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Abstract
Articulation-based pronunciation error detection is concerned
with the task of diagnosing mispronounced segments in non-
native speech on the level of broad phonological properties,
such as place of articulation or voicing. Using acoustic fea-
tures and visual spectrograms extracted from native English ut-
terances, we train several neural classifiers that deduce articu-
latory properties from segments extracted from non-native En-
glish utterances. Visual cues are thereby processed by convolu-
tional neural networks, whereas acoustic cues are processed by
recurrent neural networks.

We show that combining both modalities increases perfor-
mance over using models in isolation, with important implica-
tions for user satisfaction. Furthermore, we test the impact of
alignment quality on model performance by comparing results
on manually corrected segments and force-aligned segments,
showing that the proposed pipeline can dispense with manual
correction.
Index Terms: pronunciation error detection, non-native speech,
L1 German, L2 English

1. Introduction
Foreign language proficiency, in particular pronunciation skills,
is found to contribute to a speaker’s credibility and career
chances [1], while poor pronunciation might cause the impres-
sion of unfriendliness and disinterest [2][3]. As a consequence,
speakers who participate in exchange programs, complete inter-
national degree programs or vocational trainings, or start their
career in a globally oriented company might have to improve
their pronunciation skills autonomously. The demand for flexi-
ble, self-determined training underlines the attractiveness of au-
tomatic solutions. Accordingly, the task of pronunciation error
detection concerns the automatic localization and diagnosis of
incorrectly pronounced sounds in non-native speech, with the
aim to provide valuable and interpretable feedback to the user.
We hereby focus on native German speakers of English.

Existing tools make use of automatic speech recognition
technology and offer feedback by highlighting the error, show-
ing video material of facial movements, or providing written in-
structions [4][5]. The proposed approach focuses on errors on a
segmental level and differs from these tools in the availability of
phonologically grounded, class-based diagnoses. Specifically,
the model learns to deduce broad phonological categories, such
as place of articulation or voicing status, from individual seg-
ments, which can be transformed into direct, articulatory feed-
back. If a user fails to produce dental sounds, for instance, they
could be asked to attempt a lisp-like sound in an effort to ac-
quire the correct tongue position. Articulatory instructions are
found to be helpful in areas such as speech therapy [6], suggest-
ing applicability in non-native pronunciation training as well.

The intuition of our approach is to utilize two sources
of information: visual cues present in spectrograms, such as
noise bursts or formant bands, and acoustic features captured
by MFCCs. Spectrograms, which are a valuable source of in-
formation to phonetic experts when doing manual segmentation
[7], have been used for tasks such as speech emotion recog-
nition [8][9][10], pronunciation pathology detection [11] and
style transfer [12][13]. Furthermore, we suggested the viability
of spectrogram-based representations for the purpose of pro-
nunciation error detection in previous work [14]. MFCC fea-
tures, likewise, are frequently used in automatic speech recog-
nition systems [15], speaker recognition or verification systems
[16][17], and other speech processing tasks. We show that the
combination of human-interpretable representations and robust,
yet compressed representations of speech improves pronuncia-
tion error detection. Integrating several sources of information
is a popular approach in language processing tasks. In [18],
MFCCs are combined with word embeddings for the purpose of
speaker segmentation and diarization, [19] integrate textual fea-
tures such as part-of-speech tags with spectral features for the
purpose of emotion recognition, and MFCCs are combined with
mouth movement parameters for the purpose of speech recog-
nition in [20].

A second focal point of this paper is alignment quality. As
manually prepared alignments are not available in an online set-
ting, the user’s speech must be aligned automatically, which
might add distracting noise to the sound representations. We
test the impact of alignment quality by conducting all experi-
ments on manually and force-aligned test data. The paper is
organized as follows: in the next section, we introduce both
model types, as well as the data and the sounds of interest. In
section 3, we discuss the error detection experiments we con-
ducted with models in isolation and in combination. Section 4
then presents results as well as more detailed error analyses. We
conclude in section 5.

2. Model
The entire pipeline is shown in Figure 1. As can be seen, we use
different neural networks for spectrograms and MFCCs – CNNs
and RNNs, respectively – to optimally account for the different
representation types. CNNs, accordingly, are suited for pattern
recognition [21], whereas RNNs are suited for sequential data
[22].

For each data type, we train eight classifiers that recognize
the following phonological properties from each segment, with
the number of classes in parentheses: major class (3), tongue
height (6), tongue fronting (5), vowel tenseness (3), lip round-
ing (3), voicing status (3), place of articulation (9), and manner
of articulation (9). All categories feature a “none” class, which
is used for properties that are only relevant for the other major



Table 1: Sounds of interest and potential confusions.

Sound Confusions
/æ/ [E], ...
/D/ [z], [d], ...
/T/ [s], [t], ...
/w/ [v], ...
/b/ [p], ...
/d/ [t], ...
/g/ [k], ...
/v/ [f], ...
/z/ [s], ...

class. If a segment is classified as consonant, for instance, the
height, fronting, tenseness and rounding classifiers should ide-
ally return the class “none”. All models are trained five times
with random initialization for 13 epochs. We report the average
accuracy and standard deviation of each classifier, computed on
25% of the training data that is randomly set aside before train-
ing.

2.1. Data

We train all models on speech segments extracted from the
TIMIT corpus [23], which provides the recordings of ten sen-
tences read by 630 native English speakers. The underlying
assumption is that native English segments do not exhibit pro-
nunciation errors, enabling the models to learn appropriate tar-
get patterns. Furthermore, all word- and phone-level transcrip-
tions have been manually verified, indicating relatively reliable
time alignments. The native English training data comprises
about 177,000 segments, spanning all eight dialect regions rep-
resented in the corpus.

We test the pipeline on segments extracted from 36 na-
tive German utterances that we obtain from the Speech Accent
Archive [24], an online platform to which volunteers can up-
load a read speech sample of a pre-defined English paragraph.
For the FORCE experiments, all utterances were force-aligned
using a HMM-GMM trained on the TED-LIUM 3 corpus [25].
For the GOLD experiments, phone boundaries were manually
corrected by a phonetic expert. The non-native utterances are
expected to exhibit pronunciation errors, which is why we se-
lect a set sounds that have been found to be challenging for
native German learners of English [26][3]. The sounds of in-
terest and potential confusions are listed in Table 1; obstruents
below the double line thereby refer to syllable-final instances
only. In order to identify mispronounced sounds, all instances
of the sounds of interest have been labeled with the actually
spoken sound by the first author of this paper. The non-native
test data comprises 1,723 hand-labeled sounds of interest.

2.2. Data representation types

As acoustic features, we extract 13 MFCCs using a 15 millisec-
ond window and a 5 millisecond frame shift. The feature vec-
tors corresponding to a single segment are then concatenated to
ensure segment-based processing [27]. The classifiers’ archi-
tecture and hyperparameters are defined in the first column of
Table 2. Accuracy is given in the second column of Table 3.

As visual cues, we extract a spectrogram in Praat for each
segment [28]. Except for the maximum frequency, which was

Table 2: Architecture and parameters of both model types.

MFCC SPEC
three LSTM layers two convolutional layers:
256 hidden units each 1) 20 filters of size 5×5

2) 50 filters of size 5×5
tanh activations ReLU activations

two 2×2 max pooling layers
fully-connected layer

output layer (softmax) output layer (softmax)
batch size: 128 batch size: 32
Adam optimizer Adam optimizer

Table 3: Average accuracy of MFCC- and spectrogram-based
classifiers on a randomly set aside test set. ± indicates standard
deviation.

Category MFCC SPEC
Class 89.15% ±0.2 93.08% ±0.2

Height 81.83% ±0.3 84.08% ±0.5
Fronting 83.19% ±0.4 85.83% ±0.6

Tenseness 82.80% ±0.4 91.30% ±0.2
Rounding 87.33% ±0.3 93.04% ±0.3
Voicing 90.08% ±0.1 88.92% ±1.0
Place 74.04% ±0.1 76.87% ±0.4

Manner 80.21% ±0.3 80.88% ±0.9

increased to 8kHz, all default settings are used. Before being
fed to the classifiers, all images are resized to 28×28 pixels.
The classifiers’ architecture and hyperparameters are defined
in the second column of Table 2 [21][29], accuracy is given
in the third column of Table 3 (SPEC). For each category,
the data representation type that performs better is boldfaced.
Spectrogram-based models outperform MFCC-based models
by 3.17% on average, with superior performance in all cate-
gories except for voicing. The performance gap is most promi-
nent for tenseness (+8.49%) and rounding (+5.71%), which
leads to the assumption that spectrograms preserve valuable vis-
ible cues such as formant bands. A voice bar, as opposed to
that, can be visually concealed by other patterns, potentially ex-
plaining the superiority of MFCC-based representations in this
category.

3. Experiments
For pronunciation error detection, we apply the best model of
each category to the non-native data extracted from the Speech
Accent Archive. For the GOLD experiments, the pre-trained
models are applied to the manually corrected segments, whereas
for the FORCE experiments, the pre-trained models are applied
to the force-aligned segments. The combination of all predicted
classes suffices to determine the predicted sound label. How-
ever, as the combination of the classes with the highest proba-
bility occasionally fails to map to a sound of English (<voiced
dental plosive>, for instance, is not present in the phone set),
we enforce the model to decide on a phone label. For this pur-
pose, we scan all possible combinations of all classes that map
to a sound of English, and compute the probability of each com-
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Figure 1: Error detection pipeline in the FORCE setting.

Table 4: Results in the GOLD and FORCE setting, using both
models separately.

GOLD FORCE
MFCC SPEC MFCC SPEC

Sensitivity 19.02% 19.78% 19.00% 16.14%
Specificity 84.78% 84.16% 85.34% 83.37%

bination by taking the average of its classes. As a result, we
output the phone label with the highest average probability.

Evaluation is done on the basis of three labels: the canoni-
cal target sound as it would be expected from a native speaker,
the predicted sound that corresponds to the combination with
the highest average probability, and the human label provided
by manual annotation, as explained in section 2.1. This al-
lows us to compute sensitivity and specificity. The evaluation
scheme thereby assumes the perspective of the user, meaning
that correctly pronounced sounds are seen as positives, whereas
pronunciation errors are seen as negatives. Consequently, sensi-
tivity quantifies the proportion of correctly pronounced sounds
(true positives + false negatives) classified as correct (true pos-
itives), whereas specificity quantifies the proportion of incor-
rectly pronounced sounds (true negatives + false positives)
classified as errors (true negatives). A trade-off between these
values is crucial to ensure that errors are detected reliably (high
specificity), while correctly pronounced sounds are accredited
(high sensitivity).

First, we test the performance of both modalities separately.
For this purpose, we compute sensitivity and specificity for
MFCC-based segments and spectrogram-based segments in iso-
lation. To show the benefit of multimodal classification, we then
combine these model types. This is done by averaging the pre-
dicted probabilities assigned to each class of a category by both
model types prior to computing the highest-scoring combina-
tion. In other words, the predicted phone label corresponds to
the best combination across both classifier types, thereby em-
ploying modality fusion at decision-level [19].

4. Results
Table 4 reports sensitivity and specificity for spectrogram-
and MFCC-based classifiers in isolation. For each alignment
setting, we boldface the modality that performs better. In
the GOLD setting, spectrogram-based representations outper-
form MFCC-based representations with respect to sensitivity,
whereas MFCC-based representations perform better with re-
spect to specificity. In the FORCE setting, MFCC-based rep-
resentations are superior with respect to both values, whereby
the result for specificity even increases over the GOLD set-

Table 5: Results in the GOLD and FORCE setting, using com-
bined predictions.

GOLD FORCE
Sensitivity 22.95% 21.41%
Specificity 81.56% 80.79%

ting. We draw the following, preliminary conclusions: first,
results for specificity are consistently high for both modali-
ties in both settings. Much poorer results for sensitivity, in
contrast, indicate that both models are overly strict in assess-
ing sounds. Second, the performance gap resulting from the
usage of force-aligned segments is surprisingly small overall,
which is particularly encouraging in view of the envisioned user
application. Third, MFCC-based representations outperform
spectrogram-based representations in the FORCE setting, even
though spectrogram-based classifiers are superior with respect
to average accuracy, as shown in Table 3. We therefore assume
that MFCC-based classifiers generalize well to non-native test
samples, particularly in view of noisy alignments.

As can be seen in Table 4, spectrogram- and MFCC-based
representations in isolation are capable of detecting a large pro-
portion of pronunciation errors. This happens, however, at
the expense of sensitivity, risking that users are demotivated
by seemingly unjustified diagnoses. Consequently, further im-
provements should aim at increasing sensitivity, potentially at
the expense of lowering specificity. In Table 5, we show results
for both modalities combined, which indicates that combining
both data representation types indeed improves sensitivity. Fur-
thermore, differences between the GOLD and FORCE setting
remain relatively small.

In order to better understand the strengths and weaknesses
of the model, we also analyze phone confusions. Compar-
ing each sound of interest to its most frequently predicted (in-
correct) phone label sheds light on the phonological features
that underlie the error, thereby revealing those categories that
are particularly challenging for the model. When considering
phone confusions of MFCC- and spectrogram-models in isola-
tion, we find that frequent confusions relate to almost all cate-
gories, with the exception of lip rounding and tongue fronting.
This leads to the impression that both models tend to guess
phone labels when acting in isolation.

As opposed to that, when considering phone confusions of
the combined model, we find that frequent confusions mainly
relate to the categories of manner and place of articulation in
the case of consonants, and tongue height in the case of the
vowel. Voicing errors are constrained to occurrences of /z/ and
/T/, whereas we do not find frequent confusions due to wrong
major class, tongue fronting, lip rounding, or vowel tenseness.



Table 6: Error statistics for three example speakers with varying
accent ratings.

Accent Sound Count #Errors #Predicted errors
Weak /D/ 6 5 5

/d/ 6 3 3
/z/ 12 8 5

Medium /D/ 6 6 6
/d/ 5 3 3
/z/ 12 8 0
/w/ 5 5 5

Strong /w/ 5 3 3
/D/ 6 3 3

This observation can be traced back to several factors. First,
as shown in section 2, the height, place and manner classifiers
have the largest number of classes to be distinguished, which in-
creases difficulty. Second, these phonological categories might
be harder to deduce from individual segments in general, ex-
emplified by relatively low accuracy scores as shown in Table
3. In summary, multimodal error diagnosis does not only in-
crease sensitivity, but also helps limiting prediction errors to a
few, problematic categories.

4.1. Error analysis: speaker statistics

We suggest that in an actual pronunciation training tool, the
model should prioritize systematic errors over individual mis-
pronounced segments, as the latter could be traced back to ran-
dom variations or personal factors such as fatigue. To single out
how well the model recognizes systematic errors, we choose
one speaker with a strong, medium and weak non-native ac-
cent, respectively. Accent ratings have been obtained by con-
sulting a native English speaker on the comprehensibility, intel-
ligibility and overall impression of a speaker’s utterance. These
scores are then averaged, with one being the lowest and five be-
ing the highest score. The weak-accented speaker, accordingly,
received a mean score of 5, the medium-accented speaker re-
ceived a mean score of 3.67, and the strong-accented speaker
received a mean score of 2, which was the lowest score among
all 36 speakers.

For each speaker, we count the total number of occurrences
of each sound of interest (target sound) in the utterance. Sounds
that occur less than five times are excluded. A pronunciation
error is deemed to be systematic if the human label differs from
the target sound in at least 50% of its total occurrences in the
utterance. Lastly, we count the number of detected pronuncia-
tion errors for each sound of interest, using combined predic-
tions. The assumption thereby is that the model should be able
to detect systematic pronunciation errors over entire utterances,
with less focus on the exact location of the error. Results for
each speaker are presented in Table 6. We only show system-
atic errors, that is, target sounds that occur at least five times
(Count) and that are mispronounced in at least 50% of their to-
tal occurrences in the utterance (#Errors). It can be seen that
in the majority of cases, the model recognizes systematic errors
almost perfectly (#Predicted errors). In other words, the model
succeeds at reliably detecting the sounds that a speaker strug-
gles with in a broader context.

Exceptions can be seen for the weak- and medium-accented
speaker regarding the classification of syllable-final /z/. In the

former, the model detects only five out of eight mispronuncia-
tions of /z/, whereas in the latter, the model fails to detect er-
rors in the pronunciation of /z/ entirely. Thus, even though the
model tends to be too strict, as indicated by low sensitivity and
high specificity values, it is overly tolerant in the case of /z/. We
trace this observation back to the distribution of training sam-
ples, whereby an abundance of samples in the classes voiced,
alveolar and fricative could lead to the excessive gen-
eration of selfsame.

The presented speaker statistics offer several observations
that are relevant to our core principles in pronunciation training.
First, we would like to draw attention to the fact that the cho-
sen speakers consistently struggle with the same set of sounds:
all speakers seem to encounter difficulties in the pronunciation
of /D/, whereas two speakers exhibit errors concerning /d/, /z/
and /w/, respectively. This finding validates our assumption on
the difficulty of these sounds for native German learners of En-
glish. Second, it can be seen that the medium-accented speaker
exhibits the largest number of systematic pronunciation errors,
whereas the strong-accented speaker seems to encounter diffi-
culties with only two sounds of interest. On the one hand, this
could be traced back to the selection of sounds, meaning that the
strong-accented speaker might exhibit difficulties with sounds
that are not considered here. On the other hand, this finding
stresses the complexity of non-native accents and their percep-
tibility. Since we consider only phonemic errors, allophonic,
intonational, rhythmic or durational factors are not accounted
for here, while they might have played an important role in the
accent ratings [30][31].

5. Discussion

In this paper, we present a pipeline that identifies pronuncia-
tion errors in non-native speech by deducing broad phonolog-
ical categories from visual cues on the one hand, and acoustic
features on the other hand. We train eight phonological clas-
sifiers for both modalities, which employ a CNN architecture
using spectrogram images as input, and a LSTM-RNN architec-
ture using MFCCs as input. Segments are extracted either from
manually corrected or automatically aligned phone boundaries.
While both models in isolation achieve satisfactory results with
respect to specificity, performance is relatively poor with re-
spect to sensitivity. Combining the prediction of both model
types is shown to attenuate this disparity, while limiting model
errors to a small number of categories that seem hard to classify
in general. Furthermore, we show that the combined model suc-
ceeds at identifying a speaker’s systematic pronunciation errors,
which allows for prioritization of certain segments in training.

With respect to our claims in the introduction, we come
to the following conclusions: first, the performance of MFCC-
and spectrogram-based models is comparable in isolation, and
yields impressive results for specificity. Combining predictions,
however, is particularly useful to increase sensitivity, which is
indispensable to avoid user frustration and loss of motivation.
Second, performance gaps due to alignment quality are found
to be relatively small, which is an encouraging revelation in the
face of the envisioned, fully automatic user application.

Future research will focus on testing the pedagogical use-
fulness of our approach in an actual user study, which enables
us to correlate evaluation scores, such as sensitivity and speci-
ficity, with user experience and progress. Furthermore, we will
explore several feedback types, such as written articulatory in-
structions, animations, or synthetic accent removal [32].
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