
Hyper-minimisation of deterministic

weighted �nite automata over semi�elds?

Andreas Maletti?? and Daniel Quernheim??

Universität Stuttgart, Institute for Natural Language Processing
Azenbergstraÿe 12, 70174 Stuttgart, Germany

{Andreas.Maletti & Daniel.Quernheim}@ims.uni-stuttgart.de

Abstract Hyper-minimisation of deterministic �nite automata is a re-
cently introduced state reduction technique that allows a �nite change in
the recognised language. A generalisation of this lossy compression method
to the weighted setting over semi�elds is presented, which allows the recog-
nised formal power series to di�er for �nitely many input strings. First,
the structure of hyper-minimal deterministic weighted �nite automata is
characterised in a similar way as in classical weighted minimisation and un-
weighted hyper-minimisation. Second, an e�cient minimisation algorithm,
which runs in time O(n logn), is derived from this characterisation.

1 Introduction

Deterministic �nite automata (dfa) [23] are one of the simplest, but most
useful devices in computer science. Their simplicity and the availability of
e�cient manipulation software [16,1] makes them attractive in many appli-
cation areas such as speech processing [19], image compression [6], morphol-
ogy [4], natural language semantics [8], and pattern matching [5]. Often huge
dfa consisting of several million states are required. Fortunately, every dfa
admits an e�ciently computable and unique (up to isomorphism) equivalent
minimal dfa. Virtually every �nite-state toolkit implements minimisation.
The asymptotically most e�cient algorithm [14,11] for general dfa minimi-
sation computes the equivalent states and merges them in time O(n log n),
where n is the number of states of the input dfa.

Recently, hyper-minimisation of dfa [3] has been proposed, which is
a means of state reduction beyond the usual notion of the minimal dfa.
Thus, it can potentially compress dfa even further at the expense of a

? This article is based on Daniel Quernheim: Hyper-minimisation of weighted �nite

automata. Master's thesis, Universität Potsdam, 2010.
?? Both authors were supported by the German Research Foundation (DFG) grant

MA/ 4959 / 1�1.

�nite change in the recognised language. The asymptotically fastest hyper-
minimisation algorithms [9,13] compute the �almost-equivalence� relation
and merge states with �nite left language according to it in time O(n log n).

Here we consider weighted hyper-minimisation. Our weight structures
will be commutative semi�elds, which are commutative semirings [12,10]
with multiplicative inverses. As before, we will restrict our attention to de-
terministic automata. Actually, the mentioned applications of dfa often
use the weighted version to compute a quantitative answer. For weighted
deterministic �nite automata (wdfa) [21] over semi�elds, similar results
are known. They can be e�ciently minimised, but the minimal equiva-
lent wdfa is no longer unique due to ability to �push� weights [19,7]. The
asymptotically fastest minimisation algorithms [19,7] nevertheless still run
in time O(n log n). Essentially, they normalise the input wdfa by �pushing�
weights towards the initial state. In the process, the signatures of equivalent
states become equivalent, so that a classical unweighted minimisation can
then perform the computation of the equivalence and the merges.

In weighted hyper-minimisation we focus on the notion that allows the
recognised series to di�er for �nitely many input strings, which we call
`strict almost-equivalence'. More sophisticated notions that are based on
di�erences between the weights of strings are conceivable [20], but we will
mostly discuss strict almost-equivalence. This notion has the bene�t that it
is simple, but realistic enough. We will join unweighted hyper-minimisation
and weighted minimisation to weighted hyper-minimisation. Our algorithm
(see Algs. 1 and 2) contains features of both of its predecessors and is
asymptotically as e�cient as them because it also runs in time O(n log n).
In contrast to [20], we introduce standardised signatures to avoid the explicit
pushing of weights. This adjustment allows us to mold our weighted hyper-
minimisation algorithm into the structure of the unweighted algorithm [13].

2 Preliminaries

An alphabet Σ is simply a �nite set, and Σ∗ is the set of all strings over it
including ε, which is the empty string. The length of a string x = x1 · · ·x`

with x1, . . . , x` ∈ Σ is |x| = `. Concatenation of strings is simply denoted
by juxtaposition. A language L over Σ is a subset L ⊆ Σ∗.

A commutative semi�eld is a tuple 〈K,+, ·, 0, 1〉 such that (i) 〈K,+, 0〉
and 〈K, ·, 1〉 are commutative monoids, (ii) the multiplication · distributes
over the addition + [i.e., (k1+k2)·k3 = (k1·k3)+(k2·k3) for all k1, k2, k3 ∈ K],
(iii) 0 is an annihilator [i.e., k · 0 = 0 for all k ∈ K], and (iv) for every
k ∈ K − {0} there exists k−1 ∈ K such that k · k−1 = 1. In other words, a

2

commutative semi�eld is a commutative semiring [12,10] with multiplicative
inverses. Useful semi�elds include (i) the real numbers 〈R,+, ·, 0, 1〉, (ii) the
tropical semi�eld 〈R ∪ {∞},min,+,∞, 0〉, (iii) the probabilistic semi�eld
〈[0, 1],max, ·, 0, 1〉 with [0, 1] = {k ∈ R | 0 ≤ k ≤ 1}, and (iv) the Boolean
semi�eld B = 〈{0, 1},max,min, 0, 1〉.

Let 〈K,+, ·, 0, 1〉 be a commutative semi�eld. A (power) series is a map-
ping α : Σ∗ → K. Its support supp(α) ⊆ Σ∗ is {x | α(x) 6= 0}. Given k ∈ K,
we let (k · α) : Σ∗ → K be the series such that (k · α)(x) = k · α(x) for ev-
ery x ∈ Σ∗. A weighted deterministic �nite automaton (wdfa) is a tuple
A = 〈Q,Σ, q0, δ, c, F 〉, where (i) Q is a �nite set of states, (ii) Σ is an alpha-
bet, (iii) q0 ∈ Q is an initial state, (iv) δ : Q×Σ → Q is a transition mapping,
(v) c : Q×Σ → K− {0} is a weight (or cost) assignment, and F ⊆ Q is a
set of �nal states. We can extend `δ' and `c' to mappings δ : Q × Σ∗ → Q
and c : Q × Σ∗ → K − {0} by δ(q, ε) = q and δ(q, ax) = δ(δ(q, a), x) and
c(q, ε) = 1 and c(q, ax) = c(q, a) · c(δ(q, a), x) for every q ∈ Q, a ∈ Σ, and
x ∈ Σ∗. For every q ∈ Q, its right series JqKA : Σ∗ → K is given for every
x ∈ Σ∗ by JqKA(x) = c(q, x) if δ(q, x) ∈ F and JqKA(x) = 0 otherwise. If A
is obvious from the context, then we just write JqK instead of JqKA. The
wdfa A recognises the series JAK = Jq0K.

In the following, let A = 〈Q,Σ, q0, δ, c, F 〉 be a wdfa over the com-

mutative semi�eld 〈K,+, ·, 0, 1〉. We assume a �xed alphabet Σ.

Let B = 〈Q′, Σ, q′0, δ′, c′, F ′〉 be a wdfa. The product A·B [22,15] is the
wdfa 〈Q×Q′, Σ, 〈q0, q′0〉, δ′′, c′′, F×F ′〉 with δ′′(〈q, q′〉, a) = 〈δ(q, a), δ(q′, a)〉
and c′′(〈q, q′〉, a) = c(q, a) · c′(q′, a) for every q ∈ Q, q′ ∈ Q′, and a ∈ Σ.
Let α, β : Σ∗ → K. If there exists k ∈ K − {0} such that α = k · β, then
α and β are equivalent, which is written α ≡ β or α ≡ β (k) if the fac-
tor is relevant. For q ∈ Q and q′ ∈ Q′ we write q ≡ q′ and q ≡ q′ (k) if
JqKA ≡ Jq′KB and JqKA ≡ Jq′KB (k), respectively. The wdfa A and B are
equivalent if Jq0KA = Jq′0KB. An equivalence relation ∼= ⊆ Q×Q is a congru-
ence if δ(q, a) ∼= δ(p, a) for all a ∈ Σ and q ∼= p. Note that ≡ ⊆ Q×Q is a
congruence. If K = B, then the notion of wdfa coincides with the classical
(unweighted) notion of the `deterministic �nite automaton' (dfa) [23].

3 State of research

A wdfa is minimal if no wdfa with (strictly) fewer states recognises the
same series. We can obtain a minimal equivalent wdfa from a given wdfa
by merging equivalent states until no pair of di�erent, but equivalent states

3

remains. In the unweighted case, the resulting minimal dfa is unique and
can be constructed in time O(n log n) [14,11], where n is the number of
states of the input dfa. In the weighted case, the resulting wdfa is not
unique, but it can also be obtained in time O(n log n) [19]. In order to
achieve a further reduction, errors (i.e., changes in the recognised series)
have to be allowed. A recent technique is hyper-minimisation [3], which
simply allows any �nite number of errors.

De�nition 1 (see [3, Def. 2.2]). The languages L,L′ ⊆ Σ∗ are almost-
equivalent, which is denoted by L ∼ L′, if their symmetric di�erence is

�nite. In addition, the states q, p ∈ Q are almost-equivalent, which is again

denoted by q ∼ p, if supp(JqK) ∼ supp(JpK).

A state q ∈ Q is a preamble state if {x ∈ Σ∗ | δ(q0, x) = q} is �nite.
Otherwise, it is a kernel state. The sets of all preamble states and all kernel
states are P and K = Q−P , respectively. The notion of almost-equivalence
on states can trivially be extended to pairs of states belonging to di�erent
wdfa A and B that share the same input alphabet Σ. We say that the
wdfa A and B are almost-equivalent, which is also denoted by A ∼ B, if
their initial states are almost-equivalent (i.e., q0 ∼ q′0). Finally, the wdfa A
is hyper-minimal if there is no almost-equivalent wdfa with (strictly) fewer
states. Recall that A is minimal if it has no pair of di�erent, but equivalent
states. A similar characterisation was obtained in [3] for hyper-minimality.

Theorem 2 (see [3, Thm. 3.4]). A minimal dfa is hyper-minimal if and

only if it has no pair of di�erent, but almost-equivalent states such that at

least one of them is a preamble state.

A hyper-minimal dfa can be obtained by merging states [3]. A merge
of state p into state q reroutes all transitions entering p into q. If p was the
initial state, then q is the new initial state. However, �nality is not adjusted.
In Fig. 1 we show the merge of the state B into A, which yields that the
states B, D, and F can be deleted since they are inaccessible. Note that a
hyper-minimal dfa can have almost-equivalent kernel states (for example:
G and I in Fig. 1). Such states cannot be merged unless they are equivalent.

Recall that the equivalent minimal dfa for a given dfa A is unique
(up to isomorphism). Although there is no unique almost-equivalent hyper-
minimal dfa for A, all hyper-minimal dfa that are almost-equivalent to A
share structural similarities, which were already studied in [3].

Theorem 3 (see [3, Thm. 3.9]). Let A and B be hyper-minimal dfa

with states Q and Q′, respectively. If they are almost-equivalent, then there

4

0 B D F H

A C E

G I

b

a

a

b

a

b

b

a

b

a

b

b

a

a

a 0 B D F H

A C E

G I

a

b

a

b

b

a a

b

a

a

Figure 1. Minimal dfa (left) and hyper-minimal dfa (right). Almost-equivalent states
have been indicated by shading. The preamble states are {0, B,D, F}, and the hyper-
minimal dfa was obtained by merging the state B into A. Note that the almost-equivalent
kernel states G and I cannot be merged.

is a mapping h : Q→ Q′ such that (i) q ∼ h(q) and (ii) q ≡ h(q) and h(q)
is a kernel state provided that q is a kernel state for every q ∈ Q.

The di�cult part of the hyper-minimisation algorithm [3] is the compu-
tation of the almost-equivalent states. Several approaches for this problem
have been proposed. The original algorithm [3] runs in time O(n3) where
n is the number of states of the input dfa. It was improved to O(n2) in [2].
A further improvement to O(n log n) was achieved independently in [9,13],
of which [9] also discusses how the length of the longest error string can
be constrained. A conceptually simple quadratic-time hyper-minimisation
algorithm [17] also keeps track of the number of errors and returns the
optimal dfa among all hyper-minimal and almost-equivalent dfa. The re-
cent contribution [18] contains a detailed account of this algorithm and an
empirical evaluation of hyper-minimisation.

4 Hyper-minimisation

In this section, we will investigate hyper-minimisation for wdfa.

Proposition 4. The language supp(JAK) can be recognised by a dfa with

|Q| states.

Proof. We simply remove the weight component to obtain a dfa. Formally,
the dfa B = 〈Q,Σ, q0, δ, F 〉 trivially recognises supp(JAK). ut

From Prop. 4 it follows immediately that wdfa are almost-equivalent if
and only if the corresponding dfa are almost-equivalent. This yields that
we can reduce hyper-minimisation for wdfa to the unweighted case. We
present this situation graphically in Fig. 2.

5

wdfa hyper-minimal wdfa??yProp. 4

x??add weights

dfa
[9,13]−−−−−→ hyper-minimal dfa

Figure 2. Constructing a hyper-minimal wdfa.

Almost-equivalence is a rather weak property for wdfa because it only
requires that there are at most �nitely many di�erences in the support. Es-
sentially, this disregards the weights completely, which allowed us to reduce
hyper-minimisation to the unweighted case. Next, we consider a stricter
notion, which we will investigate in the rest of the paper.

De�nition 5. The series α, β : Σ∗ → K are strictly almost-equivalent if

there exists k ∈ K − {0} such that α(x) = k · β(x) for almost all x ∈ Σ∗.
We write α ≈ β or α ≈ β (k) if α and β are strictly almost-equivalent (with

factor k). The states q, p ∈ Q are strictly almost-equivalent, which is again

denoted by q ≈ p or q ≈ p (k), if JqK ≈ JpK (k) for some k ∈ K− {0}.

Lemma 6. Strict almost-equivalence is an equivalence relation on series

and a congruence on states.

Proof. We �rst prove the statement for series. Trivially, ≈ is re�exive and
symmetric. Let α, β, γ : Σ∗ → K be a series such that α ≈ β (k) and
β ≈ γ (k′). Then there exist �nite sets A and B such that α(x) = k · β(x)
and β(y) = k′ · γ(y) for all x ∈ Σ∗ − A and y ∈ Σ∗ − B. Consequently,
α(z) = k · k′ · γ(z) for all z ∈ Σ∗ − (A ∪ B), which proves α ≈ γ (k · k′).
The same argumentation can be used for ≈ on states.

It remains to prove that ≈ on states is a congruence. Let q ≈ p (k)
and a ∈ Σ. Consequently, there exists a �nite set A ⊆ Σ∗ such that
JqK(x) = k · JpK(x) for all x ∈ Σ∗ −A. Moreover,

Jδ(q, a)K(y) =
JqK(ay)
c(q, a)

and Jδ(p, a)K(y) =
JpK(ay)
c(p, a)

for all y ∈ Σ∗. Since q ≈ p (k), we obtain that

Jδ(q, a)K(y) =
c(p, a)
c(q, a)

· k · Jδ(p, a)K(y) (1)

for all y ∈ Σ∗ such that ay /∈ A. This proves that δ(q, a) ≈ δ(p, a), which
in turn proves that ≈ is a congruence. ut

6

0 B D F H

A C E

G I

b

a

a

b

a

4b

2b

a

b

a

2b

4b

a

a

a 0 B D F H

A C E

G I

b

a

a

b

a

4b

2b

a

2b

a

2b

a

a

Figure 3. Wdfa over the real numbers [left] and the wdfa obtained by merge(F, 2, E)
[right]. Where no weight is indicated, the multiplicative identity 1 is implicit. Omitted
transitions lead to the sink state ⊥. The dashed line indicates the rerouted transition.

For the wdfa displayed in Fig. 3 the strict almost-equivalence is de-
termined by the partition {{0}, {A}, {B}, {C,D}, {E,F}, {G, I,⊥}, {H}}.
Whenever two series are strictly almost-equivalent, then they are almost-
equivalent. In general, the converse is not true. As usual, twowdfa A and B
are strictly almost-equivalent if their initial states are. It remains to show
how to �nd a smallest wdfa that is strictly almost-equivalent to A. Such a
wdfa is called strictly hyper-minimal in the following. It turns out that the
existing hyper-minimisation algorithms can also be extended to this setting.
Suppose that A is a minimal wdfa, which can be ensured using the algo-
rithms of [7]. We can use weighted merges of preamble states into strictly
almost-equivalent states because such merges will only change the weights
associated to a �nite number of strings. Intuitively, a weighted merge con-
sists of local pushing [7], followed by edge redirection.

De�nition 7. Let q, p ∈ Q and k ∈ K. The k-weighted merge of p into q is
the wdfa merge(p, k, q) = 〈Q,Σ, q′0, δ′, c′, F 〉 with for all r ∈ Q and a ∈ Σ

q′0 =

{
q if q0 = p

q0 otherwise

δ′(r, a) =

{
q if δ(r, a) = p

δ(r, a) otherwise
c′(r, a) =

{
k · c(r, a) if δ(r, a) = p

c(r, a) otherwise.

Going back to the wdfa of Fig. 3 (left), we can merge F into E using
the scaling factor 2. The wdfa merge(F, 2, E) is displayed in Fig. 3 (right).

Lemma 8. Let p ≈ q (k), and let B = merge(p, k, q). Then B is strictly

almost-equivalent to A if p ∈ P .

7

Proof. Let B = 〈Q,Σ, q′0, δ′, c′, F 〉 be the merged wdfa. Clearly, we have
JBK(x) = JAK(x) for all x ∈ Σ∗ such that δ(q0, y) 6= p for all pre�xes y
of x (i.e., x = yz for some z ∈ Σ∗). This is simply due to the fact that
B faithfully replicates the behaviour of A in this case. Now let y ∈ Σ∗

be such that δ(q0, y) = p. By assumption, JpK(z) = k · JqK(z) for almost
all z ∈ Σ∗, which yields that δ(p, z) ∈ F if and only if δ(q, z) ∈ F for
almost all z ∈ Σ∗. In the case δ(p, z) /∈ F and δ(q, z) /∈ F , we obtain that
JBK(yz) = 0 = JAK(yz). In the remaining case we have δ(p, z) ∈ F and
δ(q, z) ∈ F . Since JAK(yz) = c(q0, y) · JpK(z) and c′(q, z) = c(q, z) because
the state p is not reachable from q, we obtain

JBK(yz) = c′(q′0, y) · c′(q, z) = c(q0, y) · k · c(q, z)
= c(q0, y) · k · JqK(z) = c(q0, y) · JpK(z) = JAK(yz) .

Thus, the semantics JBK and JAK coincide for almost all strings with pre�x y.
Since p is a preamble state, there are only �nitely many such strings y, which
yields that B and A are strictly almost-equivalent. ut

Corollary 9 (of Lm. 8). If A has a pair of di�erent, but strictly almost-

equivalent states such that at least one of them is a preamble state, then A
is not strictly hyper-minimal.

Proof. Let p ≈ q (k) with p 6= q and p ∈ P . Then the wdfa merge(p, k, q)
is strictly almost-equivalent to A by Lm. 8, and it is smaller because the
state p can be deleted. ut

Consequently, the wdfa of Fig. 3 (right) is not strictly hyper-minimal
because the states C and D are strictly almost-equivalent and D is a pream-
ble state. In addition, Lm. 8 shows that the wdfa of Fig. 3 are strictly
almost-equivalent. This was the simple part of the merging strategy. To
show that the merging process indeed yields a strictly hyper-minimal wdfa,
we still have to show the converse of Crl. 9.

Lemma 10. Let A be minimal. The wdfa A is strictly hyper-minimal if

it has no pair of di�erent, but strictly almost-equivalent states such that at

least one of them is a preamble state.

Proof. Let B = 〈Q′, Σ, q′0, δ′, c′, F ′〉 be a wdfa with |Q′| < |Q| that is
strictly almost-equivalent to A. Clearly, q0 ≈ q′0 and due to the congru-
ence property (which also holds between di�erent wdfa) we obtain that
δ(q0, x) ≈ δ′(q′0, x) for all x ∈ Σ∗. Since |Q′| < |Q|, there are x, y ∈ Σ∗ with
q1 = δ(q0, x) 6= δ(q0, y) = q2 but δ′(q′0, x) = q′ = δ′(q′0, y). Consequently,

8

q1 = δ(q0, x) ≈ δ′(q′0, x) = q′ = δ′(q′0, y) ≈ δ(q0, y) = q2, which yields
q1 ≈ q2. Clearly, q1 and q2 are kernel states because otherwise the wdfa A
would have a pair of strictly almost-equivalent states such that at least one
of them is a preamble state, which contradicts the assumption.

Since q1 and q2 are kernel states, the strings x and y can be chosen such
that |x| ≥ |Q|2 ≤ |y|. We will now use an argument that is similar to the one
used in the proof of [3, Thm. 3.1]. Let x = x1 · · ·x` with x1, . . . , x` ∈ Σ.
If we run A and B on the pre�xes of x, then we obtain pairs of states
〈pi, p

′
i〉 = 〈δ(q0, x1 · · ·xi), δ′(q′0, x1 · · ·xi)〉 for every 1 ≤ i ≤ `. By assump-

tion ` ≥ |Q|2 > |Q| · |Q′|. Consequently, there are indices 1 ≤ i < j ≤ ` such
that (pi, p

′
i) = (pj , p

′
j). It follows that 〈q1, q′〉 is a kernel state in the product

wdfa A·B. In the same way, we can prove that also 〈q2, q′〉 is a kernel state
of A · B. Let L〈q1,q′〉 and L〈q2,q′〉 be the in�nite sets of strings that take the
wdfa A·B into 〈q1, q′〉 and 〈q2, q′〉, respectively. Since B and A are strictly
almost-equivalent, there exist k1, k2 ∈ K− {0} such that

c(q0, w1) · Jq1K(z) = JAK(w1z) = k1 · JBK(w1z) = k1 · c′(q′0, w1) · Jq′K(z)
c(q0, w2) · Jq2K(z) = JAK(w2z) = k2 · JBK(w2z) = k2 · c′(q′0, w2) · Jq′K(z)

for almost all w1z, w2z ∈ Σ∗ with w1 ∈ L〈q1,q′〉 and w2 ∈ L〈q2,q′〉. We can
select w1 ∈ L〈q1,q′〉 and w2 ∈ L〈q2,q′〉 such that the previous two equations
hold for all z ∈ Σ∗ because L〈q1,q′〉 and L〈q2,q′〉 are in�nite. Consequently,

c(q0, w1) · Jq1K(z)
k1 · c′(q′0, w1)

=
c(q0, w2) · Jq2K(z)
k2 · c′(q′0, w2)

and Jq1K(z) = k · Jq2K(z)

for all z ∈ Σ∗, where k = k1·c′(q′
0,w1)·c(q0,w2)

k2·c′(q′
0,w2)·c(q0,w1)

. This yields q1 ≡ q2 (k). How-
ever, we have q1 6= q2, which due to the minimality of A yields q1 6≡ q2.
This is a contradiction, which shows that such a wdfa B cannot exist. ut

The wdfa of Fig. 4 (right) is strictly hyper-minimal, which can be veri-
�ed with the help of Lm. 10. Now we combine Cor. 9 and Lm. 10 to obtain
a characterisation that is similar to Thm. 2.

Theorem 11. Let A be minimal. Then A is strictly hyper-minimal if and

only if it has no pair of di�erent, but strictly almost-equivalent states such

that at least one of them is a preamble state.

5 Minimisation algorithms

The general structure of the strict hyper-minimisation algorithm is pre-
sented in Alg. 1. Minimisation is well-described in [7], and computing the

9

⊥

G ⊥

I ⊥

1 1

1 1

F

E F

0.5 1

0 B D F H

A C E

G I

b

a

a

b

4b

2b

a

a

a

2b

a

a

Figure 4. Trees representing scaling factors for the non-trivial blocks of ≈ (left) and
strictly hyper-minimal wdfa (right). The dashed line indicates the rerouted transition.

Algorithm 1 Strict hyper-minimisation in semi�elds.
Require: a wdfa A over a semi�eld
Return: a strictly hyper-minimal wdfa strictly almost-equivalent to A
A ← EisnerMinimise(A)

2: 〈K,K〉 ← ComputeKernelCoKernel(A)
〈≈, f〉 ← ComputeStrictAlmostEquivalence(A,K)

4: return MergeWeighted(A,≈,K, f)

kernel is explained in [13]. We also need to compute the co-kernel (see
Def. 12), which is essentially the same problem (the co-kernel is the ker-
nel of the reversed automaton). After we explored the structure of strictly
hyper-minimal wdfa in the previous section, we still need to compute the
strict almost-equivalence and the factors needed for the merges. Let us con-
sider the minimal wdfa A in Fig. 3 (left). How do we e�ciently determine
whether a pair of almost-equivalent states like C and D is also strictly
almost-equivalent? Obviously, JCK and JDK are equal for all strings with
pre�x `bb'. However, they di�er for a �nite number of strings beginning
with `a' or `ba', which yields C 6≡ D. To identify such �nite subsets, we
introduce an additional notion.

De�nition 12. A state q ∈ Q is a co-preamble state if supp(JqK) is �nite.

Otherwise it is a co-kernel state. The sets of all co-preamble states and all

co-kernel states are P and K = Q− P , respectively.

On our example wdfa of Fig. 3 (left), we observe that {G, I} are
co-preamble states and all remaining states are co-kernel states. Transi-
tions entering a co-preamble state can be ignored while checking strict
almost-equivalence because (up to a �nite number of weight di�erences)
the reached states behave like the sink state ⊥. Trivially, all co-preamble
states are strictly almost-equivalent. In addition, a co-preamble state can-

10

not be strictly almost-equivalent to a co-kernel state. The interesting part
of the strict almost-equivalence is thus completely determined by the series
of the co-kernel states. This special role of the co-preamble states has al-
ready been pointed out in [9] in the context of dfa. In the following, we
assume an arbitrary, but �xed total order on the alphabet symbols of Σ.
The e�ciency of the computation of the almost-equivalence in the existing
hyper-minimisation algorithms relies on hashing the signature of a state.
The hash can e�ciently return a state with the same signature, which avoids
the pairwise comparisons. To make this idea applicable in our setting, we
need to standardise the signature. To this end, we ignore transitions into
co-preamble states and standardise the transition weights.

De�nition 13. The standardised signature sigq : Σ → Q ×K of q ∈ Q is

such that for every a ∈ Σ:

� If δ(q, a) ∈ P , then sigq(a) = 〈⊥, 1〉.
� Otherwise, let a0 ∈ Σ be the smallest symbol such that δ(q, a0) ∈ K.

Then sigq(a) = 〈δ(q, a), c(q,a)
c(q,a0)〉.

For the example wdfa of Fig. 3 (left) we obtain sigE(a) = 〈⊥, 1〉 and
sigE(b) = 〈H, 0〉, which coincides with sigF . Next, we show that states with
equal standardised signature are indeed strictly almost-equivalent.

Lemma 14. Let q, p ∈ Q be such that sigq = sigp. Then q ≈ p.

Proof. If q or p is a co-preamble state, then both q and p are co-preamble
states and thus q ≈ p. Now, let q, p ∈ K, and let k = c(q,a0)

c(p,a0) , where a0 is

the smallest symbol such that δ(q, a0) ∈ K. For every a ∈ Σ and x ∈ Σ∗,

JqK(ax) = c(q, a) · Jδ(q, a)K(x) and JpK(ax) = c(p, a) · Jδ(p, a)K(x) .

Further, let sigq(a) = 〈qa, ka〉 = sigp(a). If qa = ⊥, then JqK(ax) = k·JpK(ax)
for almost all x ∈ Σ∗. Otherwise, we obviously have δ(q, a) = qa = δ(p, a),
and we obtain

JqK(ax) = ka · c(q, a0) · JqaK(x) =
c(p, a)
c(p, a0)

· c(q, a0) · JqaK(x) = k · JpK(ax)

for every x ∈ Σ∗, which shows that q ≈ p (k) because `k' does not depend
on the symbol `a'. ut

In fact, the previous proof also shows that at most the empty string
yields a di�erence in JqK and JpK (up to the common factor). For the com-
pleteness, we also need a restricted converse for minimal wdfa.

11

Lemma 15. Let A be minimal, and let q ≈ p be such that sigq 6= sigp. Then

there exist q′, p′ ∈ Q such that q′ 6= p′ and sigq′ = sigp′.

Proof. Since q ≈ p, there exists an integer ` such that Jδ(q, x)K ≡ Jδ(p, x)K
for all x ∈ Σ∗ with |x| ≥ `. The minimality of A yields that δ(q, x) = δ(p, x)
for all such x. Let y ∈ Σ∗ be maximal with q′ = δ(q, y) 6= δ(p, y) = p′. Since
y is maximal, we have δ(q, ya) = qa = δ(p, ya) for all a ∈ Σ. If qa is a
co-preamble state, then sigq′(a) = 〈⊥, 1〉 = sigp′ . Now, let b ∈ Σ be such
that qb is a co-kernel state, and let a0 ∈ Σ be the smallest symbol such that
δ(q′, a0) ∈ K. Since q ≈ p and ≈ is a congruence by Lm. 6, we have q′ ≈ p′
(k) for some k ∈ K−{0}, which means that Jq′K(x) = k · Jp′K(x) for almost
all x ∈ Σ∗. Consequently,

c(q′, b) · JqbK(z) = k · c(p′, b) · JqbK(z)
c(q′, a0) · Jqa0K(z) = k · c(p′, a0) · Jqa0K(z)

for almost all z ∈ Σ∗. Since both qb and qa0 are co-kernel states, we conclude
that c(q′, b) = k · c(p′, b) and c(q′, a0) = k · c(p′, a0), which yields

c(q′, b)
c(q′, a0)

=
k · c(p′, b)
k · c(p′, a0)

=
c(p′, b)
c(p′, a0)

.

This proves sigq′(b) = sigp′(b), which yields sigq′ = sigp′ as required. ut

Lemmata 14 and 15 suggest the algorithm in Alg. 2 for computing the
strict almost-equivalence and a tree representing some of the scaling factors.
It is a straightforward modi�cation of an algorithm by [13] using our stan-
dardised signatures. We start with singleton sets of states (since every state
is strictly almost-equivalent to itself) and merge states (representing blocks)
with equal standardised signature until no such states exist anymore. Then
the obtained partition is a representation of the strict almost-equivalence.

Essentially, the only changes to the original algorithm are the use of
standardised signatures and the computation of the scaling factors. This
is achieved by constructing a tree for each block, representing the merges.
Sample trees are given in Fig. 4 (left). The function JoinTrees(t1, t2, w)
builds a binary tree t with labeled edges from two subtrees t1 and t2. As-
sume that p is the root node of t1 and q is the root node of t2. Then
t = q((t1 : w), (t2 : 1)). This does not increase the asymptotic runtime of
Alg. 2, which is O(n log n) where n is the number of states.

We can then reconstruct scaling factors for an arbitrary pair of states p
and q in the same block represented by state r by evaluating the paths start-
ing at the root node and leading to the leaves labeled p and q, respectively.

12

Algorithm 2 Computing the strict almost-equivalence.

Require: a minimal wdfa A and co-kernel K
Return: strict almost-equivalence ≈ and scale trees t

for q ∈ Q do

2: π(q)← {q} // singleton classes initially
t(q)← q

4: h← ∅ // hash map for signatures
I ← Q; J ← Q // states that need to be considered and current states

6: while I 6= ∅ do
q ← RemoveHead(I); s← sig(q)

8: if HasValue(h, s) then
p← Get(h, s) // equal signature found

10: if |π(p)| ≥ |π(q)| then
Swap(p, q) // for e�ciency reasons

12: J ← J − {p} // p is merged into q's class
I ← (I − {p}) ∪ {r ∈ J | (∃a : δ(r, a) = p}

14: f(p, q)← c(p,a0)
c(q,a0)

// a0 is as in Def. 13

A ← merge(p, f(p, q), q) // perform the merge
16: π(q)← π(q) ∪ π(p)

t(q)← JoinTrees(t(p), t(q), f(p, q))
18: h← Put(h, s, q) // q is the new representative of [q]

return 〈π, t〉

Algorithm 3 Merging almost-equivalent states.
Require: a minimal wdfa A, its kernel states K, scale trees t, and strict almost-

equivalence ≈
for all B ∈ (Q/≈) do

2: select q ∈ B such that q ∈ K if possible
for all p ∈ B −K do

4: f(p, q)← ComputeScalingFactor(t, p, q)
A ← merge(p, f(p, q), q) // complexity: O(logn)

A path is evaluated by multiplying the edge label weights. Since these trees
have the property that any path from a leaf labeled p to a node labeled r
evaluates to f(p, r), we obtain f(p, q) = f(q,r)

f(p,r) . These lookups take at most

O(log n) time for a given pair of states since the height of the trees is at
most log n. Therefore, merging (Alg. 3), and as a consequence, also strict
hyper-minimisation (Alg. 1) can be implemented in time O(n log n).

For the correctness of Alg. 2, we still need to prove a technical property.

Lemma 16. Let p 6= q be states such that sig(p) = sig(q). Moreover, let

B = merge(p, f(p, q), q), and let ∼= be its strict almost-equivalence (restricted

to Q′). Then ∼= = ≈ ∩ (Q′ ×Q′) where Q′ = Q− {p}.

13

Proof. Let p′ ≈ q′ be such that p′ 6= p 6= q′, and let B = 〈Q,Σ, q′0, δ′, c′, F 〉.
For simplicity's sake, we assume that p 6= q0, but this missing case can be
handled in the same manner. Let x = x1 · · ·x` with x1, . . . , x` ∈ Σ. Then
we obtain the runs

Rp′ = 〈δ(p′, x1), δ(p′, x1x2), · · · , δ(p′, x)〉 with weight c(p′, x)
Rq′ = 〈δ(q′, x1), δ(q′, x1x2), · · · , δ(q′, x)〉 with weight c(q′, x).

The corresponding runs R′p′ and R′q′ in B replace every occurrence of p in
both Rp′ and Rq′ by q. Their weights are

c′(p′, x) =

{
c(p′, x) if δ(p′, x) 6= p

c(p′, x) · f(p, q) otherwise

c′(q′, x) =

{
c(q′, x) if δ(q′, x) 6= p

c(q′, x) · f(p, q) otherwise.

Since δ(p′, y) = δ(q′, y) for suitably long strings y and p′ ≈ q′, we obtain
that p′ ∼= q′. The same reasoning can be used to prove the converse. ut

Theorem 17. Algorithm 2 computes ≈ and an incomplete scaling map.

Proof (Sketch). If there exist di�erent, but strictly almost-equivalent states,
then there exist di�erent states with the same standardised signature by
Lm. 15. Lemma 14 shows that such states are strictly almost-equivalent.
Finally, Lm. 16 shows that we can continue the computation of the strict
almost-equivalence after a weighted merge of such states. The correctness
of the scaling map is shown implicitly in the proof of Lm. 14. ut

Acknowledgements

The authors would like to express their gratitude towards the reviewers,
who helped to improve the presentation of the material.

References

1. Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., Mohri, M.: OpenFst: A general and
e�cient weighted �nite-state transducer library. In: Proc. 12th Int. Conf. Implemen-
tation and Application of Automata (CIAA). LNCS, vol. 4783, pp. 11�23. Springer
(2007)

2. Badr, A.: Hyper-minimization in O(n2). Int. J. Found. Comput. Sci. 20(4), 735�746
(2009)

14

3. Badr, A., Ge�ert, V., Shipman, I.: Hyper-minimizing minimized deterministic �nite
state automata. RAIRO Theor. Inf. Appl. 43(1), 69�94 (2009)

4. Beesley, K.R., Karttunen, L.: Finite State Morphology. CSLI Studies in Computa-
tional Linguistics, CSLI Publications, Stanford, CA (2003)

5. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scienti�c (2003)
6. Culik II, K., Kari, J.: Image compression using weighted �nite automata. Computer

and Graphics 17(3), 305�313 (1993)
7. Eisner, J.: Simpler and more general minimization for weighted �nite-state automata.

In: Proc. Joint Meeting Human Language Technology and the North American Chap-
ter of the ACL (HLT-NAACL). pp. 64�71. ACL (2003)

8. Fernando, T.: A �nite-state approach to events in natural language semantics. J.
Logic Computat. 14(1), 79�92 (2004)

9. Gawrychowski, P., Je», A.: Hyper-minimisation made e�cient. In: Proc. 34th Int.
Symp. Mathematical Foundations of Computer Science (MFCS). LNCS, vol. 5734,
pp. 356�368. Springer (2009)

10. Golan, J.S.: Semirings and their Applications. Kluwer Academic, Dordrecht (1999)
11. Gries, D.: Describing an algorithm by Hopcroft. Acta Inform. 2(2), 97�109 (1973)
12. Hebisch, U., Weinert, H.J.: Semirings � Algebraic Theory and Applications in Com-

puter Science. World Scienti�c (1998)
13. Holzer, M., Maletti, A.: An n logn algorithm for hyper-minimizing a (minimized)

deterministic automaton. Theor. Comput. Sci. 411(38�39), 3404�3413 (2010)
14. Hopcroft, J.E.: An n logn Algorithm for Minimizing the States in a Finite Automa-

ton. In: Kohavi, Z. (ed.) The Theory of Machines and Computations, pp. 189�196.
Academic Press (1971)

15. Kuich, W., Salomaa, A.: Semirings, Automata, Languages, EATCS Monographs on
Theoretical Computer Science, vol. 5. Springer (1986)

16. Lombardy, S., Régis-Gianas, Y., Sakarovitch, J.: Introducing Vaucanson. Theor.
Comput. Sci. 328(1�2), 77�96 (2004)

17. Maletti, A.: Better hyper-minimization � not as fast, but fewer errors. In: Proc.
15th Int. Conf. Implementation and Application of Automata (CIAA). LNCS, vol.
6482, pp. 201�210. Springer (2011)

18. Maletti, A., Quernheim, D.: Optimal hyper-minimization (2011), Manuscript avail-
able at http://arxiv.org/abs/1104.3007

19. Mohri, M.: Finite-state transducers in language and speech processing. Comput.
Linguist. 23(2), 269�311 (1997)

20. Quernheim, D.: Hyper-minimisation of weighted �nite automata. Master's thesis,
Institut für Linguistik, Universität Potsdam (2010)

21. Sakarovitch, J.: Rational and recognisable power series. In: Droste, M., Kuich, W.,
Vogler, H. (eds.) Handbook of Weighted Automata, chap. 4, pp. 105�174. EATCS
Monographs on Theoretical Computer Science, Springer (2009)

22. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Texts and Monographs in Computer Science, Springer (1978)

23. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal
Languages, vol. 1, chap. 2, pp. 41�110. Springer (1997)

15

