of t by t|w. For every U ⊆ S, we let
posU (t) = {w ∈ pos(t) | t(w) ∈ U} and poss(t) = pos{s}(t) for every s ∈ S. The
tree t is linear (resp. nondeleting) in U if |posu(t)| ≤ 1 (resp. |posu(t)| ≥ 1) for
every u ∈ U . Moreover, var(t) = {s ∈ S | poss(t) 6= ∅}. We write t[u]w for the
tree obtained from t ∈ TΣ(S) by replacing the subtree t|w at w by u ∈ TΣ(S).

For every n ∈ IN we fix the set Xn = {x1, . . . , xn} of variables. Given
t ∈ TΣ(Xn) and t1, . . . , tn ∈ TΣ(S), we write t[t1, . . . , tn] for the tree obtained
from t by replacing each occurrence of xi by ti for all 1 ≤ i ≤ n. A tree ho-
momorphism from Σ to ∆ is a family of mappings (hk | k ∈ IN) such that
hk : Σk → T∆(Xk) for every k ∈ IN. Such a tree homomorphism is linear (resp.
nondeleting) if for every σ ∈ Σk the tree hk(σ) is linear (resp. nondeleting)
in Xk. Moreover, it is strict [resp. delabeling] if hk : Σk → ∆(T∆(Xk)) [resp.
hk : Σk → Xk ∪∆(Xk)] for every k ∈ IN. We abbreviate the above restrictions
by ‘l’, ‘n’, ‘s’, and ‘d’. The tree homomorphism (hk | k ∈ IN) induces a map-
ping h : TΣ(S) → T∆(S) defined in the usual way. We denote by H the class
of all tree homomorphisms, and for any combination w of ‘l’, ‘n’, ‘s’, and ‘d’
we denote by w-H the class of all w-tree homomorphisms. The set Reg(Γ) con-
tains all regular tree languages L ⊆ TΓ [13, 14] over the ranked alphabet Γ .
Finally, let FTA(Γ) = {idL | L ∈ Reg(Γ)}, where idL = {(t, t) | t ∈ L}, and let
FTA =

⋃
Γ FTA(Γ) be the class of all partial identities induced by

⋃
Γ Reg(Γ).

3 Linear extended top-down tree transducers

Our main model is the linear extended top-down tree transducer [1, 2, 17, 16]
with regular look-ahead (l-xtR), which is based on the non-extended variant [21,
22, 6]. We will present it in a form that is closer to synchronous grammars [4].

3

Definition 1 (see [15, Section 2.2]). A linear extended top-down tree trans-
ducer with regular look-ahead (l-xtR) is a tuple M = (Q,Σ,∆, I,R, c), where

– Q is a finite set of states, of which those in I ⊆ Q are initial,
– Σ and ∆ are ranked alphabets of input and output symbols,
– R ⊆ TΣ(Q)×Q× T∆(Q) is a finite set of rules such that ` and r are linear

in Q and var(r) ⊆ var(`) for every (`, q, r) ∈ R, and
– c : Qla → Reg(Σ) assigns regular look-ahead to each (potentially) deleted

state, where Qla = {q′ ∈ Q | ∃(`, q, r) ∈ R : q′ ∈ var(`), q′ /∈ var(r)}.

Next, we recall some important syntactic properties of our model. To this
end, let M = (Q,Σ,∆, I,R, c) be an l-xtR for the rest of the paper. It is

– a linear extended tree transducer [l-xt], if c(q) = TΣ for every q ∈ Qla,
– a linear top-down tree transducer with regular look ahead [l-tR] if ` ∈ Σ(Q)

for every (`, q, r) ∈ R,
– a linear top-down tree transducer [l-t] if it is both an l-xt and an l-tR,
– ε-free [6ε] (resp. strict [s]) if ` /∈ Q (resp. r /∈ Q) for every (`, q, r) ∈ R,
– a delabeling [d] if ` ∈ Σ(Q) and r ∈ Q ∪∆(Q) for every (`, q, r) ∈ R,
– nondeleting [n] if var(r) = var(`) for every (`, q, r) ∈ R (i.e., Qla = ∅), and
– a finite-state relabeling [qr] if it is a nondeleting, strict delabeling l-t such

that posp(`) = posp(r) for every (`, q, r) ∈ R and p ∈ var(r).

For example, dl-t stands for “delabeling linear top-down tree transducer”. We

write `
q1,...,qk−→ r for the rules (`, q1, r), . . . , (`, qk, r). For every p ∈ Q and

(`, q, r) ∈ R we identify posp(`) and posp(r) with their unique element if the
sets are non-empty. Finally, for every q ∈ Q, we let Rq = {ρ ∈ R | ρ = (`, q, r)}.

Example 2. Let us consider the dl-tR M1 = (Q,Σ,Σ, {?}, R, c) with the states

Q = {?, p, q, qla, id, id′}, the symbols Σ = {σ(2), σ
(2)
1 , σ

(2)
2 , γ(1), α(0)}, an the

following rules in R:

σ1(p, q)
?,p−→ σ1(p, q) σ(q, id)

q−→ q γ(id)
id,id′

−→ γ(id)

σ2(id, id′)
p,q−→ σ2(id, id′) σ(qla, q)

q−→ q α
id,id′

−→ α .

Since Qla = {qla, id}, we set c(qla) = {t ∈ TΣ | posσ2
(t) = ∅} and c(id) = TΣ .

Next, we recall the semantics of the l-xtR M , which is given by synchronous
substitution. Let L = {D | D ⊆ IN∗ × IN∗} be the set of all link structures.

Definition 3 (see [10, Section 3]). A triple 〈ξ,D, ζ〉 ∈ TΣ(Q)×L× T∆(Q)
is a sentential form (for M) if v ∈ pos(ξ) and w ∈ pos(ζ) for every (v, w) ∈ D.
For a set S of sentential forms we define links(S) = {D | 〈ξ,D, ζ〉 ∈ S}. Let
ρ ∈ R be the rule (`, q, r), and let v, w ∈ IN∗. The explicit link structure of ρ for
the positions v and w is linksv,w(ρ) = {(v.posp(`), w.posp(r)) | p ∈ var(r)}.

Definition 4 (see [10, Section 3]). Given two sentential forms 〈ξ,D, ζ〉 and
〈ξ′, D′, ζ ′〉, we write 〈ξ,D, ζ〉 ⇒M 〈ξ′, D′, ζ ′〉 if

4

? ? ⇒M1

σ1

p q

σ1

p q
⇒M1

σ1

σ2

id id′

q

σ1

σ2

id id′

q ⇒∗M1

σ1

σ2

α α

σ

γ

α

σ2

α α

σ1

σ2

α α

σ2

α α

Fig. 1. Derivation using the dl-tR M1 of Example 2.

– there are ρ = (`, q, r) ∈ R and (v, w) ∈ D with v ∈ posq(ξ) and w ∈ posq(ζ)
such that ξ′ = ξ[`]v, ζ

′ = ζ[r]w, and D′ = D ∪ linksv,w(ρ), or
– there are v ∈ posQ(ξ) and t ∈ c(ξ(v)) with w /∈ posQ(ζ) for all (v, w) ∈ D

such that ξ′ = ξ[t]v, ζ
′ = ζ, and D′ = D.

The l-xtR M computes the dependencies

dep(M) = {(t,D, u) ∈ TΣ × L× T∆ | ∃q ∈ I : 〈q, {(ε, ε)}, q〉 ⇒∗M (t,D, u)} ,

where ε ∈ IN∗ is the empty word and ⇒∗M is the reflexive, transitive closure
of ⇒M . It also computes the link structures links(M) = links(dep(M)) and the
tree transformation M = {(t, u) | (t,D, u) ∈ dep(M)}.

A few derivation steps using M1 of Example 2 are illustrated in Fig. 1. Since
every translation (t, u) ∈ M is ultimately created by (at least) one successful
derivation, we can inspect the links in the derivation process to obtain depen-
dencies, which were called contributions in [7]. We use stem-capitalized versions
of the abbreviations for the corresponding classes of computed tree transforma-
tions. For instance, dnl-XT is the class of all tree transformations computable by
dnl-xt. The regular look-ahead is useless for nondeleting l-xtR (because Qla = ∅),
and thus nl-XTR = nl-XT and similarly for the non-extended case and for all
defined subclasses. Finally, we use the brackets ‘[’ and ‘]’ for optional use of the
restrictions 6ε, ‘s’, ‘d’, and ‘n’ that have to be consistently applied.

Next, we relate the class l-XTR to l-TR, which tells us how to emulate lin-
ear extended top-down tree transducers with regular look-ahead by linear top-
down tree transducers with regular look-ahead. To illustrate the consistent ap-
plication of optional restrictions, we observe that 6εl-XTR = snl-H−1 ; l-TR and
6εsdl-XTR = snl-H−1; 6εsdl-TR are instances of the first result of the next theorem.

Theorem 5 ([11, Lemma 4.1 and Corollary 4.1]).

6ε[s][d][n]l-XT
R

= snl-H−1 ; [s][d][n]l-T
R

[s][d][n]l-XT
R

= nl-H−1 ; [s][d][n]l-T
R

4 Our classes are closed at a finite power

In this section, we show that the classes 6εl-XTR, 6εl-XT, 6εsl-XTR, and 6εsl-XT
are closed under composition at a finite power. We first recall a central result
of [3]. Note that [3] expresses this result in terms of a class B of bimorphisms,
but 6εsnl-XT = B by [2] and [18, Theorem 4].

5

Theorem 6 ([3, Theorem 6.2]). 6εsnl-XT (6εsnl-XT2 = 6εsnl-XTn for n ≥ 3.

Now we establish our first composition result, which is analogous to the
classical composition result for linear top-down tree transducers with regular
look-ahead [6, Theorem 2.11]. The only difference is that our first transducer
has extended left-hand sides (i.e., it is an l-xtR instead of just an l-tR).

Lemma 7. [6ε][s][d][n]l-XT
R

; [s][d][n]l-T
R

= [6ε][s][d][n]l-XT
R

Proof. Immediate, from Theorem 5 and the classical composition result for l-TR

in [6, Theorem 2.11]3, which states [s][d][n]l-T
R

; [s][d][n]l-T
R

= [s][d][n]l-T
R

. ut

Next, we present a decomposition that corresponds to property P of [5, Sec-
tion II-2-2-3-2]. It demonstrates how to simulate an 6εl-xtR by a delabeling l-tR

and an 6εsnl-xt, for which we have the composition closure result in Theorem 6.
We immediately combine the result with Lemma 7 to demonstrate, how we can
shift an [s]dl-tR from the back to the front.

Lemma 8. 6ε[s]l-XT
R

; [s]dl-T
R ⊆ 6ε[s]l-XT

R ⊆ [s]dl-T
R

; 6εsnl-XT

Proof. The first inclusion is due to Lemma 7. For the second inclusion, assume
that M is ε-free. Moreover, let m ∈ IN be such that m ≥ |var(r)| for every
(`, q, r) ∈ R. For every rule ρ = (`, q, r) ∈ R and non-state position w ∈ posΣ(`),
let usedρ(w) = {i ∈ IN | wi ∈ pos(`), var(`|wi) ∩ var(r) 6= ∅}. We construct a
dl-xtR M ′ = (Q′, Σ, Γ, I ′, R′, c′) such that

– Q′ = {〈ρ, w〉 | ρ = (`, q, r) ∈ R,w ∈ pos(`)} and I ′ = {〈ρ, ε〉 | q ∈ I, ρ ∈ Rq},
– Γ = {ρ(|usedρ(ε)|) | ρ ∈ R} ∪ {@(i)

i | 0 ≤ i ≤ m},
– for every rule ρ = (`, q, r) ∈ R and non-state position w ∈ posΣ(`), the rule

`(w)(〈ρ, w1〉, . . . , 〈ρ, wk〉) 〈ρ,w〉−→

〈ρ, wi1〉 if r ∈ Q
ρ(〈ρ, wi1〉, . . . , 〈ρ, win〉) if r /∈ Q,w = ε

@n(〈ρ, wi1〉, . . . , 〈ρ, win〉) otherwise,

is in R′, where `(w) ∈ Σk and {i1, . . . , in} = usedρ(w) with i1 < · · · < in,
– for every rule ρ = (`, q, r) ∈ R, (non-deleted) state position w ∈ posvar(r)(`),

and rule ρ′ ∈ R`(w), the rule 〈ρ′, ε〉 〈ρ,w〉−→ 〈ρ′, ε〉 is in R′, and
– c′(〈ρ, w〉) = `|w[q ← c(q) | q ∈ var(`|w)] for every potentially deleted state
〈ρ, w〉 ∈ {〈ρ, w〉 ∈ Q | usedρ(w) = ∅}, where ← denotes the standard OI-
substitution [8].

To obtain the desired dl-tR we simply eliminate the ε-rules using standard meth-
ods.4 Intuitively speaking, the transducer M ′ processes the input and deletes
subtrees that are not necessary for further processing. Moreover, it executes

3 The abbreviation ‘d’ has a completely different meaning in [6].
4 Note that due to the ε-freeness of M , we have w 6= ε in the ε-rules of the fourth

item. Since these rules are the only constructed ε-rules, we cannot chain two ε-rules.

6

nonstrict rules of M and marks the positions in the input where a strict rule
application would be possible. It remains to construct the l-xt M ′′. Let m′′ ≥ |`|
for all (`, q, r) ∈ R, and let M ′′ = ({?}, Γ,∆, {?}, R′′) such that R′′ contains all

valid rules ρ(t1, . . . , tk)
?−→ r[q ← ? | q ∈ Q] of a strict nondeleting l-xt with

ρ = (`, q, r) ∈ R, posR(ti) = ∅, and |ti| ≤ m′′ for every 1 ≤ i ≤ k, where k is the
rank of ρ. ut

Example 9. Let ρ = σ(p, σ(α, q))
q−→ σ(α, σ(q, α)) be a rule with non-trivial

look-ahead c(p) = L. We illustrate the construction of M ′ (in Lemma 8):

σ(〈ρ, 1〉, 〈ρ, 2〉) 〈ρ,ε〉−→ ρ(〈ρ, 2〉) α
〈ρ,21〉−→ @0

σ(〈ρ, 21〉, 〈ρ, 22〉) 〈ρ,2〉−→ @1(〈ρ, 22〉) 〈ρ′, ε〉 〈ρ,22〉−→ 〈ρ′, ε〉

for all rules ρ′ ∈ Rq. Moreover, the look-ahead c′ of M ′ is such that c′(〈ρ, 1〉) = L
and c′(〈ρ, 21〉) = {α}.

Theorem 10. (6ε[s]l-XT
R

)n ⊆ [s]dl-T
R

; 6εsnl-XT2 ⊆ (6ε[s]l-XT
R

)3 for n ≥ 1.

Proof. The second inclusion is trivial. We prove the first inclusion by induction
over n. For n = 1, it follows from Lemma 8, and in the induction step, we obtain

(6ε[s]l-XT
R

)n+1 ⊆ 6ε[s]l-XT
R

; [s]dl-T
R

; 6εsnl-XT2

⊆ [s]dl-T
R

; 6εsnl-XT3 = [s]dl-T
R

; 6εsnl-XT2

by the induction hypothesis, then Lemma 8, and lastly Theorem 6. ut

It is known [6, Theorem 2.6] that we can simulate every l-tR (with look-ahead)
by a composition of two l-t (without look-ahead). This allows us to conclude that
the class 6εl-XT is closed under composition at the fourth power.

Corollary 11. 6ε[s]l-XT
n ⊆ QR ; [s]dl-T ; 6εsnl-XT2 ⊆ 6ε[s]l-XT

4
for every n ≥ 1.

Proof. The second inclusion is trivial, and for the first inclusion we use Theo-
rem 10 and [s]dl-T

R ⊆ QR ; [s]dl-T. ut

In the rest of the section, we will show that the (strict) classes 6εsl-XTR and
6εsl-XT are closed under composition already at the second power. This time, the
main lemma demonstrates how to shift a strict delabeling linear homomorphism
from the front to the back again creating a nondeleting transducer (cf. Lemma 8).

Lemma 12. sdl-H ; 6εsl-XT ⊆ 6εsl-XT ⊆ 6εsnl-XT ; sdl-H

Proof. For the first inclusion, let d : TΓ → TΣ be a strict delabeling linear
tree homomorphism. Moreover, assume that M is a strict and ε-free l-xt, and
let m ∈ IN be such that m ≥ |`| for every (`, q, r) ∈ R. We construct the
l-xt M ′ = (Q′, Γ,∆, I,R′, c′) with Q′ = Q ∪ {1, . . . ,m} such that for every
rule (`, q, r) ∈ R we have each valid rule (`′, q, r) in R′ where `′ ∈ d−1(`)

7

and |posΓ (`′)| = |posΣ(`)|. Recall that d also defines a tree transformation
d : TΓ (Q′) → TΣ(Q′), which acts as an identity on states; i.e., d(q′) = q′ for
every q′ ∈ Q′. Moreover, c′(q′) = TΓ for all q′ ∈ (Q′)la. Finally, we observe
that M ′ is strict because it has the same right-hand sides as M , and it is ε-free
because h is strict. For the second inclusion,

6εsl-XT ⊆ snl-H−1 ; FTA ; sl-H ⊆ snl-H−1 ; FTA ; snl-H ; sdl-H ⊆ 6εsnl-XT ; sdl-H ,

where the first and the last inclusion are by [18, Theorem 4] and the second
inclusion is due to [5, Section I-2-1-3-5]. ut

In contrast to Theorem 10 and Corollary 11, look-ahead does not increase
the power of closedness in the strict case. In fact, the next theorem shows that
(6εsl-XTR)n = 6εsl-XTn for all n ≥ 2.

Theorem 13. (6εsl-XTR)n ⊆ 6εsnl-XT ; 6εsl-XT ⊆ 6εsl-XT2 for every n ≥ 1.

Proof. Again, the second inclusion is trivial. For the first inclusion, we first prove
that 6εs[n]l-XT

R
; 6εsl-XTR = 6εs[n]l-XT

R
; 6εsl-XT, which we call (†), as follows:

6εs[n]l-XT
R

; 6εsl-XTR ⊆ 6εs[n]l-XT
R

; QR ; 6εsl-XT ⊆ 6εs[n]l-XT
R

; 6εsl-XT ,

where we used [6, Theorem 2.6] in the first step and Lemma 7 in the second step.5

Now we prove the first inclusion of our main statement by induction on n. The
induction basis (n = 1) follows from 6εsl-XTR ⊆ QR ; 6εsl-XT [6, Theorem 2.6],
and the induction step is proved as follows

(6εsl-XTR)n+1 ⊆ (6εsl-XTR)n ; 6εsl-XT ⊆ 6εsnl-XT ; 6εsl-XT2 ⊆ 6εsnl-XT3 ; sdl-H

⊆ 6εsnl-XT2 ; sdl-H ⊆ 6εsnl-XT ; 6εsl-XTR ⊆ 6εsnl-XT ; 6εsl-XT

using, in sequence, statement (†), the induction hypothesis, Lemma 12 twice,
Theorem 6, Lemma 7, and statement (†) again. ut

5 Least power of closedness

In this section, we will determine the least power at which the class is closed
under composition for the classes 6εl-XTR, 6εsl-XTR, and 6εsl-XT. In addition, we
conjecture the least power for the class 6εl-XT.

Theorem 14. For every n ≥ 3

6εsl-XT (6εsl-XTR (6εsl-XT2 = (6εsl-XTR)2 = 6εsl-XTn = (6εsl-XTR)n .

Proof. Theorem 13 proves the final three equalities. The first inclusion is trivial
and strictness follows from the proof of [15, Lemma 4.3]. The second inclusion
is also trivial (given the previous equalities) and the strictness follows from [18,
Theorem 4] and [3, Section 3.4], which show that class 6εsl-XTR is not closed
under composition at power 1.6 ut
5 The converse inclusion is trivial.
6 In fact, Theorem 17 reproves this statement.

8

t =

σ1

σ1

σ1

σ2

tn tn−1 σ2

ti+2 ti+1

c

σ2

ti ti−1

σ2

t2 t1

σ1

σ1

σ1

σ1

σ1

tn σ2

tn−1 tn−2

σ2

ti+1 ti

σ2

ti−1 ti−2

σ2

t3 t2

t1

= u

s =

si+1 si si−1

v′v

vi−1
vi

vi+1

Fig. 2. The relevant part of the specification used in the proof of Theorem 17.

Definition 15 ([19, Definitions 8 and 10]). A set D ⊆ L of link structures

– is input hierarchical7 if for every D ∈ D and (v1, w1), (v2, w2) ∈ D we have
(i) if v1 ≺ v2, then w1 � w2, and (ii) if v1 = v2, then w1 � w2 or w2 � w1.

– has bounded distance in the input if there exists an integer k ∈ IN such that
for every D ∈ D and all (v, w), (vv′′, w′′) ∈ D there exists (vv′, w′) ∈ D with
v′ ≺ v′′ and |v′| ≤ k.

Moreover, D is output hierarchical (resp. has bounded distance in the output)
if D−1 is input hierarchical (resp. has bounded distance in the input). If D fulfills
both versions of the property, then we just call it hierarchical or bounded distance.

Corollary 16 (of Def. 4). links(M) is hierarchical with bounded distance.

We will consider the problem whether a tree transformation can be computed
by two l-xtR. For this we specify certain links that are intuitively clear and
necessary between nodes of input-output tree pairs. Then we consider whether
this specification can be implemented by two l-xtR. Often we cannot identify the
nodes of a link exactly. In such cases, we use splines with inverted arrow heads,
which indicate that there is a link to some position of the subtree pointed to.

Theorem 17. For every n ≥ 4,

6εl-XT (6εl-XTR (6εl-XT2 ⊆ (6εl-XTR)2 (6εl-XT3 ⊆ (6εl-XTR)3

= 6εl-XT4 = (6εl-XTR)n = 6εl-XTn+1 .

7 This notion is called strictly input hierarchical in [19].

9

Proof. We have (6εl-XTR)n ⊆ 6εl-XTn+1 for all n ≥ 1 by repeated application
of Lemma 8. The equalities follow from Theorem 10, so we only have to prove
strictness. The first inclusion is strict by [15, Lemma 4.3] and the strictness
of the second inclusion follows from that of the fourth. Finally, we prove the
strictness of the fourth inclusion. For this, recall the l-tR M1 of Example 2.
In addition, we use the two bimorphisms B2 and B3 of [5, Section II-2-2-3-1],
which are in the class B mentioned before Theorem 6, and hence can also be
defined by some 6εsnl-xt M2 and M3, respectively. For convenience, we present
M2 and M3 explicitly before we show that τ = M1 ;M2 ;M3 cannot be computed
by a composition of two 6εl-xtR.

Let M2 = ({?, id, id′}, Σ,Σ, {?}, R2) be the 6εsnl-xt with the rules

σ1(?, σ2(id, id′))
?−→ σ(σ(?, id), id′) σ2(id, id′)

?−→ σ(id, id′)

γ(id)
id,id′

−→ γ(id) α
id,id′

−→ α .

Moreover, let M3 = ({?, p, id, id′}, Σ,Σ, {?}, R3) be the 6εsnl-xt with the rules

σ(p, id)
?−→ σ1(p, id) σ(σ(p, id), id′)

p−→ σ1(p, σ2(id, id′))

γ(id)
p−→ γ(id) γ(id)

id,id′

−→ γ(id) α
p,id,id′

−→ α .

We present a proof by contradiction, hence we assume that τ = N1 ; N2 for
some 6εl-xtR N1 = (P1, Σ,∆, I1, R

′
1) and N2 = (P2, ∆,Σ, I2, R

′
2). Using a stan-

dard construction, we can construct an ε-cycle free l-xtR N ′2 = (P ′2, ∆,Σ, I
′
2, R

′′
2)

such that N ′2 = N2 and each rule `
p−→ r ∈ R′′2 that contains γ in its right-hand

side r obeys r = γ(p) with p ∈ P ′2. With the help of Corollary 16, we can further
conclude that links(N1) and links(N ′2) are hierarchical with bounded distance
k1 and k2, respectively. Moreover, let

m ≥ max {k1, k2, |`|, |r| | `
p−→ r ∈ R′1 ∪R′′2} .

Clearly, all (t, u) ∈ τ have the shape shown in Fig. 2. Next, we will make an
assumption, derive the contradiction, and then prove the assumption. Suppose
that there exists (t, u) ∈ τ such that (see Fig. 2 for the named subtrees)

– the left σ1-spine of t is longer than m,
– for all trees c′ ∈ TΣ({x1}) indicated by small triangles in t (like c in Fig. 2)

the only element of posx1
(c′) is longer than m, and

– for all (t,D1, s) ∈ dep(N1), (s,D2, u) ∈ dep(N ′2), and 1 ≤ j ≤ n we have
• there exists (vj , wj) ∈ D2 such that wj is the root of tj in u, and
• there exists (yj , v

′
j) ∈ D1 such that yj is a position inside tj and vj � v′j .

Since the left σ1-spine in u is longer than k2 and there are links at the root (i.e.,
(ε, ε) ∈ D2) and at wn, there must be a linking point at position w ∈ posσ1

(u)
along the left σ1-spine with w 6= ε, which links to position v in the intermediate
tree s (i.e., (v, w) ∈ D2). Let u|w = σ1(u′, σ2(ti+1, ti)) for some 2 ≤ i ≤ n−2. By
our assumption, there exist links (vi+1, wi+1), (vi, wi), (vi−1, wi−1) ∈ D2. Since

10

D2 is hierarchical and wi+1 and wi are below w in u, we know that vi+1 and vi
are below v in s (i.e., v � vi+1, vi), whereas v 6� vi−1. Next, we locate ti in
the input tree t. By the general shape of t, the subtree ti occurs in a subtree
σ1(t′, c[σ2(ti, ti−1)]) for some tree c ∈ TΣ({x1}) with exactly one occurrence
of x1. We know that c is suitably large, which forces a linking point y inside c in
addition to those in ti+1, ti, and ti−1, which exist by the assumption. Note that
y is a proper prefix of the root position of the subtree σ2(ti, ti−1). Let (y, v′) ∈ D1

be the link linking c to s, which dominates the links (yi, v
′
i), (yi−1, v

′
i−1) ∈ D1

linking ti and ti−1 to s, respectively. Thus, v′ � v′i, v
′
i−1 and v′ 6� v′i+1 because

y 6� yi+1. Obviously, v′ 6� vi+1, and moreover, v′ � vi, vi−1 because other-
wise the positions vi+1, vi, vi−1 would not be incomparable, which is required
because links(N ′2) is hierarchical. We have either lcp(vi+1, vi) � lcp(vi, vi−1) or
lcp(vi, vi−1) � lcp(vi+1, vi). We either get v � lcp(vi+1, vi) � lcp(vi, vi−1) � vi−1
or v′ � lcp(vi, vi−1) � lcp(vi+1, vi) � vi+1, which are both contradictions.

It remains to show the assumption. Obviously, the first two items can be
satisfied simply by a proper selection of (t, u) ∈ τ . For every 1 ≤ j ≤ n, we
know that there exists a link (vj , wj) ∈ D2 to the root of tj in u due to the
special shape of the right-hand sides of N ′2. We note that all v1, . . . , vn are
pairwise incomparable. Moreover, we observe that there is a linear height (and
size) relation between input and output trees related by a link, which is true
for all ε-cycle free l-xt. Consequently, there is a linear height relation between
sj = s|vj and tj = u|wj . Thus by selecting each tj suitably tall, we can enforce
that each sj is taller than m, which yields that there is a link (yj , v

′
j) ∈ D1 such

that vj � v′j . Exploiting the linear height (and size) relation between linked
subtrees again, we can additionally show that (i) yj is a position inside tj in t,
in which case we are done, or (ii) yj is a prefix of the root position of tj in t. In
the latter case, the size of tj can be chosen such that there is also a link (y′j , v

′′
j)

with yj ≺ y′j and v′j � v′′j . Moreover, this can be iterated until y′j points to a
position inside tj . A detailed proof of these statements can be found in [9]. ut

We conjecture that 6εl-XT3 (6εl-XT4 = 6εl-XTn for every n ≥ 4. The in-
clusion is trivial and the equality follows from Corollary 11. For the strictness,
the proof of Theorem 17 essentially shows that in the first step we must delete
the contexts indicated by triangles (such as c) in Fig. 2 because otherwise we
can apply the method used in the proof to derive a contradiction (it relies on
the existence of a linking point inside such a context c). Thus, in essence we
must first implement a variant of the 6 εl-xtR M1 of Example 2. It is a simple
exercise to show that the deletion of the excess material cannot be done by a
single l-xt as it cannot reliably determine the left-most occurrence of σ2 without
the look-ahead. Thus, if we only have l-xt to achieve the transformation, then
we already need a composition of two l-xt to perform the required deletion.

For the sake of completeness we mention the following. In the full version [9]
of this paper we prove that the composition hierarchy is infinite for all other
combinations of ‘6ε’, ‘s’, and ‘n’.

Theorem 18 ([9, Theorem 34]). The composition hierarchy of the classes

6εnl-XT, [s][n]l-XT
R

, and [s][n]l-XT is infinite.

11

Acknowledgment The authors are indebted to an anonymous referee for his valu-
able report.

References

1. Arnold, A., Dauchet, M.: Transductions inversibles de forêts. Thèse 3ème cycle
M. Dauchet, Université de Lille (1975)

2. Arnold, A., Dauchet, M.: Bi-transductions de forêts. In: ICALP. pp. 74–86. Edin-
burgh University Press (1976)

3. Arnold, A., Dauchet, M.: Morphismes et bimorphismes d’arbres. Theoret. Comput.
Sci. 20(1), 33–93 (1982)

4. Chiang, D.: An introduction to synchronous grammars. In: ACL. Association for
Computational Linguistics (2006), part of a tutorial given with K. Knight

5. Dauchet, M.: Transductions de forêts — Bimorphismes de magmöıdes. Première
thèse, Université de Lille (1977)

6. Engelfriet, J.: Top-down tree transducers with regular look-ahead. Math. Systems
Theory 10(1), 289–303 (1977)

7. Engelfriet, J., Maneth, S.: Macro tree translations of linear size increase are MSO
definable. SIAM J. Comput. 32(4), 950–1006 (2003)

8. Engelfriet, J., Schmidt, E.M.: IO and OI I. J. Comput. System Sci. 15(3), 328–353
(1977)

9. Fülöp, Z., Maletti, A.: Composition closure of linear extended top-down tree trans-
ducers (2013), manuscript available at: http://arxiv.org/abs/1301.1514

10. Fülöp, Z., Maletti, A., Vogler, H.: Preservation of recognizability for synchronous
tree substitution grammars. In: ATANLP. pp. 1–9. Association for Computational
Linguistics (2010)

11. Fülöp, Z., Maletti, A., Vogler, H.: Weighted extended tree transducers. Fundam.
Inform. 111(2), 163–202 (2011)

12. Fülöp, Z., Vogler, H.: Syntax-Directed Semantics — Formal Models Based on Tree
Transducers. Springer (1998)

13. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
14. Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.)

Handbook of Formal Languages, vol. 3, chap. 1, pp. 1–68. Springer (1997)
15. Graehl, J., Hopkins, M., Knight, K., Maletti, A.: The power of extended top-down

tree transducers. SIAM J. Comput. 39(2), 410–430 (2009)
16. Graehl, J., Knight, K., May, J.: Training tree transducers. Comput. Linguist. 34(3),

391–427 (2008)
17. Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural

language processing. In: CICLing. LNCS, vol. 3406, pp. 1–24. Springer (2005)
18. Maletti, A.: Compositions of extended top-down tree transducers. Inform. and

Comput. 206(9–10), 1187–1196 (2008)
19. Maletti, A.: Tree transformations and dependencies. In: MOL. LNAI, vol. 6878,

pp. 1–20. Springer (2011)
20. May, J., Knight, K., Vogler, H.: Efficient inference through cascades of weighted

tree transducers. In: ACL. pp. 1058–1066. Association for Computational Linguis-
tics (2010)

21. Rounds, W.C.: Mappings and grammars on trees. Math. Systems Theory 4(3),
257–287 (1970)

22. Thatcher, J.W.: Generalized2 sequential machine maps. J. Comput. System Sci.
4(4), 339–367 (1970)

12

