
Chapter 4

Clustering Algorithms and Evaluations

There is a huge number of clustering algorithms and also numerous possibilities for evaluating
a clustering against a gold standard. The choice of a suitable clustering algorithm and of a
suitable measure for the evaluation depends on the clustering objects and the clustering task. The
clustering objects within this thesis are verbs, and the clustering task is a semantic classification
of the verbs. Further cluster parameters are to be explored within the cluster analysis of the verbs.

This chapter provides an overview of clustering algorithmsand evaluation methods which are
relevant for the natural language clustering task of clustering verbs into semantic classes. Sec-
tion 4.1 introduces clustering theory and relates the theoretical assumptions to the induction of
verb classes. Section 4.2 describes a range of possible evaluation methods and determines rele-
vant measures for a verb classification. The theoretical assumptions in this chapter are the basis
for the clustering experiments in the following Chapter 5.

4.1 Clustering Theory

The section starts with an introduction into clustering theory in Section 4.1.1. Section 4.1.2 re-
lates the theoretical definitions of data objects, clustering purpose and object features to verbs as
the clustering target within this thesis, and Section 4.1.3concentrates on the notion of similarity
within the clustering of verbs. Finally, Section 4.1.4 defines the clustering algorithms as used in
the clustering experiments and refers to related clustering approaches. For more details on clus-
tering theory and other clustering applications than the verb classification, the interested reader
is referred to the relevant clustering literature, such as Anderberg (1973); Duda and Hart (1973);
Steinhausen and Langer (1977); Jain and Dubes (1988); Kaufman and Rousseeuw (1990); Jain
et al. (1999); Dudaet al. (2000).
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4.1.1 Introduction

Clustering is a standard procedure in multivariate data analysis. It is designed to explore an in-
herent natural structure of the data objects, where objectsin the same cluster are as similar as
possible and objects in different clusters are as dissimilar as possible. The equivalence classes
induced by the clusters provide a means for generalising over the data objects and their fea-
tures. Clustering methods are applied in many domains, suchas medical research, psychology,
economics and pattern recognition.

Human beings often perform the task of clustering unconsciously; for example when looking at a
two-dimensional map one automatically recognises different areas according to how close to each
other the places are located, whether places are separated by rivers, lakes or a sea, etc. However,
if the description of objects by their features reaches higher dimensions, intuitive judgements are
less easy to obtain and justify.

The termclusteringis often confused with aclassificationor a discriminant analysis. But the
three kinds of data analyses refer to different ideas and aredistinguished as follows: Cluster-
ing is (a) different from a classification, because classification assigns objects to already defined
classes, whereas for clustering no a priori knowledge aboutthe object classes and their mem-
bers is provided. And a cluster analysis is (b) different from a discriminant analysis, since dis-
criminant analysis aims to improve an already provided classification by strengthening the class
demarcations, whereas the cluster analysis needs to establish the class structure first.

Clustering is an exploratory data analysis. Therefore, theexplorer might have no or little infor-
mation about the parameters of the resulting cluster analysis. In typical uses of clustering the
goal is to determine all of the following:� The number of clusters,� The absolute and relative positions of the clusters,� The size of the clusters,� The shape of the clusters,� The density of the clusters.

The cluster properties are explored in the process of the cluster analysis, which can be split into
the following steps.

1. Definition of objects: Which are the objects for the cluster analysis?

2. Definition of clustering purpose: What is the interest in clustering the objects?

3. Definition of features: Which are the features that describe the objects?

4. Definition of similarity measure: How can the objects be compared?

5. Definition of clustering algorithm: Which algorithm is suitable for clustering the data?

6. Definition of cluster quality: How good is the clustering result? What is the interpretation?
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Depending on the research task, some of the steps might be naturally given by the task, others
are not known in advance. Typically, the understanding of the analysis develops iteratively with
the experiments. The following sections define a cluster analysis with respect to the task of
clustering verbs into semantic classes.

4.1.2 Data Objects, Clustering Purpose and Object Features

This work is concerned with inducing a classification of German verbs, i.e. the data objects
in the clustering experiments areGerman verbs, and the clustering purpose is to investigate
the automatic acquisition of a linguistically appropriatesemantic classificationof the verbs.
The degree of appropriateness is defined with respect to the ideas of a verb classification at the
syntax-semantic interface in Chapter 2.

Once the clustering target has been selected, the objects need an attribute description as basis
for comparison. The properties are grasped by the data features, which describe the objects
in as many dimensions as necessary for the object clustering. The choice of features is of ex-
treme importance, since different features might lead to different clustering results. Kaufman and
Rousseeuw (1990, page 14) emphasise the importance by stating that ‘a variable not containing
any relevant information is worse than useless, because it will make the clustering less apparent
by hiding the useful information provided by the other variables’.

Possible features to describe German verbs might include any kind of information which helps
classify the verbs in a semantically appropriate way. Thesefeatures include the alternation be-
haviour of the verbs, their morphological properties, their auxiliary selection, adverbial combi-
nations, etc. Within this thesis, I concentrate on defining the verb features with respect to the
alternation behaviour, because I consider thealternation behaviour a key component for verb
classes as defined in Chapter 2. So I rely on the meaning-behaviour relationship for verbs and
use empirical verb properties at thesyntax-semantic interfaceto describe the German verbs.

The verbs are described on three levels at the syntax-semantic interface, each of them refining
the previous level by additional information. The first level encodes a purely syntactic definition
of verb subcategorisation, the second level encodes a syntactico-semantic definition of subcate-
gorisation with prepositional preferences, and the third level encodes a syntactico-semantic def-
inition of subcategorisation with prepositional and selectional preferences. So the refinement of
verb features starts with a purely syntactic definition and step-wise adds semantic information.
The most elaborated description comes close to a definition of the verb alternation behaviour. I
have decided on this three step proceeding of verb descriptions, because the resulting clusters and
even more the changes in clustering results which come with achange of features should pro-
vide insight into the meaning-behaviour relationship at the syntax-semantic interface. The exact
choice of the features is presented and discussed in detail in the experiment setup in Chapter 5.

The representation of the verbs is realised by vectors whichdescribe the verbs by distributions
over their features. As explained in Chapter 1, the distributional representation of features for
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natural language objects is widely used and has been justified by Harris (1968). The feature
values for the distributions are provided by the German grammar, as described in Chapter 3. The
distributions refer to (i) real valuesf representing frequencies of the features with0 � f , (ii)
real valuesp representing probabilities of the features with0 � p � 1, and (iii) binary valuesb with b 2 f0; 1g. Generally speaking, a standardisation of measurement units which converts
the original measurements (such as frequencies) to unitless variables (such as probabilities) on
the one hand may be helpful by avoiding the preference of a specific unit, but on the other hand
might dampen the clustering structure by eliminating the absolute value of the feature.

4.1.3 Data Similarity Measures

With the data objects and their features specified, a means for comparing the objects is needed.
The German verbs are described by features at the syntax-semantic interface, and the features are
represented by a distributional feature vector. A range of measures calculates either the distanced or the similaritysim between two objectsx andy. The notions of ‘distance’ and ‘similarity’
are related, since the smaller the distance between two objects, the more similar they are to each
other. All measures refer to the feature values in some way, but they consider different properties
of the feature vector. There is no optimal similarity measure, since the usage depends on the task.
Following, I present a range of measures which are commonly used for calculating the similarity
of distributional objects. I will use all of the measures in the clustering experiments.

Minkowski Metric The Minkowski metricor Lq norm calculates the distanced between the
two objectsx and y by comparing the values of theirn features, cf. Equation (4.1). The
Minkowski metric can be applied to frequency, probability and binary values.d(x; y) = Lq(x; y) = qvuut nXi=1 (xi � yi)q (4.1)

Two important special cases of the Minkowski metric areq = 1 andq = 2, cf. Equations (4.2)
and (4.3).� Manhattan distanceor City block distanceorL1 norm:d(x; y) = L1 = nXi=1 jxi � yij (4.2)� Euclidean distanceorL2 norm:d(x; y) = L2 =vuut nXi=2 (xi � yi)2 (4.3)
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Kullback-Leibler Divergence The Kullback-Leibler divergence (KL)or relative entropyis
defined in Equation (4.4). KL is a measure from information theory which determines the inef-
ficiency of assuming a model distribution given the true distribution (Cover and Thomas, 1991).
It is generally used forx andy representing probability mass functions, but I will also apply the
measure to probability distributions with

Pi xi > 1 and
Pi yi > 1.d(x; y) = D(xjjy) = nXi=1 xi � log xiyi (4.4)

The Kullback-Leibler divergence is not defined in caseyi = 0, so the probability distributions
need to be smoothed. Two variants of KL,information radiusin Equation (4.5) andskew diver-
gencein Equation (4.6), perform a default smoothing. Both variants can tolerate zero values in
the distribution, because they work with a weighted averageof the two distributions compared.
Lee (2001) has recently shown that the skew divergence is an effective measure for distributional
similarity in NLP. Related to Lee, I set the weightw for the skew divergence to 0.9.d(x; y) = IRad(x; y) = D(xjjx+ y2 ) + D(yjjx+ y2 ) (4.5)d(x; y) = Skew(x; y) = D(xjjw � y + (1� w) � x) (4.6)� coefficient Kendall’s� coefficient(Kendall, 1993) compares all feature pairs of the two ob-
jectsx andy in order to calculate their distance. Ifhxi; yii and hxj; yji are two pairs of the
featuresi andj for the objectsx andy, the pairs are concordant ifxi > xj andyi > yj or ifxi < xj andyi < yj, and the pairs are discordant ifxi > xj andyi < yj or if xi < xj andyi > yj.
If the distributions of the two objects are similar, a large number of concordancesfc is expected,
otherwise a large number of discordancesfd is expected.� is defined in Equation (4.7), withpc the probability of concordances andpd the probability of discordances;� ranges from -1 to
1. The� coefficient can be applied to frequency and probability values. Hatzivassiloglou and
McKeown (1993) use� to measure the similarity between adjectives.sim(x; y) = �(x; y) = fcfc + fd � fdfc + fd = pc � pd (4.7)

Cosine cos(x; y) measures the similarity of the two objectsx andy by calculating thecosine of
the anglebetween their feature vectors. The degrees of similarity range from�1 (highest degree
of dissimilarity with vector angle =180�) over0 (angle =90�) to 1 (highest degree of similarity
with vector angle =0�). For positive feature values, the cosine lies between 0 and1. The cosine
measure can be applied to frequency, probability and binaryvalues.sim(x; y) = cos(x; y) = Pni=1 xi � yipPni=1 x2i �pPni=1 y2i (4.8)
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Binary Distance Measures In addition, there are specific measures for binary distributions.
The following list is taken from Manning and Schütze (1999).The measures are defined on basis
of the feature setsX andY for the objectsx andy, respectively. Referring to the notion of set
intersection and set union, the agreement and disagreementof the feature values is measured.� Thematching coefficientcounts the dimensions on which both vectors are non-zero.sim(x; y) = match(x; y) = jX \ Y j = nXi=1 jxi = yi = 1j (4.9)� TheDice coefficientnormalises the matching coefficient for length by dividing by the total

number of non-zero entries.sim(x; y) = dice(x; y) = 2 � jX \ Y jjXj+ jY j = Pni=1 jxi = yi = 1jPni=1 jxi = 1j + Pni=1 jyi = 1j (4.10)� TheJaccard coefficientor Tanimoto coefficientpenalises a small number of shared entries
(as a proportion of all non-zero entries) more than the Dice coefficient does.sim(x; y) = jaccard(x; y) = jX \ Y jjX [ Y j = Pni=1 jxi = yi = 1jPni=1 j(xi = 1) _ (yi = 1)j (4.11)� Theoverlap coefficient (ol)has a value of1 if every feature with a non-zero value for the
first object is also non-zero for the second object or vice versa, i.e.X � Y or Y � X.sim(x; y) = ol(x; y) = jX \ Y jmin(jXj; jY j) = Pni=1 jxi = yi = 1jmin(Pni=1 jxi = 1j;Pni=1 jyi = 1j) (4.12)

4.1.4 Clustering Algorithms

Clustering is a task for which many algorithms have been proposed. No clustering technique is
universally applicable, and different techniques are in favour for different clustering purposes.
So an understanding of both the clustering problem and the clustering technique is required to
apply a suitable method to a given problem. In the following,I describe general parameters of a
clustering technique which are relevant to the task of inducing a verb classification.� Parametric design:

Assumptions may (but need not) be made about the form of the distribution used to model
the data by the cluster analysis. The parametric design should be chosen with respect to
the nature of the data. It is often convenient to assume, for example, that the data can be
modelled by a multivariate Gaussian.



4.1. CLUSTERING THEORY 185� Position, size, shape and density of the clusters:

The experimenter might have an idea about the desired clustering results with respect to
the position, size, shape and density of the clusters. Different clustering algorithms have
different impact on these parameters, as the description ofthe algorithms will show. There-
fore, varying the clustering algorithm influences the design parameters.� Number of clusters:

The number of clusters can be fixed if the desired number is known beforehand (e.g. be-
cause of a reference to a gold standard), or can be varied to find the optimal cluster analysis.
As Dudaet al. (2000) state, ‘In theory, the clustering problem can be solved by exhaustive
enumeration, since the sample set is finite, so there are onlya finite number of possible
partitions; in practice, such an approach is unthinkable for all but the simplest problems,
since there are at the order ofknk! ways of partitioning a set ofn elements intok subsets’.� Ambiguity:

Verbs can have multiple senses, requiring them being assigned to multiple classes. This
is only possible by using a soft clustering algorithm, whichdefines cluster membership
probabilities for the clustering objects. A hard clustering algorithm performs ayes/no
decision on object membership and cannot model verb ambiguity, but it is easier to use
and interpret.

The choice of a clustering algorithm determines the settingof the parameters. In the following
paragraphs, I describe a range of clustering algorithms andtheir parameters. The algorithms are
divided into (A) hierarchical clustering algorithms and (B) partitioning clustering algorithms.
For each type, I concentrate on the algorithms used in this thesis and refer to further possibilities.

A) Hierarchical Clustering

Hierarchical clustering methods impose a hierarchical structure on the data objects and their
step-wise clusters, i.e. one extreme of the clustering structure is only one cluster containing all
objects, the other extreme is a number of clusters which equals the number of objects. To obtain
a certain numberk of clusters, the hierarchy is cut at the relevant depth. Hierarchical clustering
is a rigid procedure, since it is not possible to re-organiseclusters established in a previous step.
The original concept of a hierarchy of clusters creates hardclusters, but as e.g. Lee (1997) shows
that the concept may be transferred to soft clusters.

Depending on whether the clustering is performed top-down,i.e. from a single cluster to the
maximum number of clusters, or bottom-up, i.e. from the maximum number of clusters to a
single cluster, we distinguish divisive and agglomerativeclustering. Divisive clustering is com-
putationally more problematic than agglomerative clustering, because it needs to consider all
possible divisions into subsets. Therefore, only agglomerative clustering methods are applied in
this thesis. The algorithm is described in Figure 4.1.
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1 Given: a set of objectsO = fo1; :::; ong � Rm ;
a function for distance measured : Rm � Rm ! R

2 for all objectsoi 2 O do
3 establish clusterCi = foig
4 let C = fC1; :::; Cng
5 while jCj 6= 1 do
6 for all pairs of clustershCi; Cj 6=ii 2 C � C do
7 calculated(Ci; Cj)
8 let best(Ci; Cj) = 8hCk 6=i; Cl 6=k;ji 2 C � C : [d(Ci; Cj) � d(Ck; Cl)]
9 for best(Ci; Cj) do

10 let Cij = Ci [ Cj
11 let Cnew = C n fCi; Cjg
12 let C = Cnew [ Cij
13 end

Figure 4.1: Algorithm for agglomerative hierarchical clustering

The algorithm includes a notion of measuring and comparing distances between clusters (step
7). So far, I have introduced measures for object distance and similarity in Section 4.1.3, but
I have not introduced measures for cluster distance. The concept of cluster distance is based
on the concept of object distance, but refers to different ideas of cluster amalgamation. Below,
five well-known measures for cluster amalgamation are introduced. All of them are used in the
clustering experiments.

Nearest Neighbour Cluster Distance The distanced between two clustersCi andCj is de-
fined as the minimum distance between the cluster objects, cf. Equation (4.13). The cluster
distance measure is also referred to assingle-linkage. Typically, it causes a chaining effect con-
cerning the shape of the clusters, i.e. whenever two clusters come close too each other, they stick
together even though some members might be far from each other.d(Ci; Cj) = dmin(Ci; Cj) = minx2Ci;y2Cjd(x; y) (4.13)

Furthest Neighbour Cluster Distance The distanced between two clustersCi andCj is de-
fined as the maximum distance between the cluster objects, cf. Equation (4.14). The cluster
distance measure is also referred to ascomplete-linkage. Typically, it produces compact clusters
with small diameters, since every object within a cluster issupposed to be close to every other
object within the cluster, and outlying objects are not incorporated.d(Ci; Cj) = dmax(Ci; Cj) = maxx2Ci;y2Cjd(x; y) (4.14)
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Distance between Cluster Centroids The distanced between two clustersCi andCj is defined
as the distance between the cluster centroidsceni andcenj, cf. Equation (4.15). The centroid of
a cluster is determined as the average of objects in the cluster, i.e. each feature of the centroid
vector is calculated as the average feature value of the vectors of all objects in the cluster. The
cluster distance measure is a natural compromise between the nearest and the furthest neighbour
cluster distance approaches. Different to the above approaches, it does not impose a structure on
the clustering effect. d(Ci; Cj) = dmean(Ci; Cj) = d(ceni; cenj) (4.15)

Average Distance between Clusters The distanced between two clustersci andcj is defined
as the average distance between the cluster objects, cf. Equation (4.16). Likedmean, the cluster
distance measure is a natural compromise between the nearest and the furthest neighbour cluster
distance approaches. It does not impose a structure on the clustering effect either.d(Ci; Cj) = davg(Ci; Cj) = 1jCij � jCjj � Xx2Ci Xy2Cj d(x; y) (4.16)

Ward’s Method The distanced between two clustersCi andCj is defined as the loss of infor-
mation (or: the increase in error) in merging two clusters (Ward, 1963), cf. Equation (4.17). The
error of a clusterC is measured as the sum of distances between the objects in thecluster and the
cluster centroidcenC . When merging two clusters, the error of the merged cluster is larger than
the sum or errors of the two individual clusters, and therefore represents a loss of information.
But the merging is performed on those clusters which are mosthomogeneous, to unify clusters
such that the variation inside the merged clusters increases as little as possible. Ward’s method
tends to create compact clusters of small size. It is a least squares method, so implicitly assumes
a Gaussian model.d(Ci; Cj) = dward(Ci; Cj) = Xx2(Ci[Cj) d(x; cenij) � [Xx2Ci d(x; ceni) + Xx2cenj d(x; cenj)]

(4.17)

B) Partitioning Clustering

Partitioning clustering methods partition the data objectset into clusters where every pair of ob-
ject clusters is either distinct (hard clustering) or has some members in common (soft clustering).
Partitioning clustering begins with a starting cluster partition which is iteratively improved until
a locally optimal partition is reached. The starting clusters can be either random or the cluster
output from some clustering pre-process (e.g. hierarchical clustering). In the resulting clusters,
the objects in the groups together add up to the full object set.
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k-Means Clustering The k-Means clustering algorithm is an unsupervised hard clustering
method which assigns then data objectso1; :::; on to a pre-defined number of exactlyk clustersC1; :::; Ck. Initial verb clusters are iteratively re-organised by assigning each verb to its closest
cluster (centroid) and re-calculating cluster centroids until no further changes take place. The
optimising criterion in the clustering process is the sum-of-squared-errorE between the objects
in the clusters and their respective cluster centroidscen1; :::; cenk, cf. Equation (4.18).E = kXi=1 Xo2Ci d(o; ceni)2 (4.18)

The k-Means algorithm is sensitive to the selection of the initial partition, so the initialisation
should be varied. k-Means imposes a Gaussian parametric design on the clustering result and
generally works well on data sets with isotropic cluster shape, since it tends to create compact
clusters. The time complexity of k-Means isO(n) with n the number of objects. Several vari-
ants of the k-Means algorithm exist. Within this thesis, clustering is performed by the k-Means
algorithm as proposed by Forgy (1965). Figure 4.2 defines thealgorithm.

1 Given: a set of objectsO = fo1; :::; ong � Rm ;
a function for distance measured : Rm � Rm ! R;
a (random/pre-processed) clustering partitionC = fC1; :::; Ckg

2 do
3 for all clustersCi 2 C do
4 calculate cluster centroidceni � Rm
5 for all objectso 2 O do
6 for all clustersCi 2 C do
7 calculated(o; Ci) = d(o; ceni)
8 let best(o; Co) = 8Cj 2 C : [d(o; cenCo) � d(o; cenCj )]
9 undefineCnew

10 for all objectso 2 O do
11 for best(o; Co) do
12 let o 2 Cnewo
13 if C 6= Cnew then change = true
14 elsechange = false
15 until change = false

Figure 4.2: Algorithm for k-Means clustering

Other Clustering Methods k-Means is a hard clustering algorithm. But some clusteringprob-
lems require the clustering objects being assigned to multiple classes. For example, to model verb
ambiguity one would need a soft clustering algorithm. Examples for soft clustering algorithms
which are based on the same data model as k-Means are such as fuzzy clustering (Zadeh, 1965),
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cf. also Höppneret al. (1997) and Dudaet al. (2000), and theExpectation-Maximisation (EM)
Algorithm (Baum, 1972) which can also be implemented as a soft version of k-Means with an
underlying Gaussian model.

The above methods represent a standard choice for clustering in pattern recognition, cf. Duda
et al.(2000). Clustering techniques with different background are e.g. theNearest Neighbour Al-
gorithm(Jarvis and Patrick, 1973),Graph-Based Clustering(Zahn, 1971), andArtificial Neural
Networks(Hertzet al., 1991). Recently, elaborated techniques from especially image processing
have been transfered to linguistic clustering, such asSpectral Clustering(Brew and Schulte im
Walde, 2002).

C) Decision on Clustering Algorithm

Within the scope of this thesis, I apply the hard clustering technique k-Means to the German verb
data. I decided to use the k-Means algorithm for the clustering, because it is a standard clustering
technique with well-known properties. In addition, see thefollowing arguments.� The parametric design of Gaussian structures realises the idea that objects should belong

to a cluster if they are very similar to the centroid as the average description of the cluster,
and that an increasing distance refers to a decrease in cluster membership. In addition, the
isotropic shape of clusters reflects the intuition of a compact verb classification.� A variation of the clustering initialisation performs a variation of the clustering parame-
ters such as position, size, shape and density of the clusters. Even though I assume that
an appropriate parametric design for the verb classification is given by isotropic cluster
formation, a variation of initial clusters investigates the relationship between clustering
data and cluster formation. I will therefore apply random initialisations and hierarchical
clusters as input to k-Means.� Selim and Ismail (1984) prove for distance metrices (a subset of the similarity measures
in Section 4.1.3) that k-Means finds locally optimal solutions by minimising the sum-of-
squared-error between the objects in the clusters and theirrespective cluster centroids.� Starting clustering experiments with a hard clustering algorithm is an easier task than ap-
plying a soft clustering algorithm, especially with respect to a linguistic investigation of the
experiment settings and results. Ambiguities are a difficult problem in linguistics, and are
subject to future work. I will investigate the impact of the hard clustering on polysemous
verbs, but not try to model the polysemy within this work.� As to the more general question whether to use a supervised classification or an unsuper-
vised clustering method, this work concentrates on minimising the manual intervention
in the automatic class acquisition. A classification would require costly manual labelling
(especially with respect to a large-scale classification) and not agree with the exploratory
goal of finding as many independent linguistic insights as possible at the syntax-semantic
interface of verb classifications.
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4.2 Clustering Evaluation

A clustering evaluation demands an independent and reliable measure for the assessment and
comparison of clustering experiments and results. In theory, the clustering researcher has ac-
quired an intuition for the clustering evaluation, but in practise the mass of data on the one hand
and the subtle details of data representation and clustering algorithms on the other hand make
an intuitive judgement impossible. An intuitive, introspective evaluation can therefore only be
plausible for small sets of objects, but large-scale experiments require an objective method.

There is no absolute scheme with which to measure clusterings, but a variety of evaluation mea-
sures from diverse areas such as theoretical statistics, machine vision and web-page clustering are
applicable. In this section, I provide the definition of various clustering evaluation measures and
evaluate them with respect to their linguistic application. Section 4.2.1 describes the demands I
expect to fulfill with an evaluation measure on verb clusterings. In Section 4.2.2 I present a range
of possible evaluation methods, and Section 4.2.3 comparesthe measures against each other and
according to the evaluation demands.

4.2.1 Demands on Clustering Evaluation

An objective method for evaluating clusterings should be independent of the evaluator and reli-
able concerning its judgement about the quality of the clusterings. How can we transfer these
abstract descriptions to more concrete demands? Following, I define demands on the task of clus-
tering verbs into semantic classes, with an increasing proportion of linguistic task specificity. I.e.
I first define general demands on an evaluation, then general demands on a clustering evaluation,
and finally demands on the verb-specific clustering evaluation.

The demands on the clustering evaluation are easier described with reference to the formal nota-
tion of clustering result and gold standard classification,so the notation is provided in advance:

Definition 4.1 Given an object setO = fo1; :::; ong with n objects, the clustering result and the
manual classification as the gold standard represent two partitions ofO with C = fC1; :::; Ckg
andM = fM1;M2; :::;Mlg, respectively.Ci 2 C denotes the set of objects in theith cluster of
partitionC, andMj 2M denotes the set of objects in thejth cluster of partitionM .

General Evaluation Demands Firstly, I define a demand on evaluation in general: The evalu-
ation of an experiment should be proceeded against a gold standard, as independent and reliable
as possible. My gold standard is the manual classification ofverbs, as described in Chapter 2.
The classification has been created by the author. To compensate for the sub-optimal setup by a
single person, the classification was developed in close relation to the existing classifications for
German by Schumacher (1986) and English by Levin (1993). In addition, the complete classifi-
cation was finished before any experiments on the verbs were performed.
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General Clustering Demands The second range of demands refers to general properties of a
cluster analysis, independent of the clustering area.� Since the purpose of the evaluation is to assess and compare different clustering exper-

iments and results, the measure should be applicable to all similarity measures used in
clustering, but possibly independent of the respective similarity measure.� The evaluation result should define a (numerical) measure indicating the value of the clus-
tering. The resulting value should either be easy to interpret or otherwise be illustrated
with respect to its range and effects, in order to facilitatethe evaluation interpretation.� The evaluation method should be defined without a bias towards a specific number and
size of clusters.� The evaluation measure should distinguish the quality of (i) the whole clustering partitionC, and (ii) the specific clustersCi 2 C.

Linguistic Clustering Demands The fact that this thesis is concerned with the clustering of
linguistic data sharpens the requirements on an appropriate clustering evaluation, because the
demands on verb classes are specific to the linguistic background and linguistic intuition and not
necessarily desired for different clustering areas. The following list therefore refers to a third
range of demands, defined as linguistic desiderata for the clustering of verbs.

(a) The clustering result should not be a single cluster representing the clustering partition, i.e.jCj = 1. A single cluster does not represent an appropriate model for verb classes.

(b) The clustering result should not be a clustering partition with only singletons, i.e.8Ci 2 C :jCij = 1. A set of singletons does not represent an appropriate modelfor verb classes either.

(c) Let Ci be a correct (according to the gold standard) cluster withjCij = x. Compare this
cluster with the correct clusterCj with jCjj = y > x. The evaluated quality ofCj should
be better compared toCi, since the latter cluster was able to create a larger correctcluster,
which is a more difficult task.

Example:1 Ci = ahnen vermuten wissenCj = ahnen denken glauben vermuten wissen

(d) LetCi be a correct cluster andCj be a cluster which is identical toCi, but contains additional
objects which do not belong to the same class. The evaluated quality of Ci should be better
compared toCj, since the former cluster contains fewer errors.

Example: Ci = ahnen vermuten wissenCj = ahnen vermuten wissenlaufen lachen

1In all examples, verbs belonging to the same gold standard class are underlined in the cluster.
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(e) LetCi be a correct cluster withjCij = x. Compare this cluster with a non-correct clusterCj
with jCjj = x. The evaluated quality ofCi should be better compared toCj, since being of
the same size asCj the proportion of homogeneous verbs is larger.

Example: Ci = ahnen vermuten wissenCj = ahnen vermutenlaufen

(f) Let Ci be a correct cluster withjCij = x. Compare this cluster with the two correct clusters
(obviously in a different partition)Ci1 andCi2 with Ci = Ci1 [ Ci2 . The evaluated quality
of Ci should be better compared to the sum of qualities ofCi1 andCi2 , since the former
manages to cluster the same range of homogeneous verbs in thesame cluster.

Example: Ci = ahnen denken glauben vermuten wissenCi1 = ahnen denken glaubenCi2 = vermuten wissen

(g) Let Ci1 andCi2 be two correct clusters. Compare these clusters with a single non-correct
cluster (obviously in a different partition)Ci with Ci = Ci1 [ Ci2 . The evaluated quality
of Ci should be worse compared to the sum of qualities ofCi1 andCi2 , since the smaller
clusters are completely correct, whereasCi merges the clusters into an incoherent set.

Example: Ci = ahnen denken glaubenlaufen rennenCi1 = ahnen denken glaubenCi2 = laufen rennen

Some of the linguistically defined demands are also subject to general clustering demands, but
nevertheless included in the more specific cases.

The linguistically most distinctive demand on the clustering evaluation deserves specific atten-
tion. It refers to the representation of verb ambiguities, both in the manual and induced classifi-
cations. Two scenarios of verb ambiguity are possible:

1. The manual classification contains verb ambiguity, i.e. there are polysemous verbs which
belong to more than one verb class. The cluster analysis, on the other hand, is based on a hard
clustering algorithm, i.e. each verb is only assigned to onecluster.

2. The manual classification contains verb ambiguity, and the cluster analysis is based on a soft
clustering algorithm, i.e. both verb sets contain verbs which are possibly assigned to multiple
classes.

The third possible scenario, that the manual classificationis without verb ambiguity, but the
cluster analysis is a soft clustering, is not taken into consideration, since it is linguistically un-
interesting. The second scenario is relevant for a soft clustering technique, but since this thesis
is restricted to a hard clustering technique, we can concentrate on scenario 1: the manual clas-
sification as defined in Chapter 2 contains polysemous verbs,but k-Means only produces hard
clusters.
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4.2.2 Description of Evaluation Measures

In the following, I describe a range of possible evaluation measures, with different theoretical
backgrounds and demands. The overview does, of course, not represent an exhaustive list of
clustering evaluations, but tries to give an impression of the variety of possible methods which
are concerned with clustering and clustering evaluation. Not all of the described measures are
applicable to our clustering task, so a comparison and choice of the candidate methods will be
provided in Section 4.2.3.

Contingency Tables Contingency tables are a typical means for describing and defining the
association between two partitions. As they will be of use ina number of evaluation examples
below, their notation is given beforehand.

Definition 4.2 A C �M contingency table is aC �M matrix with rowsCi; 1 � i � k and
columnsMj; 1 � j � l. tij denotes the number of objects that are common to the setCi in
partition C (the clustering result) and the setMj in partition M (the manual classification).
Summing over the row or column values gives the marginal valuesti: and t:j, referring to the
number of objects in classesCi andMj, respectively. Summing over the marginal values results
in the total number ofn objects in the clustering task.

The number of pairs with reference to a specific matrix valuex is calculated by
�x2�; the pairs are

of special interest for a convenient calculation of evaluation results. For illustration purposes, aC �M contingency table is described by an example:M = fM1 = fa; b; cg;M2 = fd; e; fggC = fC1 = fa; bg; C2 = fc; d; eg; C3 = ffggC �M contingency table:M1 M2C1 t11 = 2 t12 = 0 t1: = 2C2 t21 = 1 t22 = 2 t2: = 3C3 t31 = 0 t32 = 1 t3: = 1t:1 = 3 t:2 = 3 n = 6
The number of pairs within the cells of the contingency tables is as follows.M1 M2C1 �t112 � = 1 �t122 � = 0 �t1:2 � = 1C2 �t212 � = 0 �t222 � = 1 �t2:2 � = 3C3 �t312 � = 0 �t322 � = 0 �t3:2 � = 0�t:12 � = 3 �t:22 � = 3 �n2� = 15
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Sum-of-Squared-Error Criterion

Summing over the squared distances between the clustering objects and their cluster representa-
tives (i.e. the respective cluster centroids) is a standardcost function. The evaluation defines a
measure for the homogeneity of the clustering results with respect to the object description data,
but without reference to a gold standard.

The sum-of-squared-errorE originally refers to Euclidean distance, but is applicableto fur-
ther distance measures. The definition was given in Equation(4.18) and is repeated in Equa-
tion (4.19), with the cluster centroid of clusterCi abbreviated asceni.E(C) = kXi=1 Xo2Ci d(o; ceni)2 (4.19)

Silhouette Value

Kaufman and Rousseeuw (1990, pages 83ff) present the silhouette plot as a means for clustering
evaluation. With this method, each cluster is represented by a silhouette displaying which objects
lie well within the cluster and which objects are marginal tothe cluster. The evaluation method
also refers to the object data, but not to a gold standard.

To obtain the silhouette valuesil for an objectoi within a clusterCA, we compare the average
distancea betweenoi and all other objects inCA with the average distanceb betweenoi and
all objects in the neighbour clusterCB, cf. Equations 4.20 to 4.22. For each objectoi applies�1 � sil(oi) � 1. If sil(oi) is large, the average object distance within the cluster is smaller
than the average distance to the objects in the neighbour cluster, sooi is well classified. Ifsil(oi)
is small, the average object distance within the cluster is larger than the average distance to the
objects in the neighbour cluster, sooi has been misclassified.a(oi) = 1jCAj � 1 Xoj2CA;oj 6=oi d(oi; oj) (4.20)b(oi) = minCB 6=CA 1jCBj Xoj2CB d(oi; oj) (4.21)sil(oi) = b(oi)� a(oi)maxfa(oi); b(oi)g (4.22)

In addition to providing information about the quality of classification of a single object, the
silhouette value can be extended to evaluate the individualclusters and the entire clustering. The
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average silhouette widthsil(Ci) of a clusterCi is defined as the average silhouette value for all
objects within the cluster, cf. Equation 4.23, and theaverage silhouette width for the entire data
setwith k clusterssil(k) is defined as the average silhouette value for the individualclusters, cf.
Equation 4.24. sil(Ci) = 1jCij Xoj2Ci sil(oj) (4.23)sil(C) = sil(k) = 1k kXi=1 sil(Ci) (4.24)

Class-based Precision and Recall

What I call a class-based P/R evaluation has originally beendefined by Vilainet al. (1995) as
scoring scheme for the coreference task in MUC6. The evaluation method considers both the
clustering and the manual classification as equivalence classes which are defined by the partic-
ular object links which are necessary to encode the equivalence relations. The precision and
recall scores are obtained by calculating the least number of object links required to align the
equivalence classes.

Let c(Mi) be the minimal number of correct object links which are necessary to generate the
equivalence classMi in the manual classification:c(Mi) = jMij � 1. With jp(Mi)j the number
of classes in the clustering partition containing any of theobjects inMi, the number of missing
object links in the clustering which are necessary to fully reunite the objects of classMi ism(Mi) = jp(Mi)j � 1. Recall for a single cluster is defined as the proportion of existing object
links of the relevant cluster compared to the minimal numberof correct object links.recall(Mi) = c(Mi) � m(Mi)c(Mi) = jMij � jp(Mi)jjMij � 1 (4.25)

Extending the measure from a single equivalence class to theentire classification of the object
setS is realised by summing over the equivalence classes:recallS(C;M) = Pi jMij � jp(Mi)jPi jMij � 1 (4.26)

In the case of precision, we consider the equivalence classesCi in the clustering and calculate
the existing and missing object links in the manual classification with respect to the clustering.precision(Ci) = c(Ci) � m(Ci)c(Ci) = jCij � jp(Ci)jjCij � 1 (4.27)precisionS(C;M) = Pi jCij � jp(Ci)jPi jCij � 1 (4.28)
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Classification Clustering Evaluation
Class Link Class LinkM1 = fa; b; cg a-b, C1 = fa; bg a-b recallS(C;M) = (3�2) + (3�2)(3�1) + (3�1) = 24 = 12

b-c precisionS(C;M) =M2 = fd; e; fg d-e, C2 = fc; d; eg c-d, (2�1) + (3�2) + (1�1)(2�1) + (3�1) + (1�1) = 23
e-f d-e f � scoreS(C;M) = 2� 12� 2312+ 23 = 47C3 = ffg
Table 4.1: Example evaluation for class-based P/R

Thef�scoreS as given in Equation 4.29 is the harmonic mean betweenprecisionS andrecallS.f � scoreS(C;M) = 2 � recallS � precisionSrecallS + precisionS (4.29)

Pair-wise Precision and Recall

Being closest to my clustering area, Hatzivassiloglou and McKeown (1993) present an evaluation
method for clustering in NLP: they define and evaluate a cluster analysis of adjectives. The
evaluation is based on common cluster membership of object pairs in the clustering and the
manual classification. On the basis of common cluster membership, recall and precision numbers
are calculated in the standard way, cf. Equations (4.30) and(4.31). True positivestp are the
number of common pairs inM andC, false positivesfp the number of pairs inC, but notM ,
and false negativesfn the number of pairs inM , but notC. I add the f-score as harmonic mean
between recall and precision, as above. Table 4.2 presents an example of pair-wise precision and
recall calculation. recall = tpfn + tp (4.30)precision = tpfp + tp (4.31)

Adjusted Pair-wise Precision

Pair-wise precision and recall calculation (see above) shows some undesired properties concern-
ing my linguistic needs, especially concerning the recall value. I therefore use the precision value
and adjust the measure by a scaling factor based on the size ofthe respective cluster. The defini-
tion of the adjusted pair-wise precision is given in Equation (4.32). A correct pair refers to a verb
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Classification Clustering EvaluationM1 = fa; b; cg C1 = fa; bg number of common pairs inM andC (tp): 2M2 = fd; e; fg C2 = fc; d; eg number of pairs in classificationM (fn+ tp): 6C3 = ffg number of pairs in clusteringC (fp+ tp): 4recall = 26 = 13precision = 24 = 12f � score = 2� 13� 1213+ 12 = 25
Table 4.2: Example evaluation for pair-wise P/R

Classification Clustering EvaluationM1 = fa; b; cg C1 = fa; bg APP (C1) = 13M2 = fd; e; fg C2 = fc; d; eg APP (C2) = 14C3 = ffg APP (C3) = 0APP (C) = 13 � ( 132 + 143 ) = 13 � (16 + 112) = 112
Table 4.3: Example evaluation for adjusted pair-wise precision

pair which is correct according to the gold standard. The evaluation measure of the whole clus-
tering is calculated by taking the weighted average over thequalities of the individual clusters, as
defined in Equation (4.33). By insertingjCij�1 as weight for each clusterAPP (Ci) I calculate
the average contribution of each verb toAPP (Ci). And since the overall sum ofAPP (C;M)
for the clustering is first summed over all clusters (and therefore over the average contributions
of the verbs) and then divided by the number of clusters, I calculate the average contribution of a
verb to the clustering APP. The measure is developed with specific care concerning the linguistic
demands, e.g. without the addend+1 in the denominator ofAPP (Ci) the linguistic demands
would not be fulfilled. Table 4.3 presents an example of adjusted pair-wise precision.APP (Ci) = number of correct pairs in Cinumber of verbs in Ci + 1 (4.32)APP (C;M) = 1jCj Xi APP (Ci)jCij (4.33)

Mutual Information

The way I define mutual information between the clustering and its gold standard is borrowed
from Strehlet al. (2000) who assess the similarity of object partitions for the clustering of web
documents. Mutual information is a symmetric measure for the degree of dependency between
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Classification Clustering EvaluationM1 = fa; b; cg C1 = fa; bg purity(C1) = 1M2 = fd; e; fg C2 = fc; d; eg purity(C2) = 23C3 = ffg purity(C3) = 1MI(C;M) =16 � (2 � log 2�62�3log(2�3) + ::: + 1 � log 1�61�3log(2�3) ) = 0:27371
Table 4.4: Example evaluation for mutual information

the clustering and the manual classification. It is based on the notion of clusterpurity, which
measures the quality of a single clusterCi referring topji , the largest number of objects in clusterCi whichCi has in common with a gold standard verb classMj, having comparedCi to all gold
standard verb classes inM . purity(Ci) = 1jCij maxj(pji ) (4.34)

The mutual information score between the clusteringC and the manual classificationM is based
on the shared object membership, with a scaling factor corresponding to the number of objects in
the respective clusters, cf. Equation 4.35. The second linein Equation 4.35 relates the definitions
by Strehlet al. to the notation in the contingency table. Table 4.4 presentsan example of mutual
information evaluation.MI(C;M) = 1n kXi=1 lXj=1 pji log( pji � nPka=1 pja Plb=1 pbl )log(k � l)= 1n kXi=1 lXj=1 tij log( tij � nti: � t:j )log(k � l) (4.35)

Rand Index

Rand (1971) defines an evaluation measure for a general clustering problem on basis of agree-
ment vs. disagreement between object pairs in clusterings.He states that clusters are defined
as much by those points which they do not contain as by those points which they do contain.
Therefore, if the elements of an object-pair are assigned tothe same classes in both the clus-
tering and the manual classification, and also if they are assigned to different classes in both
partitions, this represents a similarity between the equivalence classes. The similarity evaluation
is based on the overlap in class agreementA, compared to the class disagreementD, as defined
by Equation (4.36), withA+D = n. Table 4.5 presents an example of the Rand index.Rand(C;M) = Pni<j 
(oi; oj)�n2� (4.36)
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Classification Clustering EvaluationM1 = fa; b; cg C1 = fa; bg agree : number object pairs together in bothM andC: 2M2 = fd; e; fg C2 = fc; d; eg agree : number object pairs separate in bothM andC: 7C3 = ffg disagree : number object pairs mixed inM andC: 6Rand(C;M) = 2+72+7+6 = 915 = 0:6
Table 4.5: Example evaluation for Rand index

where
(oi; oj) = 8>>><>>>:1 if there existCA 2 C andMB 2M such that objectsoi andoj are inCA andMB;1 if there existCA 2 C andMB 2M such thatoi is in bothCA andMB
while oj is in neitherCA orMB;0 otherwise:

(4.37)

Rand Index adjusted by Chance

Hubert and Arabie (1985) argue for a correction of the Rand index for chance, in the sense that
the index would take on some constant value (e.g. zero) underan appropriate null model of
how the partitions have been chosen. According to Hubert andArabie, the most obvious model
for randomness assumes that theC �M contingency table is constructed from the generalised
hyper-geometric distribution, i.e. theC andM partitions are picked at random, given the original
number of classes and objects.

The general form of an index corrected for chance is given in Equation (4.38).2 The indexrefers
to the observed number of object pairs on which the partitions agree. The expected number
of object pairs with class agreement attributable to a particular cell in the contingency table
is defined by the number of pairs in the row times the number of pairs in the column divided
by the total number of pairs, cf. Equation (4.39). The maximum number of object pairs is
given by the average number of possible pairs in the clustering and the manual classification.
Other possibilities for the maximum index would be e.g. the minimum of the possible pairs in
clustering and manual classificationmin(Pi �ti:2 �;Pj �t:j2 �) or simply the possible pairs in the
manual classification

Pj �t:j2 � when considering the manual classification as the optimum. The
corrected Rand index is given in Equation (4.40). The range of Radj is 0 � Radj � 1, with only
extreme cases below zero. Table 4.6 presents an example.Indexadj = Index � Expected IndexMaximum Index � Expected Index (4.38)

2In psychological literature, the index is referred to askappa statistic(Cohen, 1960).
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Classification Clustering EvaluationM1 = fa; b; cg C1 = fa; bg Randadj = 2 � 4�61512 (4+6) � 4�615 = 2 � 855 � 85 = 0:11765M2 = fd; e; fg C2 = fc; d; egC3 = ffg
Table 4.6: Example evaluation for adjusted Rand indexExp�tij2 � = �ti:2 � �t:j2 ��n2� (4.39)Randadj(C;M) = Pi;j �tij2 � � Pi (ti:2 ) Pj (t:j2 )(n2)12 (Pi �ti:2 � + Pj �t:j2 �) � Pi (ti:2 ) Pj (t:j2 )(n2) (4.40)

Matching Index

Fowlkes and Mallows (1983) define another evaluation methodbased on contingency tables.
Their motivation is to define a measure of similarity betweentwo hierarchical clusterings, as a
sequence of measures which constitute the basis for a plotting procedure, to compare different
cut-combinations in the hierarchies. The measureBk is derived from theC �M contingency
table withC referring to a hierarchical clustering cut at leveli, andM referring to a hierarchi-
cal clustering cut at levelj. Bk compares the match of assigning pairs of objects to common
clusters with the total number of possible pairs, the clustering marginals;Bk is defined as in
Equation (4.41). Table 4.7 presents an example of the matching index, based on the contingency
table. Bk(C;M) = TkpPk Qk (4.41)

where Tk = kXi=1 lXj=1 t2ij � n (4.42)Pk = kXi=1 t2i: � n (4.43)Qk = lXj=1 t2:j � n (4.44)
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Classification Clustering EvaluationM1 = fa; b; cg C1 = fa; bg Tk = 4 + 1 + 4 + 1� 6 = 4M2 = fd; e; fg C2 = fc; d; eg Pk = 4 + 9 + 1� 6 = 8C3 = ffg Qk = 9 + 9� 6 = 12Bk = 4p8�12 = 4p96 = 0:40825
Table 4.7: Example evaluation for matching index

4.2.3 Comparison of Evaluation Measures

Section 4.2.2 has described a variety of possible measures to evaluate the result of a cluster
analysis. Following, the different measures are compared against each other and according to the
demands of a clustering evaluation, as defined in Section 4.2.1. The comparison is performed
in Table 4.8, which lists the evaluation methods against thedemands. The demands are briefly
repeated:� Reference to gold standard (given:+ or not given:-)� Applicable to all similarity measures (yes:+ or no:-)� Independent of similarity measure (yes:+ or no:-)� Value for specific cluster and whole clustering (yes:+ or no:-)� Bias in cluster number (none:-)� Sensibility to linguistic desiderata (list of failures; none:-), with a brief repetition of the

desiderata from Section 4.2.1:

(a) Clustering result should not bejCj = 1.
(A failure of this desideratum corresponds to a bias towardsfew large clusters.)

(b) Clustering result should not be singletons.
(A failure of this desideratum corresponds to a bias towardsmany small clusters.)

(c) Larger correct cluster should be better than smaller correct cluster.

(d) Correct cluster should be better than same cluster with noise.

(e) Correct cluster withx objects should be better than noisy cluster withx objects.

(f) Correct union of correct clusters should be better than separate clusters.

(g) Correct, separated clusters should be better than incorrect union.

The success and failure of the desiderata have been evaluated on artificial clustering exam-
ples which model the diverse clustering outputs.
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This issue refers to an experiment for illustrating the sensibility of the evaluation measures
to a step-wise introduction of errors. First the manual classification is evaluated against
itself, then I introduce an artificial error and evaluate theresult again, etc. The error intro-
duction is repeated 25 times, and an evaluation method sensible to the error introduction
should react monotonically in its quality score. Figures 4.3 to 4.5 illustrate the error sensi-
bility of APP , the pair-wise f-scorePairF andRandadj.� Interpretation (minimum and maximum value, if existing, else:-)

The core distinction between the methods is their referenceto the gold standard: The sum-
of-squared-error and silhouette plot do not refer to the gold standard at all, they measure the
quality of the cluster analysis with reference to the data definition and similarity measure. Class-
based P/R’s underlying idea is very different to any other evaluation method; it compares the
distribution of verbs belonging to a common semantic class over the different sets in a partition.
Both pair-wise P/R and the adjusted precision measure consider the verb pairs correctly formed
by the cluster analysis, with APP incorporating the linguistic desiderata. All other evaluation
methods concentrate on the number of verbs agreeing in the gold standard and guessed partitions,
as provided by contingency tables; mutual information weights the score by the sizes of the
respective sets, the Rand index by the number of possible pairs, and the adjusted Rand index and
the matching index take the expected number of agreeing verbs into account.

Table 4.8 illustrates that the different methods have individual strengths and weaknesses. (a)
Evaluation measures without general minimum and maximum ofthe quality scores are more
difficult, but possible to interpret. (b) In general, it is better to have quality values for both the
specific clusters and the whole clustering, but we can do without the former. (c) Not acceptable
for my linguistic needs are evaluation methods which (i) do not refer to the gold standard, be-
cause I want to measure how close we come to that, (ii) are dependent on a specific similarity
measure, because I want to be able to compare the clustering results based on a range of simi-
larity measures, (iii) have a strong bias towards many smallor few large clusters, (iv) fail on a
variety of linguistic demands, or (v) do not behave monotonically on error introduction.

To conclude, applicable evaluation methods to my clustering task are the f-score of pair-wise
P/RPairF , the adjusted pair-wise precisionAPP , the adjusted Rand indexRandadj , and the
matching indexBk. Empirically, there is no large differences in the judgement of these methods,
so I decided to concentrate on three measures with differentaspects on the cluster evaluation:APP as the most linguistic evaluation,PairF which provides an easy to understand percentage
(usually the reader is familiar with judging about percentages), and theRandadj which provides
the most appropriate reference to a null model.
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gold standard similarity measure value
applicable independent specific whole

Error - + - + +
Silhouette - + - + +

ClassR + + + - +
ClassP + + + + +
ClassF + + + - +

PairR + + + - +
PairP + + + - +
PairF + + + - +

APP + + + + +
MI + + + + +

Rand + + + - +
Randadj + + + - +

B-k + + + - +

bias linguistics error interpretation
(failure) min max

Error many small b, c, f - - -
Silhouette many small b, f - -1 1

ClassR few large a, d, g + 0 100
ClassP many small b, f + 0 100
ClassF few large a + 0 100

PairR few large a, d, g + 0 100
PairP - c, f + 0 100
PairF - - + 0 100

APP - - + 0 -
MI many small b + 0 -

Rand many small b, d + 0 1
Randadj - - + 0 1

B-k - - + 0 1

Table 4.8: Comparison of evaluation measures
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4.3 Summary

This chapter has provided an overview of clustering algorithms and evaluation methods which
are relevant for the natural language clustering task of clustering verbs into semantic classes. I
have introduced the reader into the background of clustering theory and step-wise related the
theoretical parameters for a cluster analysis to the linguistic cluster demands:� The data objects in the clustering experiments are German verbs.� The clustering purpose is to find a linguistically appropriate semantic classification of the

verbs.� I consider the alternation behaviour a key component for verb classes as defined in Chap-
ter 2. The verbs are described on three levels at the syntax-semantic interface, and the
representation of the verbs is realised by vectors which describe the verbs by distributions
over their features.� As a means for comparing the distributional verb vectors, I have presented a range of sim-
ilarity measures which are commonly used for calculating the similarity of distributional
objects.� I have described a range of clustering techniques and arguedfor applying the hard cluster-
ing technique k-Means to the German verb data. k-Means will be used in the clustering
experiments, initialised by random and hierarchically pre-processed cluster input.� Based on a series of general evaluation demands, general clustering demands and specific
linguistic clustering demands, I have presented a variety of evaluation measures from di-
verse areas. The different measures were compared against each other and according to the
demands, and the adjusted pair-wise precisionAPP , the f-score of pair-wise P/RPairF ,
and the adjusted Rand indexRandadj were determined for evaluating the clustering exper-
iments in the following chapter.


