## Exploring Idiomaticity with Variant-based Distributional Measures and Shannon Entropy

Marco S. G. Senaldi<sup>1</sup>

Gianluca E. Lebani<sup>2</sup>

Alessandro Lenci<sup>2</sup>

<sup>1</sup> Scuola Normale Superiore, Pisa <sup>2</sup> University of Pisa DGfS 2017 – Saarbrücken | 9<sup>th</sup> March 2017







- **1. Idiom type identification task** on **90 Italian V-N** combinations and **26 Italian Adj-N** combinations
  - **distributional indices of compositionality** that leverage the restricted lexical substitutability of idiom constituents
- 2. Predicting human ratings on idiom syntactic flexibility from the indices in (1) and entropy-based indices of formal flexibility

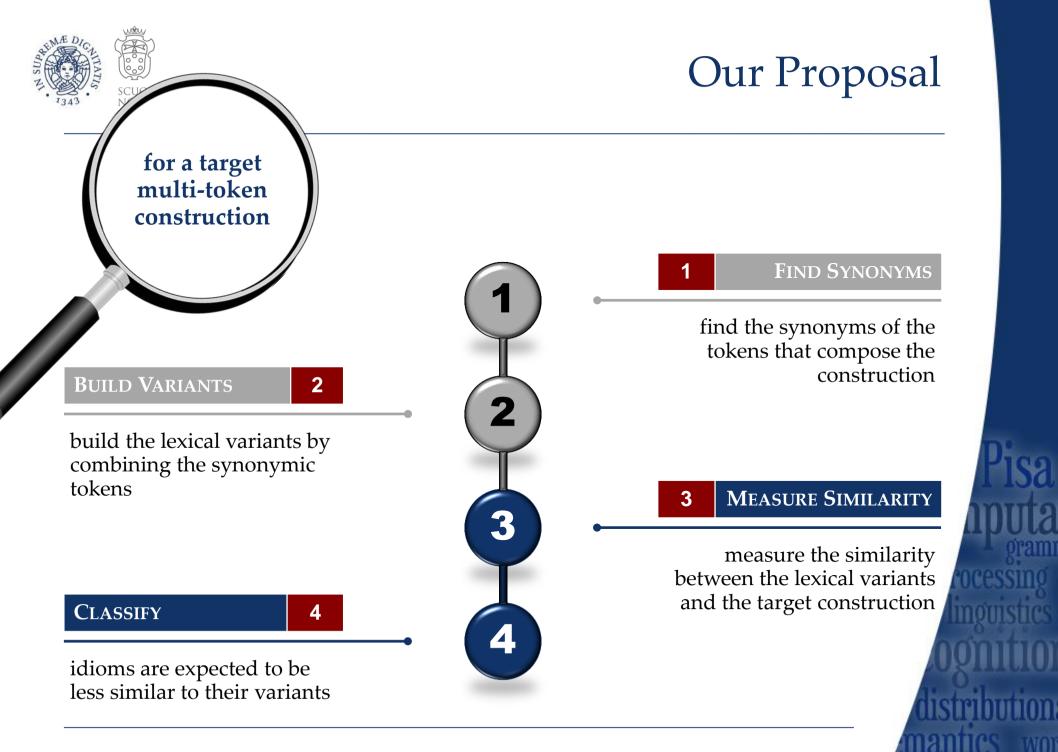


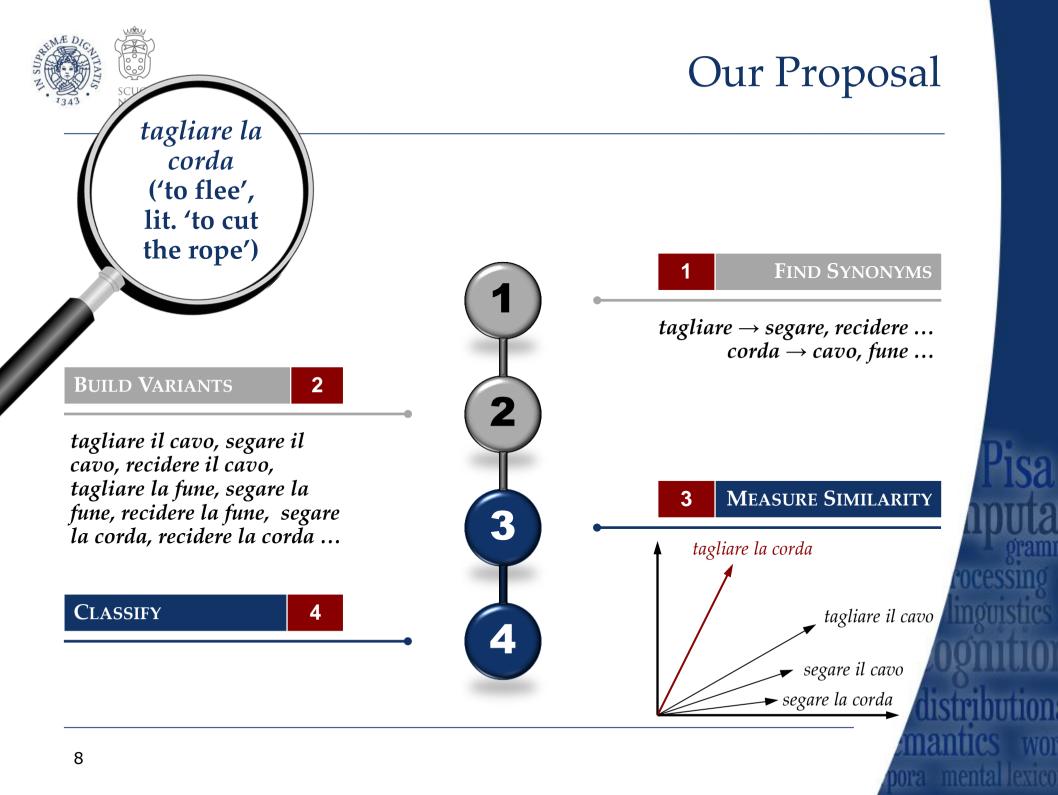


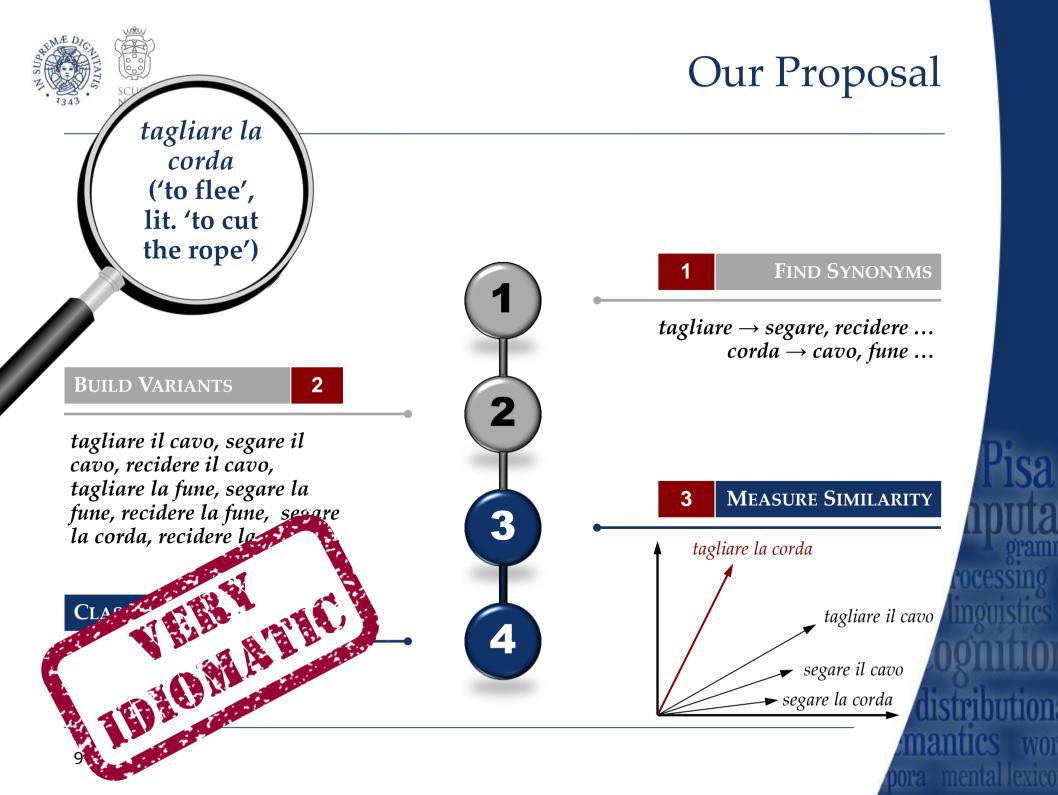
- **1. Idiom type identification task** on **90 Italian V-N** combinations and **26 Italian Adj-N** combinations
  - **distributional indices of compositionality** that leverage the restricted lexical substitutability of idiom constituents
- 2. Predicting human ratings on idiom syntactic flexibility from the indices in (1) and entropy-based indices of formal flexibility



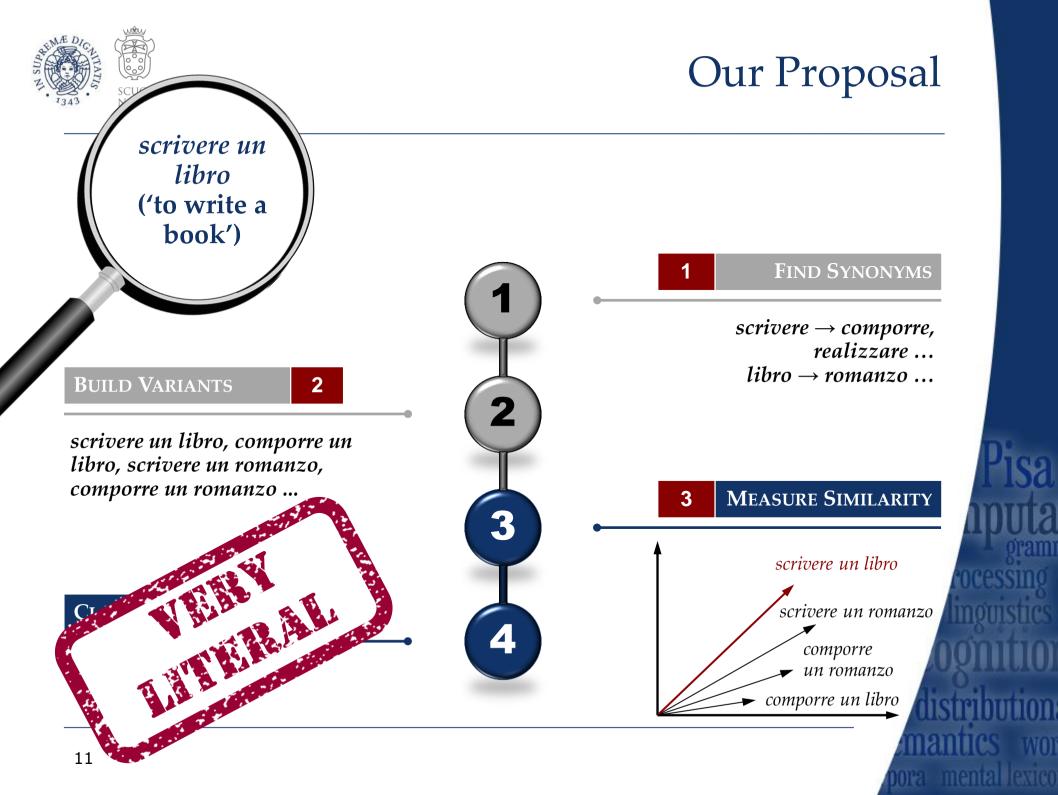
- Idioms: non-compositional multiword expressions (NUNBERG ET AL. 1994; SAG ET AL. 2001; CACCIARI 2014)
- Lexical substitutability
  - to read a <u>book</u>  $\rightarrow$  to read a <u>novel</u>
  - *– to spill the* <u>*beans*</u>  $\rightarrow$  *to spill the* <u>*peas*</u> (just literal)
- **Systematicity** (FODOR & LEPORE 2002)
  - If we can understand *drop the peas* and (literal) *spill the beans*, we can also understand *drop the beans* and *spill the peas*
  - This does not apply to idiomatic *spill the beans*





## Idiom Type Identification: Previous Approaches


- LIN 1999; FAZLY ET AL. 2009
  - initial set of V-N pairs
  - generate lexical variants replacing the constituents with thesaurus synonyms
    - $< spill, bean > \rightarrow < pour, bean >, < spill, corn >, etc.$
  - < spill, bean > labeled as non-compositional iff PMI(< spill, bean >) significantly different from PMI(< pour, bean >), PMI(< spill, corn >), etc.





- In Distributional Semantic Models (DSMs) target words and expressions are represented as distributional vectors in a high-dimensionality space
  - The vectors record the co-occurrence statistics of the targets with some contextual features
- Compositionality is assessed by measuring the **distributional similarity** between the **vector of a phrase** and the **vectors of its constituents** (BALDWIN ET AL. 2003; VENKATAPATHY & JOSHI 2005; FAZLY & STEVENSON 2008)













## **Our Targets**

- 90 V-NP and V-PP constructions
  - 45 idiomatic constructions
    - » frequencies range from 364 (*ingannare il tempo* 'to while away the time') to 8294 (*andare in giro* 'to get about')
  - 45 compositional constructions
    - » frequency-matched (e.g. *scrivere un libro* 'to write a book')
- 1-7 idiomaticity judgments from 9 Linguistics students:
  - Krippendorf's  $\alpha = 0.77$
  - Idioms obtained significantly higher ratings (t=11.99, p < .001)



## Variant Extraction

- For both the verb and the noun of each target, 3, 4, 5 and 6 synonyms were extracted from:
  - a Distributional Semantic Model (**DSM**):
    - » top cosine neighbors in a DSM built by looking at the [±2] content words linear context in the La Repubblica corpus (BARONI ET AL., 2004: 331M tokens)
  - Italian MultiWordNet lexicon (PIANTA ET AL., 2002: **iMWN**):
    - » candidates were lemmas occurring in the same (manually selected) synsets and co-hyponyms
    - » top 3, 4, 5 and 6 candidates filtered



- Potential variants for our targets were generated by combining:
  - noun synonyms with the original verb
    - » e.g. tagliare la corda  $\rightarrow$  tagliare il <u>cavo</u>, tagliare la <u>fune</u>, etc.
  - verb synonyms with the original noun
    - » e.g. tagliare la corda  $\rightarrow$  <u>segare</u> la corda, <u>recidere</u> la corda, etc.
  - verb synonyms with noun synonyms
    - » e.g. tagliare la corda  $\rightarrow$  <u>recidere</u> il <u>cavo</u>, <u>segare</u> la <u>fune</u>, etc.
- A linear DSM from itWaC (BARONI ET AL. 2009; about 1,909M tokens) was built to represent both the targets and the variants that were found in the corpus as vectors
  - co-occurrences recorded how often each construction occurred in the same sentence with each of the 30,000 top content words



- Compositionality indices were built in four different ways:
  - **Mean** mean cosine similarity between the target and its variants
  - Max maximum cosine between the target and its variants
  - Min minimum cosine between the target and its variants
  - Centroid cosine between the target and the centroid of its variants
- We tried keeping **15**, **24**, **35** and **48 variants per target**
- Variants missing from itWaC were treated in two ways:
  - **no** models they are ignored
  - orth models encoded as vectors orthogonal to the targets



- Our targets were sorted in ascending order according to each of the four indices
- Idioms (our positives) expected to occur at the top of the ranking
  - **Spearman's ρ correlation** with our idiomaticity judgements
  - Interpolated Average Precision (IAP): the average Interpolated Precision at recall levels of 20%, 50% and 80% (following FAZLY ET AL., 2009)
  - **F-measure** at the median





| Parameter             | Values                                           |
|-----------------------|--------------------------------------------------|
| Variants source       | DSM, iMWN                                        |
| Variants filter       | cosine (DSM, iMWN)<br>raw frequency (iMWN)       |
| Variants per target   | 15, 24, 35, 48                                   |
| Non-attested variants | not considered (no)<br>orthogonal vectors (orth) |
| Measures              | Mean, Max, Min, Centroid                         |

• **96 models** resulting from the combinations of all the possibile values for all the parameters

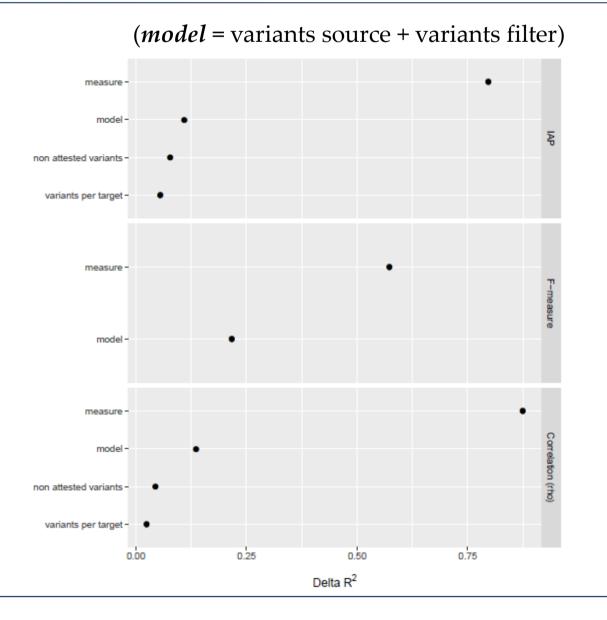


## Top IAP, F and $\rho$ models

| Top IAP Models                                                  | IAP | F   | ρ     |
|-----------------------------------------------------------------|-----|-----|-------|
| iMWN <sub>cos</sub> 15 <sub>var</sub> Centroid <sub>no</sub>    | .91 | .80 | 58*** |
| iMWN <sub>cos</sub> 24 <sub>var</sub> Centroid <sub>no</sub>    | .91 | .78 | 62*** |
| iMWN <sub>cos</sub> 35 <sub>var</sub> Centroid <sub>no</sub>    | .91 | .82 | 60*** |
| DSM 48 <sub>var</sub> Centroid <sub>no</sub>                    | .89 | .82 | 64*** |
| DSM 48 <sub>var</sub> Centroid <sub>orth</sub>                  | .89 | .82 | 60*** |
| <b>Top F-measure Models</b>                                     | IAP | F   | ρ     |
| iMWN <sub>cos</sub> 35 <sub>var</sub> Centroid <sub>no</sub>    | .91 | .82 | 60*** |
| DSM 48 <sub>var</sub> Centroid <sub>no</sub>                    | .89 | .82 | 64*** |
| DSM 48 <sub>var</sub> Centroid <sub>orth</sub>                  | .89 | .82 | 60*** |
| iMWN <sub>cos</sub> 15 <sub>var</sub> Centroid <sub>no</sub>    | .91 | .80 | 58*** |
| DSM 24 <sub>var</sub> Centroid <sub>no</sub>                    | .89 | .80 | 60*** |
| Top ρ Models                                                    | IAP | F   | ρ     |
| iMWN <sub>cos</sub> 48 <sub>var</sub> Centroid <sub>orth</sub>  | .86 | .80 | 67*** |
| iMWN <sub>cos</sub> 35 <sub>var</sub> Centroid <sub>orth</sub>  | .72 | .44 | 66*** |
| iMWN <sub>cos</sub> 24 <sub>var</sub> Centroid <sub>orth</sub>  | .85 | .78 | 66*** |
| iMWN <sub>cos</sub> 15 <sub>var</sub> Centroid <sub>orth</sub>  | .88 | .80 | 65*** |
| iMWN <sub>freq</sub> 15 <sub>var</sub> Centroid <sub>orth</sub> | .66 | .51 | 65*** |
| Random                                                          | .55 | .51 | .05   |






- Linear regressions to assess the influence of the parameter settings on the performances of our models (cf. LAPESA & EVERT 2014)
- **Predictors**: parameter settings
- **Dependent variables**: IAP, F-measure and  $\rho$  of our models

| Model     | Adjusted R <sup>2</sup> |  |  |
|-----------|-------------------------|--|--|
| IAP       | 0.90                    |  |  |
| F-measure | 0.52                    |  |  |
| ρ         | 0.94                    |  |  |



## Parameters and Feature Ablation







- 13 idiomatic (alte sfere 'high places') + 13 frequencymatched literal targets (nuova legge 'new law')
- Variants also from a Structured DSM (co-occurrences like <w<sub>1</sub>, r, w<sub>2</sub>>)
- Mean, Max, Min and Centroid compared to reference indices:
  - Additive model: the similarity between the target and the sum of the vectors of its components (see KRČMÁŘ ET AL., 2013)
  - Multiplicative model: the similarity between the target and the product of the vectors of its components (see KRČMÁŘ ET AL., 2013)



## Adjective-Noun Pairs: Best Models

| Top IAP Models                               | IAP | F   | Q     |
|----------------------------------------------|-----|-----|-------|
| Additive                                     | .85 | .77 | 62*** |
| Structured DSM Mean <sub>orth</sub>          | .84 | .85 | 68*** |
| iMWN <sub>syn</sub> Centroid <sub>orth</sub> | .83 | .85 | 57**  |
| iMWN <sub>ant</sub> Centroid <sub>orth</sub> | .83 | .77 | 52**  |
| iMWN <sub>ant</sub> Mean <sub>orth</sub>     | .83 | .69 | 64*** |
| <b>Top F-measure Models</b>                  | IAP | F   | Q     |
| Structured DSM Mean <sub>orth</sub>          | .84 | .85 | 68*** |
| iMWN <sub>syn</sub> Centroid <sub>orth</sub> | .83 | .85 | 57**  |
| Additive                                     | .85 | .77 | 62*** |
| iMWN <sub>ant</sub> Centroid <sub>orth</sub> | .83 | .77 | 52**  |
| iMWN <sub>syn</sub> Centroid <sub>no</sub>   | .82 | .77 | 57**  |
| Top ϱ Models                                 | IAP | F   | Q     |
| Structured DSM Mean <sub>orth</sub>          | .84 | .85 | 68*** |
| Linear DSM Mean <sub>orth</sub>              | .75 | .69 | 66*** |
| iMWN <sub>syn</sub> Mean <sub>orth</sub>     | .77 | .77 | 65*** |
| iMWN <sub>syn</sub> Mean <sub>no</sub>       | .70 | .69 | 65*** |
| iMWN <sub>ant</sub> Mean <sub>orth</sub>     | .83 | .69 | 64*** |
| Multiplicative                               | .58 | .46 | .03   |
| Random                                       | .55 | .51 | .05   |

Pisa aputa gram rocessing linguistics Ognition distribution mantics wor ora mental lexico



## Interim conclusions

- variant-based distributional indices are effective for idiom type identification
- **Centroid** and **Mean** perform the best
- **DSM variants comparable to iMWN** but less time-consuming!
- most best models for **Adj-N idioms** are *orth* ≠ **V-N idioms**
- **additive** model performs comparably
- **product** comparable to random baseline





- **1. Idiom type identification task** on **90 Italian V-N** combinations and **26 Italian Adj-N** combinations
  - **distributional indices of compositionality** that leverage the restricted lexical substitutability of idiom constituents
- 2. Predicting human ratings on idiom syntactic flexibility from the indices in (1) and entropy-based indices of formal flexibility



## Our Dataset

- 54 Italian V-NP and V-PP idioms
  - e.g. *tagliare la corda* ('to flee', lit. 'to cut the rope')
    - *cadere dal cielo* ('to be heaven-sent', lit. 'to fall from the sky')
  - frequency > 75 tokens in 'La Repubblica'
- 54 Italian V-NP and V-PP literals
  - e.g. *leggere un libro* ('to read a book')



## Syntactic Flexibility Judgments on CrowdFlower

• For each idiom and literal, **5 sentences** were created

#### 1) base form

Pietro alza il gomito quando va a cena da Teresa.

«Pietro raises the elbow when he has dinner at Teresa's»

#### 2) adverb insertion

Pietro alza <u>sempre</u> il gomito quando va a cena da Teresa.

«Pietro always raises the elbow when he has dinner at Teresa's»

#### 3) adjective insertion

Pietro alzò il <u>solito</u> gomito quando andò a cena da Teresa.

«Pietro raised the usual elbow when he had dinner at Teresa's.»

#### 4) left dislocation

<u>Il gomito</u> Pietro <u>lo alza</u> quando esce con Giovanni

«The elbow Pietro raises it when he goes out with Giovanni.»

#### 5) wh-movement

<u>Che gomito ha alzato</u> Pietro quando è andato alla festa di Teresa?

«Which elbow did Pietro raise when he went to Teresa's party?»



## Syntactic Flexibility Judgments on CrowdFlower

- 1-7 acceptability judgments
  - Each sentence rated by 20 contributors

|                  | Idioms Avg. | Literals Avg. | t-test    |
|------------------|-------------|---------------|-----------|
| Base form        | 6.31        | 6.40          | p = 0.32  |
| Adverb           | 6.22        | 6.21          | p = 0.68  |
| Adjective        | 5.00        | 6.02          | p < 0.05  |
| Left Dislocation | 4.09        | 4.71          | p < 0.001 |
| Wh-movement      | 3.11        | 4.31          | p < 0.001 |

- Overarching **SYNTACTIC FLEXIBILITY** index
  - average of the differences between the mean acceptability of each variant and the mean acceptability of the base form



• **SHANNON** (1948) **Entropy** measures the average degree of uncertainty in a random variable *X* 

$$H(X) = \sum_{x \in X} p(x) \log \frac{1}{p(x)}$$

- Each  $x \in X$  represents a state of the system
- The higher the entropy, the more unpredictable the outcome of the random system



- **1. LEXICAL VARIABILITY** of the free slot (e.g. *to cast a shadow on the problem*, *to cast a shadow on the institution*, etc.)
- **2. MORPHOLOGY** of the arguments and the verb (e.g. *to cast a <u>shadow-S</u>*, *to cast many <u>shadows-P</u>*, etc.)
- **3. ARTICLES** variability (e.g. to cast  $\underline{a}$  shadow, to cast  $\underline{\emptyset}$  shadows, etc.)
- **4. LINEAR ORDER** of the constituents (e.g. *to bring <u>a project to light</u>, to bring <u>to light a project</u>, etc.)*
- **5. TOKEN DISTANCE** of the arguments from the verb (e.g. *to cast a shadow* (1), *to cast a big shadow* (2), etc.)
- 6. Presence of **INTERVENING ADJECTIVES, PPs** and **ADVERBS** (e.g. *to cast a big shadow, to cast a huge shadow,* etc.)
- 7. The **SYNTACTIC FRAME** it occurs in (e.g. *to open the floodgates <u>to</u>, to open the floodgates <u>for</u>, etc.)*



• **LEXICAL ENTROPY** (e.g. to cast a shadow on X)

$$H(X) = \sum_{x \in X} p(x) \log \frac{1}{p(x)}$$

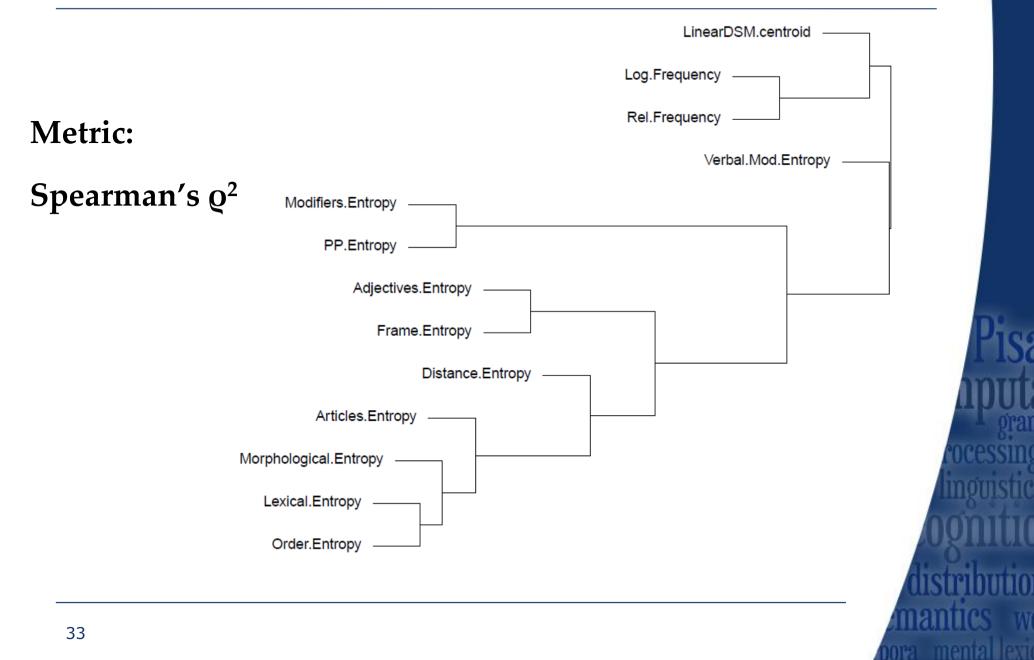
- each *x* represents a possible lemma
- e.g. *to cast a shadow on*  $X \rightarrow x_1$  = institution,  $x_2$  = project,  $x_3$  = problem, etc.
- the higher the entropic value, the more lexically variable the free slot is and vice versa



- **MORPHOLOGICAL ENTROPY** of the arguments
  - $x_1 = to \ cast \ a \ shadow \ (SING.)$  on

 $x_2 = to \ cast \ shadows \ (PLUR.) \ on, \ etc.$ 

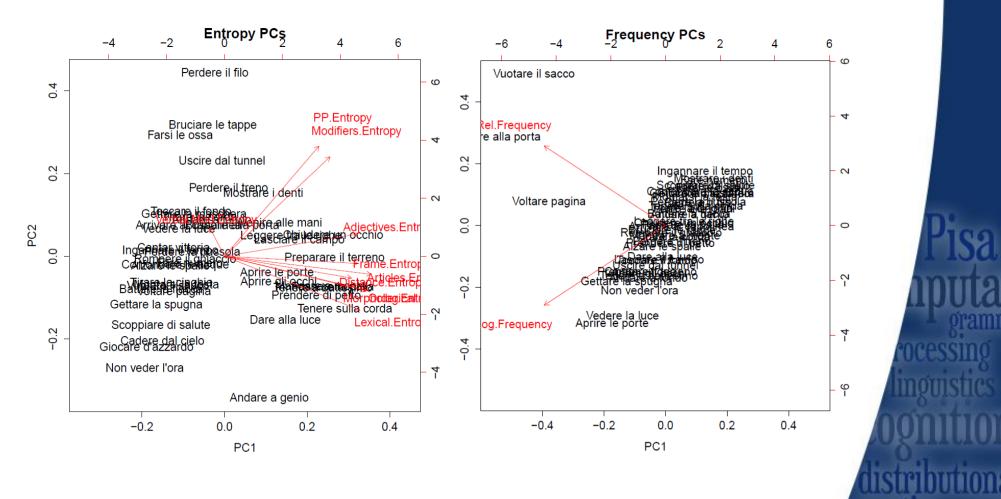
- ARTICLES ENTROPY
  - $x_1 = to \ cast \ \underline{a \ (IND)} \ shadow \ on$  $x_2 = to \ cast \ \underline{the \ (DEF)} \ shadow \ on$  $x_3 = to \ cast \ \underline{(\emptyset)} \ shadows \ on$


• Etc.



Regression analysis on the acceptability ratings

- **PREDICTORS** 
  - **1. Entropies** (lexical, morphological, order, token distance, articles, adjectives and PPs, frame)
  - 2. **DSM Centroid** (the best performing one)
  - 3. Log frequency and relative frequency
- **DEPENDENT VARIABLE** 
  - 1. Syntactic flexibility judgments





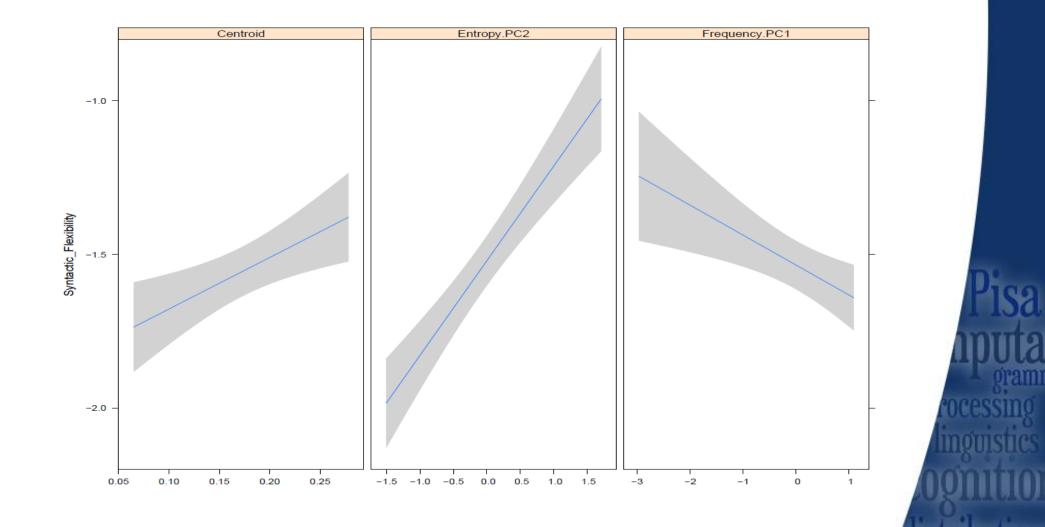



## Principal Component Analysis (PCA) on our predictors

Condition number (k) = 49.11 (high collinearity)



# Regression on the syntactic flexibility judgments




| Predictors    | β     | S.E. | t      | p       |
|---------------|-------|------|--------|---------|
| Intercept     | -1.81 | 0.11 | -16.69 | < 0.001 |
| Centroid      | 1.83  | 0.58 | 3.14   | < 0.01  |
| Entropy PC1   | -0.01 | 0.02 | -0.94  | n.s.    |
| Entropy PC2   | 0.30  | 0.04 | 7.27   | < 0.001 |
| Frequency PC1 | -0.10 | 0.03 | -2.30  | < 0.01  |

Best fitting model: **adjusted** R<sup>2</sup> = 0.67, F (4, 36) = 21.17, p < 0.001

## Partial Effects (*Centroid, Entropy PC2, Frequency PC1*)







- The best model consisted in a linear combination of **all our predictors** 
  - Entropy: the more an expression formally varied in the corpus, the more the subjects perceived it to be flexible
  - **Distributional Centroid**: cfr. GIBBS & NAYAK (1989)
  - **Frequency**: more frequent expressions are perceived as less flexible
- Future directions of research
  - model other kinds of psycholinguistic data on idiom variation processing (e.g. eye-tracking data)

# Thank you for your attention!



### UNIVERSITY OF PISA

### COMPUTATIONAL LINGUISTICS LAB

http://colinglab.humnet.unipi.it