Approximating compound compositionality based on word alignments

Fabienne Cap
Uppsala University
fabienne.cap@lingfil.uu.se

Introduction We approximate the compositionality of German noun-noun compounds using statistical word alignments, based on (Villada Moirón and Tiedemann, 2016). Our hypothesis is that compositional constructions are translated similarly by human translators, whereas non-compositional constructions exhibit more variance. When training a statistical word alignment this greater variance leads to a large number of different alignments, which we use to determine the compositionality of a construction.

Experimental Setup We split all noun-noun compounds occuring in the German Europarl corpus (Koehn, 2005) and then run statistical word alignment on the English and the modified German corpus. We then calculate the *translational entropy* (TE) score (Villada Moirón and Tiedemann, 2016) and sort the compounds in descending order so that compounds with the greatest likelihood of being non-compositional appear at the top of the list. First, the TE-scores of both components are weighted equally, but different weightings are investigated. More lists are produced, sorted according to the TE-score of either modifiers or heads.

Results In Figure 1(a) we show some examples from our lists with the modifier Auge, which show that TE scores correlate well with compositionality. 1(b) illustrates the greater variance in the non-compositional Augenzwinkern compared to Augenschäden. Figure 1:

Compound	TE
Auge Maß	3.428
Auge Höhe	2.236
Auge Zwinkern	1.748
Auge Schäden	0.637

(a) TE scores.

Word	Alignments
Auge =	nod (2), cheek (1), a (1), glint (1),
(Zwinkern)	blind eye (1), personalise (1)
$\begin{array}{ll} \text{Auge} \\ \text{(Sch\"{a}den)} &= & \text{eye} \ (3) \end{array}$	
(1.) W 1 - 1;	

(b) Word alignments for Auge.

References: • Koehn, P. (2005): Europarl: a parallel corpus for statistical machine translation. In *Proceedings of the MT Summit.* • Villada Moirón, B. and Tiedemann, J. (2006): Identifying idiomatic Expressions using automatic word alignment. In: *Proceedings of the EACL 2006 MWE Workshop*.