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Motivation, Study & Research Questions Datasets & Computational Models Analyses

Lexical Resources for Semantic Evaluation

e Starting point:

Developing computational models to predict degrees of compositionality for multi-
word expressions typically goes hand in hand with creating or using reliable lexical
resources as gold standards for formative intrinsic evaluation.

Datasets of Noun Compound Compositionality

e REDDY-N (English) [Reddy et al., 2011]

— WordNet-based heuristic: a compound is considered compositional with regard
to a constituent if the constituent represents a hypernym of the compound or is
used in the definition, e.g., swimming pool
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Compositionality Rating Distributions
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— How much vary both the gold standards and the prediction models according to
properties of the targets within the lexical resources?

— Potential skewness hinders us from a generalised assessment of models.

e CONCRETE-NN (German) [von der Heide and Borgwaldt, 2009, Schulte im Walde et al., 2013]

— 244 depictable noun-noun compounds; scale [1,7]

e Focus: English and German noun compounds e G;0ST-NN (German) [schulte im Walde et al., 2016]
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— G,0ST-NN/S: 20 x 9 = 180 compounds randomly extracted from corpus but
palanced for modifier productivity (low/mid/high) and head ambiguity (1/2/>2)
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e Contributions:

— Novel collection of compositionality ratings for 1,099 German noun compounds,
where we asked the human judges to provide compound and constituent prop-
erties before judging the compositionality

— Series of analyses on rating distributions and interactions with compound and
constituent properties

— G;,0SsT-NN/XL: 868 compounds, after adding all compounds with the same
modifiers and heads as in G;,0ST/S

mean ratings Sone
compound | modifier head

o~0.
4.97+0.18  4.90+0.30 4.83+0.38 N
1.4141.03 | 3.27+1.48  0.34+0.66 IR
1.25-1.09 0.19+0.47 | 3.79+1.05
0.54-0.63 | 1.00+1.15 0.48-0.63
night owl 1.93+1.27 4.47+0.88 | 0.50+0.82

Ahornblatt (maple leaf) 6.03+1.49 5.64+1.63 |5.71+1.70
Fliegenpilz (toadstool, lit. fly mushroom) | 2.00+1.20 1.93+1.28 |6.55+0.63
Flohmarkt (flea market) 2.31+1.65 | 1.50+1.22 | 6.03+1.50
Lowenzahn (dandelion, lit. lion tooth) 1.66+1.54 | 2.10+1.84 1 2.234+1.92
Windlicht (storm lamp, lit. wind light) 3.52+2.08 3.07+2.12 | 4.27+2.36

compound examples
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climate change
couch potato
crocodile tears
melting pot

mean modifier ratings for Reddy-N compounds mean head ratings for Reddy-N compounds

— Datasets are skewed towards certain ranges of compositionality in different ways.

Multiword Expressions & Noun Compounds

e Multiword expressions:

combinations of words with some degree of idiosynchracy, i.e., the
meaning of the combination is not entirely (or even not at all) predictable from the

meanings of the constituents [sag et al., 2002, Baldwin and Kim, 2010] fre@ prod amb hyp conc
compound -.075 — - 424 113

" e : : CONCRETE-NN modifier .080 .164 -.157 - .079

e Noun compounds: compositions of modifier and nominal head constituents head 147 -178 -279 689 208

n . ngm n modifier -.088 -.023 -.231 - .119

Vector-Space Models Predicting Compositionality GHOSTNNIXL | cog 202 -204 356 692 A7
mpound .579 - — — .615

REDDY-N (r:noodﬁ?eur 547 471 172 - .318
head 454 484 224 - .622

Compositionality and Target Properties

e Compositionality: meaning contributions of constituents to compound meaning;

strength of semantic relatedness: compounds < constituents . . .
e Basis: vectors-space representations for compounds and constituents

e Computational task & models: e Relatedness: mathematical distance measure between vectors of

INngs, and moderate correlations between compositionality ratings and corpus-based
frequencies and productivity scores.

— lask: predict the degree of compound compositionality as a whole/phrase and
with regard to its constituents

— Models: textual/multi-modal vector-space models (VSMs)

e Compositionality: VSM relatedness ~ compositionality

e Evaluation: Spearman’s rank-order correlation coefficient p relating
predicted distances ~ compositionality scores

Compound Frequency Range

META-LEVEL SUGGESTIONS

e Balance your targets across frequency ranges as the minimally required target
property, because we know that target frequency has generally a strong influence
on language processing and comprehension.

META-LEVEL RESEARCH QUESTIONS

e To what extent should we aim for an even distribution of human ratings
across a pre-specified scale?

e To what extent should we take into account properties of targets when cre-
ating a novel resource and when using a resource?

e Assess models not only on the full dataset, but also with regard to subsets of
targets with coherent task-relevant properties.

GHOST-NN:
multimodal models (text+images)

REDDY-N:
count vs. predict/reduced models

CONCRETE-NN:
window-based models




