

Hyper-Minimization

Lossy compression of deterministic automata

Andreas Maletti

Institute for Natural Language Processing University of Stuttgart

andreas.maletti@ims.uni-stuttgart.de

Debrecen — August 19, 2011

Collaborators

Reporting joint work with

- PAWEŁ GAWRYCHOWSKI
- MARKUS HOLZER
- ARTUR JEŻ
- DANIEL QUERNHEIM

University of Wrocław University of Giessen University of Wrocław University of Stuttgart

Contents

- 1 History and Motivation
- 2 Hyper-Minimization
- 3 Hyper-Optimization
- 4 Restrictions and limitations

Problem definition

Minimization

- given: DFA A
- return: minimal DFA B such that L(B) = L(A)

Hyper-minimization

- given: DFA A
- return: minimal DFA B such that L(B) and L(A) differ finitely

AFL 2008 (Balatonfüred, Hungary)

VILIAM GEFFERT spoke about:

- · general problem and its structural characterization
- (inefficient) hyper-minimization

[BADR, GEFFERT, SHIPMAN: *Hyper-minimizing minimized deterministic finite state automata*. ITA 2009]

A. Maletti

AFL 2008 (Balatonfüred, Hungary)

VILIAM GEFFERT spoke about:

- · general problem and its structural characterization
- (inefficient) hyper-minimization

Unfortunately, I was not there

[BADR, GEFFERT, SHIPMAN: *Hyper-minimizing minimized deterministic finite state automata*. ITA 2009]

A. Maletti

CIAA 2008 (San Francisco, CA, USA)

ANDREW BADR spoke about:

- faster (yet still inefficient) hyper-minimization
- combination with cover automata minimization

[BADR: Hyper-minimization in $O(n^2)$. CIAA 2008]

A. Maletti

CIAA 2008 (San Francisco, CA, USA)

ANDREW BADR spoke about:

- faster (yet still inefficient) hyper-minimization
- combination with cover automata minimization

MARKUS HOLZER and I were there

[BADR: Hyper-minimization in $O(n^2)$. CIAA 2008]

A. Maletti

© David Iliff

CIAA 2009 (Sydney, Australia)

MARKUS HOLZER spoke about:

• efficient hyper-minimization

[HOLZER, ~: An n log n algorithm for hyper-minimizing states in a (minimized) deterministic automaton. CIAA 2009]

A. Maletti

© David Iliff

CIAA 2009 (Sydney, Australia)

MARKUS HOLZER spoke about:

• efficient hyper-minimization

But at the same time ...

[HOLZER, ~: An n log n algorithm for hyper-minimizing states in a (minimized) deterministic automaton. CIAA 2009]

A. Maletti

MFCS 2009 (Novy Smokovec, Slovakia)

ARTUR JEŻ spoke about:

- efficient hyper-minimization (essentially the same algorithm)
- k-minimization

[GAWRYCHOWSKI, JEZ: Hyper-minimisation made efficient. MFCS 2009]

- Best student paper

A. Maletti

CIAA 2010 (Winnipeg, Canada)

I spoke about:

• error-optimal hyper-minimization

[~: Better hyper-minimization — not as fast, but fewer errors. CIAA 2010]

FSTTCS 2010 (Chennai, India)

SVEN SCHEWE spoke about:

• hyper-minimization for DBA (deterministic Büchi automata)

[SCHEWE: Beyond Hyper-Minimisation—Minimising DBAs and DPAs is NP-Complete. FSTTCS 2010]

A. Maletti

CIAA 2011 (Blois, France)

ARTUR JEŻ spoke about:

· efficient combination with cover automata minimization

[JEŻ, ~: Computing all I-cover automata fast. CIAA 2011]

AFL 2011 (Debrecen, Hungary)

DANIEL QUERNHEIM I spoke about:

• hyper-minimization for weighted DFA

[~, QUERNHEIM: *Hyper-minimisation of deterministic weighted finite automata over semifields*. AFL 2011]

A. Maletti

MFCS 2011 (Warsaw, Poland)

PAWEŁ GAWRYCHOWSKI will speak about:

- efficient hyper-minimization for partial DFA
- limits of hyper-minimization

[GAWRYCHOWSKI, JEŻ, ~: On minimising automata with errors. MFCS 2011]

Experiments on random NFA

- Left: Size of minimal DFA
- Right: Ratio of saved states in hyper-minimization

Conclusion

• significant savings

Experiments on random NFA

- Left: Size of minimal DFA
- · Right: Ratio of saved states in hyper-minimization

Conclusion

- significant savings
- · but only outside the difficult area for minimization

Error analysis

- Left: Average number of errors (100 NFA per data point)
- Right: Ratio of avoided errors in optimal hyper-minimization

[~, QUERNHEIM: *Optimal hyper-minimization*. IJFCS 2011] [TABAKOV, VARDI: *Experimental evaluation of classical automata constructions*. LPAR 2005]

A. Maletti

Worst vs. best number of errors

Contents

1 History and Motivation

2 Hyper-Minimization

- 3 Hyper-Optimization
- 4 Restrictions and limitations

Basic definitions

Definition

• Two languages L_1, L_2 are **almost equal** if $L_1 riangle L_2$ is finite

$$L_1 \bigtriangleup L_2 = (L_1 \setminus L_2) \cup (L_2 \setminus L_1)$$

• Two DFA *A*₁, *A*₂ are **almost equivalent** if *L*(*A*₁) and *L*(*A*₂) are almost equal

Example

- all finite languages are almost equal
- a* and aaa* are almost equal
- *a** and (*aa*)* are **not** almost equal

Overview

Common approach

- 1 Identify kernel states
- 2 Identify almost equivalent states
- 3 Merge states

Preamble and kernel states

Definition

- preamble state: finitely many words lead to it
- kernel state: infinitely many words lead to it

Words leading to state q:

$$\{w \in \Sigma^* \mid \delta(q_0, w) = q\}$$

Preamble and kernel states

Preamble and kernel states

Computing kernel states

Step 1

 Compute strongly connected components (using TARJAN'S algorithm)

Computing kernel states

Step 1

 Compute strongly connected components (using TARJAN'S algorithm)

Step 2

 Mark all successors of nontrivial components

[TARJAN: *Depth-first search and linear graph algorithms*. SIAM J. Comput. 1972]

Computing kernel states

Theorem

We can compute the set of kernel states in linear time.

Definition

Two states are **almost equivalent** if their right languages are almost equal

Right language of state q:

 $\{w \in \Sigma^* \mid \delta(q, w) \in F\}$

Definition

Two states are **almost equivalent** if their right languages are almost equal

Right language of state q:

$$\{w \in \Sigma^* \mid \delta(q, w) \in F\}$$

Consequence

For almost equivalent states p, q there is $k \in \mathbb{N}$ such that $\delta(p, w) = \delta(q, w)$ for all |w| > k

Computing almost equivalent states

Theorem

Almost equivalence is a congruence.

Theorem

If p, q are different, but almost equivalent, then there are p', q' such that

$$\delta(\boldsymbol{p}',\sigma) = \delta(\boldsymbol{q}',\sigma)$$

for all $\sigma \in \Sigma$.

Computing almost equivalent states

Computing almost equivalent states

Theorem

The partition representing almost equivalent states can be computed in

- $O(n \log n)$ using $O(n^2)$ space
- $O(n \log^2 n)$ using O(n) space

 $[{\sf HOLZER},\sim: \textit{An n}\log n \textit{ algorithm for hyper-minimizing states in a (minimized)} \\ deterministic automaton. CIAA 2009]$

[GAWRYCHOWSKI, JEZ: Hyper-minimisation made efficient. MFCS 2009]

Algorithm

- don't-care nondeterministic
- select representative of each block; kernel state if possible
- merge all preamble states into their representative

[BADR, GEFFERT, SHIPMAN: *Hyper-minimizing minimized deterministic finite state automata.* ITA 2009]

Definition

A DFA is hyper-minimal if all almost equivalent DFA are larger.

Definition

A DFA is hyper-minimal if all almost equivalent DFA are larger.

Theorem

A DFA is hyper-minimal if and only if

- it is minimal
- no preamble state is almost equivalent to another state

[BADR, GEFFERT, SHIPMAN: *Hyper-minimizing minimized deterministic finite state automata*. ITA 2009]

merges: D into C

merges: D into C G into I

merges: D into C G into I H into J

merges: D into C G into I H into J

Theorem

Merging can be done in linear time.

Theorem

Merging can be done in linear time.

Theorem

Hyper-minimization can be achieved in time $O(n \log n)$.

Contents

- 1 History and Motivation
- 2 Hyper-Minimization
- 3 Hyper-Optimization
- 4 Restrictions and limitations

Hyper-optimization

Goal

Obtain a DFA that

- 1 makes only finitely many mistakes
- 2 is as small as possible

Hyper-optimization

Goal

Obtain a DFA that

- 1 makes only finitely many mistakes
- 2 is as small as possible
- 3 additionally makes minimal number of mistakes

Question

- Can it be done in polynomial time? [BADR, GEFFERT, SHIPMAN 2009]
- Can it be done in $O(n \log n)$?

Hyper-optimization

Goal

Obtain a DFA that

- 1 makes only finitely many mistakes
- 2 is as small as possible
- 3 additionally makes minimal number of mistakes

Question

- Can it be done in polynomial time?
 [BADR, GEFFERT, SHIPMAN 2009]
- Can it be done in $O(n \log n)$? ???

Comparison

Comparison

Theorem

Two almost equivalent, hyper-minimal DFA are isomorphic up to

- 1 finality of preamble states
- 2 transitions from preamble to kernel states
- 3 initial state

[BADR, GEFFERT, SHIPMAN: *Hyper-minimizing minimized deterministic finite state automata.* ITA 2009]

Optimal merges

Finality of preamble states

Question

Which words	lead to C?
word w	$w \in L$
\rightarrow^2	
→ ²	
$- \rightarrow \longrightarrow - \rightarrow$	

Finality of preamble states

Question

Which words lead to C?

word w	$w \in L$
\longrightarrow^2	 ✓
→ ²	 Image: A second s
$\cdots \rightarrow \longrightarrow \cdots \rightarrow$	×

Finality of preamble states

Question

Which words lead to C?

word <i>w</i>	$w \in L$
\longrightarrow^2	 Image: A second s
→ ²	 Image: A second s
$ \rightarrow \longrightarrow \rightarrow$	×

 \Rightarrow make *C* final

Optimal merges

Errors

$$- \rightarrow \longrightarrow - \rightarrow$$

Question

states	words (number)
P–Q	ε (1)

Question

states	words (number)
P–Q	ε (1)
L–M	\rightarrow (1)

Question

states	words (number)
P–Q	ε (1)
L–M	\rightarrow (1)
I–J	\longrightarrow^2 (1)

Question

states	words (number)
P–Q	ε (1)
L–M	\rightarrow (1)
I–J	\rightarrow^2 (1)
H–J	$\varepsilon, \dashrightarrow \longrightarrow^2$ (2)
	, , , , , , , , , , , , , , , , , , ,

Question

states	words (number)
P–Q	ε (1)
L–M	\rightarrow (1)
I—J	\longrightarrow^2 (1)
H–J	$\varepsilon, \dashrightarrow \longrightarrow^2$ (2)
H–I	$\varepsilon, \dashrightarrow \longrightarrow^2,$
	\longrightarrow^2 (3)

Question

states	words (number)
P–Q	ε (1)
L–M	\rightarrow (1)
I–J	\longrightarrow^2 (1)
H–J	$\varepsilon, \dashrightarrow \longrightarrow^2$ (2)
H–I	$\varepsilon, \dashrightarrow \longrightarrow^2,$
	\longrightarrow^2 (3)
G–J	(3)
G–1	(2)
G–H	(5)

Errors

 $U \longrightarrow W$

- u leads to C
- w error between H–I

Errors

 $U \longrightarrow W$

- u leads to C (2)
- *w* ∈ *H*−*J* (2)

or

- u leads to D (1)
- *w* ∈ *I*−*J* (1)

Errors

 $U \longrightarrow W$

- u leads to C (2)
- *w* ∈ *H*−*J* (2)

or

• u leads to D (1)

 \Rightarrow only $2 \cdot 2 + 1 \cdot 1 = 5$ errors

University of Stuttgart

Optimal merges (cont'd)

University of Stuttgart

Optimal merges (cont'd)

Result

Theorem

Hyper-optimization can be achieved in $O(n^2)$.

[~: Better hyper-minimization — not as fast, but fewer errors. CIAA 2010]

Result

Theorem

Hyper-optimization can be achieved in $O(n^2)$.

Theorem

We can compute the number of errors of a hyper-minimal DFA relative to any almost equivalent DFA in time $O(n^2)$.

[~: Better hyper-minimization - not as fast, but fewer errors. CIAA 2010]

Result

Theorem

Hyper-optimization can be achieved in $O(n^2)$.

Theorem

We can compute the number of errors of a hyper-minimal DFA relative to any almost equivalent DFA in time $O(n^2)$.

Open question

Can it also be done in $O(n \log n)$?

[~: Better hyper-minimization — not as fast, but fewer errors. CIAA 2010]

Contents

- 1 History and Motivation
- 2 Hyper-Minimization
- 3 Hyper-Optimization
- 4 Restrictions and limitations

Definition

Language *L* is **canonical** if recognized by a hyper-minimal DFA.

Open question

What are the closure properties of canonical languages?

[BADR, GEFFERT, SHIPMAN: *Hyper-minimizing minimized deterministic finite state automata*. ITA 2009]

[BADR, GEFFERT, SHIPMAN: *Hyper-minimizing minimized deterministic finite state automata.* ITA 2009]

[~: Notes on hyper-minimization. AFL 2011]

Input hyper-minimal DFA

Minimal DFA recognizing union and intersection

Definition

Two languages L_1, L_2 are *k*-equivalent if $L_1 riangle L_2 \subseteq \Sigma^{< k}$.

Definition

The gap of two states p, q is

```
gap(p,q) = sup\{|w| \mid \delta(p,w) \in F \text{ xor } \delta(q,w) \in F\}
```

with sup $\emptyset = -\infty$

[GAWRYCHOWSKI, JEZ: Hyper-minimisation made efficient. MFCS 2009]

Definition

Level of p is length of longest word leading to p

$$\mathsf{level}(\boldsymbol{\rho}) = \mathsf{sup} \left\{ |\boldsymbol{w}| \mid \delta(\boldsymbol{q}_0, \boldsymbol{w}) = \boldsymbol{\rho} \right\}$$

Definition

Level of p is length of longest word leading to p

$$\mathsf{level}(p) = \sup \{ |w| \mid \delta(q_0, w) = p \}$$

Definition

Two states p, q are k-similar iff

```
gap(p,q) + min(k, level(p), level(q)) < k
```


Note

k-similarity is not an equivalence!

[GAWRYCHOWSKI, JEŻ: Hyper-minimisation made efficient. MFCS 2009] [GAWRYCHOWSKI, JEŻ, ~: On minimising automata with errors. MFCS 2011]

Note

k-similarity is not an equivalence!

Theorem

k-minimization can be done in time $O(n \log n)$.

[GAWRYCHOWSKI, JEŻ: Hyper-minimisation made efficient. MFCS 2009] [GAWRYCHOWSKI, JEŻ, ~: On minimising automata with errors. MFCS 2011]

Optimize other criteria

So far

- make it as small as possible (allowing any finite number of errors)
- 2 minimize the number of errors

Optimize other criteria

So far

- make it as small as possible (allowing any finite number of errors)
- 2 minimize the number of errors

More desirable

• optimize a ratio of saved states to committed errors

Error-bounded hyper-minimization

Problem

- given DFA A, integers m, s
- construct a DFA with
 - at most s states
 - making at most *m* errors

Note

trivial with only one restriction

Bad news

Theorem

Error-bounded hyper-minimization is NP-complete.

[GAWRYCHOWSKI, JEŻ, ~: On minimising automata with errors. MFCS 2011]

Bad news

- using reduction from 3-coloring problem
- redirection from middle to outside for 1 error
- redirection from outside to anywhere for 2 errors

Optimize other criteria (again)

So far for *k*-minimization

 make it as small as possible (allowing any number of errors of length at most k)

Optimize other criteria (again)

So far for *k*-minimization

 make it as small as possible (allowing any number of errors of length at most k)

More desirable

• minimize the number of committed errors

Optimal k-minimization

Problem

- given DFA A, integer k
- · construct a DFA that
 - is k-minimal for A
 - commits the least number of errors for all such DFA

Note

Optimal hyper-minimization was possible in time $O(n^2)$.

More bad news

Theorem

Optimal k-minimization is NP-complete.

[GAWRYCHOWSKI, JEŻ, ~: On minimising automata with errors. MFCS 2011]

More bad news

Summary

Open questions [BADR, GEFFERT, SHIPMAN]

- Properties of canonical languages
- X Asymptotic state complexity
- × Hyper-minimization of NFA, AFA, 2FA, WDFA
- Efficient hyper-minimization algorithm
- Minimize the number of errors
- X Minimize length of longest error
- ✓ k-minimization

[BADR, GEFFERT, SHIPMAN: *Hyper-minimizing minimized deterministic finite state automata*. ITA 2009]

That's all, folks!

Thank you for your attention!