

Universität Stuttgart

Markus Gärtner, Kerstin Eckart {markus.gaertner,kerstin.eckart}@ims.uni-stuttgart.de Institut für Maschinelle Sprachverarbeitung

Tool Performance

The quality of output from tools for automatic analysis/processing of natural language hardly ever reaches 100% and depends on several factors:

- The annotation task (e.g. part-of-speech tagging vs. parsing)
- The input data: For in-domain input performance is reasonably well (comparable to results from literature). Out-of-domain input likely results in a drop of performance.

SFB 732 Project INF: Information Infrastructure

> In support of self-assessment – exploiting available information from tools

This might result in trust issues for potential users, especially when the tool is applied as an intermediate step in a processing chain or in a new outof-domain setting. Furthermore, workload for the user might increase by a need for additional evaluation to find the best tool for the task or extensive correction steps after processing to find and correct errors.

Transparency (and usability) for the user can be increased by:

- A thorough tool documentation, specifying the standard domain of input data and the functional range: "What this tool will not be able to do..."
- Propagating available confidence information from the tool to the user

Preserving Tool Confidence

Many automatic tools are internally aware of a relative reliability of their output since they make use of probabilities and forced guessing to decide on a single analysis or create n-best-lists. Others introduce a default handling of unexpected input, from which a reliability estimation can be derived. In most cases this information is discarded after deciding on a single prediction and never included in a tool's output. In our opinion this represents a serious loss of valuable meta-information.

Confidence as Annotation Layer

We suggest to include a tool's confidence estimations directly in its output as additional (meta-)annotation layers. This allows for a series of straightforward applications:

- Visualizations can easily use this information to present visual distinctions or filters based on different levels of confidence.
- When using sophisticated corpus-query tools the user is able to restrict queries to annotations with desired reliability via search constraints.
- \Rightarrow Ultimately the availability of those values as annotations should aid users in finding interesting data wrt to a certain range or level of confidence.

Sentence	IMSTrans	Mate	Turbo
Mach	root	root	root
ich	1	1	4
alles	4	1	4
richtig	1	1	1
?	1	4	4

as examples for internal confidence.

outputs [2].

• Above and to the right different parses from

IMSTrans, Mate Tools and TurboParser

with external confidence estimations for at-

tachment created by comparing the individual

Interpretation of Confidence Values

Unprocessed usage of raw confidence values in cases where they are already available (e.g. probabilities produced by BitPar [1] for the left trees in above figure) faces certain limitations in terms of usability:

Advantages of Transparent Confidence

It is important to keep in mind that the availability of confidence estimations (obtained either internally from a tool or externally by comparison of multiple outputs) does not increase the quality of an annotation as such. But it rather boosts usability of large automatically annotated datasets by:

- Range of possible values can be vastly different across and within tools
- Granularity of analysis can differ between tools (e.g. confidence for individual arcs in a dependency parse versus the entire tree)
- \Rightarrow Currently real comparability is only possible for confidence values produced by a single tool for the same kind of decisions, such as n-best lists.

We therefore propose to normalize to a simple scale to allow for an easier general interpretability of individual confidence estimations as well as a basic comparability between different tools. As such a tool should project its confidence estimation into classic probability values in the closed interval [0,1] (as a confidence scale from "pure guesswork" to "being sure").

www.ims.uni-stuttgart.de

• Raising awareness wrt reliability in the first place

• Helping users to assess if an analysis or part of it is sufficiently reliable, e.g. for a specific downstream task

Thus transparent confidence values can foster the application of state-ofthe art tools on out of domain data, when used in compositional architectures and in related fields such as the Digital Humanities.

- [1] Helmut Schmid. Efficient Parsing of Highly Ambiguous Context-Free Grammars with Bit Vectors. In Proceedings of the 20th International Conference on Computational Linguistics (COLING 2004), Geneva, Switzerland, 2004.
- [2] Tanja George. Confidence estimation for automatic parsing of large web data sets. Masterarbeit, Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart, 2016.

