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Problem definition

Minimization

• given: DFA A
• return: minimal DFA B such that L(B) = L(A)

Hyper-minimization

• given: DFA A
• return: minimal DFA B such that L(B) and L(A) differ finitely
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AFL 2008 (Balatonfüred, Hungary)

VILIAM GEFFERT spoke about:
• general problem and its structural characterization
• (inefficient) hyper-minimization

[BADR, GEFFERT, SHIPMAN: Hyper-minimizing minimized deterministic finite
state automata. ITA 2009]
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AFL 2008 (Balatonfüred, Hungary)

VILIAM GEFFERT spoke about:
• general problem and its structural characterization
• (inefficient) hyper-minimization

Unfortunately, I was not there

[BADR, GEFFERT, SHIPMAN: Hyper-minimizing minimized deterministic finite
state automata. ITA 2009]
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CIAA 2008 (San Francisco, CA, USA)

ANDREW BADR spoke about:
• faster (yet still inefficient) hyper-minimization
• combination with cover automata minimization

[BADR: Hyper-minimization in O(n2). CIAA 2008]
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CIAA 2008 (San Francisco, CA, USA)

ANDREW BADR spoke about:
• faster (yet still inefficient) hyper-minimization
• combination with cover automata minimization

MARKUS HOLZER and I were there
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c© David Iliff

CIAA 2009 (Sydney, Australia)

MARKUS HOLZER spoke about:
• efficient hyper-minimization

[HOLZER, ∼: An n log n algorithm for hyper-minimizing states in a (minimized)
deterministic automaton. CIAA 2009]
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c© David Iliff

CIAA 2009 (Sydney, Australia)

MARKUS HOLZER spoke about:
• efficient hyper-minimization

But at the same time ...

[HOLZER, ∼: An n log n algorithm for hyper-minimizing states in a (minimized)
deterministic automaton. CIAA 2009]
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MFCS 2009 (Novy Smokovec, Slovakia)

ARTUR JEŻ spoke about:
• efficient hyper-minimization (essentially the same algorithm)
• k -minimization

[GAWRYCHOWSKI, JEŻ: Hyper-minimisation made efficient. MFCS 2009]
— Best student paper
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CIAA 2010 (Winnipeg, Canada)

I spoke about:
• error-optimal hyper-minimization

[∼: Better hyper-minimization — not as fast, but fewer errors. CIAA 2010]
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FSTTCS 2010 (Chennai, India)

SVEN SCHEWE spoke about:
• hyper-minimization for DBA (deterministic Büchi automata)

[SCHEWE: Beyond Hyper-Minimisation—Minimising DBAs and DPAs is
NP-Complete. FSTTCS 2010]

A. Maletti AFL 2011 13



CIAA 2011 (Blois, France)

ARTUR JEŻ spoke about:
• efficient combination with cover automata minimization

[JEŻ, ∼: Computing all l-cover automata fast. CIAA 2011]
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AFL 2011 (Debrecen, Hungary)

DANIEL QUERNHEIM I spoke about:
• hyper-minimization for weighted DFA

[∼, QUERNHEIM: Hyper-minimisation of deterministic weighted finite automata
over semifields. AFL 2011]
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MFCS 2011 (Warsaw, Poland)

PAWEŁ GAWRYCHOWSKI will speak about:
• efficient hyper-minimization for partial DFA
• limits of hyper-minimization

[GAWRYCHOWSKI, JEŻ, ∼: On minimising automata with errors. MFCS 2011]
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Experiments on random NFA

size of mDFA
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• Left: Size of minimal DFA
• Right: Ratio of saved states in hyper-minimization

Conclusion

• significant savings

• but only outside the difficult area for minimization
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Error analysis
number of errors
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• Left: Average number of errors (100 NFA per data point)
• Right: Ratio of avoided errors in optimal hyper-minimization

[∼, QUERNHEIM: Optimal hyper-minimization. IJFCS 2011]
[TABAKOV, VARDI: Experimental evaluation of classical automata
constructions. LPAR 2005]
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Basic definitions

Definition

• Two languages L1,L2 are almost equal if L1 4 L2 is finite

L1 4 L2 = (L1 \ L2) ∪ (L2 \ L1)

• Two DFA A1,A2 are almost equivalent if L(A1) and L(A2)
are almost equal

Example

• all finite languages are almost equal
• a∗ and aaa∗ are almost equal
• a∗ and (aa)∗ are not almost equal
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Overview

Common approach

1 Identify kernel states
2 Identify almost equivalent states
3 Merge states
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Preamble and kernel states

Definition

• preamble state: finitely many words lead to it
• kernel state: infinitely many words lead to it

Words leading to state q:

{w ∈ Σ∗ | δ(q0,w) = q}
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Preamble and kernel states

F J M

B E I L Q

A D H R P

0 C G

2
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Preamble and kernel states
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Computing kernel states

Step 1

• Compute strongly
connected components
(using TARJAN’S algorithm)

F J M

B E I L Q

A D H R P

0 C G

2
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Computing kernel states

Step 1

• Compute strongly
connected components
(using TARJAN’S algorithm)

Step 2

• Mark all successors of
nontrivial components

[TARJAN: Depth-first search and linear
graph algorithms. SIAM J. Comput.
1972]

F J M

B E I L Q

A D H R P

0 C G

2

F J M

B E I L Q

A D H R P

0 C G

2
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Computing kernel states

Theorem
We can compute the set of kernel states in linear time.
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Almost equivalent states

Definition
Two states are almost equivalent if their right languages are
almost equal

Right language of state q:

{w ∈ Σ∗ | δ(q,w) ∈ F}

Consequence

For almost equivalent states p,q there is k ∈ N such that
δ(p,w) = δ(q,w) for all |w | > k
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Almost equivalent states

F J M
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A D H R P

0 C G

2
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Computing almost equivalent states

Theorem
Almost equivalence is a congruence.

Theorem
If p,q are different, but almost equivalent, then there are p′,q′

such that
δ(p′, σ) = δ(q′, σ)

for all σ ∈ Σ.
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Computing almost equivalent states
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Computing almost equivalent states

Theorem
The partition representing almost equivalent states can be
computed in

• O(n log n) using O(n2) space
• O(n log2 n) using O(n) space

[HOLZER, ∼: An n log n algorithm for hyper-minimizing states in a (minimized)
deterministic automaton. CIAA 2009]
[GAWRYCHOWSKI, JEŻ: Hyper-minimisation made efficient. MFCS 2009]
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Merging states

Algorithm

• don’t-care nondeterministic
• select representative of each block; kernel state if possible
• merge all preamble states into their representative

[BADR, GEFFERT, SHIPMAN: Hyper-minimizing minimized deterministic finite
state automata. ITA 2009]
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Merging states
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Merging states
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Merging states

Definition
A DFA is hyper-minimal if all almost equivalent DFA are larger.

Theorem
A DFA is hyper-minimal if and only if
• it is minimal
• no preamble state is almost equivalent to another state
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Merging states

Definition
A DFA is hyper-minimal if all almost equivalent DFA are larger.

Theorem
A DFA is hyper-minimal if and only if
• it is minimal
• no preamble state is almost equivalent to another state
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Merging states

F J M

B E I L Q

A D H R P

0 C G

2

merges:
D into C
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Merging states

F J M

B E I L Q

A D H R P

0 C G

2

merges:
D into C
G into I
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Merging states

F J M

B E I L Q

A D H R P

0 C G

2

merges:
D into C
G into I
H into J
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Merging states

F J M

B E I L Q

A D H R P

0 C G

2

merges:
D into C
G into I
H into J
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Merging states

Theorem
Merging can be done in linear time.

Theorem
Hyper-minimization can be achieved in time O(n log n).
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Hyper-optimization

Goal
Obtain a DFA that

1 makes only finitely many mistakes
2 is as small as possible

3 additionally makes minimal number of mistakes

Question

• Can it be done in polynomial time?
[BADR, GEFFERT, SHIPMAN 2009]

• Can it be done in O(n log n)?
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Hyper-optimization

Goal
Obtain a DFA that
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Hyper-optimization

Goal
Obtain a DFA that

1 makes only finitely many mistakes
2 is as small as possible
3 additionally makes minimal number of mistakes

Question

• Can it be done in polynomial time? 3

[BADR, GEFFERT, SHIPMAN 2009]
• Can it be done in O(n log n)? ???
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Comparison

F J M
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Comparison

Theorem
Two almost equivalent, hyper-minimal DFA are isomorphic up to

1 finality of preamble states
2 transitions from preamble to kernel states
3 initial state

[BADR, GEFFERT, SHIPMAN: Hyper-minimizing minimized deterministic finite
state automata. ITA 2009]
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Optimal merges

F J M
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A D H R P
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2
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Finality of preamble states

F J M

B E I L Q

A D H R P

0 C G

2

Question
Which words lead to C?
word w w ∈ L
−→2

99K2

99K−→ 99K
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Finality of preamble states

F J M

B E I L Q

A D H R P

0 C G

2

Question
Which words lead to C?
word w w ∈ L
−→2 3

99K2 3

99K−→ 99K 7
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Finality of preamble states

F J M

B E I L Q

A D H R P

0 C G

2

Question
Which words lead to C?
word w w ∈ L
−→2 3

99K2 3

99K−→ 99K 7

⇒ make C final
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Optimal merges

F J M

B E I L Q

A D H R P

0 C G

2

Errors
99K−→ 99K

A. Maletti AFL 2011 65



Transitions from preamble to kernel states

F J M

B E I L Q

A D H R P

0 C G

2

Question
On which words differ
almost equivalent states?

states words (number)
P–Q ε (1)
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Transitions from preamble to kernel states

F J M
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0 C G

2

Question
On which words differ
almost equivalent states?

states words (number)
P–Q ε (1)
L–M −→ (1)
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Transitions from preamble to kernel states

F J M

B E I L Q

A D H R P

0 C G

2

Question
On which words differ
almost equivalent states?

states words (number)
P–Q ε (1)
L–M −→ (1)
I–J −→2 (1)
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Transitions from preamble to kernel states

F J M

B E I L Q

A D H R P

0 C G

2

Question
On which words differ
almost equivalent states?

states words (number)
P–Q ε (1)
L–M −→ (1)
I–J −→2 (1)
H–J ε, 99K−→2 (2)
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Transitions from preamble to kernel states

F J M

B E I L Q

A D H R P

0 C G

2

Question
On which words differ
almost equivalent states?

states words (number)
P–Q ε (1)
L–M −→ (1)
I–J −→2 (1)
H–J ε, 99K−→2 (2)
H–I ε, 99K−→2,

−→2 (3)
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Transitions from preamble to kernel states

F J M

B E I L Q

A D H R P

0 C G

2

Question
On which words differ
almost equivalent states?

states words (number)
P–Q ε (1)
L–M −→ (1)
I–J −→2 (1)
H–J ε, 99K−→2 (2)
H–I ε, 99K−→2,

−→2 (3)
G–J . . . (3)
G–I . . . (2)
G–H . . . (5)
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Transitions from preamble to kernel states

F J M

B E I L Q

A D H R P

0 C G

2

Errors
u−→w
• u leads to C
• w error between H–I

−→2−→
−→2−→99K−→2

−→2−→−→2

99K2−→
99K2−→ 99K−→2

99K2−→−→2 (6)
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Transitions from preamble to kernel states

F J M

B E I L Q

A D H R P

0 C G

2

Errors
u−→w
• u leads to C (2)
• w ∈ H–J (2)

or
• u leads to D (1)
• w ∈ I–J (1)
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Transitions from preamble to kernel states
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Errors
u−→w
• u leads to C (2)
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Transitions from preamble to kernel states

F J M

B E I L Q

A D H R P

0 C G

2

Errors
u−→w
• u leads to C (2)
• w ∈ H–J (2)

or
• u leads to D (1)
• w ∈ I–J (1)

⇒ only
2 · 2 + 1 · 1 = 5 errors
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Optimal merges (cont’d)

F J M

B E I L Q

A D H R P

0 C G

2

Errors

99K−→ 99K

−→2−→
−→2−→ 99K−→2

99K2−→
99K2−→ 99K−→2

99K−→ 99K−→−→2

(6)
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Optimal merges (cont’d)

F J M

B E I L Q

A D H R P

0 C G

2

Errors

99K−→ 99K

−→2−→
−→2−→ 99K−→2

99K2−→
99K2−→ 99K−→2

99K−→ 99K−→−→2

. . . (15)
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Result

Theorem
Hyper-optimization can be achieved in O(n2).

Theorem
We can compute the number of errors of a hyper-minimal DFA
relative to any almost equivalent DFA in time O(n2).

Open question

Can it also be done in O(n log n)?

[∼: Better hyper-minimization — not as fast, but fewer errors. CIAA 2010]
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Canonical languages

Definition
Language L is canonical if recognized by a hyper-minimal DFA.

Open question

What are the closure properties of canonical languages?

[BADR, GEFFERT, SHIPMAN: Hyper-minimizing minimized deterministic finite
state automata. ITA 2009]
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Canonical languages

class compl. ∪ ∩ conc. ∗ reversal
regular 3 3 3 3 3 3

canonical 3 7 7 7 ? ?

Table: Closure properties

[BADR, GEFFERT, SHIPMAN: Hyper-minimizing minimized deterministic finite
state automata. ITA 2009]
[∼: Notes on hyper-minimization. AFL 2011]
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Canonical languages
Input hyper-minimal DFA

F J M

B E I L Q

A D R P

0 2

F J M

B E I L Q

A C R P

0 2
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Canonical languages
Minimal DFA recognizing union and intersection

F J M

B E I L Q

A C I ′ L′ P

0 2 R

F J M

B E I L Q

A C I, J L,M P

0 2 R
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k -minimization

Definition
Two languages L1,L2 are k -equivalent if L1 4 L2 ⊆ Σ<k .

Definition
The gap of two states p,q is

gap(p,q) = sup{|w | | δ(p,w) ∈ F xor δ(q,w) ∈ F}

with sup ∅ = −∞

[GAWRYCHOWSKI, JEŻ: Hyper-minimisation made efficient. MFCS 2009]
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k -minimization

Definition
Level of p is length of longest word leading to p

level(p) = sup {|w | | δ(q0,w) = p}

Definition
Two states p,q are k -similar iff

gap(p,q) + min(k , level(p), level(q)) < k
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k -minimization

Note
k -similarity is not an equivalence!

Theorem
k-minimization can be done in time O(n log n).

[GAWRYCHOWSKI, JEŻ: Hyper-minimisation made efficient. MFCS 2009]
[GAWRYCHOWSKI, JEŻ, ∼: On minimising automata with errors. MFCS 2011]
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Optimize other criteria

So far

1 make it as small as possible
(allowing any finite number of errors)

2 minimize the number of errors

More desirable

• optimize a ratio of saved states to committed errors
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Error-bounded hyper-minimization

Problem

• given DFA A, integers m, s
• construct a DFA with

– at most s states
– making at most m errors

Note
trivial with only one restriction
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Bad news

Theorem
Error-bounded hyper-minimization is NP-complete.

[GAWRYCHOWSKI, JEŻ, ∼: On minimising automata with errors. MFCS 2011]
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Bad news

v1 ,1 ,2 ,3 ,

> ...
∞ -1 -2 -3

vn /1 /2 /3 /

v1

vn

e

e

e′

e′

• using reduction from 3-coloring problem
• redirection from middle to outside for 1 error
• redirection from outside to anywhere for 2 errors
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Optimize other criteria (again)

So far for k -minimization

1 make it as small as possible
(allowing any number of errors of length at most k )

More desirable

• minimize the number of committed errors
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Optimal k -minimization

Problem

• given DFA A, integer k
• construct a DFA that

– is k -minimal for A
– commits the least number of errors for all such DFA

Note
Optimal hyper-minimization was possible in time O(n2).
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More bad news

Theorem
Optimal k-minimization is NP-complete.

[GAWRYCHOWSKI, JEŻ, ∼: On minimising automata with errors. MFCS 2011]
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More bad news
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Summary

Open questions [BADR, GEFFERT, SHIPMAN]

3 Properties of canonical languages
7 Asymptotic state complexity
7 Hyper-minimization of NFA, AFA, 2FA, WDFA
3 Efficient hyper-minimization algorithm
3 Minimize the number of errors
7 Minimize length of longest error
3 k -minimization

[BADR, GEFFERT, SHIPMAN: Hyper-minimizing minimized deterministic finite
state automata. ITA 2009]
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That’s all, folks!

Thank you for your attention!
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