Chapter 4

Clustering Algorithms and Evaluations

There is a huge number of clustering algorithms and also numsepossibilities for evaluating
a clustering against a gold standard. The choice of a saitalbktering algorithm and of a
suitable measure for the evaluation depends on the clngtebjects and the clustering task. The
clustering objects within this thesis are verbs, and thstehing task is a semantic classification
of the verbs. Further cluster parameters are to be explotedmhe cluster analysis of the verbs.

This chapter provides an overview of clustering algoritrand evaluation methods which are
relevant for the natural language clustering task of chuggeverbs into semantic classes. Sec-
tion 4.1 introduces clustering theory and relates the #texa assumptions to the induction of
verb classes. Section 4.2 describes a range of possibleatieal methods and determines rele-
vant measures for a verb classification. The theoreticalragsons in this chapter are the basis
for the clustering experiments in the following Chapter 5.

4.1 Clustering Theory

The section starts with an introduction into clusteringotiyan Section 4.1.1. Section 4.1.2 re-
lates the theoretical definitions of data objects, clustepurpose and object features to verbs as
the clustering target within this thesis, and Section 4cbi&entrates on the notion of similarity
within the clustering of verbs. Finally, Section 4.1.4 defirihe clustering algorithms as used in
the clustering experiments and refers to related cluggepproaches. For more details on clus-
tering theory and other clustering applications than thé etassification, the interested reader
is referred to the relevant clustering literature, such adekberg (1973); Duda and Hart (1973);
Steinhausen and Langer (1977); Jain and Dubes (1988); Keauénd Rousseeuw (1990); Jain
et al.(1999); Dudeet al. (2000).
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180 CHAPTER 4. CLUSTERING ALGORITHMS AND EVALUATIONS
4.1.1 Introduction

Clustering is a standard procedure in multivariate datdyarsa It is designed to explore an in-
herent natural structure of the data objects, where objedtse same cluster are as similar as
possible and objects in different clusters are as dissiraggpossible. The equivalence classes
induced by the clusters provide a means for generalising thvedata objects and their fea-
tures. Clustering methods are applied in many domains, asichedical research, psychology,
economics and pattern recognition.

Human beings often perform the task of clustering unconstyo for example when looking at a
two-dimensional map one automatically recognises diffeaeeas according to how close to each
other the places are located, whether places are sepayateeis, lakes or a sea, etc. However,
if the description of objects by their features reachesdérglimensions, intuitive judgements are
less easy to obtain and justify.

The termclusteringis often confused with alassificationor a discriminant analysis But the
three kinds of data analyses refer to different ideas andlistenguished as follows: Cluster-
ing is (a) different from a classification, because classiin assigns objects to already defined
classes, whereas for clustering no a priori knowledge atimibbject classes and their mem-
bers is provided. And a cluster analysis is (b) differentrfra discriminant analysis, since dis-
criminant analysis aims to improve an already providedsif@sition by strengthening the class
demarcations, whereas the cluster analysis needs toisktti® class structure first.

Clustering is an exploratory data analysis. Thereforegpmorer might have no or little infor-
mation about the parameters of the resulting cluster aisalys typical uses of clustering the
goal is to determine all of the following:

The number of clusters,

The absolute and relative positions of the clusters,
The size of the clusters,

The shape of the clusters,

The density of the clusters.

The cluster properties are explored in the process of thearlanalysis, which can be split into
the following steps.

Definition of objects: Which are the objects for the clustealysis?

Definition of clustering purpose: What is the interestlirstering the objects?

Definition of features: Which are the features that desdfie objects?

Definition of similarity measure: How can the objects bmpared?

Definition of clustering algorithm: Which algorithm isitable for clustering the data?

o g ks wh P

Definition of cluster quality: How good is the clusterirggult? What is the interpretation?
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Depending on the research task, some of the steps might belhagiven by the task, others
are not known in advance. Typically, the understanding efathalysis develops iteratively with
the experiments. The following sections define a clustetyaisawith respect to the task of
clustering verbs into semantic classes.

4.1.2 Data Objects, Clustering Purpose and Object Features

This work is concerned with inducing a classification of Gamverbs, i.e. the data objects
in the clustering experiments at@erman verbs and the clustering purpose is to investigate
the automatic acquisition of a linguistically appropriagmantic classificationof the verbs.
The degree of appropriateness is defined with respect taldzes iof a verb classification at the
syntax-semantic interface in Chapter 2.

Once the clustering target has been selected, the objeetsameattribute description as basis
for comparison. The properties are grasped by the datarésatwhich describe the objects
in as many dimensions as necessary for the object clustefing choice of features is of ex-
treme importance, since different features might leadfferdint clustering results. Kaufman and
Rousseeuw (1990, page 14) emphasise the importance bygdtaait ‘a variable not containing
any relevant information is worse than useless, becausé make the clustering less apparent
by hiding the useful information provided by the other vahes'.

Possible features to describe German verbs might inclugdiad of information which helps
classify the verbs in a semantically appropriate way. THeatures include the alternation be-
haviour of the verbs, their morphological properties, itlagixiliary selection, adverbial combi-
nations, etc. Within this thesis, | concentrate on defintmg\terb features with respect to the
alternation behaviour, because | considerdtiernation behaviour a key component for verb
classes as defined in Chapter 2. So | rely on the meaning-ioeinaelationship for verbs and
use empirical verb properties at thgntax-semantic interfaceto describe the German verbs.

The verbs are described on three levels at the syntax-seniaetrface, each of them refining
the previous level by additional information. The first leeecodes a purely syntactic definition
of verb subcategorisation, the second level encodes actynatasemantic definition of subcate-
gorisation with prepositional preferences, and the theéxel encodes a syntactico-semantic def-
inition of subcategorisation with prepositional and setewl preferences. So the refinement of
verb features starts with a purely syntactic definition aieg-svise adds semantic information.
The most elaborated description comes close to a definifitimeoverb alternation behaviour. |
have decided on this three step proceeding of verb desmrgtbecause the resulting clusters and
even more the changes in clustering results which come withaage of features should pro-
vide insight into the meaning-behaviour relationship atgfintax-semantic interface. The exact
choice of the features is presented and discussed in dethi iexperiment setup in Chapter 5.

The representation of the verbs is realised by vectors witédtribe the verbs by distributions
over their features. As explained in Chapter 1, the distioimal representation of features for
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natural language objects is widely used and has been jdshfieHarris (1968). The feature
values for the distributions are provided by the German gnamas described in Chapter 3. The
distributions refer to (i) real values representing frequencies of the features witkl f, (ii)
real valueg representing probabilities of the features withk< p < 1, and (iii) binary values

b with b € {0,1}. Generally speaking, a standardisation of measuremets which converts
the original measurements (such as frequencies) to uniksables (such as probabilities) on
the one hand may be helpful by avoiding the preference of eifégpanit, but on the other hand
might dampen the clustering structure by eliminating theolite value of the feature.

4.1.3 Data Similarity Measures

With the data objects and their features specified, a meart®foparing the objects is needed.
The German verbs are described by features at the syntaasienmterface, and the features are
represented by a distributional feature vector. A range @disures calculates either the distance
d or the similaritysim between two objects andy. The notions of ‘distance’ and ‘similarity’
are related, since the smaller the distance between twotsbjfae more similar they are to each
other. All measures refer to the feature values in some wayhky consider different properties
of the feature vector. There is no optimal similarity meassmce the usage depends on the task.
Following, | present a range of measures which are commasdy for calculating the similarity

of distributional objects. | will use all of the measureshe tlustering experiments.

Minkowski Metric ~ The Minkowski metricor L, norm calculates the distaneebetween the
two objectsz andy by comparing the values of their features, cf. Equation (4.1). The
Minkowski metric can be applied to frequency, probabilibgddinary values.

4.1)

Two important special cases of the Minkowski metric @re 1 andq = 2, cf. Equations (4.2)
and (4.3).

e Manhattan distancer City block distancer L, norm
d(z,y) = L = Z v — yil (4.2)
=1
e Euclidean distancer L, nornt

(4.3)
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Kullback-Leibler Divergence The Kullback-Leibler divergence (KLdr relative entropyis
defined in Equation (4.4). KL is a measure from informatiogeatty which determines the inef-
ficiency of assuming a model distribution given the truertistion (Cover and Thomas, 1991).
It is generally used for: andy representing probability mass functions, but | will alsplgghe
measure to probability distributions with,, z; > 1 and) . y; > 1.

d(x,y) (z]ly) = Z T * log — (4.4)

The Kullback-Leibler divergence is not defined in case= 0, so the probability distributions
need to be smoothed. Two variants of Khformation radiusn Equation (4.5) andkew diver-
gencein Equation (4.6), perform a default smoothing. Both vaisazan tolerate zero values in
the distribution, because they work with a weighted averdgbe two distributions compared.
Lee (2001) has recently shown that the skew divergence iffeatiee measure for distributional
similarity in NLP. Related to Lee, | set the weightfor the skew divergence to 0.9.

x+y

d(z,y) = IRad(z,y) = D(al| =) + DY) (4.5)

d(z,y) = Skew(z,y) = D(z|lwxy + (1 —w) *x) (4.6)

7 coefficient Kendall'st coefficient(Kendall, 1993) compares all feature pairs of the two ob-
jectsz andy in order to calculate their distance. (f;,v;) and(xz;,y,) are two pairs of the
features; andj for the objectsr andy, the pairs are concordantif > z; andy; > y; or if

z; < zj andy; < y;, and the pairs are discordantif > z; andy; < y; orif z; < z; andy; > y;.

If the distributions of the two objects are similar, a largenber of concordances is expected,
otherwise a large number of discordanggdgs expected.r is defined in Equation (4.7), with
p. the probability of concordances apgl the probability of discordances;ranges from -1 to

1. Ther coefficient can be applied to frequency and probability @aluHatzivassiloglou and
McKeown (1993) use to measure the similarity between adjectives.

fc fd

A7 Ay Mk C 4D

sim(z,y) = (r,y) =

Cosine cos(z,y) measures the similarity of the two objeatandy by calculating theosine of

the anglebetween their feature vectors. The degrees of similaritgegrom—1 (highest degree
of dissimilarity with vector angle £80°) over0 (angle =90°) to 1 (highest degree of similarity
with vector angle %°). For positive feature values, the cosine lies between Qlaridhe cosine
measure can be applied to frequency, probability and bivanes.

D i Ti % Yi 48
\/Zzl z*\/Zzlyz ()

sim(z, y) = cos(x,y) =
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Binary Distance Measures In addition, there are specific measures for binary distioing.
The following list is taken from Manning and Schitze (199=)e measures are defined on basis
of the feature set& andY for the objects: andy, respectively. Referring to the notion of set
intersection and set union, the agreement and disagreaita feature values is measured.

e Thematching coefficientounts the dimensions on which both vectors are non-zero.

sim(z,y) = match(z,y) = | X NY|= Z |z; = y; = 1] (4.9)
i=1

e TheDice coefficienhormalises the matching coefficient for length by dividiryghe total
number of non-zero entries.

(XTI i =1 + X5 |y =1

sim(z,y) = dice(x,y) =
e TheJaccard coefficienbr Tanimoto coefficierppenalises a small number of shared entries
(as a proportion of all non-zero entries) more than the Dogdficient does.

XY Y ==
XUV~ S @ =DV (5 =1)]

sim(z,y) = jaccard(z, y) (4.12)

e Theoverlap coefficient (olhas a value of if every feature with a non-zero value for the
first object is also non-zero for the second object or viceagre. X C Y orY C X.

| XNy S g =g = 1]
= ol(z,y) = = i= 4.12
sim(@y) = ol(w.9) = TE ORTIVY - min(s, = 1,5 g =1) 2

4.1.4 Clustering Algorithms

Clustering is a task for which many algorithms have been@ed. No clustering technique is

universally applicable, and different techniques are ot for different clustering purposes.

So an understanding of both the clustering problem and tsering technique is required to

apply a suitable method to a given problem. In the followindgscribe general parameters of a
clustering technique which are relevant to the task of intya verb classification.

e Parametric design

Assumptions may (but need not) be made about the form of #tghilition used to model
the data by the cluster analysis. The parametric designiégh@uchosen with respect to
the nature of the data. It is often convenient to assume xamele, that the data can be
modelled by a multivariate Gaussian.
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e Position, size, shape and density of the clusters

The experimenter might have an idea about the desired dlugteesults with respect to
the position, size, shape and density of the clusters. i@ifteclustering algorithms have
different impact on these parameters, as the descriptitiveatlgorithms will show. There-
fore, varying the clustering algorithm influences the degigrameters.

e Number of clusters

The number of clusters can be fixed if the desired number isvkrizeforehand (e.g. be-
cause of a reference to a gold standard), or can be varieditth&roptimal cluster analysis.
As Dudaet al. (2000) state, ‘In theory, the clustering problem can beexbly exhaustive
enumeration, since the sample set is finite, so there areaofibyte number of possible
partitions; in practice, such an approach is unthinkabiefiobut the simplest problems,
since there are at the order%ﬁ‘ ways of partitioning a set of elements intd: subsets’.

e Ambiguity:

Verbs can have multiple senses, requiring them being asdigpnmultiple classes. This
is only possible by using a soft clustering algorithm, whagfines cluster membership
probabilities for the clustering objects. A hard clustgrigorithm performs ges/no
decision on object membership and cannot model verb anijduit it is easier to use
and interpret.

The choice of a clustering algorithm determines the settirtpe parameters. In the following
paragraphs, | describe a range of clustering algorithmgtagidparameters. The algorithms are
divided into (A) hierarchical clustering algorithms and) (Bartitioning clustering algorithms.
For each type, | concentrate on the algorithms used in tegdland refer to further possibilities.

A) Hierarchical Clustering

Hierarchical clustering methods impose a hierarchicalcstre on the data objects and their
step-wise clusters, i.e. one extreme of the clusteringsitre is only one cluster containing all
objects, the other extreme is a number of clusters whichlediu@number of objects. To obtain
a certain numbet of clusters, the hierarchy is cut at the relevant depth. aianical clustering

is a rigid procedure, since it is not possible to re-orgaanissters established in a previous step.
The original concept of a hierarchy of clusters creates blasters, but as e.g. Lee (1997) shows
that the concept may be transferred to soft clusters.

Depending on whether the clustering is performed top-dowen, from a single cluster to the

maximum number of clusters, or bottom-up, i.e. from the mmaxn number of clusters to a

single cluster, we distinguish divisive and agglomerativestering. Divisive clustering is com-

putationally more problematic than agglomerative clustgrbecause it needs to consider all
possible divisions into subsets. Therefore, only agglatne clustering methods are applied in
this thesis. The algorithm is described in Figure 4.1.
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1 Given: a set of object® = {0y, ...,0,} C R™;
a function for distance measufe R™ x R™ — R
2 for all objectso; € O do
3 establish clustet; = {o;}
4 letC ={C,..C,}
5 while |C|#1do
6 for all pairs of clustergC;, Cj;) € C x C do
7 calculated(C;, C})
8 let best(C’i, C]) = V<Ck7gi, Cl;,gk,j> eCxC: [d(CZ, C]) < d(Ck, Cl)]
9 for best(C;, C;) do

10 let Cij =C;U Cj

11 let C™ev = C\{C’Z,C’]}
12 let C = C™* U Cij

13 end

Figure 4.1: Algorithm for agglomerative hierarchical dkring

The algorithm includes a notion of measuring and comparistadces between clusters (step
7). So far, | have introduced measures for object distandesanilarity in Section 4.1.3, but

| have not introduced measures for cluster distance. Theegmirof cluster distance is based
on the concept of object distance, but refers to differeeagdof cluster amalgamation. Below,
five well-known measures for cluster amalgamation are ¢htced. All of them are used in the

clustering experiments.

Nearest Neighbour Cluster Distance The distancel between two cluster§’; andC} is de-
fined as the minimum distance between the cluster objectsEgtiation (4.13). The cluster
distance measure is also referred tei@gle-linkage Typically, it causes a chaining effect con-
cerning the shape of the clusters, i.e. whenever two ckistane close too each other, they stick
together even though some members might be far from each othe

d(Cza C]) - dmzn(cza C]) - mianCz‘,yGde(xa y) (413)

Furthest Neighbour Cluster Distance The distancel between two cluster§; andC) is de-
fined as the maximum distance between the cluster object&afiation (4.14). The cluster
distance measure is also referred texasplete-linkageTypically, it produces compact clusters
with small diameters, since every object within a clustesupposed to be close to every other
object within the cluster, and outlying objects are not inpooated.

d(CZ, C]) - dmaz(cia C]) - maxxeci,yeC]- d(l‘, y) (414)
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Distance between Cluster Centroids The distancé between two clusteis; andC; is defined

as the distance between the cluster centraidg andcen;, cf. Equation (4.15). The centroid of
a cluster is determined as the average of objects in theecJust. each feature of the centroid
vector is calculated as the average feature value of thengeof all objects in the cluster. The
cluster distance measure is a natural compromise betweeretirest and the furthest neighbour
cluster distance approaches. Different to the above appesait does not impose a structure on
the clustering effect.

d(Cl, C]) = dmean(cia C]) = d(ceni, cenj) (415)

Average Distance between Clusters The distancel between two clusters andc; is defined
as the average distance between the cluster objects, catibqy4.16). Liked,,..., the cluster
distance measure is a natural compromise between the naadethe furthest neighbour cluster
distance approaches. It does not impose a structure onustechg effect either.

d(CZJCJ) = davg(CZJC ) |C| |C | Z Z d iy y (416)

zeC; yely

Ward’s Method The distancel between two clusterS; andC; is defined as the loss of infor-
mation (or: the increase in error) in merging two clustersity 1963), cf. Equation (4.17). The
error of a clustet’ is measured as the sum of distances between the objectsalugiter and the
cluster centroidenc. When merging two clusters, the error of the merged clusti&rger than
the sum or errors of the two individual clusters, and theeefepresents a loss of information.
But the merging is performed on those clusters which are mmstogeneous, to unify clusters
such that the variation inside the merged clusters inceeasdittle as possible. Ward’s method
tends to create compact clusters of small size. It is a legstres method, so implicitly assumes
a Gaussian model.

d(Ci, C}) = dyera(Ci, Cj) = Z d(z, cen;;) — [Z d(z, cen;) + Z d(z, cen;)]
ze(C;UCy) zeC; xrEcen;

(4.17)

B) Partitioning Clustering

Partitioning clustering methods partition the data obgattinto clusters where every pair of ob-
ject clusters is either distinct (hard clustering) or hassmembers in common (soft clustering).
Partitioning clustering begins with a starting clustertpian which is iteratively improved until

a locally optimal partition is reached. The starting clustean be either random or the cluster
output from some clustering pre-process (e.g. hierartblaatering). In the resulting clusters,

the objects in the groups together add up to the full object se
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k-Means Clustering The k-Means clustering algorithm is an unsupervised handteting
method which assigns thedata object®, ..., 0, to a pre-defined number of exactyclusters
C4, ..., Ck. Initial verb clusters are iteratively re-organised byigissg each verb to its closest
cluster (centroid) and re-calculating cluster centroidsluno further changes take place. The
optimising criterion in the clustering process is the sursguared-erro between the objects
in the clusters and their respective cluster centredds, ..., ceny, cf. Equation (4.18).

k
E = Z Z d(o, cen;)? (4.18)

i=1 o0eC}

The k-Means algorithm is sensitive to the selection of theainpartition, so the initialisation
should be varied. k-Means imposes a Gaussian parametigndas the clustering result and
generally works well on data sets with isotropic clusterpghaince it tends to create compact
clusters. The time complexity of k-Means@gn) with n the number of objects. Several vari-
ants of the k-Means algorithm exist. Within this thesisstduing is performed by the k-Means
algorithm as proposed by Forgy (1965). Figure 4.2 definesaldm@ithm.

1 Given: a set of object® = {0y, ...,0,} C R™;
a function for distance measufe R™ x R™ — R;
a (random/pre-processed) clustering partitioe= {C1, ..., C }
2 do
3 for all clustersC; € C do
4 calculate cluster centroigkn; C R™
5 for all objectso € O do
6 for all clustersC; € C do
7 calculated(o, C;) = d(o, cen;)
8 let best (o, C,) = VC; € C : [d(o, ceng,) < d(o, ceng; )]
9 undefine C™¢"
10 for all objectso € O do
11 for best(o, C,) do
12 leto € CIev
13 if C' # C™" then change = true
14 elsechange = false
15 until change = false

Figure 4.2: Algorithm for k-Means clustering

Other Clustering Methods k-Means is a hard clustering algorithm. But some clustepiradp-
lems require the clustering objects being assigned to pleltiasses. For example, to model verb
ambiguity one would need a soft clustering algorithm. Exksor soft clustering algorithms
which are based on the same data model as k-Means are sudzgasliistering (Zadeh, 1965),
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cf. also Hoppneet al. (1997) and Dudat al. (2000), and thé&xpectation-Maximisation (EM)
Algorithm (Baum, 1972) which can also be implemented as a soft vergi@Means with an
underlying Gaussian model.

The above methods represent a standard choice for clugiarpattern recognition, cf. Duda
et al.(2000). Clustering techniques with different backgrouredeag. theNearest Neighbour Al-
gorithm(Jarvis and Patrick, 1973Fraph-Based Clusterinfzahn, 1971), andrtificial Neural
NetworkgHertzet al., 1991). Recently, elaborated techniques from especialiyge processing
have been transfered to linguistic clustering, sucBpectral ClusteringdBrew and Schulte im
Walde, 2002).

C) Decision on Clustering Algorithm

Within the scope of this thesis, | apply the hard clustereahhique k-Means to the German verb
data. | decided to use the k-Means algorithm for the clusgebecause it is a standard clustering
technique with well-known properties. In addition, seefthilowing arguments.

e The parametric design of Gaussian structures realisesi#iaethat objects should belong
to a cluster if they are very similar to the centroid as theaye description of the cluster,
and that an increasing distance refers to a decrease iecctastbership. In addition, the
isotropic shape of clusters reflects the intuition of a cothparb classification.

e A variation of the clustering initialisation performs a iaion of the clustering parame-
ters such as position, size, shape and density of the cdusisen though | assume that
an appropriate parametric design for the verb classifioaaiven by isotropic cluster
formation, a variation of initial clusters investigate® ttelationship between clustering
data and cluster formation. | will therefore apply randontiatisations and hierarchical
clusters as input to k-Means.

e Selim and Ismail (1984) prove for distance metrices (a subisthne similarity measures
in Section 4.1.3) that k-Means finds locally optimal solaidy minimising the sum-of-
squared-error between the objects in the clusters andrdsgective cluster centroids.

e Starting clustering experiments with a hard clusteringatgm is an easier task than ap-
plying a soft clustering algorithm, especially with respiea linguistic investigation of the
experiment settings and results. Ambiguities are a diffigrdblem in linguistics, and are
subject to future work. | will investigate the impact of thartl clustering on polysemous
verbs, but not try to model the polysemy within this work.

e As to the more general question whether to use a superviassifitation or an unsuper-
vised clustering method, this work concentrates on miningishe manual intervention
in the automatic class acquisition. A classification wowduire costly manual labelling
(especially with respect to a large-scale classificatiow) @ot agree with the exploratory
goal of finding as many independent linguistic insights assgile at the syntax-semantic
interface of verb classifications.
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4.2 Clustering Evaluation

A clustering evaluation demands an independent and reli@gasure for the assessment and
comparison of clustering experiments and results. In thebe clustering researcher has ac-
quired an intuition for the clustering evaluation, but imgise the mass of data on the one hand
and the subtle details of data representation and clugtatgorithms on the other hand make
an intuitive judgement impossible. An intuitive, introgpige evaluation can therefore only be
plausible for small sets of objects, but large-scale expents require an objective method.

There is no absolute scheme with which to measure clusterng a variety of evaluation mea-
sures from diverse areas such as theoretical statistichingvision and web-page clustering are
applicable. In this section, | provide the definition of vars clustering evaluation measures and
evaluate them with respect to their linguistic applicati®ection 4.2.1 describes the demands |
expect to fulfill with an evaluation measure on verb clusigsi In Section 4.2.2 | present a range
of possible evaluation methods, and Section 4.2.3 complagareasures against each other and
according to the evaluation demands.

4.2.1 Demands on Clustering Evaluation

An objective method for evaluating clusterings should lmependent of the evaluator and reli-
able concerning its judgement about the quality of the ehisgjs. How can we transfer these
abstract descriptions to more concrete demands? Followiledine demands on the task of clus-
tering verbs into semantic classes, with an increasinggtimm of linguistic task specificity. |.e.

| first define general demands on an evaluation, then genem@ads on a clustering evaluation,
and finally demands on the verb-specific clustering evalnati

The demands on the clustering evaluation are easier deda#iibh reference to the formal nota-
tion of clustering result and gold standard classificatemnthe notation is provided in advance:

Definition 4.1 Given an object sed = {o4, ..., 0, } with n objects, the clustering result and the
manual classification as the gold standard represent twditi@ans of O with C' = {C1, ..., Cy}
andM = {M,, M,, ..., M,}, respectivelyC; € C denotes the set of objects in thb cluster of
partition C, and M/; € M denotes the set of objects in tjté cluster of partition)/.

General Evaluation Demands Firstly, | define a demand on evaluation in general: The evalu
ation of an experiment should be proceeded against a goidatd, as independent and reliable
as possible. My gold standard is the manual classificatioredss, as described in Chapter 2.
The classification has been created by the author. To corafeefts the sub-optimal setup by a
single person, the classification was developed in closg¢ioelto the existing classifications for
German by Schumacher (1986) and English by Levin (1993)dtttian, the complete classifi-
cation was finished before any experiments on the verbs vefermed.
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General Clustering Demands The second range of demands refers to general properties of a
cluster analysis, independent of the clustering area.

e Since the purpose of the evaluation is to assess and comiii@ernt clustering exper-
iments and results, the measure should be applicable ton@lbgty measures used in
clustering, but possibly independent of the respectivalaiity measure.

e The evaluation result should define a (humerical) measulieating the value of the clus-
tering. The resulting value should either be easy to in&trpr otherwise be illustrated
with respect to its range and effects, in order to facilitageevaluation interpretation.

e The evaluation method should be defined without a bias tawarsgpecific number and
size of clusters.

e The evaluation measure should distinguish the quality)ah@é whole clustering partition
C, and (i) the specific clusteis; € C.

Linguistic Clustering Demands The fact that this thesis is concerned with the clustering of
linguistic data sharpens the requirements on an apprepelastering evaluation, because the
demands on verb classes are specific to the linguistic baskgrand linguistic intuition and not
necessarily desired for different clustering areas. THhieviang list therefore refers to a third
range of demands, defined as linguistic desiderata for tistezing of verbs.

(&) The clustering result should not be a single clusteressgating the clustering partition, i.e.
|C| = 1. A single cluster does not represent an appropriate modekfb classes.

(b) The clustering result should not be a clustering partitiith only singletons, i.evC; € C'
|C;| = 1. A set of singletons does not represent an appropriate niodetrb classes either.

(c) LetC; be a correct (according to the gold standard) cluster Vith = x. Compare this
cluster with the correct clust&r; with |C;| = y > x. The evaluated quality of’; should
be better compared t0;, since the latter cluster was able to create a larger cochester,
which is a more difficult task.

Example! C; = ahnen vermuten wissen
C; = ahnen denken glauben vermuten wissen

(d) LetC; be acorrect cluster and; be a cluster which is identical tg;, but contains additional
objects which do not belong to the same class. The evaluai@dygof C; should be better
compared ta’;, since the former cluster contains fewer errors.

Example: C; =ahnen vermuten wissen
C; = ahnen vermuten wisséaufen lachen

LIn all examples, verbs belonging to the same gold standass @re underlined in the cluster.
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(e) LetC; be a correct cluster witfC;| = . Compare this cluster with a non-correct cluster
with |C;| = . The evaluated quality af; should be better compareddq, since being of
the same size as; the proportion of homogeneous verbs is larger.

Example: C; =ahnen vermuten wissen
C; = ahnen vermutefaufen

(f) Let C; be a correct cluster witfC;| = x. Compare this cluster with the two correct clusters
(obviously in a different partition;, andC;, with C; = C;, U C;,. The evaluated quality
of C; should be better compared to the sum of qualitie§’gpfand C;,, since the former
manages to cluster the same range of homogeneous verbssiantigecluster.

Example: C; =ahnen denken glauben vermuten wissen
C;, = ahnen denken glauben
C;, = vermuten wissen

(9) LetC;, andC;, be two correct clusters. Compare these clusters with aesimgh-correct
cluster (obviously in a different partitior); with C; = C;, U C;,. The evaluated quality
of C; should be worse compared to the sum of qualitie§’gofand C;,, since the smaller
clusters are completely correct, wherégsnerges the clusters into an incoherent set.

Example: C; =ahnen denken glaubelaufen rennen
C;, = ahnen denken glauben
C;, = laufen rennen

Some of the linguistically defined demands are also subjegéeneral clustering demands, but
nevertheless included in the more specific cases.

The linguistically most distinctive demand on the clustgrevaluation deserves specific atten-
tion. It refers to the representation of verb ambiguitieghbn the manual and induced classifi-
cations. Two scenarios of verb ambiguity are possible:

1. The manual classification contains verb ambiguity, ileereé are polysemous verbs which
belong to more than one verb class. The cluster analysisieoother hand, is based on a hard
clustering algorithm, i.e. each verb is only assigned toauster.

2. The manual classification contains verb ambiguity, aedcthster analysis is based on a soft
clustering algorithm, i.e. both verb sets contain verbscilaire possibly assigned to multiple
classes.

The third possible scenario, that the manual classificasomithout verb ambiguity, but the
cluster analysis is a soft clustering, is not taken into @®rstion, since it is linguistically un-
interesting. The second scenario is relevant for a softeling technique, but since this thesis
is restricted to a hard clustering technique, we can coragnon scenario 1: the manual clas-
sification as defined in Chapter 2 contains polysemous vertlik-Means only produces hard
clusters.
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4.2.2 Description of Evaluation Measures

In the following, | describe a range of possible evaluatiogasures, with different theoretical

backgrounds and demands. The overview does, of coursegpasent an exhaustive list of

clustering evaluations, but tries to give an impressiorhefvariety of possible methods which

are concerned with clustering and clustering evaluatioat &l of the described measures are
applicable to our clustering task, so a comparison and ehafithe candidate methods will be

provided in Section 4.2.3.

Contingency Tables Contingency tables are a typical means for describing afididg the
association between two partitions. As they will be of usa mumber of evaluation examples
below, their notation is given beforehand.

Definition 4.2 A C x M contingency table is & x M matrix with rowsC;,1 < i < k and
columnsi/;, 1 < j < [. t;; denotes the number of objects that are common to th€'set
partition C' (the clustering result) and the sét; in partition A/ (the manual classification).
Summing over the row or column values gives the marginalestiuandt ;, referring to the
number of objects in class€$ and M ;, respectively. Summing over the marginal values results
in the total number of. objects in the clustering task.

The number of pairs with reference to a specific matrix valisecalculated b)(";) ; the pairs are
of special interest for a convenient calculation of evaaratesults. For illustration purposes, a
C x M contingency table is described by an example:

M = {M; ={a,b,c}, My ={d,e, f}}
C={C,={a,b},Cy ={c,d,e},C3 = {f}}

C x M contingency table:

M, M,
Ciltn=2 tp=0]|t,. =2
Coltoy =1 typ=2|1 =3
Cy | t31 =0 tzp=1]|13 =1
t.l =3 t.g =3 n==~6

The number of pairs within the cells of the contingency talieas follows.

M, M,
CTH =L (5)=0[ (=1
o | (3 =0 (B =1| (§) =3
e[ (3 =0 (B =0| (%) =0
=5 (D=3 =1
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Sum-of-Squared-Error Criterion

Summing over the squared distances between the clustdsjagte and their cluster representa-
tives (i.e. the respective cluster centroids) is a standasd function. The evaluation defines a
measure for the homogeneity of the clustering results veisipect to the object description data,
but without reference to a gold standard.

The sum-of-squared-errdr originally refers to Euclidean distance, but is applicataefur-
ther distance measures. The definition was given in Equéidi8) and is repeated in Equa-
tion (4.19), with the cluster centroid of clustey abbreviated asen;.

E(C) = Z Z d(o, cen;)? (4.19)

i=1 ocC;

Silhouette Value

Kaufman and Rousseeuw (1990, pages 83ff) present the siliequiot as a means for clustering
evaluation. With this method, each cluster is represengeddilhouette displaying which objects
lie well within the cluster and which objects are marginattte cluster. The evaluation method
also refers to the object data, but not to a gold standard.

To obtain the silhouette valug! for an objecto; within a clusterC'y, we compare the average
distancen betweeno; and all other objects i, with the average distandebetweeno; and

all objects in the neighbour clustérg, cf. Equations 4.20 to 4.22. For each objecapplies
—1 < sil(o;) < 1. If sil(0;) is large, the average object distance within the clustemialier
than the average distance to the objects in the neighbastec]sw; is well classified. Ifsil(o;)

is small, the average object distance within the clusteaingdr than the average distance to the
objects in the neighbour cluster, gohas been misclassified.

1
a(o;) = 1 Z d(o;, 05) (4.20)
Cal =1, =,
j 105 700
. 1
b(o;) = mincy 2o, @ Z d(0;, 05) (4.21)
O]'GCB

b(o;) — a(0;)
max{a(o;), b(o;)}

sil(o;) = (4.22)

In addition to providing information about the quality ofaskification of a single object, the
silhouette value can be extended to evaluate the individusters and the entire clustering. The
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average silhouette widtkil(C;) of a clusterC; is defined as the average silhouette value for all
objects within the cluster, cf. Equation 4.23, and @lwverage silhouette width for the entire data

setwith k clusterssil(k) is defined as the average silhouette value for the individuaters, cf.
Equation 4.24.

sil(Cy) = |é.| > sil(o)) (4.23)
! 0;€C;
- 1 k
sil(C) = sil(k) = 7 Z sil(C}) (4.24)

Class-based Precision and Recall

What | call a class-based P/R evaluation has originally wkdfimed by Vilainet al. (1995) as
scoring scheme for the coreference task in MUC6. The evaluatethod considers both the
clustering and the manual classification as equivalenssetawhich are defined by the partic-
ular object links which are necessary to encode the equivaleelations. The precision and
recall scores are obtained by calculating the least numibebject links required to align the
equivalence classes.

Let ¢(M;) be the minimal number of correct object links which are nsagsto generate the
equivalence class/; in the manual classification: A/;) = |M;| — 1. With |p(};)| the number
of classes in the clustering partition containing any ofdabgects inM;, the number of missing
object links in the clustering which are necessary to fullyrite the objects of clashl; is
m(M;) = |p(M;)| — 1. Recall for a single cluster is defined as the proportion @stexg object
links of the relevant cluster compared to the minimal nundfeorrect object links.

c(M;) — m(M;) _ |M;| — |p(M;)]

recall(M;) = (4.25)

Extending the measure from a single equivalence class terttie classification of the object
setS is realised by summing over the equivalence classes:

> M| — |p(M;)]
o M| =1

In the case of precision, we consider the equivalence dassi the clustering and calculate
the existing and missing object links in the manual clas#ifn with respect to the clustering.

c(Ci) — m(Gi) _ |G| — [p(C)

recalls(C, M) = (4.26)

precision(C;) = (4.27)

precisiong(C, M) =
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Classification Clustering Evaluation
Class Link Class Link
M, ={a,b,c} | a-b, | C; = {a,b} a-b || recalls(C, M) = % =2=2
b-c precisiong(C, M) =
M, = {da €, f} d-e, | C; = {Ca d, 6} c-d, EQ 1; Eg ;ig 2; 1:2%
e-f d-e || f — scores(C, M) = %i%f‘ =
Cs = {f}

Table 4.1: Example evaluation for class-based P/R

The f — scores as given in Equation 4.29 is the harmonic mean betweetisiongs andrecalls.

2 x recalls * precisiong

[ — scores(C, M) = (4.29)

recalls + precisiong

Pair-wise Precision and Recall

Being closest to my clustering area, Hatzivassiloglou ac&&bwn (1993) present an evaluation
method for clustering in NLP: they define and evaluate a etuahalysis of adjectives. The
evaluation is based on common cluster membership of obgcs pn the clustering and the
manual classification. On the basis of common cluster meshirecall and precision numbers
are calculated in the standard way, cf. Equations (4.30)(4r81). True positivegp are the
number of common pairs in/ andC, false positives p the number of pairs id', but notM,
and false negativesn the number of pairs id/, but notC'. | add the f-score as harmonic mean
between recall and precision, as above. Table 4.2 presestsaaple of pair-wise precision and
recall calculation.

t
recall = T—];tp (430)
. tp
precision = [T (4.32)

Adjusted Pair-wise Precision

Pair-wise precision and recall calculation (see aboveystemme undesired properties concern-
ing my linguistic needs, especially concerning the recalig. | therefore use the precision value
and adjust the measure by a scaling factor based on the dize mspective cluster. The defini-
tion of the adjusted pair-wise precision is given in Equa(#.32). A correct pair refers to a verb
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Classification | Clustering Evaluation
M, ={a,b,c} | C; ={a,b} number of common pairs i/ andC' (tp): 2
My ={d,e, f} | Cy ={c,d,e} | number of pairs in classificatioW (fn + tp): 6
Cs ={f} number of pairs in clustering' (fp + tp): 4

recall = é = %

precision = % = %

[ — score = 2;*; =2

Table 4.2: Example evaluation for pair-wise P/R

Classification | Clustering Evaluation
Ml = {a, b) C} Cl = {a, b} APP(Cl) = %
My, ={d,e, f} | Cy ={c,d,e} | APP(Cy) = 1
Gy ={f} APP(C3)=0
APP(C)=5+(G+3)=5+G+H) =5

Table 4.3: Example evaluation for adjusted pair-wise [sieqi

pair which is correct according to the gold standard. Théuatien measure of the whole clus-
tering is calculated by taking the weighted average oveqtladities of the individual clusters, as
defined in Equation (4.33). By inserting;|~' as weight for each clustetP P(C;) | calculate
the average contribution of each verbA® P(C;). And since the overall sum of PP(C, M)
for the clustering is first summed over all clusters (andefage over the average contributions
of the verbs) and then divided by the number of clusters,dutate the average contribution of a
verb to the clustering APP. The measure is developed wittifspeare concerning the linguistic
demands, e.g. without the addewmd in the denominator ofA P P(C;) the linguistic demands
would not be fulfilled. Table 4.3 presents an example of dadplipair-wise precision.

number of correct pairs in C;

APP(C) = number of verbs in C; + 1 (4.32)
APP(C, M) = |é| > AP|2(|CZ) (4.33)

Mutual Information

The way | define mutual information between the clusteringd i gold standard is borrowed
from Strehlet al. (2000) who assess the similarity of object partitions fa thustering of web
documents. Mutual information is a symmetric measure ferdégree of dependency between
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Classification | Clustering Evaluation
M, = {aa b, C} ¢, = {aa b} purlty(cl) =1
My ={d,e, f} | Cy = {c,d, e} | purity(Cy) = 3

Cs ={f} purity(Cs) =1

MI(C,M) =
logg%‘3 log% .
g * (2x s 4+ .+ Lxdes) =0.27371

Table 4.4: Example evaluation for mutual information

the clustering and the manual classification. It is basechembtion of clustepurity, which
measures the quality of a single clustéreferring tOpg, the largest number of objects in cluster
C; which C; has in common with a gold standard verb class having compared’; to all gold
standard verb classes id.

purity(C;) = maz;(p]) (4.34)

1
1Cil
The mutual information score between the clustefingnd the manual classificatiod is based
on the shared object membership, with a scaling factor sparding to the number of objects in
the respective clusters, cf. Equation 4.35. The secondriBguation 4.35 relates the definitions
by Strehlet al. to the notation in the contingency table. Table 4.4 presamesxample of mutual
information evaluation.

k [ log pl*n )
1 Skooph S p?
M - a=1 b=1 ]
n Z Z P log(k = 1)

=1 =l (4.35)

k ! lO.g ( ttZ] **tn )
Zzt” log(k = 1)

=1 j=1

3|'—‘

Rand Index

Rand (1971) defines an evaluation measure for a generakghgsproblem on basis of agree-
ment vs. disagreement between object pairs in clusterikigsstates that clusters are defined
as much by those points which they do not contain as by thosgspahich they do contain.
Therefore, if the elements of an object-pair are assignatidsame classes in both the clus-
tering and the manual classification, and also if they argaed to different classes in both
partitions, this represents a similarity between the exjaivce classes. The similarity evaluation
is based on the overlap in class agreem&ntompared to the class disagreemBnias defined
by Equation (4.36), witd + D = n. Table 4.5 presents an example of the Rand index.

Z?<j ’V(Oia Oj)
(3)

Rand(C, M) = (4.36)
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Classification | Clustering Evaluation

M, ={a,b,c} | Cy ={a,b} agree : number object pairs together in bofrandC': 2
M, ={d,e, f} | Cy ={c,d,e} | agree : number object pairs separate in bigtlandC: 7
Cs ={f} disagree : number object pairs mixediihandC'": 6
Rand(C, M) = 2 =2 = 0.6

24746 15

Table 4.5: Example evaluation for Rand index

where

1 ifthere existCy € C'andM g € M such that objects; ando; are inCy and Mg,
1 ifthere existC'y € C'andMp € M such thab; is in bothC'y andMp

while o; is in neitherC4y or M3,
0 otherwise

7(0i’ Oj) =

(4.37)

Rand Index adjusted by Chance

Hubert and Arabie (1985) argue for a correction of the Raxéxrfor chance, in the sense that
the index would take on some constant value (e.g. zero) uadeppropriate null model of
how the partitions have been chosen. According to Hubert#¥aalie, the most obvious model
for randomness assumes that @&e< M contingency table is constructed from the generalised
hyper-geometric distribution, i.e. tiiéand )/ partitions are picked at random, given the original
number of classes and objects.

The general form of an index corrected for chance is giverguafion (4.38¥. Theindexrefers
to the observed number of object pairs on which the parstiagree. The expected number
of object pairs with class agreement attributable to a @aer cell in the contingency table
is defined by the number of pairs in the row times the numberagpn the column divided
by the total number of pairs, cf. Equation (4.39). The maximoumber of object pairs is
given by the average number of possible pairs in the clugjeand the manual classification.
Other possibilities for the maximum index would be e.g. thaimum of the possible pairs in
clustering and manual classificationn(}, (;),>; (%)) or simply the possible pairs in the
manual cIassificatioEj (t-;) when considering the manual classification as the optimune. T
corrected Rand index is given in Equation (4.40). The rarig,g is0 < R, < 1, with only
extreme cases below zero. Table 4.6 presents an example.

Index — FExpected Index (4.38)

Index g = .
nacadj Mazximum Index — FExpected Index

2In psychological literature, the index is referred tckappa statisti¢Cohen, 1960).
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Classification | Clustering Evaluation
_ 2x6 _ 8
M, ={a,b,¢} | Cy ={a,b} | Randuq = 1(42%)1_5% =21 =0.11765
2 15 5
M, ={d,e, f} | Cy ={c,d e}
Cs = {f}

Table 4.6: Example evaluation for adjusted Rand index

Randadj (C, M) =

Matching Index

l;, g
Eup (23‘) _ G

(4.39)

(4.40)

Fowlkes and Mallows (1983) define another evaluation methexbed on contingency tables.
Their motivation is to define a measure of similarity betwe&a hierarchical clusterings, as a
sequence of measures which constitute the basis for arqggitocedure, to compare different
cut-combinations in the hierarchies. The meadgas derived from the” x M contingency
table withC' referring to a hierarchical clustering cut at levend M referring to a hierarchi-

cal clustering cut at level. B, compares the match of assigning pairs of objects to common
clusters with the total number of possible pairs, the chirsgemarginals;B;, is defined as in
Equation (4.41). Table 4.7 presents an example of the nragéhdex, based on the contingency

table.

where

(4.41)

(4.42)

(4.43)

(4.44)
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Classification | Clustering Evaluation

M, ={a,b,c} | Ci,={a,b} |Tp=4+14+44+1-6=4
M, ={d,e, f} | Co={c,dje} | P,=4+9+1—-6=38
Cs ={f} Qr=9+9—-6=12

— 1 _ 4
Bk—ﬁ—ﬁ—O.KLOSQS

Table 4.7: Example evaluation for matching index

4.2.3 Comparison of Evaluation Measures

Section 4.2.2 has described a variety of possible measaresaluate the result of a cluster

analysis. Following, the different measures are compagadhat each other and according to the
demands of a clustering evaluation, as defined in Sectiad.4The comparison is performed

in Table 4.8, which lists the evaluation methods againstitreands. The demands are briefly
repeated:

e Reference to gold standard (given:+ or not given:-)

Applicable to all similarity measures (yes:+ or no:-)

Independent of similarity measure (yes:+ or no:-)

Value for specific cluster and whole clustering (yes:+ orno:

Bias in cluster number (none:-)

Sensibility to linguistic desiderata (list of failures; ma-), with a brief repetition of the
desiderata from Section 4.2.1:

(a) Clustering result should not bh@| = 1.
(A failure of this desideratum corresponds to a bias towteddarge clusters.)

(b) Clustering result should not be singletons.
(A failure of this desideratum corresponds to a bias towardsy small clusters.)

(c) Larger correct cluster should be better than smalleecbrcluster.

(d) Correct cluster should be better than same cluster vaitben

(e) Correct cluster with: objects should be better than noisy cluster withbjects.
() Correct union of correct clusters should be better tregrasate clusters.

(g) Correct, separated clusters should be better thanrextarnion.

The success and failure of the desiderata have been evabraggtificial clustering exam-
ples which model the diverse clustering outputs.
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e Sensibility to error introduction (monotonic behaviouornot:-)

This issue refers to an experiment for illustrating the g®lity of the evaluation measures
to a step-wise introduction of errors. First the manualsifastion is evaluated against
itself, then | introduce an artificial error and evaluate tésult again, etc. The error intro-
duction is repeated 25 times, and an evaluation methodtderisithe error introduction
should react monotonically in its quality score. Figurestd.4.5 illustrate the error sensi-
bility of AP P, the pair-wise f-scor@air F' and Rand,,g;.

e Interpretation (minimum and maximum value, if existinggest)

The core distinction between the methods is their referéadbe gold standard: The sum-
of-squared-error and silhouette plot do not refer to thel gdhndard at all, they measure the
guality of the cluster analysis with reference to the dataden and similarity measure. Class-
based P/R’s underlying idea is very different to any otheduwstion method; it compares the
distribution of verbs belonging to a common semantic clags the different sets in a partition.
Both pair-wise P/R and the adjusted precision measure @entie verb pairs correctly formed
by the cluster analysis, with APP incorporating the lingjaislesiderata. All other evaluation
methods concentrate on the number of verbs agreeing in tds@mdard and guessed patrtitions,
as provided by contingency tables; mutual information Wiighe score by the sizes of the
respective sets, the Rand index by the number of possihig paid the adjusted Rand index and
the matching index take the expected number of agreeing wetd account.

Table 4.8 illustrates that the different methods have iiddial strengths and weaknesses. (a)
Evaluation measures without general minimum and maximurhefquality scores are more
difficult, but possible to interpret. (b) In general, it isttee to have quality values for both the
specific clusters and the whole clustering, but we can doowitthe former. (c) Not acceptable
for my linguistic needs are evaluation methods which (i) db nefer to the gold standard, be-
cause | want to measure how close we come to that, (ii) arendiepé on a specific similarity
measure, because | want to be able to compare the clustesolis based on a range of simi-
larity measures, (iii) have a strong bias towards many sordiw large clusters, (iv) fail on a
variety of linguistic demands, or (v) do not behave monatalty on error introduction.

To conclude, applicable evaluation methods to my clustetask are the f-score of pair-wise
P/R PuirF', the adjusted pair-wise precisioh”’ P, the adjusted Rand indeRand,q;, and the
matching indexB,. Empirically, there is no large differences in the judgetredithese methods,

so | decided to concentrate on three measures with differgmécts on the cluster evaluation:
APP as the most linguistic evaluatiofair I which provides an easy to understand percentage
(usually the reader is familiar with judging about perceets), and théiand,,; which provides

the most appropriate reference to a null model.
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gold standard similarity measure value
applicable| independent| specific| whole
Error - + - + +
Silhouette - + - + +
ClassR + + + - +
ClassP + + + + +
ClassF + + + - +
PairR + T T N n
PairP + + + - +
PairF + + + - +
APP + + + + +
Ml + + + + +
Rand + + + - +
Rand,; + + + - +
[ Bk | * P+ [+ I - [+
bias linguistics | error || interpretation
(failure) min | max
Error many small| b, c,f - - -
Silhouette|| many small b, f - -1 1
ClassR few large a,d,g + 0 100
ClassP many small b, f + 0 100
ClassF few large a + 0 100
PairR few large a,dg + 0 100
PairP - c, f + 0 100
PairF - - + 0 100
APP - - + 0 -
M many small b + 0 -
Rand many small b, d + 0 1
Randldj - - + 0 1
[ Bk r - 1 - [ +Jo] 1 |

Table 4.8: Comparison of evaluation measures
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4.3 Summary

This chapter has provided an overview of clustering alporg and evaluation methods which
are relevant for the natural language clustering task aftehing verbs into semantic classes. |
have introduced the reader into the background of clugighieory and step-wise related the
theoretical parameters for a cluster analysis to the Istgucluster demands:

The data objects in the clustering experiments are Germdns ve

The clustering purpose is to find a linguistically approfisemantic classification of the
verbs.

| consider the alternation behaviour a key component fdo etasses as defined in Chap-
ter 2. The verbs are described on three levels at the syetamistic interface, and the
representation of the verbs is realised by vectors whichrdesthe verbs by distributions
over their features.

As a means for comparing the distributional verb vectoraviepresented a range of sim-
ilarity measures which are commonly used for calculatiregdimilarity of distributional
objects.

| have described a range of clustering techniques and afguag@plying the hard cluster-
ing technique k-Means to the German verb data. k-Means willded in the clustering
experiments, initialised by random and hierarchically-precessed cluster input.

Based on a series of general evaluation demands, genestdrahg demands and specific
linguistic clustering demands, | have presented a variegvaluation measures from di-
verse areas. The different measures were compared agachsbner and according to the
demands, and the adjusted pair-wise precisiétP, the f-score of pair-wise P/Rair F,
and the adjusted Rand indéx:.nd,,; were determined for evaluating the clustering exper-
iments in the following chapter.



