

Universität Stuttgart

Measuring Semantic Content to Assess Asymmetry in Derivation

Sebastian Padó*Alexis Palmer *Max Kisselew*Jan Šnajder**Institut für maschinelle Sprachverarbeitung, Stuttgart University, Germany†Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

Funded by Deutsche Forschungsgemeinschaft (DFG SFB 732, B9)

1. Morphological Derivation

- The process of forming new words (derived terms) from existing ones (base terms) dance+er \Rightarrow dancer
- Combines surface changes with semi-regular semantic shifts
- Theoretical claim: inherently directional process with respect to meaning (Laca, 2001) dancer presupposes dancing event, relational information
 - Our hypothesis: derived terms have more semantic content than their respective base terms
 - Our goal: measure semantic content from corpus data and assess hypothesis

Operationalized in distributional semantic framework, using two metrics from information theory

Entropy (H)

- Santus et al. (2014): entropy of distributional vectors as measure of semantic generality of words
- Here: entropy of a term's vector as measure of information content
- Entropy computed for both base and derived terms
- High semantic content \Rightarrow low entropy

KL Divergence (D)

- Herbelot and Ganesalingam (2013): KL divergence between term vector and "neutral" context vector as measure of semantic content
- Here: "neutral" vector computed as centroid vector for all words
- Both base and derived vectors compared to centroid vector
- High semantic content \Rightarrow high KL divergence from neutral vector

Two metrics not equivalent; D incorporates both cross-entropies and entropy difference: D(d||n) - D(b||n) = (H(d,n) - H(b,n)) - (H(d) - H(b))

3. Data

- Lemmatized, POS-tagged SdeWaC (Faaß & Eckart, 2013)
- 10K most frequent content words as contexts
- Count vectors, L1-normalized

Derivational patterns and word pairs

- From DErivBase (Zeller et al., 2013)
- Two each of A-A, N-N, V-V patterns

ID	Pattern	Sample	word pair	English translation		
AA02	un-	sagbar \rightarrow	unsagbar	sayable	\rightarrow	unspeakable
AA03	anti-	religiös $ ightarrow$	antireligiös	religious	\rightarrow	antireligious
NN02	-in	Bäcker \rightarrow	Bäckerin	baker	\rightarrow	female baker
NN57	-chen	Schiff \rightarrow	Schiffchen	ship	\rightarrow	small ship
VV13	an-	backen $ ightarrow$	anbacken	to bake	\rightarrow	to stick, burn
VV31	durch-	atmen $ ightarrow$	durchatmen	to breathe	\rightarrow	to breathe deep

4. Results

Expectations and outcomes

- 1. Entropy: entropy of base terms is higher than that of derived terms
- 2. **KL divergence:** base terms show lower KL divergence (compared to the neutral vector) than do derived terms

Assessing the hypothesis

- Results strongly support hypothesis, across parts of speech
- Roughly 90% of word pairs conform to expectations

Metric	A: <i>un-</i>	A: anti-	N: <i>-in</i>	N: -chen	V: an-	V: durch-
Entropy	60/20	78/2	76/4	74/6	71/9	76/4
KL	62/18	78/2	74/6	75/5	68/12	75/5

Table: For each pattern, number of word pairs which match/mismatch the hypothesis

- Two main types of counterexamples:
 - 1. derived term is more basic

entbehrlich (disposable) \Rightarrow unentbehrlich (indisposable)

- 2. derived term undergoes additional meaning shift *kündigen (cancel)* \Rightarrow *ankündigen (announce)*
- Entropy finds more cases of first type; KL, more of second type
- Mixed-effects logistic regression analysis shows

 highly significant effect of derivational status
 (+derived ⇒ +semantic_content)

0

 o additional substantial effects of frequency (+freq ⇒ -semantic_content)
 o no effect of POS

5. Conclusion

- Very strong empirical evidence for asymmetry: derived terms indeed have more semantic content than base terms
- Non-conforming word pairs show evidence of morphological semi-regularity (additional semantic shifts)
- Next: further investigate misbehaving patterns and word pairs, considering e.g. relationship between meaning shifts and frequency (Haspelmath, 2008)

References

- Faaß, G. and K. Eckart (2013). SdeWaC A corpus of parsable sentences from the web. Language Processing and Knowledge in the Web.
- Haspelmath, M. (2008). Creating economical morphosyntactic patterns in language change. In Language universals and language change. OUP.
- Herbelot, A. and M. Ganesalingam (2013). Measuring semantic content in distributional vectors. Proceedings of ACL.
- Kisselew, M., S. Padó, A. Palmer, and J. Šnajder (2015). Obtaining a Better Understanding of Distributional Models of German Derivational Morphology. Proceedings of IWCS.
- Laca, B. (2001). Derivation. In Language Typology and Language Universals: An International Handbook. Volume 1. Walter de Gruyter.
- Santus, E., A. Lenci, Q. Lu, and S. S. Im Walde (2014). Chasing hypernyms in vector spaces with entropy. Proceedings of EACL.
- Inducing and evaluating a derivational morphology resource for German. Proceedings of ACL.

Also see our poster tomorrow at IWCS!