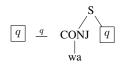
How to train your multi bottom-up tree transducer

Andreas Maletti

Universität Stuttgart Institute for Natural Language Processing Stuttgart, Germany

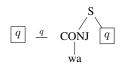
andreas.maletti@ims.uni-stuttgart.de

Portland, OR - June 22, 2011

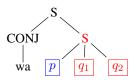

q

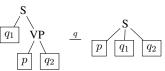
q

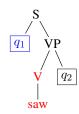
Used rule

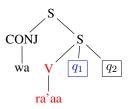


Used rule

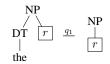

Next rule

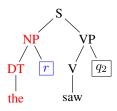


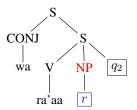


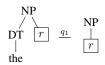


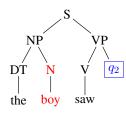
Next rule

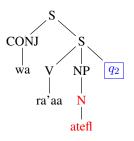


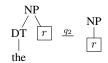

Used rule

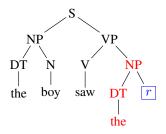


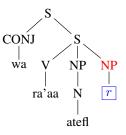


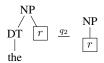

Used rule



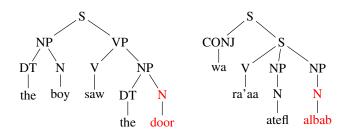


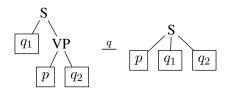

Used rule



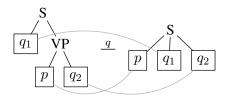


Used rule




Used rule

Ν N rdoor albab



- · states can occur only once in lhs and rhs
- states in rhs = states in lhs
- exactly one lhs and one rhs
- \rightarrow bijective synchronization relation

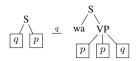
- · states can occur only once in lhs and rhs
- states in rhs = states in lhs
- exactly one lhs and one rhs
- \rightarrow bijective synchronization relation

Rule shape

- states can occur only once in lhs and rhs
- states in rhs = states in lhs
- exactly one lhs and one rhs
- \rightarrow bijective synchronization relation

Notes

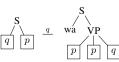
- version with states (instead of locality tests)
- equivalent to linear nondeleting extended tree transducers
- implemented in TIBURON [May, Knight 2006]

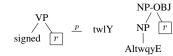


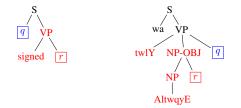
q

Used rule

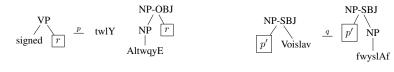
Next rule

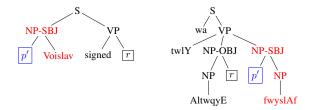


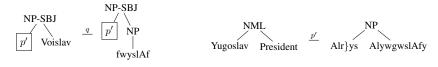


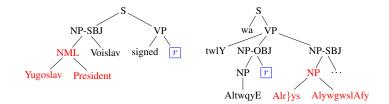

Used rule

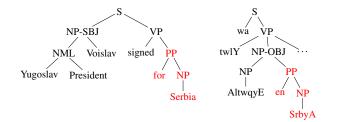
Next rule

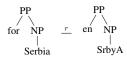


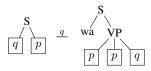




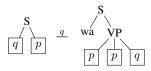



Next rule

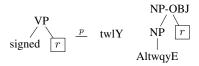



Used rule

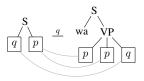
Next rule



- STSG: states can occur only once in lhs and rhs MBOT: states can occur only once in lhs
- STSG: states in rhs = states in lhs MBOT: states in rhs ⊆ states in lhs
- STSG: exactly one lhs and one rhs MBOT: exactly one lhs
- → STSG: bijective synchronization relation MBOT: inverse synchronization relation is functional



- STSG: states can occur only once in lhs and rhs MBOT: states can occur only once in lhs
- STSG: states in rhs = states in lhs MBOT: states in rhs ⊆ states in lhs
- STSG: exactly one lhs and one rhs MBOT: exactly one lhs
- → STSG: bijective synchronization relation MBOT: inverse synchronization relation is functional



- STSG: states can occur only once in lhs and rhs MBOT: states can occur only once in lhs
- STSG: states in rhs = states in lhs MBOT: states in rhs ⊆ states in lhs
- STSG: exactly one lhs and one rhs MBOT: exactly one lhs
- STSG: bijective synchronization relation
 MBOT: inverse synchronization relation is functional

- STSG: states can occur only once in lhs and rhs MBOT: states can occur only once in lhs
- STSG: states in rhs = states in lhs MBOT: states in rhs ⊆ states in lhs
- STSG: exactly one lhs and one rhs MBOT: exactly one lhs
- → STSG: bijective synchronization relation MBOT: inverse synchronization relation is functional

STSG vs. MBOT

property	STSG	MBOT
simple and natural	1	?
symmetric	1	×
preserves regularity	1	×
inverse pres. regularity	1	1
binarizable	×	1
closed under composition	×	1
input parsing	$\mathcal{O}(\boldsymbol{M} \boldsymbol{n}^{\boldsymbol{x}})$	$\mathcal{O}(M n^3)$
output parsing	$\mathcal{O}(M n^{x})$	$\mathcal{O}(M n^{y})$

where $x = 2 \operatorname{rk}(M) + 5$ and $y = 2 \operatorname{rk}(M) + 2$

Additional Expressive Power

Finite copying

$\{\langle t, \sigma(t, t) \rangle \mid t \in T_{\Sigma}\}$

- desirable [ATANLP participants, 2010]
 e.g., for cross-serial dependencies
- × harms preservation of regularity

Non-contiguous rules

✓ +0.64 BLEU [Sun, Zhang, Tan, 2009]
 25.92 → 26.56
 ✓ do not harm preservation of regularity

Additional Expressive Power

Finite copying

$\{\langle t, \sigma(t, t) \rangle \mid t \in T_{\Sigma}\}$

desirable [ATANLP participants, 2010]
 e.g., for cross-serial dependencies
 harms preservation of regularity.

Non-contiguous rules

✓ +0.64 BLEU [Sun, Zhang, Tan, 2009]

```
\mathbf{25.92} \rightarrow \mathbf{26.56}
```

do not harm preservation of regularity

Approach

Old approach

- extract STSG rules
- 2 train STSG
- 3 convert to MBOT
- 4 work with MBOT

New approach

- extract (restricted) MBOT rules
- 2 train MBOT
- 3 work with MBOT

Approach

Old approach

- extract STSG rules
- 2 train STSG
- 3 convert to MBOT
- 4 work with MBOT

New approach

- extract (restricted) MBOT rules
- 2 train MBOT
- 8 work with MBOT

Roadmap

2 Relation to STSSG

Synchronous Tree-Sequence Substitution Grammar

- STSG: states can occur only once in lhs and rhs MBOT: states can occur only once in lhs STSSG: (no restriction)
- STSG: states in rhs = states in lhs MBOT: states in rhs ⊆ states in lhs STSSG: (no restriction)
- STSG: exactly one lhs and one rhs MBOT: exactly one lhs STSSG: (no restriction)

Synchronous Tree-Sequence Substitution Grammar

- STSG: states can occur only once in lhs and rhs MBOT: states can occur only once in lhs STSSG: (no restriction)
- STSG: states in rhs = states in lhs MBOT: states in rhs ⊆ states in lhs STSSG: (no restriction)
- STSG: exactly one lhs and one rhs MBOT: exactly one lhs STSSG: (no restriction)

Synchronous Tree-Sequence Substitution Grammar

- STSG: states can occur only once in lhs and rhs MBOT: states can occur only once in lhs STSSG: (no restriction)
- STSG: states in rhs = states in lhs MBOT: states in rhs ⊆ states in lhs STSSG: (no restriction)
- STSG: exactly one lhs and one rhs MBOT: exactly one lhs STSSG: (no restriction)

Expressive Power

$\mathsf{STSG} \subseteq \mathsf{MBOT} \subseteq \mathsf{STSSG}$

Theorem

 $\mathsf{STSG} \subset \mathsf{MBOT} \subset \mathsf{STSSG}$

Claim

$MBOT^{-1}$; MBOT = STSSG

How to train your multi bottom-up tree transducer

A. Maletti · 11

Expressive Power

Corollary

$\mathsf{STSG} \subseteq \mathsf{MBOT} \subseteq \mathsf{STSSG}$

Theorem

$\mathsf{STSG} \subset \mathsf{MBOT} \subset \mathsf{STSSG}$

Claim

$MBOT^{-1}$; MBOT = STSSG

How to train your multi bottom-up tree transducer

A. Maletti · 11

Expressive Power

$\mathsf{STSG} \subseteq \mathsf{MBOT} \subseteq \mathsf{STSSG}$

Theorem

 $\mathsf{STSG} \subset \mathsf{MBOT} \subset \mathsf{STSSG}$

Claim

$MBOT^{-1}$; MBOT = STSSG

STSG vs. MBOT vs. STSSG

property	STSG	MBOT	STSSG
simple and natural	 Image: A start of the start of	?	??
symmetric	1	×	1
preserves regularity	1	×	×
inverse pres. regularity	1	1	×
binarizable	×	1	1
closed under composition	×	1	×
input parsing	$\mathcal{O}(M n^{x})$	$\mathcal{O}(\boldsymbol{M} n^3)$	$\mathcal{O}(M n^{y})$
output parsing	$\mathcal{O}(M n^{x})$	$\mathcal{O}(M n^{y})$	$\mathcal{O}(M n^{y})$

where
$$x = 2 \operatorname{rk}(M) + 5$$
 and
 $y = 2 \operatorname{rk}(M) + 2$

Roadmap

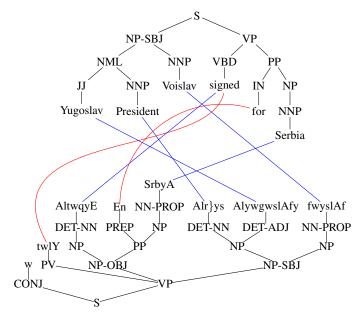
2 Relation to STSSG

Input

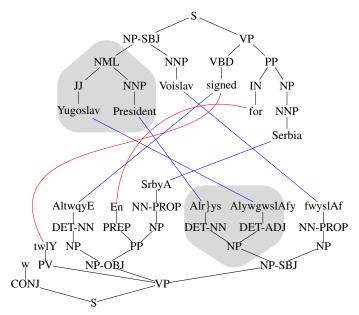
- parallel bi-text
- · parses for input and output
- word alignment

Output

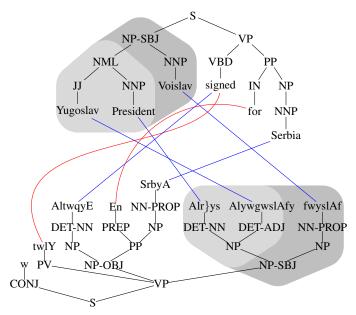
• MBOT rules

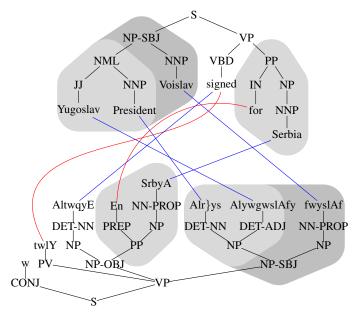

Input

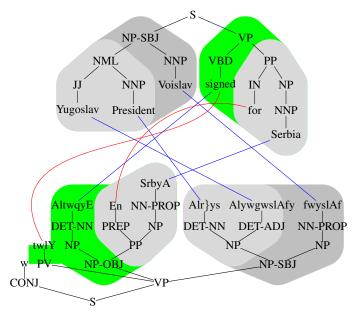
- parallel bi-text
- · parses for input and output
- word alignment


Output

MBOT rules







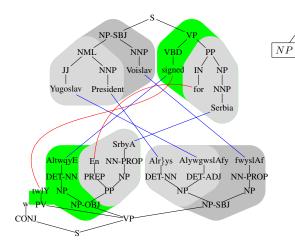
S

VP

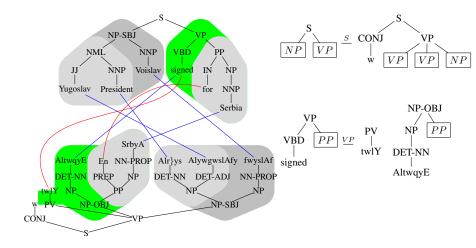
S

VP

VP

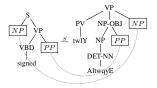

VP

NP


COŃJ

ŵ

S

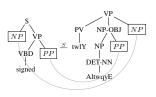


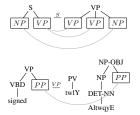
Extracted Rules

STSG rule

MBOT rules

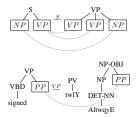
STSSG rule




Extracted Rules

MBOT rules

STSSG rule



Extracted Rules

STSG rule

S NP VB VBD PP S WIY NP VBD PP DET-NN signed AltwqyE

MBOT rules

STSSG rule

Training

Definition

A tree language is regular if it can be represented by a TSG (with states).

Example

$\{\sigma(t,t) \mid t \in T_{\Sigma}\}$

is not regular.

Training

Theorem The set of derivations of an MBOT is regular.

Conclusion Minimal adaptation of [Graehl, Knight, May 2008] can be used.

Training

Theorem The set of derivations of an MBOT is regular.

Conclusion Minimal adaptation of [Graehl, Knight, May 2008] can be used.

Roadmap

2 Relation to STSSG

3 Rule Extraction and Training

Preservation of Regularity

Input

- MBOT *M*
- regular tree language L

Question

Is $M(L) = \{t \mid \exists s \in L : \langle s, t \rangle \in M\}$ regular?

Example

•
$$M = \{ \langle t, \sigma(t, t) \rangle \mid t \in T_{\Sigma} \}$$

• infinite, but regular tree language $L \subseteq T_{\Sigma}$

Then $M(L) = \{\sigma(t, t) \mid t \in L\}$ is not regular.

Preservation of Regularity

Input

- MBOT *M*
- regular tree language L

Question

Is
$$M(L) = \{t \mid \exists s \in L : \langle s, t \rangle \in M\}$$
 regular?

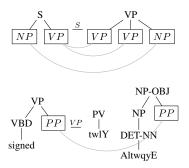
Example

•
$$M = \{ \langle t, \sigma(t, t) \rangle \mid t \in T_{\Sigma} \}$$

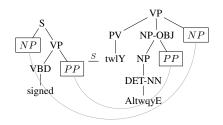
• infinite, but regular tree language $L \subseteq T_{\Sigma}$

Then $M(L) = \{\sigma(t, t) \mid t \in L\}$ is not regular.

Preservation of Regularity


Why desired?

- easy and efficient representation of output languages
- allows intersection with (regular) language model
- allows bucket-brigade algorithms [May, Knight, Vogler, 2010]



Rule Composition

Input rules

Output rule

How to train your multi bottom-up tree transducer

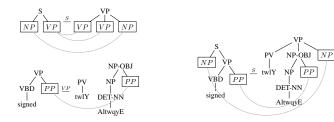
Rule Composition

Power MBOT

$$M^k = \{R_1 \circ \cdots \circ R_k \mid R_1, \ldots, R_k \in M\}$$

Explanation

- *M^k* contains *k*-fold composed rules
- composition fails if states do not match
- composition succeeds (with no effect) if no matchable states present


Finitely Collapsing

Definition

M is finitely collapsing if there exists $k \in \mathbb{N}$ such that

every state occurs at most once in rhs of every rule of M^k.

Example

Finite Synchronization

Definition

M has finite synchronization if there exists $k \in \mathbb{N}$ such that

 all occurrences of a state occur in the same tree in the rhs of every rule of M^k.

Theorem (Raoult, 1997)

MBOT with finite synchronization and finitely collapsing MBOT preserve regularity.

Finite Synchronization

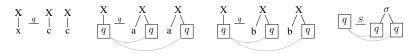
Definition

M has finite synchronization if there exists $k \in \mathbb{N}$ such that

 all occurrences of a state occur in the same tree in the rhs of every rule of M^k.

Theorem (Raoult, 1997)

MBOT with finite synchronization and finitely collapsing MBOT preserve regularity.


Copy-free

Definition

M is copy-free if there exists $k \in \mathbb{N}$ such that for every rule of M^k and all occurrences *w* of a state:

- w is the root of a tree in the rhs or
- w belongs to a fixed tree in the rhs.

Example (not copy-free)

Copy-free

Definition

M is copy-free if there exists $k \in \mathbb{N}$ such that for every rule of M^k and all occurrences *w* of a state:

- w is the root of a tree in the rhs or
- w belongs to a fixed tree in the rhs.

Example (copy-free)

Main Result

Theorem Copy-free MBOT preserve regularity.

Theorem finite synchronization \subset copy-free

Note All 3 restrictions can be guaranteed during rule extraction.

Main Result

Theorem Copy-free MBOT preserve regularity.

Theorem *finitely collapsing* ⊂ *finite synchronization* ⊂ *copy-free*

Note All 3 restrictions can be guaranteed during rule extraction.

Main Result

Theorem Copy-free MBOT preserve regularity.

Theorem finitely collapsing ⊂ finite synchronization ⊂ copy-free

Note All 3 restrictions can be guaranteed during rule extraction.

Thank you for your attention!

References

- **1** ARNOLD, DAUCHET: Morphismes et bimorphismes d'arbres. *Theoret. Comput. Sci.*, 1982
- 2 ATANLP participants: Desired properties of syntax-based MT systems. ACL workshop, 2010
- **GRAEHL, KNIGHT, MAY:** Training tree transducers. *Computational Linguistics*, 2008
- MAY, KNIGHT: TIBURON A weighted tree automata toolkit. In CIAA, 2006
- MAY, KNIGHT, VOGLER: Efficient Inference through Cascades of Weighted Tree Transducers. In ACL, 2010
- 6 RAOULT: Rational tree relations. Bull. Belg. Math. Soc. Simon Stevin, 1997
- SUN, ZHANG, TAN: A non-contiguous tree sequence alignment-based model for statistical machine translation. In ACL, 2009

