
On minimising automata with errors?

Pawe l Gawrychowski1,??, Artur Jeż1,??, and Andreas Maletti2,? ? ?

1 Institute of Computer Science, University of Wroc law
ul. Joliot-Curie 15, 50-383 Wroc law, Poland

{gawry,aje}@cs.uni.wroc.pl
2 Institute for Natural Language Processing, Universität Stuttgart

Azenbergstraße 12, 70174 Stuttgart, Germany
andreas.maletti@ims.uni-stuttgart.de

Abstract. The problem of k-minimisation for a DFA M is the computa-
tion of a smallest DFAN (where the size |M | of a DFAM is the size of the
domain of the transition function) such that L(M)4L(N) ⊆ Σ<k, which
means that their recognized languages differ only on words of length less
than k. The previously best algorithm, which runs in time O(|M | log2 n)
where n is the number of states, is extended to DFAs with partial transi-
tion functions. Moreover, a faster O(|M | logn) algorithm for DFAs that
recognise finite languages is presented. In comparison to the previous al-
gorithm for total DFAs, the new algorithm is much simpler and allows
the calculation of a k-minimal DFA for each k in parallel. Secondly, it
is demonstrated that calculating the least number of introduced errors
is hard: Given a DFA M and numbers k and m, it is NP-hard to de-
cide whether there exists a k-minimal DFA N with |L(M)4L(N)| ≤ m.
A similar result holds for hyper-minimisation of DFAs in general: Given
a DFA M and numbers s and m, it is NP-hard to decide whether there
exists a DFA N with at most s states such that |L(M)4L(N)| ≤ m.

Keywords: finite automaton, minimisation, lossy compression

1 Introduction

Deterministic finite automata (DFAs) are one of the simplest devices recognising
languages. The study of their properties is motivated by (i) their simplicity,
which yields efficient operations, (ii) their wide-spread applications, (iii) their
connections to various other areas in theoretical computer science, and (iv) the
apparent beauty of their theory. A DFA M is a quintuple 〈Q,Σ, δ, q0, F 〉, where
Q is its finite state-set, Σ is its finite alphabet, δ : Q × Σ → Q is its partial
transition function, q0 ∈ Q is its starting state, and F ⊆ Q is its set of accepting

? This work was partially done when A. Maletti was visiting Wroc law University
thanks to the support of the “Visiting Professors” programme of the Municipality of
Wroc law.

?? Supported by MNiSW grant number N N206 492638, 2010–2012.
? ? ? Supported by the Ministerio de Educación y Ciencia (MEC) grant JDCI-2007-760

and the German Research Foundation (DFG) grant MA/4959/1-1.

2 P. Gawrychowski, A. Jeż, A. Maletti

states. The DFA M is total if δ is total. The transition function δ is extended
to δ : Q × Σ∗ → Q in the standard way. The language L(M) that is recognised
by the DFA M is L(M) = {w | δ(q0, w) ∈ F}.

Two DFAs M and N are equivalent (written as M ≡ N) if L(M) = L(N). A
DFA M is minimal if all equivalent DFAs are at least as large. One of the classical
DFA problems is the minimisation problem, which given a DFA M asks for the
(unique) minimal equivalent DFA. The asymptotically fastest DFA minimisation
algorithm runs in time O(|Σ|n log n) and is due to Hopcroft [7, 5], where
n = |Q|; its variant for partial DFAs is known to run in time O(|M | log n).

Recently, minimisation was also considered for hyper-equivalence [2], which
allows a finite difference in the languages. Two languages L and L′ are hyper-
equivalent if |L4L′| < ∞, where 4 denotes the symmetric difference of two
sets. The DFAs M and N are hyper-equivalent if their recognised languages
are. The DFA M is hyper-minimal if all hyper-equivalent DFAs are at least
as large. The algorithms for hyper-minimisation were gradually improved over
time to the currently best run-time O(|M | log2 n) [6, 4], which can be reduced to
O(|M | log n) using a strong computational model (with randomisation or special
memory access). Since classical DFA minimisation linearly reduces to hyper-
minimisation [6], an algorithm that is faster than O(|M | log n) seems unlikely.
Moreover, according to the authors’ knowledge, randomisation does not help
Hopcroft’s [3] or any other DFA minimisation algorithm. Thus, the randomised
hyper-minimisation algorithm also seems to be hard to improve.

Already [2] introduces a stricter notion of hyper-equivalence. Two languages
L and L′ are k-similar if they only differ on words of length less than k. Anal-
ogously, DFAs are k-similar if their recognised languages are. A DFA M is
k-minimal if all k-similar DFAs are at least as large, and the k-minimisation
problem asks for a k-minimal DFA that is k-similar to the given DFA M . The
known algorithm [4] for k-minimisation of total DFAs runs in time O(|M | log2 n),
however it is quite complicated and fails for non-total DFAs.

In this contribution, we present a simpler k-minimisation algorithm for gen-
eral DFAs, which still runs in time O(|M | log2 n). This represents a significant
improvement compared to the complexity for the corresponding total DFA if
the transition table of M is sparse. Its running time can be reduced if we al-
low a stronger computational model. In addition, the new algorithm runs in
time O(|M | log n) for every DFA M that recognises a finite language. Finally,
the new algorithm can calculate (a compact representation of) a k-minimal DFA
for each possible k in a single run (in the aforementioned run-time). Outputting
all the resulting DFAs might take time Ω(n|M | log2 n).

Although k-minimisation can be efficiently performed, no uniform bound on
the number of introduced errors is provided. In the case of hyper-minimisation,
it is known [8] that the optimal (i.e., the DFA committing the least number of
errors) hyper-minimal DFA and the number of its errors m can be efficiently
computed. However, this approach does not generalise to k-minimisation. We
show the reason. Already the problem of calculating the number m of errors
of an optimal k-minimal automaton is NP-hard. Finally, for some applications

On minimising automata with errors 3

it would be beneficial if we could balance the number m of errors against the
size |N |. Thus, we also consider the question whether given a DFA M and two
integers s and m there is a DFA N with at most s states that commits at most
m errors (i.e., |L(M)4L(N)| ≤ m). We show that this problem is also NP-hard.

2 Preliminaries

We usually use the two DFAs M = 〈Q,Σ, δ, q0, F 〉 and N = 〈P,Σ, µ, p0, F ′〉. We
also write δ(w) for δ(q0, w). The size of DFA M is denoted by |M | and is the
number of its non-empty transitions, i.e., entries of δ. The right-language LM (q)
of a state q ∈ Q is the language LM (q) = {w | δ(q, w) ∈ F} recognised by M
starting in state q. Minimisation of DFAs is based on calculating the equiva-
lence ≡ between states, which is defined by q ≡ p if and only if LM (q) = LN (p).
Similarly, the left language of q is the language δ−1(q) = {w | δ(w) = q} of words
leading to q in M . For two languages L and L′, we define their distance d(L,L′)
as

d(L,L′) = min {` | L ∩Σ≥` = L′ ∩Σ≥`} ,
where min ∅ =∞. Actually, d is an ultrametric. The distance d can be extended
to states: d(q, p) = d(LM (q), LN (p)) for q ∈ Q and p ∈ P . It satisfies the simple
recursive formula:

d(q, p) =

{
0 if q ≡ p,
1 + max {d(δ(q, a), µ(p, a)) | a ∈ Σ} otherwise.

(1)

The minimal DFAs considered in this paper are obtained mostly by state
merging. We say that the DFA N is the result of merging state q to state p
(assuming q 6= p) in M if N is obtained from M by changing all transitions
ending in q to transitions ending in p and deleting the state q. If q was the starting
state, then p is the new starting state. Formally, P = Q \ {q}, F ′ = F \ {q}, and

µ(r, a) =

{
p if δ(r, a) = q

δ(r, a) otherwise,
p0 =

{
p if q0 = q

q0 otherwise.

The process is illustrated in Fig. 1. Let in-levelM (q) be the length of a longest
word leading to q in M . If there is no such longest word, then in-levelM (q) =∞.
Formally, we have in-levelM (q) = sup {|w| | w ∈ δ−1(q)} for every q ∈ Q.

3 Efficient k-minimisation

3.1 k-similarity and k-minimisation

Two languages L and L′ are k-similar if they only differ on words of length
smaller than k, and the two DFAs M and N are k-similar if their recognised
languages are. The DFA M is k-minimal if all k-similar DFAs are at least as
large. In this section, we present a general simple algorithm k-Minimise that
computes a k-minimal DFA that is k-similar to the input DFA M . Then we
present a data structure that allows a fast, yet simple implementation of it.

4 P. Gawrychowski, A. Jeż, A. Maletti

C F I L

B E H J N

A D G Q M

C F I L

B E H J N

A D Q M

Fig. 1. Merging state G into I.

Definition 1. For two languages L and L′, we let L ∼k L′ ⇐⇒ d(L,L′) ≤ k.

The hyper-equivalence relation [2] can now be defined as ∼ =
⋃
k ∼k. Next,

we extend k-similarity to states.

Definition 2. Two states q ∈ Q and p ∈ P are k-similar, denoted by q ∼k p, if

d(q, p) + min(k, in-levelM (q), in-levelN (p)) ≤ k .

While ∼k is an equivalence relation on languages, it is, in general, only a
compatibility relation (i.e., reflexive and symmetric) on states. On states the
hyper-equivalence is not a direct generalisation of k-similarity. Instead, p ∼ q if
and only if LM (q) ∼ LN (p). We use the k-similarity relation to give a simple
algorithm k-Minimise(M), which constructs a k-minimal DFA (see Alg. 1). In
Sect. 3.2 we show how to implement it efficiently.

Theorem 3. k-Minimise returns a k-minimal DFA that is k-similar to M .

Proof (sketch). There are two things to show: (i) that the obtained DFA N
has the minimal number of states and (ii) that it is k-similar to M . The states
of N are pairwise k-inequivalent (when considered in M) and using an approach
similar to [4, Lemma 6] it naturally follows that each DFA that is k-similar
to M has at least this number of states. For part (ii) we show that after each
merge the current DFA N is k-similar to M . To this end, we first show that
in-levelN (p) ≤ in-levelM (p) using a little more general induction hypothesis.
Next, we estimate the distance between p regarded as a state in M and in N
follows: d(LM (p), LN (p)) ≤ k − in-levelM (p). The rest of the proof are simple
calculations using that d is an ultrametric. ut

3.2 Distance forests

In this section we define distance forests, which capture the information of the
distance between states of a given minimal DFAM . We show that k-minimisation

On minimising automata with errors 5

Alg. 1 k-Minimise(M) with minimal M

1: calculate ∼k on Q
2: N ←M
3: while q ∼k p for some q, p ∈ P and q 6= p do
4: if in-levelM (q) ≥ in-levelM (p) then
5: swap q and p

6: N ←Merge(N, q, p)

can be performed in linear time, when a distance forest for M is supplied. We
start with a total DFA M because in this case the construction is fairly easy. In
Sect. 3.3 we show how to extend the construction to non-total DFAs.

Let F be a forest (i.e., set of trees) whose leaves are enumerated by Q and
whose edges are weighted by elements of IN. For convenience, we identify the leaf
vertices with their label. For every q ∈ Q, we let tree(q) ∈ F be the (unique) tree
that contains q. The level ‘level(v)’ of a vertex v in t ∈ F is the maximal weight
of all paths from v to a leaf, where the weights are added along a path. Finally,
given two vertices v1, v2 of the same tree t ∈ F , the lowest common ancestor of
v1 and v2 is the vertex lca(v1, v2).

Definition 4 (Distance forest). Let F be a forest whose leaves are enumerated
by Q. Then F is a distance forest for M if for every q, p ∈ Q we have

d(q, p) =

{
level(lca(q, p)) if tree(q) = tree(p),

∞ otherwise.

To construct a distance forest we use (1) to calculate the distance. Since M
is minimal, there are no states with distance 0. In phase `, we merge all states
at distance exactly ` into one state. Since we merged all states of distance at
most `−1 in the previous phases, we only need to identify the states of distance 1
in the merged DFA. Thus we simply group the states according to their vectors
of transitions by letters from Σ = {a1, . . . , am}. To this end we store these
vectors in a dictionary, which we organise as a trie of depth m. The leaf of a
trie corresponding to a path (q1, . . . , qm) keeps a list of all states q such that
δ(q, ai) = qi for every 1 ≤ i ≤ m. For each node v in the trie we keep a linear
dictionary that maps a state q into a child of v. We demand that this linear
dictionary supports search, insertion, deletion, and enumeration of all elements.

Theorem 5. Given a total DFA M , we can build a distance forest for M using
O(|M | log n) linear-dictionary operations.

We now shortly discuss some possible implementations of the linear dictio-
nary. An implementation using balanced trees would have linear space consump-
tion and the essential operations would run in time O(log n). If we allow ran-
domisation, then we can use dynamic hashing. It has a worst-case constant time
look-up and an amortised expected constant time for updates [9]. Since it is nat-
ural to assume that log n is proportional to the size of a machine word, we can

6 P. Gawrychowski, A. Jeż, A. Maletti

H I G M N J L

4

3

2

1

0

Fig. 2. A distance forest for the left DFA of Fig. 1. Single-node trees are omitted.

hash in constant time. We can obtain even better time bounds by turning to more
powerful models. In the RAM model, we can use exponential search trees [1],

whose time per operation is O((log logn)2

log log logn) in linear space. Finally, if we allow a
quadratic space consumption, which is still possible in sub-quadratic time, then
we can allocate (but not initialise) a table of size |M | × n. Standard methods
can be used to keep track of the actually used table entries, so that we obtain a
constant run-time for each operation, but at the expense of Θ(|M |n) space; i.e.,
quadratic memory consumption.

We can now use a distance forest to efficiently implement k-Minimise. For
each state q we locate its highest ancestor vq with level(vq) ≤ k − in-level(q).
Then q can be merged into any state that occurs in the subtree rooted in vq
(assuming it has a smaller in-level). This can be done using a depth-first traversal
on the trees of the distance forest. A more elaborate construction based on this
approach yields the following.

Theorem 6. Given a distance forest for M , we can compute the size of a
k-minimal DFA that is k-similar to M for all k in time O(|M |). For a fixed k,
we can also compute a k-minimal DFA in time O(|M |). Finally, we can run
the algorithm in time O(|M | log n) such that it has a k-minimal DFA stored in
memory in its k-th phase.

3.3 Finite languages and partial transition functions

The construction of a distance forest was based on a total transition function δ,
and the run-time was bounded by the size of δ. We now show a modification for
the non-total case. The main obstacle is the construction of a distance forest for
an acyclic DFA. The remaining changes are relatively straightforward.

Theorem 7. For every acyclic DFA M we can build a distance forest in time
O(|M | log n).

Proof (sketch). Since L(M) is finite, we have that m(p) = max {|w||w ∈ LM (p)}
is a natural number for every state p. Let Qi = {p |m(p) = i} and Q<∞ =

⋃
iQi.

Every state has a finite right-language, and thus every distance forest consists of

On minimising automata with errors 7

⊥

Fig. 3. Illustration for the construction
of the distance tree. The spine is de-
picted using with a thicker line. Split-
ting one fragment into smaller recursive
calls is shown.

a single tree. We iteratively construct the fragments of this tree by starting from
a single leaf ⊥, which represents the empty language and “undefinedness” of the
transition function. Before we start to process Qt, we have already constructed
the distance tree for

⋃
i<tQi. The constructed fragments are connected to a single

path, called the spine, which ends at the leaf ⊥ (see Fig. 3).
Let Qt = {p1, . . . , ps}, and let v ∈ Qt. Moreover, let f(v) be the vector of

states v = (δ(v, a))a∈Σ , where the coordinates are sorted by a fixed order on Σ.
Define the distance between those vectors as

d((pa)a∈Σ , (p
′
a)a∈Σ) = max {d(pi, p

′
i) + 1 | a ∈ Σ} ,

where we know that d(pi,⊥) = m(pi) and d(⊥, p′i) = m(p′i). Similarly to the dis-
tance, we can define the father f(v) of a vector v = (pa)a∈Σ as f(v) = (f(pa))a∈Σ .
Then

f`+1(v) = f`+1(v′) ⇐⇒ f`(v) = f`(v′).

We can now use a divide-and-conquer approach: First, for each vector we cal-
culate its 2k-th ancestor, where k = dlog s/2e. Then all such vectors are sorted
according to their ancestors, in particular they are partitioned into blocks with
the same ancestors. After that we recurse onto those (bottom) blocks that have
more than two entries and onto the upper block, which consists of the different
2k-ancestors. The recursion ends for blocks containing at most two vectors, for
which we calculate the distance tree directly. ut

For every state q ∈ Q, its signature sig(q) is {a | LM (δ(q, a)) is infinite}.
If sig(q) 6= sig(p), then d(q, p) = ∞, which allows us to keep a separate dic-
tionary for each signature. Let us fix such a trie. To take into account also
the transitions by letters outside the signature, we introduce a fresh letter $,
whose transitions are represented in the trie as well. We organize them such that
in phase ` the $-transitions for the states q and p are the same if and only if
max {d(δ(q, a), δ(p, a))|a /∈ sig(q)} ≤ `−1. This is easily organised if the distance
forest for all states with a finite right-language is supplied.

8 P. Gawrychowski, A. Jeż, A. Maletti

Theorem 8. Given a (non-total) DFA M we can build a distance forest for it
using O(|M | log n) linear-dictionary operations.

4 Hyper-equivalence and hyper-minimisation

When considering minimisation with errors, it is natural that one would like
to impose a bound on the total number of errors introduced by minimisation.
In this section, we investigate whether given m, s ∈ IN and a DFA M we can
construct a DFA N such that:

1. N is hyper-equivalent to M ; i.e., N ∼M ,
2. N has at most s states, and
3. N commits at most m errors compared to M ; i.e., |L(N)4L(M)| ≤ m.

Let us call the general problem ‘error-bounded hyper-minimisation’. We show
that this problem is intractable (NP-hard).

To show NP-hardness of the problem we reduce the 3-colouring problem to
it. Roughly speaking, we construct the DFA M from a graph G = 〈V,E〉 as
follows. Each vertex v ∈ V is represented by a state v ∈ Q, and each edge e ∈ E
is represented by a symbol e ∈ Σ. We introduce additional states in a way such
that their isomorphic copies are present in any minimal DFA that is hyper-
equivalent to M . The additional states are needed to ensure that for every edge
e = {v1, v2} ∈ E the languages LM (δ(v1, e)) and LM (δ(v2, e)) differ. Now we
assume that m = |E| · (|V | − 2) and s = 14. We construct the DFA M such
that all vertices of V ⊆ Q are hyper-equivalent to each other and none is hyper-
equivalent to any other state. We can save |V | − 3 states by merging all states
of V into at most 3 states. These merges will cause at least |E| · (|V | − 2) errors.
Additionally, 3 states will become superfluous after the merges, so that we can
save |V | states. There are two cases:

– If the input graph G is 3-colourable by c : V → [3], then we can merge all
states of c−1(i) into a single state for every i ∈ [3]. Since c is proper, we
never merge states v1, v2 ∈ Q with {v1, v2} ∈ E, which avoids further errors.

– On the other hand, if G is not 3-colourable, then we merge at least two
states v1, v2 ∈ Q such that e = {v1, v2} ∈ E. This merge additionally intro-
duces 2 errors caused by the difference L(δ(v1, e))4L(δ(v2, e)).

Consequently, a DFA that (i) is hyper-equivalent to M , (ii) has at most s states,
and (iii) commits at most m errors exists if and only if G is 3-colourable. This
shows that error-bounded hyper-minimisation is NP-hard.

Definition 9. We construct a DFA M = 〈Q,Σ, δ,>, F 〉 as follows:

– Q = {>,⊥,∞,,,/} ∪ V ∪ {#j | # ∈ {,,-,/}, j ∈ [3]},
– Σ = {a, b} ∪ V ∪ E,
– F = {∞,,},

On minimising automata with errors 9

v1 ,1 ,2 ,3 ,

> ...
∞ -1 -2 -3

vn /1 /2 /3 /

v1

vn

e

e

e′

e′

Fig. 4. DFA M constructed in Sect. 4, where a-transitions are represented by unbroken
lines (unless noted otherwise), b-transitions by dashed lines, and e = {v1, vn} and
e′ = {v2, v3} with v1 < v2 < v3 < vn. The hyper-equivalence ∼ is indicated.

– for every v ∈ V , e = {v1, v2} ∈ E with v /∈ e and v1 < v2, # ∈ {,,/}
δ(>, v) = v δ(∞, a) = ,1 δ(∞, b) = /1

δ(v, e) = -1 δ(v1, e) = ,1 δ(v2, e) = /1

δ(-1, a) = -2 δ(-2, a) = -3 δ(-3, a) = , δ(-3, b) = /

δ(#1, a) = #2 δ(#2, a) = #3 δ(#3, a) = # δ(#3, b) = # δ(#, b) =∞
– For all remaining cases, we set δ(q, σ) = ⊥.

Consequently, the DFA M has 14 + |V | states (see Fig. 4). Next, we show
how to collapse hyper-equivalent states using a proper 3-colouring c : V → [3] to
obtain only 14 states.

Definition 10. Let c : V → [3] be a proper 3-colouring for G. We construct the
DFA c(M) = 〈P,Σ, µ,>, F 〉 where

– P = {>,⊥,∞,,,/} ∪ [3] ∪ {#j | # ∈ {,,/}, j ∈ [3]},
– µ(p, σ) = δ(p, σ) for all p ∈ P \ {>, 1, 2, 3} and σ ∈ Σ, and
– for every v ∈ V , i ∈ [3], and e = {v1, v2} ∈ E with v1 < v2

µ(>, v) = c(v) µ(i, e) =

{
,1 , if c(v2) 6= i

/1 , otherwise.

Lemma 11. There exists a DFA that has at most 14 states and commits at most
|E| · (|V | − 2) errors when compared to M if and only if G is 3-colourable.

Corollary 12. ‘Error-bounded hyper-minimisation’ is NP-complete. More for-
mally, given a DFA M and two integers m, s ∈ poly(|M |), it is NP-complete to
decide whether there is a DFA N with at most s states and |L(M)4L(N)| ≤ m.

10 P. Gawrychowski, A. Jeż, A. Maletti

5 Error-bounded k-minimisation

In Sect. 3 the number of errors between M and the constructed k-minimal DFA
was not calculated. In general, there is no unique k-minimal DFA for M and the
various k-minimal DFAs for M can differ in the number of errors that they com-
mit relative to M . Since several dependent merges are performed in the course
of k-minimisation, the number of errors between the original DFA M and the
resulting k-minimal DFA is not necessarily the sum of the errors introduced for
each merging step. This is due to the fact that errors made in one merge may
be cancelled out in a subsequent merge. It is natural to ask, whether it is never-
theless possible to efficiently construct an optimal k-minimal DFA for M (i.e.,
a k-minimal DFA with the least number of errors introduced). In the following
we show that the construction of an optimal k-minimal DFA for M is NP-hard.

The intractability is shown by a reduction from the 3-colouring problem
for a graph G = 〈V,E〉 in a similar, though much more refined, way as in
Sect. 4. We again construct a DFA M with one state v for every vertex v ∈ V
and one letter e for each edge e ∈ E. We introduce three additional states
{10, 20, 30} (besides others) to represent the 3 colours. For the following dis-
cussion, let N = 〈P,Σ, µ, p0, F ′〉 be a k-minimal DFA for M . Let us fix an
edge e = {v1, v2} ∈ E. The DFA M is constructed such that the languages
LM (δ(v1, e)) and LM (δ(v2, e)) have a large but finite symmetric difference; as
in the previous section, if a proper 3-colouring c : V → [3] exists the DFA N
can be obtained by merging each state v into c(v)0. In addition, for every edge
e = {v1, v2} ∈ E and vertex v ∈ e, we let µ(c(v)0, e) = δ(v, e). On the other
hand, if G admits no proper 3-colouring, then the DFA N is still obtained by
state merges performed on M . However, because G has no proper 3-colouring,
in the constructed DFA M there exist 2 states v1, v2 such that e = {v1, v2} ∈ E
and that both v1 and v2 are merged into the same state p ∈ P . Then the tran-
sition µ(p, e) cannot match both δ(v1, e) and δ(v2, e). In order to make such an
error costly, the left languages of v and v′ are designed to be large, but finite. In
contrast, we can easily change the transitions of states {10, 20, 30} by letters e
because the left-languages of the states {10, 20, 30} are small.

To keep the presentation simple, we will use two gadgets. The first one will
enable us to make sure that two states cannot be merged: k-similar states are
also hyper-equivalent, so we can simply avoid undesired merges by making states
hyper-inequivalent. Another gadget will be used to increase the in-level of certain
states to a desired value.

Lemma 13. For every congruence ' ⊆ Q×Q on M , there exists a DFA N such
that (i) p1 6∼ p2 for every p1 ∈ P \Q and p2 ∈ P with p1 6= p2, and (ii) q1 6∼ q2
in N for all q1 6' q2.

In graphical illustrations, we use different shapes for q1 and q2 to indicate
that q1 6∼ q2, because of the gadget of Lemma 13. Note that states with the same
shape need not be k-similar.

On minimising automata with errors 11

30

3s− 1

20

3s− 1

21

k + 1

2`

k + `

10

3s− 1

11

k + 1

1`

k + `

v

s+ 1
,0

k + 1

,1

k + 2

,s−1

k + s

,s

k + `+ 1

s

s
. . . -

3s

0
v′

s+ 1
/
k + 1

v

v′

{a, b}s

e

e′

e

e′

b`−1

e

e

e

b`−1

{a, b}s−2

Fig. 5. Illustration of the DFA M of Section 5

Lemma 14. For every subset S ⊆ Q\{q0} of states and map min-level : S → IN,
there exists a DFA N = 〈Q ∪ I,Σ ∪∆,µ, q0, F 〉 such that |µ−1(i)| = 1 for every
i ∈ I and in-levelN (s) = max(in-levelM (s),min-level(s)) for every s ∈ S.

We will indicate the level i below the state name in graphical illustrations.
Moreover, we add a special feathered arrow to the state q, whenever the gadget
is used for the state q to increase its level.

We now present the construction. Let G = 〈V,E〉 be an undirected graph.
Select k, s ∈ IN such that s > log(|V |) + 2 and k > 4s. Moreover, let ` = k − 2s.

Definition 15. We construct the DFA M = 〈Q,Σ, δ, 0, F 〉 as follows:

– Q = {⊥,-,/, 30} ∪ {ij | i ∈ [2], j ∈ [`]} ∪ V ∪ [0, s] ∪ {,i | 0 ≤ i ≤ s},
– Σ = {a, b} ∪ V ∪ E,
– F = {,s, 1`}, and
– for every v ∈ V , e = {v1, v2} ∈ E with v /∈ e and v1 < v2, i ∈ [s], and j ∈ [`]

δ(i− 1, a) = i δ(v1, e) = ,0 δ(10, e) = - δ(1j−1, b) = 1j

δ(i− 1, b) = i δ(v2, e) = / δ(20, e) = - δ(2j−1, b) = 2j

δ(,i−1, a) = ,i δ(v, e) = - δ(30, e) = - δ(1`, b) = ,s

12 P. Gawrychowski, A. Jeż, A. Maletti

δ(,i−1, b) = ,i δ(v, a) = 11 δ(2`, b) = ,s

δ(-, a) = ,1 δ(s, v) = v

– For all remaining cases, we set δ(q, σ) = ⊥.

Finally, we show how to collapse k-similar states using a proper 3-colouring
c : V → [3]. We obtain the k-similar DFA c(M) = 〈P,Σ, µ, 0, F 〉 from M by
merging each state v into c(v)0. In addition, for every edge e = {v1, v2} ∈ E,
we let µ(c(v1)0, e) = δ(v1, e) and µ(c(v2)0, e) = δ(v2, e). Since the colouring c is
proper, we have that c(v1) 6= c(v2), which yields that µ is well-defined. For the
remaining i ∈ [3] \ {c(v1), c(v2)}, we let µ(i0, e) = ,0. All equivalent states (i.e.,
⊥ and /) are merged. The gadgets that were added to M survive and are added
to c(M). Naturally, if a certain state does no longer exist, then all transitions
leading to or originating from it are deleted too. This applies for example to -.

Lemma 16. There exists a k-minimal DFA N for M with at most

22s−1 · |E| · (|V | − 2) + 3 · 2s−1 · |E|+ 2s+1 · |V |

errors if and only if the input graph G is 3-colourable.

Corollary 17. ‘Error-bounded k-minimisation’ is NP-complete.

References

1. Andersson, A., Thorup, M.: Dynamic ordered sets with exponential search trees. J.
ACM 54(3) (2007)

2. Badr, A., Geffert, V., Shipman, I.: Hyper-minimizing minimized deterministic finite
state automata. RAIRO Theoret. Inform. Appl. 43(1), 69–94 (2009)

3. Castiglione, G., Restivo, A., Sciortino, M.: Hopcroft’s algorithm and cyclic au-
tomata. In: Proc. 2nd Int. Conf. Language and Automata Theory and Applications.
LNCS, vol. 5196, pp. 172–183. Springer (2008)

4. Gawrychowski, P., Jeż, A.: Hyper-minimisation made efficient. In: Proc. 34th Int.
Symp. Mathematical Foundations of Computer Science. LNCS, vol. 5734, pp. 356–
368. Springer (2009)

5. Gries, D.: Describing an algorithm by Hopcroft. Acta Inf. 2(2), 97–109 (1973)
6. Holzer, M., Maletti, A.: An n logn algorithm for hyper-minimizing a (minimized)

deterministic automaton. Theoret. Comput. Sci. 411(38–39), 3404–3413 (2010)
7. Hopcroft, J.E.: An n logn algorithm for minimizing states in a finite automaton.

In: Kohavi, Z. (ed.) Theory of Machines and Computations, pp. 189–196. Academic
Press (1971)

8. Maletti, A.: Better hyper-minimization — not as fast, but fewer errors. In: Proc.
15th Int. Conf. Implementation and Application of Automata. LNCS, vol. 6482, pp.
201–210. Springer (2011)

9. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)

