Predictability of Distributional Semantics in Derivational Word Formation

Sebastian Padó*, Aurélie Herbelot+, Max Kisselew*, Jan Šnajder †

1. Introduction

2. Analyzing Models of Morphological Derivation

Processes of Word Formation

- **Composition**: *file* + *name* → *filename*
- Inflection: *make* → *make*+*s*, *computer* → *computer*+*s*
- Morphological derivation ...
 - can mean attaching an affix to a base word (e. g. *drive* + *ER* → *driver*)
 - can be more complex, involving stem alternation, deletion of previous affixes, circumfixation
 - can take place both within parts of speech and across parts of speech
 - is very productive process in many languages, notably Slavic languages

Introduction

Compositional models of distributional semantics (CDSMs)

- are generally applied to *compositionally compute phrase meaning* (Baroni and Zamparelli, 2010; Coecke et al., 2010)
- have been applied to model word formation processes like composition and (morphological) derivation (Lazaridou et al., 2013)
- Goal: Predict vector for the derived word from vector of base and vector of affix

Introduction

Modeling Derivation through Compositional Distributional Semantics Models (CDSMs):

 $\overrightarrow{derived} = \overrightarrow{base} + \overrightarrow{affix}$

Predictability of Distributional Semantics in Derivational Word Formation

Introduction

Challenges:

- Practical concerns, e.g. different frequencies of base and derived word
- No clear picture about factors that affect CDSMs performance in modeling of derivation (Lazaridou et al., 2013)
- Very uneven performance of CDSMs across words and word pairs (Kisselew et al., 2015)

Our contribution:

 \Rightarrow We investigate linguistic factors that govern the success or failure of CDSMs to predict distributional vectors for derived words

1. Introduction

2. Analyzing Models of Morphological Derivation

Overall workflow

- Step 1: Train CDSMs on Train set; run CDSMs on Dev and Test sets
- Step 2: Learn regression model on CDSM performance numbers from Dev set
- Step 3: Test regression model on CDSM performance numbers from Test set

Step 1

- Step 1: Train CDSMs on Train set; run CDSMs on Dev and Test sets
- Step 2: Learn regression model on CDSM performance numbers from Dev set
- Step 3: Test regression model on CDSM performance numbers from Test set

Data: Derivational word pairs

Extracted from DErivBase (Zeller et al. 2013). Examples:

POS + ID	Pattern	Sample word pair
$A\toN\ 16$	+ität	produktiv $ ightarrow$ Produktivität
		(productive $ ightarrow$ productivity)
N ightarrow A m 26	-ung +end	$Einigung \to einigend$
		$({\sf agreement} \ ightarrow \ {\sf agreeing})$
$V \rightarrow N \ 09$	(null)	aufatmen $ ightarrow$ Aufatmen
		(to breathe \rightarrow sigh of relief)

- 74 patterns (49 cross-POS patterns)
- 30,757 word pairs
- Median per pattern: 194.5 word pairs
- Min. 83, max. 3028 word pairs

Data: Vector space

- CBOW vectors (Mikolov et al., 2013), 300 dimensions, context window: ± 2
- Corpus: SdeWaC (Faaß and Eckart, 2013)

CDSMs

Employed CDSMs:

- Simple additive model: $\overrightarrow{deriv} = \overrightarrow{base} + \overrightarrow{affix}$
- Weighted additive model: $\overrightarrow{deriv} = \alpha \overrightarrow{base} + \beta \overrightarrow{affix}$
- Simple multiplicative model: $\overrightarrow{deriv} = \overrightarrow{base} \odot \overrightarrow{affix}$
- Lexical function model: $\overrightarrow{deriv} = A \overrightarrow{base}$

Baseline:

• Baseline: $\overrightarrow{deriv} = \overrightarrow{base}$

Evaluation Measure

How well does the predicted vector align with the corpus-observed vector?

Evaluation Measure

Reciprocal rank (RR): 1 divided by the position of the predicted vector in the similarity-ranked list of the observed vector's neighbors

Example:

Base word	vernünftig	harmonisch	absichtlich
Correct derived	unvernünftig	unharmonisch	unabsichtlich
word			
Nearest neighbor 1	unvernünftig	wohlausgewogen	unabsichtlich
Nearest neighbor 2	akzeptabel	spannungsvoll	wissentlich
Nearest neighbor 3	rational	stimmig	vorsätzlich
Nearest neighbor 4	sinnvoll	unharmonisch	falsch
RR	$\frac{1}{1}$	$\frac{1}{4}$	$\frac{1}{1}$
Aggregate RRs into	-		
Mean Reciprocal	$\frac{\frac{1}{1}+\frac{1}{4}+\frac{1}{1}}{2} = \frac{2.25}{2} = 0.75$		
Ranks (MRRs)		3 3	

CDSM Models - Results

Results for individual CDSM prediction models on test set

	Baseline	Simple Add	Weighted Add	Mult	LexFun
Mean Reciprocal Rank	0.271	0.309	0.316	0.272	0.150

CDSM Models - Results by Pattern

Performance is highly variable across patterns and words pairs

Examples:

POS + ID	Pattern	Sample word pair	RR
$V \to V \; 01$	-en +eln	zucken $ ightarrow$ zuckeln	0.03
$A \rightarrow N 10$	-(a e)nt + (a e)nz	(twitch \rightarrow saunter) präsent \rightarrow Präsenz	0 69
// / // 10		(present \rightarrow presence)	0.05

Step 2

- Step 1: Train CDSMs on Train set; run CDSMs on Dev and Test sets
- Step 2: Learn regression model on CDSM performance numbers from Dev set
- Step 3: Test regression model on CDSM performance numbers from Test set

Regression Model

Task: Predict the performance of the CDSM models (measured as RR) at the word pair level using a regression model

Three classes of predictors:

Predictor class	Description
	lemma frequency
Base word level	number of WordNet synsets
	productivity of the base word etc.
Prodiction loval	similarity of the derived vector to its nearest neighbors
F rediction level	similarity between base vector and derived vector etc.
Pattern level	Identity of the pattern

Analysis toy example

Toy example for a single CDSM prediction model (simple additive):

Prediction Evaluation (Reciprocal Rank), Features

Regression Analysis

- **1** Run the CDSM model on unseen data
- 2 Evaluate its reciprocal ranks at the word pair level
- 3 Compute features from the same data
- 4 Learn regression model: Yields coefficients for features indicating their impact on CDSM performance

Step 3

- Step 1: Train CDSMs on Train set; run CDSMs on Dev and Test sets
- Step 2: Learn regression model on CDSM performance numbers from Dev set
- Step 3: Test regression model on CDSM performance numbers from Test set

Linguistic Analysis - Experiment

- **Research question:** Which properties of the base word and the pattern make the prediction easy or difficult?
- **Estimate** the following linear regression model to predict RR on a test set (use pattern-level and base-level features):

RR ~ pattern + base_productivity + base_typicality
+ base_polysemy + base_freq

Coefficients, significances, and effect sizes for the predictors (negative coefficients indicate poorer CDSM performance):

Estimate	LMG score
N/A	87.2%
-0.13^{***}	7.6%
0.21***	4.1%
-0.03**	0.8%
0.04***	0.2%
	Estimate N/A -0.13*** 0.21*** -0.03** 0.04***

Coefficients, significances, and effect sizes for the predictors (negative coefficients indicate poorer CDSM performance):

Predictor	Estimate	LMG score
pattern	N/A	87.2%
<pre>base_productivity</pre>	-0.13^{***}	7.6%
base_freq	0.21***	4.1%
base_polysemy	-0.03**	0.8%
base_typicality	0.04***	0.2%

• pattern (the derivation pattern) accounts for a large percentage of the variance.

Coefficients, significances, and effect sizes for the predictors (negative coefficients indicate poorer CDSM performance):

Predictor	Estimate	LMG score
pattern	N/A	87.2%
base_productivity	-0.13***	7.6%
base_freq	0.21***	4.1%
base_polysemy	-0.03**	0.8%
$\texttt{base}_{ extsf{typicality}}$	0.04***	0.2%

• More productive bases are more difficult to predict.

Coefficients, significances, and effect sizes for the predictors (negative coefficients indicate poorer CDSM performance):

Predictor	Estimate	LMG score
pattern base_productivity	N/A -0.13***	87.2% 7.6%
base_freq	0.21***	4.1%
<pre>base_polysemy</pre>	-0.03**	0.8%
base_typicality	0.04***	0.2%

• More frequent bases are easier to predict.

Coefficients, significances, and effect sizes for the predictors (negative coefficients indicate poorer CDSM performance):

Predictor	Estimate	LMG score
pattern	N/A	87.2%
base_productivity	-0.13^{***}	7.6%
base_freq	0.21***	4.1%
base_polysemy	-0.03**	0.8%
base_typicality	0.04***	0.2%

 Polysemy (number of WordNet senses) and typicality of the base word play very small roles – they show expected effects but these hardly matter.

Analysis by pattern – Results

Reason: Cross-POS derivations often syntactically motivated – context remains similar.

For example:

 -ung nominalization pattern: verarbeiten → Verarbeitung / (to) process → processing

Analysis by pattern – Results

2) Derivation patterns that are semantically regular:

Reason: Patterns that are semantically irregular/ambiguous are hard to learn.

For example:

 Noun → verb derivation patterns generate verbs from nouns that are only loosely semantically related (Zweig→abzweigen / (tree) branch→ branch off)

Analysis by pattern – Results

3) Patterns with a change in argument structure:

Reason: Arguments incorporated through derivation drop out of the context of the derived word.

For example:

• agentive/instrumental nominalization pattern +er(*fahren* \rightarrow *Fahrer* / *drive* \rightarrow *driver*)

Ensemble Prediction - Experiments

- If we have different models, can we combine them to obtain better prediction?
- Follow-up study: Select one vector from among the predictions of multiple CDSMs (ensemble prediction)
- Two models:
 - 1 Oracle model:

Compares all prediction models and picks the one with the highest RR

2 Ensemble model:

Predicts the CDSMs' expected performances at the word pair level using a linear regression model

Ensemble Prediction - Results

Model	MRR
Oracle model	0.362
Ensemble model	0.321
Weighted Add (best individual model)	0.316

- Small improvement by oracle model
 - \Rightarrow Reason: almost all models highly correlated with one another

Conclusions

- First analysis of CDSMs on derivational phenomena that is both detailed and broad-coverage
- Three main factors for bad performance of CDSMs:
 - 1 modifications of argument structure
 - 2 semantic irregularity
 - 3 within-POS derivations
- Our dataset with derivationally related word pairs and CDSM performance predictors is available at: http://www.ims.uni-stuttgart.de/data/derivsem

Thank you!

Any questions?