
Journal of Automata, Languages and Combinatorics 10 (2005) 2�3, 107�157
c Otto-von-Guericke-Universität Magdeburg

Bounds for Tree Automata with Polynomial Costs

Björn Borchardt
1

Department of Computer Science, Technische Universität Dresden
D�01062 Dresden, Germany

e-mail: borchard@tcs.inf.tu-dresden.de

Zoltán Fülöp
2 and Zsolt Gazdag

2

Department of Computer Science, University of Szeged
Árpád tér 2., H�6720 Szeged, Hungary

e-mail: ffulop,gazdagg@inf.u-szeged.hu

and

Andreas Maletti
1

Department of Computer Science, Technische Universität Dresden
D�01062 Dresden, Germany

e-mail: maletti@tcs.inf.tu-dresden.de

ABSTRACT
We consider tree automata with costs over semirings in the sense of (Seidl, 1994).
We de�ne the concept of a �nitely factorizing semiring and of a monotonic semiring,
both as the generalization of well-known particular semirings, and show that the cost-
�niteness of tree automata with costs over �nitely factorizing and monotonic semirings
is decidable. We show that, for tree automata with costs over �nitely factorizing and
naturally ordered semirings, cost-�niteness and boundedness are equivalent. Hence
it is also decidable whether a tree automaton with costs over a �nitely factorizing,
monotonic, and naturally ordered semiring is bounded with respect to the natural
order. With this we generalize the results of (Seidl, 1994) concerning the decidability
of the boundedness of tree automata with costs over the classical semiring of natural
numbers and the (max;+)-semiring of natural numbers.

Keywords: Polynomials over semirings, tree automata with costs, cost-�niteness

1. Introduction

The idea of equipping the transitions of a �nite state automaton M with costs (or
with weights or multiplicities) was introduced in [30]. Every transition of M has a

1Research of these authors was �nancially supported by the German Research Foundation (DFG,
GRK 334/3).

2Research of these authors was supported by the exchange program of DAAD and MÖB under
grant No. UH/2607-45, by the Herbert Quand Foundation, by the Foundation Teaching and Research
in Informatics, and by the Hungarian Scienti�c Foundation (OTKA) under Grant T 046686.

108 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

cost taken from a semiring (A;�;�;0;1). Then, for every input word w and run
of M on w, the cost of this run is the multiplication of the costs associated with the
transitions of this run. Moreover, the cost c(w) of w is the sum of the costs of all
successful, i.e., accepting, runs of w. We call such a model a �nite automaton with
costs. One might be interested in the question whether a �nite automaton M with
costs is bounded in the following sense. Assume that there is a partial order � over
the carrier set A of the underlying semiring. Now M is bounded with respect to �
if there is an element a 2 A (an upper bound) such that c(w) � a for every word w
accepted byM . Boundedness (or limitedness) theorems (e.g., [17, 23, 26, 27, 22]) have
successfully been applied to solve a number of problems, including representation
problems and star-height problems [14, 15]. For example, the decidability of the
boundedness of distance automata [13], which are restricted �nite automata with costs
over the (min;+)-semiring, motivated a lot of further research [16, 17, 18, 22, 34, 35].

In this paper we will be interested in the decidability of boundedness of tree
automata with costs over a semiring. Therefore we assume that each semiring
(A;�;�;0;1) which serves as a cost-set of a tree automaton is computable in the
sense that its both operations � and � are computable. Next we recall the concept
of a tree automaton.

Finite state automata are generalized to tree automata independently in [3] and [33]
in such a way that, instead of the input alphabet, they take a ranked alphabet �. Thus
the underlying structure, instead of an unoid, is a �-algebra and the inputs to the tree
automaton are trees over �. In fact a tree automaton is a tuple M = (Q;�; �; F),
where Q is the �nite set of states, � is the input ranked alphabet, � is the set of
transitions, and F � Q is the set of �nal states. A transition of M is a tuple
(q1; : : : ; qk; �; q), where � is a symbol of rank k from � and q1; : : : ; qk; q 2 Q. Next
we will de�ne the semantics of M . An input tree to M is a tree over � without
variables. The transition speci�ed before describes the state behaviour of M at a
�-node of the input tree. Next we de�ne the concept of the set of computations
of M over a �-tree. Note that it would be su�cient to de�ne it for a tree without
variables, however for later purposes, we de�ne it more generally. For a �-tree s with
variables in fx1; : : : ; xng and states q1; : : : ; qn; q 2 Q, we de�ne the set 	

q
q1:::qn

(s) of
(q1; : : : ; qn; q)-computations over s to be the set of trees over � (as a ranked alphabet)
and fx1; : : : ; xng which respect the state behaviour of the transitions. By the set
	qq1:::qn of (q1; : : : ; qn; q)-computations, without referring to an input tree, we mean
the union of the sets 	qq1:::qn(s) for all trees s with variables in fx1; : : : ; xng. In order
to de�ne the semantics of M it is su�cient to consider ("; q)-computations (or: q-
computations) over an input tree s without variables. A q-computation is accepting
if q 2 F . A tree s is accepted by the tree automaton M if there is an accepting
computation over s.

Tree automata have also been studied intensively; see among others [4, 28, 32, 5,
9, 10]. Recently tree automata have been generalized to tree automata with costs in
[1, 25, 2]. Note that the computation model was called a tree automaton with costs
in none of these papers, however we would like to use this term in our paper.

The idea is similar to what was invented for the string case in [30]. In fact, every
transition (r1; : : : ; rk; �; q) of M has a cost a, which is an element of a semiring

Bounds for Tree Automata with Polynomial Costs 109

A = (A;�;�;0;1). Now let s = �(s1; : : : ; sk) be an input tree. The cost of a
computation (r1; : : : ; rk; �; q)(1; : : : ; k) over s is the product a�c(1)�� � ��c(k),
where a 2 A is the cost of the transition (r1; : : : ; rk; �; q) and c(i) 2 A is the cost of
the computation i over si for every 1 � i � k. Moreover, the cost of s is the sum of
the costs of all accepting computations of M over s.

In the paper [31], which will be in the focus of our interest, tree automata with
costs were de�ned in a slightly di�erent way. The cost of a transition (r1; : : : ; rk; �; q)
of a tree automaton M is given by a polynomial over the semiring A with variables
in fx1; : : : ; xkg. Thus the costs of the transitions can be speci�ed as a cost function
c : � �! P (A;X), where P (A;X) is the set of polynomials over A and the set of
variables X. Then the cost of a computation (r1; : : : ; rk; �; q)(1; : : : ; k) of M be-
comes c((r1; : : : ; rk; �; q))(c(1); : : : ; c(k)), where the polynomial c((r1; : : : ; rk; �; q))
with variables in fx1; : : : ; xkg is considered as a function of type Ak �! A. The set
of accepting costs of M is denoted by c(M) and is de�ned to be the set of costs of all
accepting computations of M . Note that this way of computing the cost is more gen-
eral than the approach of [1, 25, 2] because the cost of the transition (r1; : : : ; rk; �; q)
in those papers is described by a special polynomial of the form a � x1 � : : : � xk. On
the other hand, we think because the author of [31] concentrates only on deciding the
boundedness of the set c(M), the cost of an input tree s is not considered in [31].

Now we turn to cost-�niteness and boundedness of tree automata with costs. We
call a tree automaton M with costs over a semiring A cost-�nite if the set of all
accepting costs is �nite. Moreover, we call M bounded with respect to a partial
order � on A if an upper bound a 2 A of the set of all accepting costs exists. Note
that cost-�niteness and boundedness are trivial in �nite semirings.

In this paper we deal with the problem of deciding cost-�niteness of a tree automa-
ton with costs. Our motivation was to generalize the decidability results of [31]. In
that paper decidability of boundedness with respect to � was proved for tree automata
with costs over three particular semirings: the classical semiring Nat, the (max;+)-
semiring Arct, and the (min;+)-semiring Trop of natural numbers, (cf. Theorems
3.2, 3.4, and 3.5 in [31], respectively). (Certainly, in the semiring Trop the upper
bound of the accepting costs is not allowed to be 1.) Moreover, it was shown that,
for every tree automaton with costs over FSet(N), which is the semiring of �nite sub-
sets of natural numbers, it is decidable whether the set of the cardinalities of accepting
costs (which are also �nite sets of natural numbers) is �nite (cf. Theorem 3.19 in [31]).
Note that in FSet(N) the operation � is the union and the operation � is the point-
wise addition of sets of non-negative integers. Let us observe that cost-�niteness (and
hence boundedness with respect to �) of a tree automatonM with costs over FSet(N)
implies that M has the mentioned decidable property but the converse implication
fails.

It should also be noted that, for the particular semirings Nat, Arct, and Trop,
boundedness with respect to � is equivalent with cost-�niteness, while for FSet(N)
boundedness with respect to � is also equivalent with cost-�niteness.

In this research our aim was to give a reasonable class of semirings such that the
cost-�niteness of tree automata with costs over a semiring of this class is decidable.
We found this class to be the class of �nitely factorizing and monotonic semirings. As

110 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

the main result of this paper, we proved that the cost-�niteness of tree automata with
costs over �nitely factorizing and monotonic semirings is decidable (cf. Theorem 46).
Next we discuss this result in more detail.

First we de�ne �nitely factorizing as well as monotonic semirings. A semiring
A = (A;�;�;0;1) is �nitely factorizing if every element a 2 A can be decomposed
as the � of two further elements in �nitely many ways and as the � of two non-
zero elements also in �nitely many ways. For instance, the semirings Nat, Arct, and
FSet(N) are �nitely factorizing, while Trop is not. Moreover, A is monotonic if it is
in�nite and there is a partial order � on A such that, roughly speaking, both � and �
are monotonic with respect to � in the sense that, for every elements a1; a2 2 A, we
have a1 � a1 � a2 and if a1 6= 0 6= a2 and a2 6= 1, then also a1 � a1 � a2 and
a1 � a2 � a1. For instance, Nat and Arct are monotonic with respect to � while
FSet(N) is not monotonic with respect to � (but it is monotonic with respect to
another partial order as we will see).

In the rest of the discussion we will mainly be interested in the set of (q; q)-

computations in which the variable x1 occurs exactly once, denoted by b	qq, because
such a (q; q)-computation, as part of another computation, can be pumped.

In order to decide cost-�niteness of a tree automaton with costs we have to trans-
form it into a special form, which is called reduced. Roughly speaking, a tree au-
tomaton M with cost function c : � �! P (A;X) is reduced, whenever for every state

q 2 Q the facts that b	qq 6= ; and that the cost of at least one q-computation is not

0 or 1 imply that there is a computation 2 b	qq such that the variable x1 occurs
also in the cost c() of , i.e., the polynomial c() as a function depends on its argu-
ment. The existence of such a computation is very important because, if is part
of another computation and we pump it, then the cost of the pumped computation
may grow provided the underlying semiring is �nitely factorizing and monotonic. We
have proved that, for every tree automaton M with cost function c : � �! P (A;X)
over a monotonic semiring A (in fact an even weaker assumption on A is su�cient), a
reduced tree automatonM 0 with cost function c0 : �0 �! P (A;X) can be constructed
such that M and M 0 are cost-equivalent, i.e., c(M) = c(M 0) (cf. Lemma 27).

Further, we have given di�erent characterizations of cost-�niteness of a reduced tree
automaton M with costs (cf. Theorem 44). The �rst two of them, which are denoted
by (ii) and (iii) in Theorem 44, are necessary only for technical reasons in order to
be able to handle the third one, which is denoted by (iv). The characterization (iv),
called Condition (linear-trans) in De�nition 40, refers to the costs of the transitions
of M , i.e., to �nitely many polynomials only. Using this fact, we could prove that
the Condition (linear-trans) is decidable for tree automata with costs over �nitely
factorizing and monotonic semirings (cf. Lemma 45). So we have obtained that,
for every tree automaton M with cost function c : � �! P (A;X) over a �nitely
factorizing and monotonic semiring, it is decidable whether M is cost-�nite in the
following way (cf. Theorem 46). We construct a reduced tree automaton M 0 which is
cost-equivalent with M . Hence M is cost-�nite if and only if M 0 is cost-�nite. Then
we decide whether M 0 is cost-�nite by checking if it satis�es Condition (linear-trans).

Finally, we have considered the connection between cost-�niteness and boundedness

Bounds for Tree Automata with Polynomial Costs 111

of tree automata with costs. It has turned out that the connection is very close
provided that the underlying semiring is �nitely factorizing and naturally ordered
and boundedness is meant with respect to the natural order. The semiring A is
naturally ordered provided that the relation v on A, de�ned by a v b if and only if
there is a c 2 A such that a � c = b, is a partial order. For example, the semirings
Nat, Arct, Trop, and FSet(N) are naturally ordered. Now it is easy to show that,
for a tree automaton M with costs over a �nitely factorizing and naturally ordered
semiring A, the automaton M is cost-�nite if and only if it is bounded with respect
to the natural order v (cf. Lemma 49). Thus, we have obtained that, for every tree
automaton M with costs over a �nitely factorizing, monotonic, and naturally ordered
semiring A, it is decidable whetherM is bounded with respect to the natural order v
(cf. Theorem 50) because it is su�cient to decide whether M is cost-�nite.

Let us note that if a semiring A is monotonic with respect to �, and at the same
time, is naturally ordered with respect to v, then the partial orders � and v may
coincide but also di�er. For instance, the semirings Nat and Arct are both monotonic
and naturally ordered with respect to the order �, however FSet(N) is naturally
ordered but not monotonic with respect to �. Luckily, it is monotonic with respect
to another partial order (cf. Corollary 56), thus Theorem 50 can also be applied to
decide whether a tree automaton with costs over FSet(N) is bounded with respect
to �.

Due to the above equivalence of cost-�niteness and boundedness with respect to
the natural order, we have reobtained two results of [31] about boundedness of tree
automata with costs as corollaries of our results. In fact, decidability of boundedness
of a tree automaton over Nat with respect to � (cf. Theorem 3.2 of [31]) and over Arct
with respect to � (cf. Theorem 3.4 of [31]) follows from our Theorem 50, because
both Nat and Arct are �nitely factorizing and monotonic (with respect to �) and
naturally ordered with respect to � (cf. Corollary 51 and Corollary 52). Moreover,
decidability of boundedness of a tree automaton with costs over FSet(N) with respect
to � also follows from Theorem 50, because FSet(N) is �nitely factorizing, monotonic,
and naturally ordered with respect to � (cf. Corollary 56). Let us recall that the
last decidability result is not the same as the one which was shown in Theorem 3.19
of [31].

On the other hand, our decidability result (cf. Theorem 50) cannot be applied
to reobtain Theorem 3.5 of [31], i.e., the decidability of the boundedness of tree au-
tomata with costs over Trop, because the semiring Trop is neither �nitely factorizing
nor monotonic. However, our results can be applied to further important semirings,
for instance, the semiring (N; lcm; �; 0; 1), where lcm is the usual least commom mul-
tiple, and also the square matrix semiring (Nn�n

+
[f0; 1g;+; �; 0; 1) over the positive

integers N+ as evidenced in Corollary 53 and Corollary 54.

Now we describe the structure of our paper. In Section 2 we introduce some basic
concepts about mappings and relations, trees, monoids and semirings, and polyno-
mials over semirings, which will be used as costs of transitions of tree automata. In
Section 3 we de�ne monotonic semirings, consider polynomials over �nitely factoriz-
ing and monotonic semirings and prove those decidability results for them which will
be necessary to show the decidability of cost-�niteness of tree automata with costs

112 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

over semirings having these two properties. In Section 4, we introduce the concept of
a tree automaton with costs over a semiring. We de�ne reduced tree automata with
costs and show that, for every tree automaton with costs over a monotonic semiring,
a cost-equivalent one over the same semiring can be constructed. In Section 5 we give
characterizations of cost-�niteness of reduced tree automata over �nitely factorizing
and monotonic semirings and prove our main decidability result. In Section 6 we show
that cost-�niteness and boundedness with respect to the natural order are equivalent
for tree automata with costs over �nitely factorizing and naturally ordered semirings.
Moreover, we show that two results of [31] follow as corollaries from our results.

2. Preliminaries

In this section we present the basic notions and notations required in the sequel. We
assume that the reader is familiar with elementary set and number theory [12]. The
remaining concepts will be de�ned formally in this and later sections.

The �rst subsection recalls some basic notations regarding sets, mappings, and
relations [29]. In particular, we de�ne equivalence relations and partial orders. The
former will be central in our treatment of polynomials in Subsection 2.4, and the latter
will be an essential component in the de�nition of monotonic semirings in Section 3.
Finally, we also present the principle of well-founded induction, which we will apply
in Section 5.

The next subsection deals exclusively with trees [9, 10] and operations de�ned
thereupon. Subsection 2.3 is devoted to algebraic structures [20, 21] and semirings
[24, 19, 11], in particular. The �nal subsection of this section introduces the core
notion of polynomials. We deliberately present a (rather) non-standard de�nition of
polynomials, primarily because this enables us to consider polynomials in arbitrary
(not necessarily commutative) semirings.

2.1. Sets, mappings, and relations

We denote byN the set f0; 1; 2; : : :g of non-negative integers and we letN+ = f1; 2; : : :g
be the set of positive integers. For every k; n 2 N we let [k; n] = f i 2 N j k � i � n g
and [n] = [1; n]. We observe that [0] = ;. Given a �nite set S the cardinality of S, i.e.,
the number of elements of S, is denoted by card(S); thus card([n]) = n. The set of all
subsets of a set S, also called the power set of S, is denoted by P(S) = fS0 j S0 � S g
and the set of all �nite subsets is denoted by Pf(S) = fS

0 � S j S0 is �nite g. A (total)
mapping f from a non-empty set S1 to a non-empty set S2 is denoted by f : S1 �! S2.
We occasionally lift mappings from sets to the corresponding power sets, i.e., given a
mapping f : S1 �! S2 we de�ne f̂ : P(S1) �! P(S2) by f̂(S

0
1) = f f(s

0
1) j s

0
1 2 S

0
1 g

for every subset S01 � S1. If no confusion might arise, we drop the hat and just
write f .

The Cartesian product of sets S1 and S2 is displayed as S1 � S2, and we will
shorten the Cartesian product S � � � � � S containing n-times the set S simply to Sn

for every n 2 N. We remark that S0 = f()g. A (binary) relation (on S) is a subset
� � S2. We generally write s1 � s2 for (s1; s2) 2 �. Speci�cally, a relation � � S2

Bounds for Tree Automata with Polynomial Costs 113

is called equivalence relation (on S), if it is (i) re�exive, i.e., for every s 2 S we have
s � s, (ii) symmetric, i.e., for every two elements s1; s2 2 S if s1 � s2, then s2 � s1,
and (iii) transitive, i.e., for every three elements s1; s2; s3 2 S the facts s1 � s2 and
s2 � s3 imply s1 � s3. For every element s 2 S we de�ne the equivalence class of s
by [s]� = f s0 2 S j s � s0 g. The factor set of S0 � S is de�ned to be the set
[S0]� = f [s0]� j s

0 2 S0 g.

A partial order (on S) is de�ned to be a relation � � S2 which is (i) re�exive,
(ii) transitive, and (iii) anti-symmetric, i.e., for every two s1; s2 2 S if s1 � s2 and
s2 � s1 then s1 = s2. As usual we write s1 � s2, whenever s1 � s2 and s1 6= s2. A
subset S0 � S is bounded provided there exists an s 2 S such that s0 � s for every
s0 2 S0. Moreover, an element s0 2 S0 is called minimal element of S0, if s � s0

implies s = s0 for every element s 2 S0. In addition, � is termed well-founded, if
every non-empty subset of S has a minimal element. Clearly, if the set S is �nite,
then � is well-founded. The next principle is called principle of well-founded induction
(cf. Theorem 9 of [36]).

Principle 1. Let � be a well-founded partial order on a set S. A property � � S
holds for all elements of S, i.e., � = S, if

(8s1 2 S) :
�
(8s2 2 S) : s2 � s1) s2 2 �

�
) s1 2 �:

2.2. Trees

The set of all (�nite) sequences over a set S is denoted by S� =
S
n2N S

n with
the empty sequence () denoted by ". The length of the sequence w 2 S�, denoted
by jwj, is de�ned to be the integer n 2 N such that w 2 Sn. We prefer to drop the
tuple notation, and if delimitation is required to give an unambiguous meaning to
a sequence, we use � to separate elements of S. For example, 1�45�5 2 N� denotes
the sequence (1; 45; 5). This notation itself is prone to ambiguity, but the intended
meaning (delimitation or multiplication) should always be obvious from the context.

Sets which are non-empty and �nite are also called alphabets, and the elements of
alphabets are called symbols. A ranked alphabet is a pair (�; rk�) consisting of an
alphabet � and a mapping rk� : � �! N associating to every symbol of � a rank (an
arity). When specifying a ranked alphabet, we usually list the symbols of the alpha-
bet � with their corresponding ranks annotated in parentheses as superscripts, e.g.,
f�(2); �(0)g shall denote the ranked alphabet (�; rk�) with � = f�; �g, rk�(�) = 2,
and rk�(�) = 0. For every k 2 N we denote by �(k) the set of all symbols of � which
have rank k, i.e., �(k) = f� 2 � j rk�(�) = k g. In the sequel let � be a ranked
alphabet and V be a set disjoint with �, i.e., V \ � = ;.

The set of (�nite, labeled, and ordered) �-trees (indexed by V), denoted by T�(V),
is the smallest subset T � (� [V [f(;)g [f; g)� such that (i) V [�(0) � T , and
(ii) if � 2 �(k) with k 2 N+ and s1; : : : ; sk 2 T , then �(s1; : : : ; sk) 2 T . We write
T�(;) as T�. It should be clear that T� = ;, if and only if �(0) = ;. Since we are not
interested in this particular case, we assume that �(0) 6= ; for every ranked alphabet
� appearing in the following.

114 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

We recursively de�ne height : T�(V) �! N+ and pos : T�(V) �! Pf((N+)
�)

for every tree s 2 T�(V) as follows. (i) If s 2 V [�(0), then height(s) = 1 and
pos(s) = f"g. (ii) If s = �(s1; : : : ; sk) for some k 2 N+, symbol � 2 �(k), and subtrees
s1; : : : ; sk 2 T�(V), then

height(�(s1; : : : ; sk)) = 1 +maxf height(si) j i 2 [k] g;

pos(�(s1; : : : ; sk)) = f"g [f i�wi j i 2 [k]; wi 2 pos(si) g:

Each w 2 pos(s) is called position of s and size(s) = card(pos(s)). In addition, we
recursively de�ne labs : pos(s) �! V [� returning the label at a position of s and
sj(�) : pos(s) �! T�(V) returning the subtree at a position of s. (i) If s 2 V [�(0)

(and thus pos(s) = f"g), then labs(") = sj" = s. (ii) If s = �(s1; : : : ; sk) for some
symbol � 2 �(k) with k 2 N+ and subtrees s1; : : : ; sk 2 T�(V), then

lab�(s1;:::;sk)(w) =

(
� , if w = "

labsi(wi) , if w = i�wi for some i 2 [k] and wi 2 pos(si)
;

�(s1; : : : ; sk)jw =

(
�(s1; : : : ; sk) , if w = "

sijwi , if w = i�wi for some i 2 [k] and wi 2 pos(si)
:

For notational convenience we identify z with z() whenever z 2 V [�(0). We
observe that given a tree s 2 T�(V), then there are a unique integer k 2 N

and a unique element � 2 V [�(k) such that s = �(sj1; : : : ; sjk). The num-
ber of occurrences of z 2 V [� in a tree s 2 T�(V), denoted by jsjz, is de-
�ned by jsjz = card(fw 2 pos(s) j labs(w) = z g). Let Y be a �nite subset
of V and s 2 T�(V). The tree s is called linear in Y (or likewise non-deleting
in Y), if every y 2 Y occurs at most once, i.e., jsjy � 1, (or likewise at least

once, i.e., 1 � jsjy) in the tree s. Finally, the set cT�(Y) � T�(Y) is de�ned bycT�(Y) = f s 2 T�(Y) j s linear and non-deleting in Y g.
Given a �-tree s 2 T�(V), an integer n 2 N, (pairwise) distinct elements

v1; : : : ; vn 2 V , and �-trees t1; : : : ; tn 2 T�(V) the tree substitution of t1; : : : ; tn
for v1; : : : ; vn in s, denoted by s[v1 t1; : : : ; vn tn], is recursively de-
�ned as follows. Let � = [v1 t1; : : : ; vn tn]. (i) If s = vi for some
i 2 [n] then vi � = ti, and (ii) if s = �(sj1; : : : ; sjk) for some k 2 N and
� 2 (V n fv1; : : : ; vng) [�(k), then �(sj1; : : : ; sjk) � = �(sj1 �; : : : ; sjk �). Any sub-
set of T�(V) is called tree language. Next we de�ne the OI-substitution of tree lan-
guages (cf. [6, 7]). Let L1; : : : ; Ln � T�(V) be tree languages for some n 2 N and
�0 = [v1 L1; : : : ; vn Ln]. The OI-substitution of L1; : : : ; Ln for v1; : : : ; vn in s
is de�ned to be the set s �0 � T�(V), which is recursively de�ned by (i) if s = vi
for some i 2 [n], then vi �

0 = Li, and (ii) if s = �(sj1; : : : ; sjk) for some k 2 N and
� 2 (V n fv1; : : : ; vng) [�

(k), then

�(sj1; : : : ; sjk) �
0 = f�(s1; : : : ; sk) j (8i 2 [k]) : si 2 (sji) �

0 g:

Moreover, L�0 =
S
s2L s �

0 for L � T�(V) and L� = L[v1 ft1g; : : : ; vn ftng].
Let X = fxi j i 2 N+ g be a �xed set of (formal) variables disjoint with �.

For every integer k 2 N we de�ne Xk = fxi j i 2 [k] g; thus X0 = ;. We use

Bounds for Tree Automata with Polynomial Costs 115

these variables to occur in trees, so we will frequently consider sets like T�(X) and
T�(Xk). In particular, we abbreviate the substitution s[x1 t1; : : : ; xn tn] by just
s[t1; : : : ; tn] for every n 2 N+ and s 2 T�(X) and likewise we also use the abbreviations
s[L1; : : : ; Ln], L[L1; : : : ; Ln], and L[t1; : : : ; tn]. Finally, for every tree s 2 T�(X1) and
integer n 2 N the n-th power sn is recursively de�ned by s0 = x1 and s

n+1 = s[sn].

2.3. Monoids and semirings

A monoid is an algebraic structure A = (A;
;1) with carrier set A, operation

 : A2 �! A, and unit element 1 2 A satisfying the axioms of associativity, i.e.,
for every three elements a1; a2; a3 2 A the equality (a1
 a2)
 a3 = a1
 (a2
 a3)
holds, and unit, i.e., for every element a 2 A we have 1
 a = a = a
 1. For
every element a 2 A and integer n 2 N we adopt the power notation an abbrevi-
ating the n-fold product a
 � � �
 a of a with itself and we put a0 = 1. A monoid
A = (A;
;1) is called commutative, if for every two elements a1; a2 2 A the equality
a1
a2 = a2
a1 is satis�ed. The set D

(a) � A2 of decompositions of a is de�ned as
D
(a) = f (a1; a2) 2 A

2 j a = a1
 a2 g. Finally, we say that A is �nitely factorizing,
if for every element a 2 A the set D
(a) is �nite.

A semiring A = (A;�;�;0;1) (with one and absorbing zero) is an algebraic struc-
ture with carrier set A, operations �;� : A2 �! A, often called addition and
multiplication, respectively, and unit elements 0;1 2 A such that (A;�;0) is a com-
mutative monoid and (A;�;1) is a monoid. Additionally, the axioms of distributivity,
i.e., for every three elements a1; a2; a3 2 A, we have a1�(a2�a3) = (a1�a2)�(a1�a3)
as well as (a1�a2)�a3 = (a1�a3)� (a2�a3), and absorption, i.e., for every element
a 2 A, the equality a� 0 = 0 = 0� a holds, need to be ful�lled.

As usual we assume that the priority of multiplication is greater than the priority
of addition; thus we read a1 � a2 � a3 as a1 � (a2 � a3). The operations are also
lifted to sets in the usual manner, i.e., for every A1; A2 � A and
 2 f�;�g we let
A1
 A2 = f a1
 a2 j a1 2 A1; a2 2 A2 g. Likewise we use a
 A2 and A1
 a as
abbreviations for fag
A2 and A1
 fag, respectively. Moreover, we denote A0 n f0g
shortly by A0

+
for every A0 � A and we use the power notation exclusively for the

multiplication. The semiring A = (A;�;�;0;1) has the property of being

� idempotent, if 1� 1 = 1,

� naturally ordered, if the relation v � A2, de�ned by a1 v a2 if and only if
a2 2 a1 �A, is a partial order on A,

� positive, if A is zero-sum free, i.e., A � A+ � A+, and zero-divisor free, i.e.,
A+ �A+ � A+,

� one-summand free, if a1 � a2 = 1 implies a1; a2 2 f0;1g,

� one-product free, if a1 � a2 = 1 implies a1 = 1 = a2,

� �nitely factorizing, if the set D�(a) and the set

D�
+
(a) = f (a1; a2) 2 A

2
+
j a = a1 � a2 g

of multiplicative decompositions are �nite for every a 2 A, and

116 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

� computable if the operations � and � are computable functions, i.e., there exists
a Turing machine which for every a1; a2 2 A runs on an initial tape containing
a suitable coding of a1 and a2 and halts with the result a1 � a2 (respectively,
a1 � a2) on the tape.

Since every semiring obeying 0 = 1 has a singleton carrier set, we will generally
assume that 0 6= 1 for all semirings considered in this paper. The following semirings
shall illustrate the notion of a semiring and the properties de�ned thereupon. In the
sequel we will refer to these semirings occasionally in examples. Table 1 attempts to
display the properties of those semirings, where we assume that the alphabet � is
non-trivial, i.e., 1 < card(�).

� The Boolean semiring Bool = (f0; 1g;_;^; 0; 1) where _ is disjunction and ^ is
conjunction.

� The semiring of the non-negative integers Nat = (N;+; �; 0; 1) with the usual
operations of addition and multiplication.

� The arctic semiring Arct = (N [f�1g;max;+; (�1); 0) with the standard
maximum operation extended such that (�1) behaves like a neutral element
and + extended to an absorbing element (�1).

� The tropical semiring Trop = (N[f+1g;min;+; (+1); 0) similar to the semi-
ring Arct, but with the common minimum operation.

� The semiring Lcm = (N; lcm; �; 0; 1) with lcm(0; n) = n = lcm(n; 0) for every
n 2 N and otherwise lcm is the usual least common multiple.

� The �nite-language semiring FLang(�) = (Pf(�
�);[; �; ;; f"g) over the alpha-

bet � with the operations of union and concatenation.

� The �nite subsets semiring of [31] FSet(N) = (Pf(N);[;+; ;; f0g) with the
operations of union and addition, where the addition is extended to sets as
usual.

� For every n 2 N+, the semiring Matn(N+) = (Nn�n
+

[f0; 1g;+; �; 0; 1) of square
matrices over N+ with the common matrix addition and multiplication, where
0 is the n� n zero matrix and 1 is the n� n unit matrix.

In the following observation we state an important property of �nitely factorizing
semirings, namely that they preserve in�nite subsets. Obviously multiplying an in-
�nite set with the singleton set f0g creates an exception, but the next observation
shows that this is in fact the only exception.

Observation 2. Let A = (A;�;�;0;1) be a �nitely factorizing semiring and

 2 f�;�g be an operation of the semiring. Moreover, let B = A if
 = � oth-
erwise B = A+. Finally, let A1; A2 � A be such that A1 \B 6= ; 6= B \A2.

(i) If A1 is in�nite, then for every a2 2 B the set A1
 a2 is in�nite.

(ii) If A2 is in�nite, then for every a1 2 B the set a1
A2 is in�nite.

(iii) If A1 or A2 is in�nite, then the set A1
A2 is in�nite.

Bounds for Tree Automata with Polynomial Costs 117

one- one-

idempotent naturally positive summand product �nitely

ordered free free factorizing

Bool yes yes yes yes yes yes

Nat NO yes yes yes yes yes

Arct yes yes yes yes yes yes

Trop yes yes yes NO yes NO

Lcm yes yes yes yes yes yes

FLang(�) yes yes yes yes yes yes

FSet(N) yes yes yes yes yes yes

Matn(N+) NO yes yes yes yes yes

Table 1: Properties of some semirings.

Proof. We �rst prove Statement (i); Statement (ii) can then be proved similarly.
In order to derive a contradiction, let us assume that there is a semiring element
a2 2 B such that A1
 a2 is �nite. By the pigeon-hole principle, there is an element
a0 2 A1
 a2 such that for in�nitely many a1 2 (A1)+ the equality a0 = a1
 a2 holds.
However, this is a contradiction, because A is �nitely factorizing.

Lastly we prove Statement (iii). Therefore assume that A1 is in�nite. Then the
statement follows from Statement (i), because B \ A2 is non-empty and for every
a2 2 A2 we have that A1
 a2 � A1
 A2. The case in which A2 is in�nite can be
handled alike using Statement (ii). 2

Trivially, any �nite semiring is �nitely factorizing, but the next observation derives
that every in�nite, but �nitely factorizing semiring is necessarily positive.

Observation 3. Let A = (A;�;�;0;1) be an in�nite, but �nitely factorizing semi-
ring. Then A is positive.

Proof. Firstly we prove zero-sum freeness, i.e., A � A+ � A+. In order to derive
a contradiction, let a1 � a2 = 0 for some a1 2 A and a2 2 A+. Consequently,
a� (a1 � a2) = a� a1 � a� a2 = 0 for every a 2 A. Since A is in�nite, also A� a1
is in�nite by Observation 2(i). We observe that f (a� a1; a� a2) j a 2 A g � D

�(0),
thus D�(0) is in�nite, because A�a1 is in�nite. However, this contradicts the �nitely
factorizing property, hence A is zero-sum free.

Finally, we need to prove zero-divisor freeness, i.e., A+�A+ � A+. Let a1�a2 = 0

for some a1; a2 2 A+. Then also a � a1 � a2 = 0 for every a 2 A. Clearly,
A � a1 is in�nite by Observation 2(i), because A is in�nite and a1 2 A+. More-
over, f (a � a1; a2) j a 2 A g � D�

+
(0) [f(0; a2)g. Consequently, D�

+
(0) is also

in�nite, which constitutes a contradiction to the �nitely factorizing property.
Summing up, we have that A is zero-sum free and zero-divisor free, hence A is

positive. 2

118 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

2.4. Polynomials over semirings

Let A = (A;�;�;0;1) be a computable semiring, of which the carrier set A is disjoint
with X [f+; �g. This assumption remains valid for the rest of the paper. Moreover,
let n 2 N. A monomial (over Xn with coe�cients of A) is de�ned to be an element of
Tf�(2)g(A[Xn). To avoid cumbersome notation, we abbreviate the set Tf�(2)g(A[Xn)
of all monomials by A[Xn]. Note that Xn � A[Xn] as well as A � A[Xn]. A
polynomial (overXn with coe�cients of A) is an element of the set Tf�(2);+(2)g(A[Xn).
In the sequel, we will also use P (A;Xn) to denote the set Tf�(2);+(2)g(A [Xn) of
polynomials. Apparently, A[Xn] � P (A;Xn). By convention we usually write the
binary symbols in�x.

Since polynomials are trees, we can substitute polynomials into polynomials. We
note that the substitution of monomials into a monomial again yields a monomial.
Let p1; p2 2 P (A;Xn) be polynomials. The addition of p1 and p2 is de�ned to be
the polynomial p = p1 + p2 and the multiplication of p1 and p2 is likewise de�ned to
be the polynomial p = p1 � p2. Thereby the multiplication of two monomials gives a
monomial.

Next we connect the syntactic entity of a polynomial with an operation on the
semiring A. Therefore, let p 2 P (A;Xn) be a polynomial. The (n-ary) polynomial
function induced by p is the mapping p : An �! A recursively de�ned for every n
semiring elements a1; : : : ; an 2 A and every p1; p2 2 P (A;Xn) by

(i) a(a1; : : : ; an) = a for every coe�cient a 2 A,

(ii) xj(a1; : : : ; an) = aj for every index j 2 [n],

(iii) p1 + p2(a1; : : : ; an) = p1(a1; : : : ; an)� p2(a1; : : : ; an), and

(iv) p1 � p2(a1; : : : ; an) = p1(a1; : : : ; an)� p2(a1; : : : ; an).

Finally, two polynomials p1; p2 2 P (A;Xn) are said to be equivalent, denoted by
p1 � p2, if their induced polynomial functions coincide, i.e., p1 = p2. Moreover, given
two sets of polynomials P1; P2 � P (A;Xn) we write P1 � P2 to denote [P1]� = [P2]�.
The polynomial function induced by p is lifted to a mapping on sets in the usual way.
We de�ne the mapping p : P(A)n �! P(A) for every n subsets A1; : : : ; An � A by
p(A1; : : : ; An) = f p(a1; : : : ; an) j (8i 2 [n]) : ai 2 Ai g. Note that this corresponds to
IO-substitution [6, 7].

In the following we will drop the overlining from the notation p because it can be
deduced from the context whether the polynomial p or the polynomial function p is
referred to. Next we show that the introduced equivalence is stable under substitutions
(cf. ,e.g., [8]).

Theorem 4. Let p0; p00; p1; p2 2 P (A;Xn) be polynomials such that p0 � p00 and
p1 � p2. Then for every variable x 2 Xn also p0[x p1] � p

00[x p2].

Proof. Clearly, we have to show that

(p0[x p1])(a1; : : : ; an) = (p00[x p2])(a1; : : : ; an)

Bounds for Tree Automata with Polynomial Costs 119

for every n semiring elements a1; : : : ; an 2 A. Let x = xi with i 2 [n]. We observe
that

(p0[x p1])(a1; : : : ; an) = p0(a1; : : : ; ai�1; p1(a1; : : : ; an); ai+1; : : : ; an)

= p00(a1; : : : ; ai�1; p2(a1; : : : ; an); ai+1; : : : ; an)

= (p00[x p2])(a1; : : : ; an);

where we used p0 � p00 and p1 � p2 in the second line. The proofs of the equalities in
line 1 and line 3 are straightforward using induction over the structure of p0 and p00,
respectively, so we leave these proofs to the reader. 2

Since (p1 + p2) + p3 � p1 + (p2 + p3) and (p1 � p2) � p3 � p1 � (p2 � p3) due to
the associativity of � and �, we usually just write p1 + p2 + p3 and p1 � p2 � p3 for
every three polynomials p1; p2; p3 2 P (A;Xn). Moreover, we assume that � has a
stronger binding priority than +. Finally, we omit the symbol � altogether whenever
convenient. A polynomial of the form m1 + � � � + mk for some integer k 2 N+ and
monomials m1; : : : ;mk 2 A[Xn] is said to be in normal form. The next lemma shows
that every polynomial admits an equivalent polynomial in normal form.

Lemma 5. For every polynomial p 2 P (A;Xn) a polynomial p0 2 P (A;Xn) can
e�ectively be constructed such that p0 is in normal form and p � p0.

Proof. Set i = 0 and p0 = p.

Iteration: If pi is in normal form, then let p0 = pi, and halt. Otherwise, there exists
a position w 2 pos(pi) such that pijw = p01 � (p

0
2+p

0
3) (or pijw = (p01+p

0
2) �p

0
3) for some

polynomials p01; p
0
2; p

0
3 2 P (A;Xn). Then we obtain pi+1 by replacing the subtree pijw

in pi by the tree (p01 � p
0
2) + (p01 � p

0
3) (or by the tree (p01 � p

0
3) + (p02 � p

0
3)). Next set

i := i+ 1 and continue the iteration.

We leave the proof of termination to the reader. If the iteration terminates, then
p � p0 because for every i we have that pi � pi+1. In fact, by distributivity
p01 � (p

0
2 + p03) � (p01 � p

0
2) + (p01 � p

0
3) and (p01 + p02) � p

0
3 � (p01 � p

0
3) + (p02 � p

0
3), hence by

the Replacement Theorem (cf. Theorem 4) we have pi � pi+1. 2

A polynomial p 2 P (A+; Xn) is called zero-free. Note that a zero-free polynomial
p might be equivalent to 0. However, if the semiring A is positive, then for every
zero-free polynomial p over A, we have p 6� 0.

Observation 6. Let A = (A;�;�;0;1) be a positive semiring, p 2 P (A+; Xn)
be a zero-free polynomial for some integer n 2 N, and a1; : : : ; an 2 A+. Then
p(a1; : : : ; an) 6= 0.

Proof. The statement follows easily from the facts A+�A+ � A+ and A+�A+ � A+.
We leave the details to the reader. 2

Lemma 7. There is an algorithm which for every polynomial p 2 P (A;Xn) returns
either p � 0 or a zero-free polynomial p0 2 P (A+; Xn) in normal form such that
p � p0.

120 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

Proof. By Lemma 5 we can assume that an equivalent polynomial in normal form
can be computed, i.e., p � m1 + : : : +mk for some integer k 2 N+ and monomials
m1; : : : ;mk 2 A[Xn]. If 1 � jmij0 for every index i 2 [k], then obviously we can return
p � 0. Otherwise we return p0 =

P
i2[k];jmij0=0mi, where the sum is only syntactic

and the order of the monomials is obviously irrelevant due to the commutativity of
the semiring addition. Clearly, p0 is zero-free and p � p0. 2

Now we consider the variables and the degree of a polynomial p 2 P (A;Xn).
Therefore, we de�ne the mappings

var : P (A;Xn) �! P(Xn) and deg : P (A;Xn) �! N [f�1g

by var(p) = fx 2 Xn j 1 � jpjx g and recursively for every coe�cient a 2 A+, variable
x 2 Xn, and two polynomials p1; p2 2 P (A;Xn) by

deg(0) = �1 deg(a) = 0 deg(p1 + p2) = max(deg(p1); deg(p2))

deg(x) = 1 deg(p1 � p2) = deg(p1) + deg(p2):

The value deg(p) is called the (syntactic) degree of p. The semantic degree of p is
de�ned to be degs(p) = minf deg(p0) j p0 2 [p]� g. Note that p � 0, if and only if
degs(p) = �1. By a linear polynomial we mean a polynomial having semantic degree
at most 1.

Observation 8. Let x; y 2 Xn with x 6= y be variables, a 2 A be a semiring element,
and p 2 P (A;Xn) be a polynomial.

x 2 var(p[y a]) () x 2 var(p)

The next lemma will be central in the �rst part of Section 5. Roughly speaking,
it states that non-constant polynomials preserve in�nite sets in a �nitely factorizing
semiring, i.e., given an in�nite set A0 of semiring elements and a non-constant poly-
nomial p, then also p(A0) forms an in�nite set. This lifts Observation 2 to the level
of polynomials.

Lemma 9. Let A = (A;�;�;0;1) be a �nitely factorizing semiring, and let
p 2 P (A+; X1) be a zero-free polynomial with var(p) 6= ;. Furthermore, let A0 � A.
The set A0 is in�nite, if and only if the set p(A0) is in�nite.

Proof. The statement is trivial, if A is �nite. Thus assume that A is in�nite. Then,
according to Observation 3, the semiring A is positive. Clearly, if p(A0) is in�nite,
then A0 is also in�nite. It remains to show that p(A0) is in�nite, whenever A0 is in�-
nite. We perform induction on the structure of p to prove this statement.

Induction base: If p = x1, then the claim trivially holds, because p(A0) = A0.

Induction step: Let p = p1 + p2 for some zero-free polynomials p1; p2 2 P (A+; X1).
Then by de�nition p(A0) = f p1(a)� p2(a) j a 2 A

0 g. Moreover, since x1 2 var(p), we
have x1 2 var(p1) or x1 2 var(p2) again by de�nition. Hence by induction hypothesis
p1(A

0) or p2(A
0) is in�nite. Thus also f (p1(a); p2(a)) j a 2 A0 g is in�nite. Conse-

quently, p(A0) is in�nite, because a �nite p(A0) contradicts to the �nitely factorizing
property.

Bounds for Tree Automata with Polynomial Costs 121

Let p = p1 � p2 for some zero-free polynomials p1; p2 2 P (A+; X1). Again by
de�nition p(A0) = f p1(a) � p2(a) j a 2 A0 g. Since x1 2 var(p), we conclude
that x1 2 var(p1) or x1 2 var(p2) by de�nition. For the sake of notational conve-
nience assume that x1 2 var(p1); the arguments presented are symmetric, so they
apply to x1 2 var(p2) as well. By induction hypothesis p1(A

0) is in�nite, hence
f (p1(a); p2(a)) j a 2 A

0 g is also in�nite. It follows that also f (p1(a); p2(a)) j a 2 A
0
+
g

is in�nite. Since p2 is zero-free, A is positive, and a 6= 0, we conclude that p2(a) 6= 0

by Observation 6. Thus p(A0) must be in�nite, else we arrive at a contradiction to
the �nitely factorizing property. 2

We can apply the previous lemma in order to derive a corollary, which illuminates
the interrelation between the syntactic and the semantic degree of a polynomial and
the set of variables of that polynomial.

Corollary 10. Let A = (A;�;�;0;1) be an in�nite, but �nitely factorizing semiring.
Moreover, let p 2 P (A+; Xn) be a zero-free polynomial. Then the following statements
are equivalent.

(i) var(p) 6= ;.

(ii) 1 � deg(p).

(iii) 1 � degs(p).

(iv) For every a 2 A, we have p 6� a.

Proof. The chain of implications (iv)) (iii)) (ii)) (i) holds by de�nition, so we
just prove (i)) (iv). By assumption we have xi 2 var(p) for some index i 2 [n].
Consequently,

p0 = p[x1 1; : : : ; xi�1 1; xi x1; xi+1 1; : : : ; xn 1]

is a zero-free polynomial of P (A+; X1) and x1 2 var(p0) by several applications of
Observation 8. Hence Lemma 9 yields that p0(A) is in�nite, because A is in�nite.
Moreover it should be clear that

p0(A) = p(f1g; : : : ; f1g; A; f1g; : : : ; f1g) � p(A; : : : ; A):

We conclude that p(A; : : : ; A) is in�nite; thus for every semiring element a 2 A we
have p 6� a. 2

Lemma 11. Let A = (A;�;�;0;1) be an in�nite, �nitely factorizing semiring and
p 2 P (A;Xn) be a polynomial. Then it is decidable whether

(i) p 2
S
a2A[a]�, i.e., degs(p) � 0, and

(ii) for some given semiring element a 2 A we have p � a.

Proof. By Lemma 7 either p � 0, which decides p � a if a = 0, or there exists
an e�ectively computable zero-free polynomial p0 2 P (A+; Xn) with p � p0. In the
latter case we observe that p 6� a for every a 2 A, if and only if var(p0) 6= ; by
Corollary 10. Hence p 2

S
a2A[a]� if and only if var(p0) = ;. Finally we consider the

case var(p0) = ;, but then p0 2 P (A+; ;) and we can compute whether p0 � a. 2

122 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

3. Monotonic semirings

In this section we will introduce monotonic semirings, which we will use in our cost-
�niteness results in Section 5. Roughly speaking, in a monotonic semiring there exists
a partial order and the addition or multiplication of some semiring element a 2 A
with another semiring element a0 2 A+ might only yield a result which is greater or
equal than a with respect to the partial order on A. Moreover, for multiplication
we demand strictness in all possible cases. We will later use the partial order and
the monotonicity in order to show that a tree automaton with cost function might
produce arbitrarily large costs (semiring elements), precisely speaking in Section 5 we
try to decide whether the set of accepting costs is �nite. Clearly, �nite semirings are
obviously not interesting with respect to this question.

De�nition 12. An in�nite semiring A = (A;�;�;0;1) is monotonic, if there is a
partial order � on A such that the following conditions hold.

(i) For every a1; a2 2 A the inequality a1 � a1 � a2 holds and

(ii) for every a1; a2 2 A+ with a2 6= 1 we have a1 � a1 � a2 and a1 � a2 � a1.

Note that the only �nite semiring ful�lling Conditions (i) and (ii) is the Boolean
semiring Bool. In the following we add the partial order to the signature of the
semiring and write (A;�;�;0;1;�) for a semiring which is monotonic with respect
to the partial order �.

For example, the semiring of the non-negative integers Nat = (N;+; �; 0; 1;�), the
arctic semiring Arct = (N[f�1g;max;+; (�1); 0;�), and for some alphabet � the
following subsemiring of the �nite-language semiring

FLang"(�) = (fL 2 Pf(�
�) j " 2 L g [f;g;[; �; ;; f"g;�)

are all monotonic. Moreover, for every n 2 N+ the semiring Matn(N+) is monotonic
with respect to the natural order v and at the end of Section 6 we also show that
Lcm, FSet(N), and FLang(�) are monotonic. Finally, the real number semiring
(f a 2 R+ j 1 � a g [f0g;+; �; 0; 1;�) is also monotonic, but certainly not �nitely
factorizing. So far, monotonic semirings seem to be quite restricted semirings, but
in the next lemma we will characterize exactly which naturally ordered semirings are
monotonic. Basically, only Condition (ii) remains.

Lemma 13. Let A = (A;�;�;0;1) be an in�nite and naturally ordered semiring
with the natural order v. Then the following statements are equivalent.

(i) A is monotonic with respect to v.

(ii) For every a1; a2 2 A+ with a2 6= 1 we have a1 < a1 � a2 and a1 < a2 � a1.

Proof. The implication (i)) (ii) is obvious. We deduce for every a1; a2 2 A the
property a1 v a1 � a2 from the fact that v is the natural order. This shows Con-
dition (i) of De�nition 12. Finally Condition (ii) of De�nition 12 is given by the
assumption. 2

Bounds for Tree Automata with Polynomial Costs 123

In Subsection 2.4 we have already seen that positivity of the semiring is important
for a number of results about polynomials. Later it will turn out that the properties
one-summand freeness and one-product freeness are also very important. The lemma
to follow will state that monotonic semirings have all of the aforementioned properties.
For the rest of this section, let A = (A;�;�;0;1;�) be a monotonic semiring.

Lemma 14. The following properties are satis�ed:

(i) 0 � a for every a 2 A and 1 � a for every a 2 A+.

(ii) A is positive.

(iii) A is one-summand and one-product free.

Proof. Let a1; a2 2 A.

(i) By Condition (i) of De�nition 12, we obtain 0 � 0 � a2 = a2. If a2 6= 0, then
by Condition (ii) of De�nition 12, 1 � 1� a2 = a2.

(ii) Firstly we show zero-sum freeness. Assume that a1 � a2 = 0. We show a1 = 0

and a2 = 0 by contradiction. For this, assume a2 2 A+. Then, by Item (i) and
Condition (i) of De�nition 12, we have 0 � a2 � a1 � a2, which contradicts
0 = a1 � a2. Thus a2 = 0 and hence A is zero-sum free.

Finally, we consider zero-divisor freeness. Let a1 � a2 = 0. If a1; a2 2 A+,
then, by Item (i) and Condition (ii) of De�nition 12, 0 � a1 � a1 � a2. This
contradicts a1 � a2 = 0. Hence a1 = 0 or a2 = 0, and thus A is zero-divisor
free.

(iii) Let us show that a1 � a2 = 1 implies a1; a2 2 f0;1g by contradiction. Assume
that a1 � a2 = 1 and a1 =2 f0;1g. Then, by Item (i) and Condition (i) of
De�nition 12, we obtain 1 � a1 � a1 � a2, which contradicts a1 � a2 = 1.
Consequently, A is one-summand free.

Let us show by contradiction that a1 � a2 = 1 implies a1 = 1 and a2 = 1.
Assume that a1 6= 1 or a2 6= 1 and a1�a2 = 1. Apparently, a1; a2 2 A+. Hence
by Item (i) and Condition (ii) of De�nition 12 we obtain 1 � a2 � a1 � a2
or 1 � a1 � a1 � a2. This contradicts to a1 � a2 = 1. Consequently, A is
one-product free.

2

Now we show that some of the conditions in the de�nition of monotonic semirings
(cf. De�nition 12) regarding the partial order � can be lifted from semiring elements
to polynomials, if the semiring is additionally �nitely factorizing. In particular, the
statements in Items (ii) and (iii) will be applied in Section 5 to show that certain
polynomials can be used to generate an in�nite number of ever-increasing semiring
elements as in a � p(a) � p2(a) � � � � .

Lemma 15. Let A be �nitely factorizing, a1; : : : ; an 2 A+ be semiring elements,
p 2 P (A+; Xn) be a zero-free polynomial, and m 2 A+[Xn] be a zero-free monomial
for some positive integer n 2 N+.

124 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

(i) If 1 � degs(p), then ai � p(a1; : : : ; an) for every index i 2 [n] such that
xi 2 var(p).

(ii) If 2 � deg(m) and 1 � ai for every index i 2 [n] such that xi 2 var(m), then
also ai � m(a1; : : : ; an) for every index i 2 [n] such that xi 2 var(m).

(iii) If 2 � degs(p) and 1 � a1, then a1 � p(a1; : : : ; a1).

Proof. We prove the items separately.

(i) Let i 2 [n] be such that xi 2 var(p). Hence 1 � jpjxi . It remains to prove
ai � p(a1; : : : ; an).

Induction base: Let p = xi. Then p(a1; : : : ; an) = ai ful�lling the property.

Induction step: Let p = p1�p2 for some polynomials p1; p2 2 P (A+; Xn) and
� 2 f+; �g; thus p(a1; : : : ; an) = p1(a1; : : : ; an)
 p2(a1; : : : ; an), where
 = � if
� = + and
 = � otherwise. Since 1 � jpjxi we have 1 � jp1jxi or 1 � jp2jxi ,
hence 1 � degs(p1) or 1 � degs(p2) by Corollary 10. Without loss of generality
assume the former; the presented argumentation is symmetric. Then by induc-
tion hypothesis we have ai � p1(a1; : : : ; an). Besides, p2(a1; : : : ; an) 2 A+ by
Observation 6, hence ai � p1(a1; : : : ; an)
p2(a1; : : : ; an) by Condition (i) or (ii)
of De�nition 12.

(ii) By assumption 2 � deg(m), and consequently, there exist m1;m2 2 A+[Xn]
such that m � m1 � m2 and 1 � deg(mk) for every k 2 [2]. Moreover,
there exist variables xj ; xj0 2 Xn for some indices j; j0 2 [n] and mono-
mials m1;1;m1;2;m2;1;m2;2 2 A+[Xn] such that m1 � m1;1 � xj � m1;2 and
m2 � m2;1 � xj0 � m2;2. Hence, m � m1;1 � xj � m1;2 � m2;1 � xj0 � m2;2. By
Corollary 10 and Item (i) we have aj � (xj � m1;2 � m2;1)(a1; : : : ; an) and for
every a 2 faj ; aj0g, since (xj �m1;2 �m2;1)(a1; : : : ; an) 2 A+ and 1 � a,

a � (xj �m1;2 �m2;1)(a1; : : : ; an)� aj0

= (xj �m1;2 �m2;1 � xj0)(a1; : : : ; an):

We complete the proof using monotonicity as follows.

a � (xj �m1;2 �m2;1 � xj0)(a1; : : : ; an)

� (m1;1 � xj �m1;2 �m2;1 � xj0 �m2;2)(a1; : : : ; an)

= m(a1; : : : ; an):

Hence we have proved the statement in case i = j or i = j0. Otherwise
xi 2 var(mk;l) for some k; l 2 [2]. We show the case xi 2 var(m1;2); the re-
maining cases are similar. If xi 2 var(m1;2) then ai � m1;2(a1; : : : ; an) by
Item (i). Moreover, 1 � aj . Consequently,

ai � (xj �m1;2 �m2;1 � xj0)(a1; : : : ; an)

� (m1;1 � xj �m1;2 �m2;1 � xj0 �m2;2)(a1; : : : ; an)

= m(a1; : : : ; an):

Bounds for Tree Automata with Polynomial Costs 125

(iii) Since for each polynomial there exists an equivalent polynomial in normal form,
where according to Item (ii) the property holds for every monomial with de-
gree greater than 1, we can readily conclude the stated by Condition (i) in
De�nition 12.

2

After having shown that polynomials of semantic degree at least 2 yields a result
strictly greater than a, if supplied with a for all variables, we will now show that this
property already holds for certain linear polynomials. In fact, later we will exclude
exactly those linear polynomials, because of this property.

Lemma 16. Let p 2 P (A;X1) be a polynomial with degs(p) = 1. Moreover, let
p =2

S
a02A[x1 + a0]�. Then for every a 2 A+ we have a � p(a).

Proof. Since p =2
S
a02A[x1 + a0]� while degs(p) = 1, we have that

p � a1 � x1 � b1 + : : :+ an � x1 � bn + a0

for some integer n 2 N+, semiring elements a1; : : : ; an; b1; : : : ; bn 2 A+, a0 2 A due
to Lemma 5. Moreover, there either exists an index i 2 [n] such that (i) ai 6= 1 or
bi 6= 1, or (ii) ai = bi = 1 for every index i 2 [n], 2 � n, and A is not idempotent.

Case (i): Let ai 6= 1 or bi 6= 1 for some index i 2 [n]. Clearly, a � ai � a� bi � p(a)
by Conditions (i) and (ii) of De�nition 12. Thus we have proved the statement in this
case.

Case (ii): Let ai = bi = 1 for all indices i 2 [n], 2 � n, and 1 6= 1� 1. Then

p � (1� 1) � x1 +
X

i2[n�2]

x1 + a0

which reduces the stated to the previous case, because 1 6= 1� 1. 2

Note that idempotency is decidable, because a semiring is idempotent, if and only if
1�1 = 1, which is certainly decidable in a computable semiring. Moreover, we obtain
another characterization of idempotency, which we will present in the observation to
follow.

Observation 17. The following two statements are equivalent.

(i) For every a 2 A it holds that a� a = a.

(ii) There is an a 2 A+ satisfying a� a = a.

Proof. Certainly, (i) implies (ii). So we still have to prove (ii)) (i). Let a� a = a
and 1�1 6= 1. By monotonicity we conclude 1 � 1�1. Then a � (1�1)�a = a�a
which contradicts to the assumption. Hence 1�1 = 1 and by distributivity a0�a0 = a0

for every a0 2 A. 2

Another important property of monotonic and �nitely factorizing semirings is
the following. Given two zero-free polynomials p1; p2 2 P (A+; Xn) such that

126 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

var(p1) 6= var(p2). Then also p1 6� p2 follows. We justify the case where for
some index i 2 [n] we have xi 2 var(p1) n var(p2). The remaining case is
analogous. Let p01 = p1[x1 1; : : : ; xi�1 1; xi+1 1; : : : ; xn 1] and
p02 = p2[x1 1; : : : ; xi�1 1; xi+1 1; : : : ; xn 1]. By several applications
of Observation 8, var(p01) = fxig, whereas var(p02) = ;. By Corollary 10 we have
1 � degs(p

0
1) and degs(p

0
2) = 0. Hence p02 � a for some semiring element a 2 A.

However, a0 � p01(a
0; : : : ; a0) for every a0 2 A by (i) of Lemma 15. This clearly yields

p1 6� p2.
We already started to show decidability results for the equivalence of certain poly-

nomials (e.g., Lemma 11). Now we continue this with the next lemma, in which,
roughly speaking, we show that the equivalence to a variable x is also decidable in a
monotonic and �nitely factorizing semiring.

Lemma 18. Let A be �nitely factorizing, p 2 P (A;Xn) a polynomial, and x 2 Xn a
variable for some n 2 N+. It is decidable whether p � x.

Proof. Let us de�ne, for every a 2 A, the function ha : P (A;Xn) �! f0; 1g by
letting

ha(p) =

(
1 , if p � a

0 , otherwise.

The mapping ha is computable by Lemma 11. Let us de�ne the mapping
hx : P (A;Xn) �! f0; 1g in the following way. For every coe�cient a 2 A, vari-
able z 2 Xn n fxg, and polynomials p1; p2 2 P (A;Xn)

hx(a) = 0 hx(x) = 1

hx(z) = 0 hx(p1 � p2) =
�
hx(p1) ^ h1(p2)

�
_
�
hx(p2) ^ h1(p1)

�
hx(p1 + p2) =

��
hx(p1) ^ h0(p2)

�
_
�
hx(p2) ^ h0(p1)

��

�
hx(p1) ^ hx(p2)

�
;

where = _, if A is idempotent, else b1b2 = b1 for every b1; b2 2 f0; 1g. Certainly,
hx is also computable. Hence, in order to show that p � x is decidable, it is su�cient
to prove that p � x if and only if hx(p) = 1.

A straightforward induction shows that if hx(p) = 1, then p � x. Now we show by
induction on the structure of p that p � x implies hx(p) = 1.

Induction base: Let p = a for some semiring element a 2 A. Then clearly p 6� x,
because by Corollary 10 we have 1 � degs(x) while degs(a) � 0. Hence our statement
follows. Next let p = z for some variable z 2 Xn. Then p � x implies z = x, from
which hx(p) = 1 follows.

Induction step: Let p = p1 � p2. We show that either (i) p1 � x and p2 � 1 or
(ii) p1 � 1 and p2 � x. This together with the induction hypothesis implies hx(p) = 1.

Trivially, p1 6� 0 and p2 6� 0, else p � 0. Thus, by Lemma 7, there are zero-free
polynomials p01; p

0
2 2 P (A+; Xn) such that p1 � p01 and p2 � p02. Since p � p01 � p

0
2

and p � x, we conclude that x 2 var(p01) or x 2 var(p02). For the rest of the proof we

Bounds for Tree Automata with Polynomial Costs 127

assume the former and note that the proof using the latter assumption is absolutely
symmetric. Consequently, by Corollary 10 we have 1 � degs(p

0
1) = degs(p1).

Further, we immediately obtain that var(p01) = fxg and var(p02) � fxg, else
p 6� p01 � p

0
2. Moreover, assume that 1 � degs(p

0
2). Then, by Lemma 15(i),

a � p01(a; : : : ; a) and a � p
0
2(a; : : : ; a) for every a 2 A n f0;1g and

a � p01(a; : : : ; a)� p
0
2(a; : : : ; a) = p(a; : : : ; a):

This constitutes a contradiction, so degs(p
0
2) = 0. Further p02 � 1, else p02 � a0 for

some a0 2 A n f0;1g and a0 � p01(a
0; : : : ; a0) � p02(a

0; : : : ; a0) = p(a0; : : : ; a0) which is
again contradictory. Therefore p2 � p

0
2 � 1 and using p � p01�p

0
2 we obtain p � p

0
1 � p1

and p1 � x.
Finally, let p = p1 + p2. We prove that either (i) p1 � x and p2 � 0, or (ii) p1 � 0

and p2 � x, or (iii) p1 � x � p2 and A is idempotent. This, by the induction
hypothesis, implies hx(p) = 1.

Trivially, p1 6� 0 or p2 6� 0, else p � 0. In order to prove that either (i) or (ii)
or (iii) holds, we distinguish three di�erent cases.

Case 1: p1 6� 0 and p2 � 0. Then, from p = p1 + p2 we obtain p � p1 � x, hence (i)
holds.

Case 2: p1 � 0 and p2 6� 0. Analogously with Case 1, now (ii) holds.

Case 3: p1 6� 0 and p2 6� 0. We show that (iii) holds. By Lemma 7, there are zero-free
polynomials p01; p

0
2 2 P (A+; fxg) such that p1 � p

0
1 and p2 � p

0
2. We can also conclude

that var(p1) � fxg and var(p2) � fxg.
We show that 1 � deg(p01) and 1 � deg(p02). Assume, on the contrary, that

deg(p01) = 0. Since p01 6� 0, we have p01 � a for some a 2 A+. On the other
hand, p � x implies that p(0; : : : ;0) = 0 and thus from p � p01 + p02 it follows that
p01(0; : : : ;0)�p

0
2(0; : : : ;0) = 0. This is a contradiction, because p01(0; : : : ;0) = a and,

by Lemma 14, A is zero-sum free.

Then, by Corollary 10 we have 1 � degs(p
0
1) and 1 � degs(p

0
2). Clearly,

degs(p
0
1) = 1 and degs(p

0
2) = 1, because otherwise, by Lemma 15(iii), a � p01(a; : : : ; a)

or a � p02(a; : : : ; a), respectively, for every a 2 A n f0;1g and

a � p01(a; : : : ; a)� p
0
2(a; : : : ; a) = p(a; : : : ; a);

which contradicts to p � x.
Moreover, p01; p

0
2 2

S
a02A[x + a0]�, else by the previous chain of reasoning using

Lemma 16, we again have a contradiction. Thus p01 � x + a1 and p02 � x + a2 for
some a1; a2 2 A. We can show easily that a1 = a2 = 0 as follows. Assume, on the
contrary, that a1 6= 0. Then p01(0; : : : ;0) � p02(0; : : : ;0) = a1 � p02(0; : : : ;0) 6= 0,
because A is zero-sum free. On the other hand p(0; : : : ;0) = 0 because p � x. This
is a contradiction because p � p01 + p02. Hence p

0
1 � x and p02 � x.

Finally, we have to prove that A is idempotent, which readily follows from

p01(a; : : : ; a)� p
0
2(a; : : : ; a) = a� a = a

with the help of Observation 17. Thus (iii) holds. 2

128 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

Next we show that, for every semiring element a, the equivalence of a polynomial
to x+ a is also decidable in a monotonic and �nitely factorizing semiring.

Lemma 19. Let A be �nitely factorizing, p 2 P (A;Xn) be a polynomial, x 2 Xn be
a variable for some n 2 N+, and a 2 A be a semiring element. It is decidable whether
(i) p 2

S
a02A[x+ a0]� and (ii) p � x+ a.

Proof. Roughly speaking, �rstly one decides whether p � 0 by Lemma 11. If not,
then by Lemma 7 a zero-free normal form of p � m1 + : : : + mk is e�ectively
computable for some integer k 2 N+ and monomials m1; : : : ;mk 2 A+[Xn]. Then
p 2

S
a02A[x + a0]� if and only if

P
i2[k];var(mi)6=;

mi � x, which is decidable by

Lemma 18. And p � x+a if and only if p 2
S
a02A[x+a

0]� and
P
i2[k];var(mi)=;

mi � a,
where the latter is decidable by Lemma 11. We leave the details of the proof to the
reader. 2

The next lemma shows that linear polynomials of the form x1+ a are closed under
substitution, and moreover, given such a linear polynomial, we can only decompose
it into such polynomials. Thus this class is closed under compositions and decompo-
sitions. This property is central in Section 5, where we will apply it together with
the last lemma of this section in order to show the following. Roughly speaking, if a
computation of a tree automaton with costs is assigned such a linear cost polynomial,
then the cost polynomial of each transition of the automaton within that computation
must also be very restricted.

Lemma 20. Let A be �nitely factorizing and p1; p2 2 P (A;X1) polynomials. Then
p1; p2 2 [x1]� if and only if p1[p2] 2 [x1]�. Moreover, if A is idempotent, then

p1; p2 2
[
a2A

[x1 + a]� () p1[p2] 2
[
a2A

[x1 + a]�:

Proof. The proof of the forward direction of both statements is routine therefore we
give the proofs of the backward directions only. Let C =

S
a2A[x1 + a]�. First we

prove the second statement. Therefore, let us assume that A is idempotent and that
p1[p2] � x1+a for some a 2 A. Apparently, p1 6� 0 6� p2, so without loss of generality
we can furthermore assume that p1 and p2 are zero-free by Lemma 7. Moreover,
1 � degs(p1[p2]) by Corollary 10. We continue with a case distinction.

Case 1: Let degs(p1) = 0 or degs(p2) = 0. Then p1 � a1 or p2 � a2 for some
a1; a2 2 A. Consequently, var(p1[p2]) = ; and thus degs(p1[p2]) = 0 contradicting to
the assumption 1 � degs(p1[p2]).

Case 2: Let 1 � degs(p1) and 1 � degs(p2). Consequently, by Lemma 15 we have
both a0 � p1(a

0) and a0 � p2(a
0) for every a0 2 A+.

Subcase 2:1: Let 2 � degs(p1) or 2 � degs(p2). Let a00 2 A n f0;1g be a non-unit
semiring element. We now select a semiring element a0 2 A such that we are able to
derive a contradiction. Therefore, let

a0 =

(
1� a00 , if a 2 f0;1g

a , otherwise
:

Bounds for Tree Automata with Polynomial Costs 129

We immediately observe that (p1[p2])(a
0) = a0, because p1[p2] � x1 + a. However,

using Condition (i) of De�nition 12, Item (i) of Lemma 14, and Item (i) of Lemma 15
we conclude

1 � a0 � p2(a
0) � p1(p2(a

0)) = (p1[p2])(a
0);

where at least one of the last two inequalities is strict due to Item (iii) in Lemma 15.
In case 2 � degs(p1) it is the last one, whereas it is the former one, if 2 � degs(p2).
Thus we arrived at a contradiction, which only leaves one case.

Subcase 2:2: Let degs(p1) = 1 = degs(p2). For a contradiction assume that p1 =2 C or
p2 =2 C. Clearly, (p1[p2])(1� a) = 1� a due to p1[p2] � x1 + a and the fact that A is
idempotent. Thus, by Item (i) of Lemma 15,

0 � 1� a � p2(1� a) � p1(p2(1� a)) = (p1[p2])(1� a);

where again one of the last two inequalities is strict by Lemma 16. Provided that
p1 =2 C it is the latter, otherwise the former. Anyway we derived a contradiction,
hence p1; p2 2 C.

Next we prove the �rst statement. Therefore, let us assume that p1[p2] � x1. Now
p1 6� 0 6� p2 and the same case distinction can be made as above out of which Case 1
leads to a contradiction in the same way as before because there we did not use that
A is idempotent. Moreover, Case 2 (including Subcases 2.1 and 2.2) is also sound
because its proof also works for a = 0 (even if A is not idempotent). Thus we obtain
that p1; p2 2 C. Let us assume that p1 � x1 + a0 or p2 � x1 + a0 for some a0 6= 0.
Apparently, (p1[p2])(0) = 0 by p1[p2] � x1, but a

0 � p1(0) or a
0 � p2(0). This yields

by Condition (i) of De�nition 12

0 � a0 � p1(p2(0)) = (p1[p2])(0);

which is again contradictory. Thus, p1; p2 2 [x1]� which �nishes the proof of the �rst
statement and thus of the lemma. 2

Lemma 21. Let A be �nitely factorizing and idempotent, and let p1 2 P (A;Xn) be a
polynomial and a1; : : : ; an 2 Anf0;1g be non-zero semiring elements for some integer
n 2 N+. Finally, let i 2 [n]. Then

p1[x1 a1; : : : ; xi�1 ai�1; xi+1 ai+1; : : : ; xn an] 2
[
a2A

[xi + a]�;

if and only if p1 � xi + p0 with p0 2 P (A;Xn n fxig).

Proof. Su�ciency is readily seen, so it remains to prove necessity. Apparently, p1 6� 0

and there exists a normal form p1 � m1+ � � �+mk for some integer k 2 N+ and zero-
free monomials m1; : : : ;mk 2 A+[Xn] by Lemma 7. Let

p2 = p1[x1 a1; : : : ; xi�1 ai�1; xi+1 ai+1; : : : ; xn an]:

and p2 � xi + a for some a 2 A. Further, let j 2 [k] be an arbitrary index such that
xi 2 var(mj). We will prove that mj � xi, thereby proving the statement.

130 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

Apparently, we have that 1 � degs(mj) by Corollary 10. Furthermore, assume that
2 � degs(mj). Then by Lemma 15 we conclude that

a0 � a � mj(a1; : : : ; ai�1; a
0 � a; ai+1; : : : ; an)

� p1(a1; : : : ; ai�1; a
0 � a; ai+1; : : : ; an)

= p2(a1; : : : ; ai�1; a
0 � a; ai+1; : : : ; an)

= a0 � a

for every a0 2 A n f0;1g. However, this is contradictory, hence degs(mj) = 1. Thus
mj � m0

1 � xi � m
0
2 for some zero-free monomials m0

1;m
0
2 2 A+[Xn]. If m0

1 6� 1 or
m0

2 6� 1, then mj =2 [xi]� by Lemma 18 because hxi(m
0
1 � xi �m

0
2) = 0. Consequently,

with the help of Lemma 16 we conclude

1� a � mj(a1; : : : ; ai�1;1� a; ai+1; : : : ; an)

� p1(a1; : : : ; ai�1;1� a; ai+1; : : : ; an):

This, however, contradicts to p2(a1; : : : ; ai�1;1�a; ai+1; : : : ; an;) = 1�a�a = 1�a.
Hence m0

1 � 1 � m0
2 proving the statement. 2

4. Tree automata with costs

A �nite tree automaton is a quadruple M = (Q;�; �; F) where Q and F � Q
are �nite sets of states and �nal states, respectively, � is a ranked alphabet, and
� �

S
k2N �

(k) is a ranked alphabet of transitions, where for every integer k 2 N we

have �(k) � Qk � �(k) � Q. In transitions we drop the tuple notation for the �rst
component of the triple and just write q1 : : : qk to mean (q1; : : : ; qk). A transition
(q1 : : : qk; �; q) 2 �(k) for some integer k 2 N, k-ary symbol � 2 �(k), and states
q1; : : : ; qk; q 2 Q is also called q-transition. Moreover, let

�qq1:::qk = f (q1 : : : qk; �; q) 2 �
(k) j � 2 �(k) g and �q =

[
k2N;q1;:::;qk2Q

�qq1:::qk :

Let us now de�ne the semantics of these devices. For every integer n 2 N, tree
s 2 T�(Xn), and states q; q1; : : : ; qn 2 Q, we de�ne the set 	

q
q1:::qn

(s) of (q1 : : : qn; q)-
computations over s as a subset of T�(Xn) by induction on the tree s as follows.

(i) Let s = xj for some index j 2 [n]. If q = qj , then 	qq1:::qn(s) = fxjg, otherwise
	qq1:::qn(s) = ;.

(ii) Let s = �(sj1; : : : ; sjk) for some k 2 N and input symbol � 2 �(k). Then
	qq1:::qn(s) is the set of all trees �(1; : : : ; k), where for every index j 2 [k] there

is a state rj 2 Q, such that j 2 	
rj
q1:::qn(sjj) and � = (r1 : : : rk; �; q) 2 �

(k).

The set of (q1 : : : qn; q)-computations is de�ned as 	qq1:::qn =
S
s2T�(Xn)

	qq1:::qn(s)

and the set of linear and non-deleting (q1 : : : qn; q)-computations is de�ned asb	qq1:::qn =
S
s2cT�(Xn)

	qq1:::qn(s). In case n = 0, we write " for the sequence q1 : : : qn

Bounds for Tree Automata with Polynomial Costs 131

and we speak about an ("; q)-computation or just q-computation. The tree language
accepted by M in state q 2 Q is de�ned to be

L(M)q = f s 2 T� j 	
q
"(s) 6= ; g

and the tree language accepted by M is L(M) =
S
q2F L(M)q.

The trace graph [31] of M is the directed graph G(M) = (Q;E), where the set
E of labeled edges consists of all triples (q0; h�; ji; q) with q; q0 2 Q being states and
the label h�; ji consists of a transition � = (q1 : : : qk; �; q) 2 �(k) for some integer
k 2 N and an integer j 2 N such that j 2 [k] and q0 = qj . Let q; q

0 2 Q. We call q
reachable from q0 in G(M), if q = q0 or there exists an integer k 2 N+ and a sequence
(q0; h�1; j1i; q1); (q1; h�2; j2i; q2); : : : ; (qk�1; h�k; jki; qk) of edges in E such that q0 = q0

and qk = q. Moreover, we de�ne the relation �M on Q as follows: for two vertices
q; q0 2 Q we have q �M q0, if and only if both q is reachable from q0 and q0 is reachable
from q, i.e., if q and q0 are strongly connected in G(M). Then certainly �M is an
equivalence relation on Q.

Now we de�ne the relation �M over the factor set [Q]�M
as follows: for q; q0 2 Q,

we let [q]�M
�M [q0]�M

, if and only if q0 is reachable from q in G(M). Certainly,
�M is a partial order on [Q]�M

. Occasionally we will also use the partial order �M
de�ned on states as follows. We let q �M q0 for states q; q0 2 Q, if and only if
[q]�M

�M [q0]�M
and q =2 [q0]�M

n fq0g.
Given a tree automaton M we can construct another tree automaton M 0 with

L(M) = L(M 0) such thatM 0 has no useless states [31], i.e., states which do not occur
in any q-computation of any �nal state q 2 F .

Let us now add costs to the �nite tree automaton M = (Q;�; �; F) in the way
as it was done in [31]. For this let us consider a semiring A = (A;�;�;0;1). A
cost function for M is a mapping c : � �! P (A;X) such that for every k 2 N and
� 2 �(k) we have c(�) 2 P (A;Xk). The cost function c is linear, if for every � 2 � the
polynomial c(�) is linear. We extend c to a mapping c : T�(X) �! P (A;X) in the
following way. Let 2 T�(X). (i) If = x with x 2 X, then c() = x and, (ii) if
 = �(j1; : : : ; jk) for some k 2 N and � 2 �(k), then c() = c(�)[c(j1); : : : ; c(jk)].

For a set 	 � 	qq1:::qn of (q1 : : : qn; q)-computations we introduce the set of costs
in the usual manner, i.e., c() = f c() j 2 	 g and for every n semiring elements
a1; : : : ; an 2 A, we let c()(a1; : : : ; an) = f c()(a1; : : : ; an) j 2 	 g. Finally, we
write c(M)q for c(

q
") and de�ne the set of accepting costs as

c(M) =
[
q2F

c(M)q:

Example 22. Let ME = (Q;�; �E ; F) be the tree automaton with Q = fq0; q1; q; rg,
input ranked alphabet � = f�(2); �(0)g, �nal states F = fq1; rg, and the following set
�E of transitions.

�E = f("; �; q0)| {z }
�1

; ("; �; q)| {z }
�2

; (q0q0; �; q0)| {z }
�3

; (q0q; �; q1)| {z }
�4

; (q0q; �; q)| {z }
�5

; (qq1; �; r)| {z }
�6

; (rr; �; r)| {z }
�7

g

The tree language accepted by ME in state q1 is L(ME)q1 = f�(s1; s2) j s1; s2 2 T� g,

132 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

and since � =2 L(ME)r, the tree language accepted by ME is

L(ME) = f�(s1; s2) j s1; s2 2 T� g:

Now we add the cost function cE : �E �! P (N; X) over the semiring Nat speci�ed
by

cE(�1) = 0 cE(�2) = 2 cE(�3) = 3x1 + 4x2 cE(�4) = 3x1x2

cE(�5) = 2x1 + x2 cE(�6) = 5x1 cE(�7) = x1 + x2:

The set of costs computed by states q0 and q1 is

[cE(ME)q0]� = [cE(ME)q1]� = f[0]�g:

Moreover, [cE(ME)q]� = f[2]�g and

[cE(ME)r]� = f [n]� j n 2 N+; (9k 2 N+) : 10 � k = n g:

Consequently, [cE(ME)]� = f[0]�; [10]�; [20]�; [30]�; : : :g. Finally, Figure 1 graphi-
cally displays ME and Figure 2 displays an input tree, one possible computation tree
for that input tree, the cost function applied to this computation tree, and the trace
graph G(ME).

q0 q q1 r

�=0

�=3x1+4x2

�=2

�=x1+x2�=2x1+x2 �=3x1x2 �=5x1

Figure 1: Example tree automaton with cost function of Example 22.

In several proofs of the present paper we use the technique of decomposing a q-
computation into a q0-computation 2 and a (q0; q)-computation 1. The following
observation shows how this decomposition is re�ected in the costs. A straightforward
inductive proof on the length of the path in the computation 1 from the root to the
node labeled with the variable x1 shows the following observation. For the rest of this
section, letM = (Q;�; �; F) be a tree automaton with cost function c : � �! P (A;X)
over a semiring A = (A;�;�;0;1).

Observation 23. Let q; q0 2 Q be states, 2 	q" be a q-computation, 2 2 	q
0

" be
a q0-computation, and 1 2 	qq0 be a (q0; q)-computation such that = 1[2]. Then
c() = c(1)[c(2)].

De�nition 24. For every subset E � A we de�ne the set QE � Q of E-states of M
to be

QE = f q 2 Q j (8 2 	q")(9e 2 E) : c() � e g:

Bounds for Tree Automata with Polynomial Costs 133

s =

�

� �

�

� x1

�

' =

(qq1; �; r)

("; �; q) (q0q; �; q1)

(q0q0; �; q0)

("; �; q0) x1

("; �; q)

=

�6

�2 �4

�3

�1 x1

�2

c(') =

c(�6)

c(�2) c(�4)

c(�3)

c(�1) c(x1)

c(�2)

=

5x1

2 3x1x2

3x1 + 4x2

0 x1

2
� 10

r

q1

q

q0

h�6; 2i

h�4; 2i

h�5; 1i

h�3; 1i

h�3; 2i

h�5; 2i

h�7; 1i

h�7; 2i

h�4; 1i

h�6; 1i

Figure 2: A sample input tree s, computation tree ', and the trace graph G(ME).

Clearly, E � E0 � A implies QE � QE0 � QA = Q. Moreover, Q; = ; if M has
no useless states. If we reconsider the tree automaton ME = (Q;�; �E ; F) with cost
function cE : �E �! P (N; X) of Example 22, then Qf0g = fq0; q1g, Qf2g = fqg, and
Qf10;20;30;:::g = frg, for example. Next we introduce a shorthand for a simple case
analysis. For every set S let

eS ; e
0
S : (X [A)� S � P(S) �! X [A

be the mappings speci�ed for every z 2 X [A, element s 2 S, and subset S0 � S by

eS(z; s; S
0) =

(
z , if s 2 S0

0 , otherwise
e0S(z; s; S

0) =

(
z , if s 2 S0

1 , otherwise
:

Now we give an algorithm that computes the set of f0g-states.

Lemma 25. Let A be positive. The set Qf0g of all f0g-states can e�ectively be
computed.

Proof. We give an algorithm which computes Qf0g in Algorithm 1. Upon termination
of the algorithm, i.e., Qn = Qn�1, it is easy to see that for every q 2 Q, it holds that
q 2 Qn, if and only if there is a tree s 2 L(M)q and a computation 2 	q"(s) such
that c() 6� 0. Thus Qf0g = Q nQn. 2

For every integer k 2 N and (q1; : : : ; qk) 2 Q
k we let

�Qq1:::qk = [eQ(x1; q1; Q nQf0g); : : : ; eQ(xk; qk; Q nQf0g)]

�Qq1:::qk = �Qq1:::qk [e
0
Q(x1; q1; Q nQf1g); : : : ; e

0
Q(xk; qk; Q nQf1g)]:

be shorthands for substitutions. We can likewise compute the sets of f1g-states and
f0;1g-states. The algorithms are presented in Algorithms 2 and 3, respectively.

134 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

Algorithm 1 An algorithm computing the set of f0g-states of M .

Require: M has no useless states, A is positive
n := 0, Q0 := ;
repeat

Qn+1 := Qn [

8><>:q 2 Q
�������
(9k 2 N)(9� 2 �(k))(9q1; : : : ; qk 2 Q) :

� = (q1 : : : qk; �; q) 2 �
(k);

c(�)[eQ(x1; q1; Qn); : : : ; eQ(xk; qk; Qn)] 6� 0

9>=>;
n := n+ 1

until Qn = Qn�1

Ensure: Qf0g = Q nQn

Algorithm 2 An algorithm computing the set of f1g-states of M .

Require: M has no useless states, A is positive, one-summand free, one-product free
n := 0, Q0 := ;
repeat

Qn+1 := Qn [

8>><>>:q 2 Q
��������
(9k 2 N)(9� 2 �(k))(9q1; : : : ; qk 2 Q) :

� = (q1 : : : qk; �; q) 2 �
(k);

c(�) �Qq1:::qk [e
0
Q(x1; q1; Qn); : : : ; e

0
Q(xk; qk; Qn)] 6� 1

9>>=>>;
n := n+ 1

until Qn = Qn�1

Ensure: Qf1g = Q nQn

Algorithm 3 An algorithm computing the set of f0;1g-states of M .

Require: M has no useless states, A is positive, one-summand free, one-product free
n := 0, Q0 := ;
repeat

Qn+1 := Qn [

8>>>><>>>>:q 2 Q
����������
(9k 2 N)(9� 2 �(k))(9q1; : : : ; qk 2 Q) :

� = (q1 : : : qk; �; q) 2 �
(k);

c(�) �Qq1:::qk [e
0
Q(x1; q1; Qn); : : : ;

e0Q(xk; qk; Qn)] =2 [0]� [[1]�

9>>>>=>>>>;
n := n+ 1

until Qn = Qn�1

Ensure: Qf0;1g = Q nQn

Bounds for Tree Automata with Polynomial Costs 135

If we apply Algorithm 1 to the tree automaton ME of Example 22, then the al-
gorithm terminates with �nal values n = 3, Q0 = ;, Q1 = fqg, Q2 = fq; rg, and
Q3 = Q2. Hence we computed Qf0g = Q n Q3 = fq0; q1g which we already stated
in the previous paragraph. Following up we present a notion of reducedness for tree
automata with cost functions (cf. the concept of E-parameter reduced tree automata
with costs in [31]). Similar to the removal of useless states, we now remove unneces-
sary variables from the cost polynomials.

De�nition 26. M is called reduced [31], if the following conditions are satis�ed.
There exists a distinguished state ? 2 Q such that

(i) M has no useless states or the set of useless states is f?g,

(ii) ? is the only zero-state, i.e., Qf0g = f?g,

(iii) for every integer k 2 N, transition � = (q1 : : : qk; �; q) 2 �(k) for some states
q; q1; : : : ; qk 2 Q, and symbol � 2 �(k), if q 2 Qf0;1g then we have qj = ? for
every index j 2 [k] and c(�) = eQ(1; q;Q n f?g).

(iv) For every integer k 2 N, transition � = (q1 : : : qk; �; q) 2 �
(k) for some states

q; q1; : : : ; qk 2 Q, and input symbol � 2 �(k),

� either c(�) = 0 and q1; : : : ; qk 2 Qf0;1g,

� or c(�) 2 P (A+; Xk) is a zero-free cost polynomial and we demand for
every index j 2 [k] that

xj 2 var(c(�)) () qj =2 Qf0;1g:

Apparently the tree automaton ME with cost function of Example 22 is not re-
duced because Qf0g = fq0; q1g is not a singleton. Next we prove that, under certain
conditions, for every tree automaton M with cost function c, a reduced tree automa-
ton M 0 with cost-function c0 can be constructed such that c(M) � c0(M 0), i.e., M
and M 0 are cost-equivalent (cf. Theorem 2.3 of [31]). Whereas the removal of useless
states preserves the tree language accepted by a tree automaton, our construction of
reducing a tree automaton does not preserve the tree language accepted but rather
the set of accepting costs.

Lemma 27. Let A be positive, one-summand free, and one-product free. Then a
reduced tree automaton M 0 = (Q0;�; �0; F 0) with cost function c0 : �0 �! P (A;X)
can e�ectively be constructed such that M and M 0 are cost-equivalent, i.e., we have
that c(M) � c0(M 0).

Proof. We recall that the sets Qf0g, Qf1g, and Qf0;1g can e�ectively be com-
puted due to Algorithms 1, 2, and 3. Firstly we construct the tree automaton
M 00 = (Q00;�; �00; F 00) with cost function c00 : �00 �! P (A;X) as follows. We tag
the states of the original automaton with f1; 2; 3g where roughly speaking Q � f1g
corresponds to the original states, Q� f2g corresponds to a copy of Q preparing the
cost 1, and Q � f3g corresponds to a copy of Q preparing cost 0. Note that we will
assign cost 1 to states (q; 3) for q 2 Q, however these states will never be �nal states,

136 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

so that this will not in�uence the set of accepting costs. Let Q00 = Q � [3] [f?g,
where ? =2 Q is a new distinguished state and

F 00 =

8>>>>>><>>>>>>:

F � [1] , if F \Qf0;1g = ;

F � [2] , if F \ (Qf0;1g nQf1g) = ;; F \Qf1g 6= ;

(F nQf0g)� [1] [f?g , if F \ (Qf0;1g nQf0g) = ;; F \Qf0g 6= ;

(F nQf0g)� [2] [f?g , if F \ (Qf0;1g nQf1g) 6= ;;

and F \ (Qf0;1g nQf0g) 6= ;:

Moreover, the set of transitions �00 and the cost function c00 : �00 �! P (A;X) are
de�ned in the following way.

(i) For every k 2 N and � 2 �(k) let � 00 = (? : : :?; �;?) 2 (�00)
(k)

with c00(� 00) = 0.

(ii) For every k 2 N, � 2 �(k), and q 2 Q� f2; 3g let � 00 = (? : : :?; �; q) 2 (�00)
(k)

with c00(� 00) = 1.

(iii) For every k 2 N, � 2 �(k), q; q1; : : : ; qk 2 Q, � = (q1 : : : qk; �; q) 2 �(k) with
q =2 Qf0;1g we de�ne the set of transitions as follows. For every partition
fq1; : : : ; qkg = Q0 [Q1 [Q2 into pairwise disjoint sets, i.e., for every i; j 2 [0; 2]
we have Qi \Qj = ;, if i 6= j, with the properties that

� Qf0g \ fq1; : : : ; qkg � Q0,

� Qf1g \ fq1; : : : ; qkg � Q1, and

� fq1; : : : ; qkg nQf0;1g = Q2,

let

� = [eQ(x1; q1; Q nQ0); : : : ; eQ(xk; qk; Q nQ0)]

[e0Q(x1; q1; Q nQ1); : : : ; e
0
Q(xk; qk; Q nQ1)]:

If c(�) � � 0, which is decidable by Lemma 11, then

� 00 = ((q1; 3) : : : (qk; 3); �; (q; 1)) 2 �
00(k) and c00(� 00) = 0:

Otherwise, by Lemma 7, construct a zero-free polynomial p 2 P (A+; Xk) such

that p � c(�) �. Moreover, let � 00 = (r1 : : : rk; �; (q; 1)) 2 �
00(k) and c00(� 00) = p,

where for every index j 2 [k] we have

rj =

8><>:
(qj ; 1) , if xj 2 var(p)

(qj ; 2) , if xj =2 var(p); qj 2 Q1

(qj ; 3) , otherwise

:

(iv) The set of transitions �00 has no additional elements, i.e., every element is re-
quired by either (i), (ii), or (iii).

Then construct the tree automaton M 0 with cost function c0 : �0 �! P (A;X) from
M 00 and c00 by removing useless states q 2 Q00 n f?g and transitions, and let the cost
function c0 be de�ned by c0(� 0) = c00(� 0) for every transition � 0 2 �0.

Bounds for Tree Automata with Polynomial Costs 137

First we show that M 0 is reduced. Obviously, M 0 does not have useless states
q 2 Q0 n f?g. Trivially Q0

f0g = f?g (cf. Condition (ii) of De�nition 26),

Q0
f1g = f (q; j) 2 Q0 j j 2 f2; 3g g and Q0

f0;1g = Q0
f0g [Q

0
f1g, because A is posi-

tive. For every integer k 2 N, input symbol � 2 �(k), k + 1 states q; q1; : : : ; qk 2 Q
0,

and transition � 0 = (q1 : : : qk; �; q) 2 (�0)
(k)

we have the following. If q 2 Q0
f0;1g, then

q1 = � � � = qk = ? and c0(� 0) = eQ0(1; q;Q0 n f?g) by Items (i), (ii), and (iv), thus
ful�lling Condition (iii) of De�nition 26. On the other hand, if q =2 Q0

f0;1g, then for

every index j 2 [k] the variable xj is in var(c0(� 0)), if and only if qj =2 Qf0;1g by
Items (iii) and (iv). This saturates Condition (iv) of De�nition 26, so all conditions
of De�nition 26 are met; hence M 0 is reduced.

Next we show that c(M) � c0(M 0). We show this by proving that, for every
d 2 [A]�,

d 2 [c(M)]�

() there are a q 2 F and a q-computation 2 	q" (using M)

such that c() � d

y
() there are a q0 2 F 0 and a q0-computation 0 2 	q

0

" (using M 0)

such that c0(0) � d

() d 2 [c0(M 0)]�:

It only remains to prove the equivalence marked by y.

Part
y
): We distinguish two cases.

Case 1: Let q 2 F \ Qf0;1g. Now, by De�nition 24, d 2 [0]� [[1]�, hence we have
either d � 1 or d � 0. If d � 0, then we have ? 2 F 0 and, moreover, there is a
?-computation 0 2 	?

" using M 0 with c0(0) � 0. Consequently, c0(0) � d and
setting q0 = ? proves the statement in case d � 0.

On the other hand, if d � 1, then (q; 2) 2 F 0 and there is a (q; 2)-computation

 0 2 	
(q;2)
" using M 0 with c0(0) � 1. Consequently, c0(0) � d and setting q0 = (q; 2)

proves the statement, if d � 1.

Case 2: q 2 F nQf0;1g. By assumption there is a q-computation 2 	q" usingM with
c() � d. By induction over the height of the computation we prove that there is

a (q; 1)-computation 0 2 	
(q;1)
" using M 0 with c0(0) � d.

Induction base: Let height() = 1. Then there exist a nullary input symbol
� 2 �(0) and a transition � = ("; �; q) 2 �(0) such that c(�) � d. According to

Item (iii) also � 0 = ("; �; (q; 1)) 2 (�0)
(0)

and c0(� 0) = c(�). Hence c0(� 0) � d and
setting 0 = � 0 proves the statement.

Induction step: Let height() > 1. Then there exist an integer k 2 N, an input
symbol � 2 �(k), states q1; : : : ; qk 2 Q, a transition � = (q1 : : : qk; �; q) 2 �

(k), and
qj-subcomputations j 2 	

qj
" for every index j 2 [k] such that = �(1; : : : ; k).

We construct the partition fq1; : : : ; qkg = Q0 [Q1 [Q2 as follows. For every index
j 2 [k]

138 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

� if qj 2 Qf0g then qj 2 Q0.

� if qj 2 Qf1g then qj 2 Q1.

� if qj 2 Qf0;1g and c(j) � 0 then qj 2 Q0.

� if qj 2 Qf0;1g and c(j) � 1 then qj 2 Q1.

� if qj =2 Qf0;1g then qj 2 Q2.

This partition certainly ful�lls the restrictions imposed in Item (iii). Let

� = [eQ(x1; q1; Q nQ0); : : : ; eQ(xk; qk; Q nQ0)]

[e0Q(x1; q1; Q nQ1); : : : ; e
0
Q(xk; qk; Q nQ1)]:

It should be clear that c(�) � [c(1); : : : ; c(k)] � c(�)[c(1); : : : ; c(k)] = c() � d.
If c(�) � � 0, then d � 0. Moreover, by Item (iii), there exists a transition

� 0 = ((q1; 3) : : : (qk; 3); �; (q; 1)) 2 �
0(k) with c0(� 0) = 0. Thus there certainly exists a

(q; 1)-computation 0 2 	
(q;1)
" with c0(0) � d.

If c(�) � 6� 0, then, by Lemma 7, there exists a zero-free p 2 P (A+; Xk) with
p � c(�) � such that, by Item (iii), there exists a transition

� 0 = (r1 : : : rk; �; (q; 1)) 2 �
0(k) with c0(� 0) = p

where for every index j 2 [k]

rj =

8><>:
(qj ; 1) , if xj 2 var(p)

(qj ; 2) , if xj =2 var(p); qj 2 Q1

(qj ; 3) , otherwise

:

Moreover, for every index j 2 [k], if rj = (qj ; 1), then there also exists a (qj ; 1)-

computation 0j 2 	
(qj ;1)
" (using M 0) with cost c0(0j) � c(j) by induction hypoth-

esis. Otherwise rj 2 Q0
f1g and according to Items (i) and (ii), xj =2 var(c(�)) or

either c(j) � 0 and there is a (qj ; 3)-computation 0j 2 	
(qj ;3)
" (using M 0) with cost

c0(0j) � 1, or c(j) � 1 and there exists a (qj ; 2)-computation 0j 2 	
(qj ;2)
" (using

M 0) with cost c0(0j) � 1.
We consider p = c0(� 0) � c(�) �. Let j 2 [k]. Apparently, c(j) � 0, if qj 2 Q0,

and c(j) � 1, if qj 2 Q1 by De�nition 24. Obviously,

p[c(1); : : : ; c(k)] � c(�)[c(1); : : : ; c(k)]:

Furthermore, if a variable xj for some index j 2 [k] obeys xj =2 var(c0(� 0)), then
the cost c(j) of the corresponding subcomputation can be set to an arbitrary
value. Thus, by the Replacement Theorem (cf. Theorem 4) and the condition that
c(j) � c

0(0j) for every j 2 [k] such that xj 2 var(c0(� 0)), we have

c(�)[c(1); : : : ; c(k)] � c
0(� 0)[c(1); : : : ; c(k)] � c

0(� 0)[c0(01); : : : ; c
0(0k)]:

Finally, the induction step, and thereby, the �rst part are proved.

Part
y
(: The proof of this direction is similar to the previous one. 2

Bounds for Tree Automata with Polynomial Costs 139

If we apply the construction present in the previous proof to our example tree au-
tomaton ME = (Q;�; �E ; F) with cost function cE : �E �! P (N; X) of Example 22,
then we might obtain the reduced tree automaton M 0

E = (Q0;�; �0E ; F
0) (displayed in

Figure 3) with cost function c0E : �0E �! P (N; X) with

Q0 = f?; (q0; 3); (r; 2); (q; 1); (r; 1); (q1; 3)g;

F 0 = f?; (r; 1); (r; 2)g

and transitions

�0 = f("; �;?); (??; �;?); ("; �; (q0; 3)); (??; �; (q0; 3)); ("; �; (r; 2)); (??; �; (r; 2));

("; �; (q1; 3)); (??; �; (q1; 3)); ("; �; (q; 1)); ((q; 1)(q1; 3); �; (r; 1));

((r; 1)(r; 1); �; (r; 1)); ((q0; 3)(q; 1); �; (q; 1))g:

Further, the cost function c0E is speci�ed by (note that we omitted the outermost
parentheses for brevity)

0 = c0E("; �;?) = c0E(??; �;?)

1 = c0E("; �; (q0; 3)) = c0E(??; �; (q0; 3)) = c0E("; �; (r; 2)) = c0E(??; �; (r; 2))

1 = c0E("; �; (q1; 3)) = c0E(??; �; (q1; 3))

2 = c0E("; �; (q; 1))

5 � x1 = c0E((q; 1)(q1; 3); �; (r; 1))

x1 + x2 = c0E((r; 1)(r; 1); �; (r; 1))

x2 = c0E((q0; 3)(q; 1); �; (q; 1)):

Next we show the main bene�cial property of a reduced tree automaton with cost
function. Roughly speaking, it states that the existence of a (q0; q)-computation
implies the existence of a (q0; q)-computation such that c() is zero-free and
x1 2 var(c()). For this we need the following preparatory lemma, which also shows
an interesting property of a reduced tree automaton.

Lemma 28. LetM be reduced and q 2 QnQf0;1g. There exists a computation 2 	q"
such that c() is zero-free.

Proof. SinceM is reduced, it has no useless states. Hence there exists a computation
 2 	q". The property can then be proved by an easy induction on the height of .

2

Lemma 29. Let M be reduced. For every two states q; q0 2 Q n Qf0;1g, if b	qq0 6= ;,
then there also exists a (q0; q)-computation 2 b	qq0 such that c() is zero-free and
x1 2 var(c()).

Proof. Let ' 2 b	qq0 be arbitrary. We prove the statement by induction on the length
l = jwj where w 2 pos(') is the unique position such that lab'(w) = x1.

Induction base: Assume that l = 0; thus ' = x1 and q0 = q in order for ' 2 b	qq0 .

140 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

?

(q1; 3) (r; 2) (q0; 3)

(r; 1) (q; 1)

�=0

�=0

�=1

�=1

�=1

�=1

�=1

�=1

�=x1+x2

�=x2�=5x1

�=2

Figure 3: Example of a reduced tree automaton with cost function.

Bounds for Tree Automata with Polynomial Costs 141

This computation ' is appropriate, since c(') = c(x1) = x1 and certainly x1 is zero-
free and x1 2 var(x1). Thus set = '.

Induction step: Assume that l = l0+1 for some l0 2 N. Thus for some integer k 2 N,
k-ary input symbol � 2 �(k), and states q1; : : : ; qk 2 Q we have ' = �('j1; : : : ; 'jk),
where � = (q1 : : : qk; �; q) 2 �(k). Moreover, there is an index i 2 [k] such that

'ji 2 b	qiq0 and for every j 2 [k] with j 6= i we have 'jj 2 	
qj
" .

Firstly, we observe qi =2 Qf0;1g. In fact, if qi 2 Qf0;1g then by a straightforward in-
duction using Condition (iii) of De�nition 26 we gain q0 = ?, hence q0 2 Qf0;1g, which
contradicts to the assumption q0 =2 Qf0;1g. Hence by Condition (iv) of De�nition 26,
c(�) is zero-free and xi 2 var(c(�)). Moreover, by the induction hypothesis there

exists a (q0; qi)-computation i 2 b	qiq0 such that c(i) is zero-free and x1 2 var(c(i)).

Finally, for every index j 2 [k] with j 6= i, there are two cases. (i) Either
xj 2 var(c(�)), then by Condition (iv) in De�nition 26 we have qj =2 Qf0;1g. Then,
by Lemma 28, there is a zero-free computation j 2 	

qj
" . (ii) On the other hand

xj =2 var(c(�)), then we can take any arbitrary computation, e.g, we set j = 'j .
Now we consider the (q0; q)-computation = �(1; : : : ; k). It should be clear that
c() is zero-free and x1 2 var(c()). 2

5. Characterizing and deciding cost-�niteness

In this section we investigate the cost-�niteness of reduced tree automata with cost
function where the underlying semiring A = (A;�;�;0;1) is �nitely factorizing and
monotonic. We show that such a tree automaton M = (Q;�; �; F) having cost func-
tion c : � �! P (A;X) is cost-�nite, i.e., [c(M)]� is �nite, if and only if for every
integer k 2 N+, states q 2 Q nQf0;1g and q1; : : : ; qk 2 Q, index i 2 [k], and transition
� 2 �qq1:::qk , if qi �M q, then we have either

(i) c(�) � xi+ p for some polynomial p 2 P (A;Xk n fxig) and (A is idempotent or
p = 0) or

(ii) xi =2 var(c(�)).

In Section 6 we consider instances of the aforementioned result. Generally in
this section again let M = (Q;�; �; F) be a tree automaton with cost function
c : � �! P (A;X) over the semiring A = (A;�;�;0;1).

5.1. An intermediate characterization of cost-�niteness

In this subsection�as an intermediate result�we characterize the �niteness of the
set of accepting costs [c(M)]� of a reduced tree automaton M with cost function c

over a �nitely factorizing semiring in terms of the �niteness of the sets [c(b	qq)]� of
costs of (q; q)-computations for every state q 2 Q (cf. Corollary 35).

De�nition 30. The tree automaton M with cost function c is said to be cost-�nite
if [c(M)]� is �nite, whereas M is called cost-in�nite if it is not cost-�nite.

142 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

In the following we deeply investigate (q; q)-computations 2 b	qq, in which pre-
cisely one leaf is labeled with a variable. We would like to substitute a q-computation �
for this variable such that the cost of � contributes to the cost of the computation
 [�], i.e., x1 2 var(c()). Therefore we consider reduced tree automata, which by
Lemma 29 have the property that for every (q; q)-computation there exists a (q; q)-

computation 0 2 b	qq such that x1 2 var(c(0)). For the remainder of this subsection,
let M be reduced and A be �nitely factorizing.

Lemma 31. If M is cost-�nite, i.e., [c(M)]� is �nite, then the set [c(M)q]� is �nite
for every state q 2 Q.

Proof. Let q 2 Qf0;1g, then the property is trivial. We prove the remaining claim
by contradiction. Therefore, assume that there exists a state q 2 Q n Qf0;1g such
that [c(M)q]� is an in�nite set. Hence c(M)q � A0 for some in�nite set A0 � A.
By the reducedness of M the state q is not useless, and consequently, there exists
a (q; q0)-computation 2 b	q0q for some �nal state q0 2 F n Qf0;1g. Finally, by

Lemma 29 there also exists a (q; q0)-computation 0 2 b	q0q such that c(0) is zero-free
and x1 2 var(c(0)).

Let ' 2 	q" be a q-computation (which exists due to Lemma 28). We can com-
plete 0 to a q0-computation 0['] and thus according to Observation 23 obtain
c(0[']) = c(0)[c(')]. Recall that q0 2 F is a �nal state; hence in general we obtain

c(0[q"]) = c(0)[c(q")] = c(0)[c(M)q] � c(M)q0 � c(M):

Since c(M)q � A
0, we have

c(0)[c(M)q] � c(
0)[A0] � c(0)(A0)

and [c(0)(A0)]� � [c(M)]� and c(0)(A0) is in�nite by Lemma 9. Consequently,
[c(M)]� is in�nite, which contradicts the assumption that M is cost-�nite. Conse-
quently, [c(M)q]� is �nite for every state q 2 Q. 2

In the following corollary we present another necessary condition for cost-�nite
tree automata with cost function over �nitely factorizing semirings in terms of the
set c(b	qq)[a] of costs of (q; q)-computations, where a 2 c(M)q is the cost of a q-
computation. The importance of (q; q)-computations is illustrated in the next sen-
tence. Apparently, every (q; q)-computation can be pumped, which gives a new
(q; q)-computation 2. Hence, pumping arbitrarily often might produce an in�nite
set of costs and thus might yield cost-in�niteness. Corollary 32 states this formally.

Corollary 32. If M is cost-�nite, i.e., the set [c(M)]� is �nite, then the set

[c(b	qq)[a]]� is �nite for every state q 2 Q and cost a 2 c(M)q.

Proof. By a 2 c(M)q there exists a q-computation � 2 	q" such that c(�) = a. We

observe that every (q; q)-computation 2 b	qq can be completed to a q-computation

 [�]; hence b	qq[�] � 	q" and c(b	qq[�]) = c(b	qq)[c(�)] = c(b	qq)[a] by Observation 23.

However, [c(b	qq)[a]]� � [c(M)q]� where the set [c(M)q]� is �nite by Lemma 31.

Thereby also the set [c(b	qq)[a]]� is �nite, which proves the statement. 2

Bounds for Tree Automata with Polynomial Costs 143

Next we will prove the converse of Lemma 31, i.e., if all (q; q)-computations produce
only �nitely many costs, then M is cost-�nite. We perform the proof in two steps.
First, in Lemma 33, we show that if all (q; q)-computations produce only �nitely
many costs, then for every two states r and q with r �M q all (r; q)-computations
only generate a �nite set of costs (for the de�nition of the equivalence relation �M , see
Subsection 4). Then in Lemma 34, we show that if for every two states r and q with
r �M q all (r; q)-computations generate �nitely many costs, then M is cost-�nite.

Lemma 33. If for every state q0 2 Q and cost a 2 c(M)q0 the set [c(b	q0q0)[a]]� is
�nite, then also for every two states q; r 2 Q with r �M q and cost a0 2 c(M)r the

set [c(b	qr)[a0]]� is �nite.

Proof. First if q 2 Qf0;1g then r 2 Qf0;1g and vice versa, and the statement becomes
trivial. Thus let q; r =2 Qf0;1g. Again we prove the lemma by contradiction. Therefore,

let us assume the converse of the claim, i.e., c(b	qr)[a0] � A0 for some in�nite set
A0 � A and cost a0 2 c(M)r. There exists a computation ' 2 	r" such that c(') = a0.

Moreover, since r �M q, there exists a (q; r)-computation, i.e., b	rq 6= ;, and moreover,

by Lemma 29 there exists a (q; r)-computation 2 b	rq such that c() is zero-free and
x1 2 var(c()). Due to Observation 23, we obtain

c([b	qr[']]) = c([b	qr])[c(')] = c([b	qr])[a0] � c(b	rr)[a0]
and

c([b	qr[']]) = c()[c(b	qr['])] = c()[c(b	qr)[c(')]] = c()[c(b	qr)[a0]]:
Besides we have c()[c(b	qr)[a0]] � c()[A0] � c()(A0) where the last set is in�nite due
to Lemma 9. Hence [c(b	rr)[a0]]� is an in�nite set contradicting the assumption that

[c(b	q0q0)[a]]� is �nite for every q0 2 Q and a 2 c(M)q0 . Consequently, also [c(b	qr)[a0]]�
is �nite for every two states r �M q and cost a0 2 c(M)r. 2

The following proof requires a decomposition of a computation into maximal sub-
computations, which only use states of one equivalence class. However, there may
appear variables in this computation, and intuitively speaking, it is at the variables
where we may plug in computations using states which are not from the equiva-
lence class. Let us therefore de�ne for every state q the class of all those compu-
tations, which only use states equivalent to q at the inner nodes. Therefore, let
q; q1; : : : ; qk 2 Q for some integer k 2 N. Then we de�ne the set 	

q

q1:::qk
as follows.

	
q

q1:::qk
= f 2 	qq1:::qk j (8w 2 pos())(9r 2 [q]�M

) : lab (w) 2 �
r [Xk g

It is clear that 	
q

q1:::qk
= ;, if for some index i 2 [k] we have q <M qi. In this sense,

the procedure of decomposing a computation is performed according to the partial
order �M on the state set Q, which is de�ned in Subsection 4.

Lemma 34. If for every two states q; r 2 Q with r �M q and cost a 2 c(M)r the set

[c(b	qr)[a]]� is �nite, then M is cost-�nite.

144 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

Proof. Let us �rst prove an intermediate statement, namely that [c(
q

")]� is a �-
nite set for every state q 2 Q. We denote this statement by (y). Clearly, every q-
computation 2 	

q

" is either a q-transition or there exists a decomposition = '[�]

into an (r; q)-computation ' 2 b	qr and an r-transition � 2 �r" for some state r 2 [q]�M
.

Hence

	
q

" � �
q
" [

� [
r2[q]�M

b	qr[�r"]�
and thus

[c(
q

")]� �
h
c
�
�q" [

� [
r2[q]�M

b	qr[�r"]��i
�
= [c(�q")]� [

� [
r2[q]�M

[c(b	qr)[c(�r")]]��
by Observation 23. Apparently, c(�q") and c(�r") are �nite sets by the �niteness of

�. Together with the observation c(b	qr)[c(�r")] = S
f c(b	qr)[a0] j a0 2 c(�r") g, we then

conclude that the set [c(b	qr)[c(�r")]]� is �nite for every r �M q by assumption. ThusS
r2[q]�M

[c(b	qr)[c(�r")]]� is �nite, because Q is �nite, and thereby also [c(
q

")]� is

�nite. Hence we have proved (y).
In order to prove the statement of the lemma, we prove the stronger statement

saying that for every state q 2 Q the set [c(M)q]� is �nite. Clearly, this implies
that [c(M)]� is �nite, i.e., M is cost-�nite. We apply well-founded induction on the
ordered set (Q;�M) to prove that [c(M)q]� is �nite for every state q 2 Q.

Therefore, let q 2 Q be a state and 2 	q" be a q-computation. Either 2 	
q

", i.e.,
for each leaf of there exists a state r 2 [q]�M

such that the leaf is an r-transition, or
there exists a decomposition = '[�(�1; : : : ; �k)] into a maximal (r; q)-computation

' 2 b	qr for some state r 2 [q]�M
, a transition � 2 �rr1:::rk for some positive integer

k 2 N+ and states r1; : : : ; rk 2 Q n [q]�M
, and ri-computations �i 2 	ri" for every

integer i 2 [k]. In particular, for every i 2 [k] we note that ri <M q. Hence

	q" � 	
q

" [
� [
r2[q]�M

b	qrh [
k2[max rk�(�)];

(8i2[k]): ri2Q; ri<Mq

�rr1:::rk [
r1
" ; : : : ;	

rk
"]
i�

and thus

[c(q")]� �

"
c

	
q

" [
� [
r2[q]�M

b	qrh [
k2[max rk�(�)];

(8i2[k]): ri2Q; ri<Mq

�rr1:::rk [
r1
" ; : : : ;	

rk
"]
i�!#

�

= [c(
q

")]� [

 [
r2[q]�M

"
c(b	qr)

"
[

k2[max rk�(�)];
(8i2[k]): ri2Q; ri<Mq

c(�rr1:::rk)
h
c(r1"); : : : ; c(rk")

i# #
�

!

by Observation 23. So to show that [c(q")]� is �nite, it is su�cient to show

that (i) [c(
q

")]� is �nite, (ii) [c(b	qr)[a0]]� is �nite for every state r 2 [q]�M
and

Bounds for Tree Automata with Polynomial Costs 145

a0 2 c(M)r, (iii) [c(�
r
r1:::rk

)[a1; : : : ; ak]]� is �nite for every integer k 2 N, k+ 1 states
r; r1; : : : ; rk 2 Q and ai 2 c(M)ri for every i 2 [k], and (iv) [c(r")]� is �nite for every
state r 2 Q with r <M q. Statement (i) is proved by Statement (y), Statement (ii)
is given by the assumption, Statement (iii) is trivial because � is �nite, and State-
ment (iv) is given by the induction hypothesis. Consequently, the statement is proved
by Principle 1. 2

Let us now sum up the results, which we have proved in this subsection so far. This
gives a characterization of cost-�niteness of reduced tree automata with cost function
over a �nitely factorizing semiring.

Corollary 35. The following statements are equivalent.

(i) M is cost-�nite, i.e., [c(M)]� is �nite.

(ii) For every state q 2 Q and cost a 2 c(M)q the set [c(b	qq)[a]]� is �nite.

Proof. The direction (i)) (ii) was proved in Corollary 32, while the proof of (ii)) (i)
follows from Lemma 33 and Lemma 34. 2

5.2. Condition (linear) is necessary for cost-�niteness

Let us now use the intimate knowledge of monotonic semirings and thereby character-
ize cost-�niteness in a more sophisticated way. We will show that, roughly speaking, a
given reduced tree automaton with costs is cost-�nite, if and only if the cost function
of every (q; q)-computation is semantically equivalent to either a constant or a linear
polynomial of type x1 + a, where a = 0 if the underlying semiring is not idempotent.
Let us de�ne the appropriate condition formally. Recall thatM = (Q;�; �; F) is a tree
automaton with cost function c : � �! P (A;X) over the semiring A = (A;�;�;0;1).

De�nition 36. The Condition (linear) holds, if for every state q 2 Q n Qf0;1g and

(q; q)-computation 2 b	qq there exists a semiring element a 2 A such that either

(i) c() � x1 + a and (A is idempotent or a = 0) or

(ii) c() � a.

We �rst show that Condition (ii) of Corollary 35, i.e., for every state q 2 Q and

cost a 2 c(M)q the set [c(b	qq)[a]]� is �nite, implies that Condition (linear) holds.

Lemma 37. Let A = (A;�;�;0;1;�) be a monotonic and �nitely factorizing semi-

ring. If [c(b	qq)[a]]� is a �nite set for every state q 2 Q and cost a 2 c(M)q, then
Condition (linear) holds.

Proof. We prove the claim by contradiction. Thus let [c(b	qq)[a]]� be a �nite set for
every state q 2 Q and cost a 2 c(M)q, but there exist a state r 2 Q n Qf0;1g and

a (r; r)-computation 2 b	rr such that for every semiring element a 2 A we have
c() 6� a and

(i) c() 6� x1 + a, or

146 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

(ii) A is not idempotent and c() 6� x1.

Since M has no useless states, there exists an r-computation � 2 	r", and since r is
not a f0;1g-state, we may select � such that c(�) � a0 for some a0 2 A n f0;1g. Now
we split the proof into two cases, each of which leads to a contradiction.

Case 1: First assume that 2 � degs(c()). Then by Item (i) in Lemma 14 and
Lemma 15 we immediately have

1 � a0 � c()(a0) � c()(c()(a0)) = c(2)(a0) � c(3)(a0) � : : : :

Hence [f c(n)(a0) j n 2 N g]� is an in�nite set. Further

[f c(n)[a0] j n 2 N g]� � [c(b	rr)[a0]]�:
Thus also [c(b	rr)[a0]]� is an in�nite set, which is a contradiction to the assumption.

Case 2: Now assume that degs(c()) � 1. We immediately obtain degs(c()) = 1,
else c() � a which is a contradiction. Further, according to (i) or (ii) the following
two subcases are possible.

Subcase 2:1: Let c() =2
S
a2A[x1 + a]�. Then by Lemma 16 we again have

1 � a0 � c()(a0) � c()(c()(a0)) = c(2)(a0) � c(3)(a0) � : : : :

Thus it can be proved in the same way as in Case 1 that [c(b	rr)[a0]]� is in�nite, which
is a contradiction.

Subcase 2:2: Let c() 6� x1 and A is not idempotent, i.e., 1 � 1 � 1. We may
safely assume that c() � x1 + a for some a 2 A+, because otherwise the previous
subcase already derives a contradiction. We observe that for every n 2 N we have
c(n)(a0) = a0 �

P
j2[n] a. Moreover, f c(n)(a0) j n 2 N g � c(b	rr)(a0), thus we need

to show that

f a0 �
X
j2[n]

a j n 2 N g = a0 � f
X
j2[n]

a j n 2 N g

is in�nite. According to Observation 2, it is su�cient to show that f
P
j2[n] a j n 2 N g

is in�nite. Since A is not idempotent, but monotonic, we conclude that for every
a 2 A+ we have a � a � a by Observation 17. Hence the set f

P
j2[n] a j n 2 N g is

in�nite. 2

5.3. Two further su�cient conditions for cost-�niteness

Firstly we show that Condition (linear) is also su�cient for cost-�niteness provided
that the underlying semiring is not idempotent.

Lemma 38. Let A be non-idempotent. If Condition (linear) holds, then for every
r 2 Q and r-computation ' 2 	r" there exists a r-computation '0 2 	r" such that
c(') � c('0) and height('0) � 2 � card(Q).

Proof. Since Condition (linear) holds and A is not idempotent, for every state

q 2 Q n Qf0;1g and (q; q)-computation 2 b	qq either c() � x1 or c() � a for

Bounds for Tree Automata with Polynomial Costs 147

some a 2 A. We prove the lemma by contradiction. Therefore let us assume that
there is a state r 2 Q, an r-computation ' 2 	r" such that for every r-computation
'0 2 	r" with c(') � c('

0), the condition 2 � card(Q) < height('0) holds.

Let '0 2 	r" be such that c(') � c('0), 2 � card(Q) < height('0) and the cardinality
of the set W'0 = fw 2 pos('0) j 2 � card(Q) � jwj g is minimal. Clearly, W'0 is �nite
and cannot be empty. Let us take a w 2W'0 . There exist positions w1; w2 2 pos('0)
with w1 < w2 < w (with respect to the pre�x order) and jw2j � card(Q) such that for
some state q 2 Q we have lab'0(w1) 2 �

q and lab'0(w2) 2 �
q. Furthermore, there ex-

ists a (q; r)-computation �1 2 b	rq, a (q; q)-computation �2 2 b	qq, and a q-computation
�3 2 	q" such that '0 = �1[�2[�3]] and '0jw1

= �2[�3] and '0jw2
= �3. Note that

height(�3) > card(Q).

Case 1: Let q 2 Qf0;1g. Then either c(�2[�3]) � c(�3), in which case we set
� = �1[�3] and observe c('0) � c(�) while W� � W'0 . Thus this case is contra-
dictory. Now assume c(�2[�3]) 6� c(�3). Now there exists a computation � 2 	q" with
height(�) � card(Q) and either c(�) � 0 or c(�) � 1. Consequently, c(�) � c(�2[�3])
or c(�) � c(�3). Thus, both W�1[�] � W'0 and W�1[�2[�]] � W'0 and either
c('0) � c(�1[�]) or c('

0) � c(�1[�2[�]]). Again we derived a contradiction.

Case 2: Let q =2 Qf0;1g and c(�2) � x1. Then

c(�1[�2[�3]]) = c(�1)[c(�2)[c(�3)]] � c(�1)[x1[c(�3)]] = c(�1)[c(�3)] = c(�1[�3]):

Thus � = �1[�3], which is an r-computation, has cost c(�) � c('0) and W� � W'0 ,
which constitutes a contradiction.

Case 3: Let c(�2) � a for some semiring element a 2 A. Certainly, there exists a
q-computation � 2 	q" such that height(�) � card(Q). Then c(�1[�2[�]]) � c('0)
and W�1[�2[�]] � W'0 . Hence all cases are contradictory, which yields that W'0 = ;
successfully proving the statement. 2

As an immediate corollary of the above lemma, we obtain our �rst su�cient con-
dition for cost-�niteness.

Corollary 39. Let A be non-idempotent. If Condition (linear) holds, then [c(M)]�
is �nite.

Next we give a su�cient condition of cost-�niteness in the case that the underlying
semiring is �nitely factorizing, monotonic, and idempotent. For this, we de�ne another
condition called (linear-trans).

De�nition 40. We say that Condition (linear-trans) holds, if for every k 2 N+,
state q 2 Q nQf0;1g, states q1; : : : ; qk 2 Q, index i 2 [k], and transition � 2 �qq1:::qk , if
qi �M q, then we have either

(i) c(�) � xi+ p for some polynomial p 2 P (A;Xk n fxig) and (A is idempotent or
p = 0) or

(ii) xi =2 var(c(�)).

148 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

Note that, on the contrary to Condition (linear), (linear-trans) refers to �nitely
many costs. This property makes Condition (linear-trans) suitable for deciding cost-
�niteness under certain additional conditions. First however, let us prove that (linear-
trans) is su�cient to guarantee cost-�niteness provided that the underlying semiring
is �nitely factorizing, monotonic, and idempotent.

Lemma 41. Let A = (A;�;�;0;1;�) be a �nitely factorizing, monotonic, and
idempotent semiring. If M obeys Condition (linear-trans), then M is cost-�nite.

Proof. First we let l 2 N be the integer l = maxf size(c(�)) j � 2 � g and we let
C 0 � A be the set

C 0 = f0;1g [f a 2 A j � 2 �; 1 � jc(�)ja g:

Obviously, the set C 0 is �nite. Finally we de�ne for every state q 2 Q the set Cq � A
by well-founded induction on (Q;�M) (cf. Principle 1) as follows.

Cq =
D
f a1 � : : :� an j n 2 [l]; a1; : : : ; an 2 C

0 [
� [
r2Q;r<Mq

Cr

�
g
E
�

Note that hA0i� is the closure of the set A0 � A under �, i.e., the smallest submonoid
of (A;�;0) containing A0 in its carrier.

Next we prove that Cq is �nite for every state q 2 Q. We prove the statement
by well-founded induction on (Q;�M), hence assume that Cr is �nite for every state
r 2 Q with r <M q. Then clearly S = C 0 [

S
r2Q;r<Mq

Cr is �nite and since there are
only �nitely many words over S of length at most l, the set

S0 = f a1 � : : :� an j n 2 [l]; a1; : : : ; an 2 S g

is also �nite. However, the closure of a �nite set S0 under �, which is idempotent, is
again a �nite set, because there are only �nitely many subsets of S0. Consequently,
Cq is �nite.

Now we will prove that [c(M)q]� � [Cq]� for every state q 2 Q, which immedi-
ately yields that [c(M)]� =

S
q2F [c(M)q]� is �nite and hence M is cost-�nite. We

again prove this property by well-founded induction along (Q;�M), namely we prove
that for every state q 2 Q and q-computation 2 	q" we have [c()]� 2 [Cq]�.
Therefore we decompose the computation = 0[1; : : : ; n] into a (q1 : : : qn; q)-
computation 0 2 	

q

q1:::qn
and qi-computations i 2 	qi" for some integer n 2 N,

n states q1; : : : ; qn 2 Q with qi <M q for every i 2 [n]. Thus by induction hypothesis
we have [c(i)]� 2 [Cqi]�. Note that c() = c(0)[c(1); : : : ; c(n)] by Observa-
tion 23.

Since 0 has a tree structure, we perform structural induction on 0 in order to
prove the statement.

Induction base: Let 0 = � 2 �(0). Then c(0)[c(1); : : : ; c(n)] = c(�), be-
cause c(0) = c(�). Further, we immediately note that c(�) 2 P (C 0; ;) and
thereby [c(�)]� 2 [Cq]�. On the other hand, let 0 = xi for some index i 2 [n].
Then c(0)[c(1); : : : ; c(n)] = c(i), and consequently, [c(0)]� 2 [Cq]�, because
[c(i)]� 2 [Cqi]� and qi <M q.

Bounds for Tree Automata with Polynomial Costs 149

Induction step: Let 0 = �(�1; : : : ; �k) for some k 2 N+, states r1; : : : ; rk 2 Q, a
transition � 2 �qr1:::rk , and (q1 : : : qn; ri)-computations �i 2 	

ri
q1:::qn

for every index
i 2 [k]. Furthermore, let � 0i = �i[1; : : : ; n], thus = �(� 01; : : : ; �

0
k). By the induction

hypothesis (of the inner structural induction) we have [c(� 0i)]� 2 [Cqi]�. Furthermore
we observe that

c(0)[c(1); : : : ; c(n)] = c(�(�1; : : : ; �k))[c(1); : : : ; c(n)]

= c(�)[c(�1); : : : ; c(�k)] [c(1); : : : ; c(n)]

= c(�)[c(�1)[c(1); : : : ; c(n)]; : : : ; c(�k)[c(1); : : : ; c(n)]]

= c(�)[c(� 01); : : : ; c(�
0
k)]:

By Condition (linear-trans) we have

c(�) =
X
i2I

xi + p

for some p 2 P (A;Xk n fxi j i 2 I g) and subset I � f i 2 [k] j q �M ri g. Conse-
quently, [p[c(� 01); : : : ; c(�

0
k)]]� 2 [Cq]� by the de�nition of Cq and also

(
X
i2I

xi + p)[c(� 01); : : : ; c(�
0
k)] = c(0)[c(1); : : : ; c(n)] = c() 2 [Cq]�;

because c(� 0i) 2 [Cqi]� and [Cqi]� � [Cq]�, and Cq is closed under addition. 2

5.4. A characterization of cost-�niteness in terms of linear costs

In this subsection we give another, more impressive characterization of cost-�niteness
in terms of the Conditions (linear) and (linear-trans). As a �rst step, we prove that
these two conditions are equivalent for �nitely factorizing and monotonic semirings.
We start with a preparatory lemma.

Lemma 42. Let M be reduced and A = (A;�;�;0;1;�) be a �nitely factorizing
semiring. If Condition (linear) holds, then for every two states q; r 2 Q nQf0;1g with

q �M r and every (r; q)-computation 2 b	qr we have for some semiring element
a 2 A either

� c() � x1 + a and (A is idempotent or a = 0), or

� c() � a.

Proof. Since q �M r, there exists a (q; r)-computation ' 2 b	rq and since M is re-
duced, we may assume without loss of generality that x1 2 var(c(')) (cf. Lemma 29).

Consequently, ['] 2 b	qq constitutes a (q; q)-computation. According to Condition
(linear), we distinguish two cases for c([']) = c()[c(')].

Case 1: Let c()[c(')] � x1 + a0 for some semiring element a0 2 A and (A is idem-
potent or a0 = 0). Then by Lemma 20 we immediately have c() � x1 + a for some
semiring element a 2 A proving the statement. Moreover, a = 0 whenever A is not
idempotent.

150 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

Case 2: Let c()[c(')] � a0 for some semiring element a0 2 A. Since x1 2 var(c(')),
we must have c() � a0. 2

Now we can prove the equivalence of the Conditions (linear) and (linear-trans) for
�nitely factorizing and monotonic semirings.

Lemma 43. Let M be reduced and A = (A;�;�;0;1;�) be a �nitely factorizing
and monotonic semiring. Then Condition (linear) and Condition (linear-trans) are
equivalent.

Proof. First we prove that Condition (linear-trans) implies Condition (linear). There-

fore let q 2 QnQf0;1g be a state and 2 b	qq be a (q; q)-computation. Furthermore, let
w 2 pos() be the unique position such that lab (w) = x1 and for every j 2 [0; jwj�1]
let wj be the strict pre�x of w which has length j and nj 2 N+ be the integer such
that wj+1 = wj �nj . We distinguish two cases according to Condition (linear-trans).
Either for every j 2 [0; jwj � 1] we have c(lab (wj)) � xnj + pj for some polynomial
pj 2 P (A;X n fxnjg), then c() � x1 + a for some semiring element a 2 A thus
ful�lling Condition (linear). Note that a = 0, if A is not idempotent.

On the other hand, there may exist an integer j 2 [0; jwj � 1] such that
xnj =2 var(c(lab (wj))). In this case, we have x1 =2 var(c()), hence c() � a for
some semiring element a 2 A, also ful�lling Condition (linear). According to Condi-
tion (linear-trans) this case-distinction is complete, so we have proved one direction.

For the proof of the other direction let � 2 �qq1:::qk be a transition for some integer
k 2 N+, states q1; : : : ; qk 2 Q and q 2 Q n Qf0;1g, and let i 2 [k] be such that
qi �M q. Since M has no useless states there exists a qj-computation j 2 	

qj
"

for every index j 2 [k]. Further, by reducedness we may assume without loss of
generality that 1 � c(j) for every index j 2 [k] with xj 2 var(c(�)). Consequently,

 = �(1; : : : ; i�1; x1; i+1; : : : ; k) is a (qi; q)-computation 2 b	qqi and
c() = c(�)[c(1); : : : ; c(i�1); x1; c(i+1); : : : ; c(k)]:

Due to qi �M q, we have either c() � x1 + a or c() � a for some semiring element
a 2 A by Lemma 42. In the former case a = 0, if A is not idempotent.

In case c() � a, by Corollary 10, we have x1 =2 var(c()) and by several applica-
tions of Observation 8 also xi =2 var(c(�)), hence Item (ii) of Condition (linear-trans)
is ful�lled.

In case c() � x1 + a, by Corollary 10, we have x1 2 var(c()) and again by
repeated applications of Observation 8 we can conclude that xi 2 var(c(�)). Now
either A is not idempotent and then by c() � x1 also c(�) � xi. Thus Item (i) of
Condition (linear-trans) is ful�lled. Otherwise A is idempotent and by Lemma 21 we
obtain c(�) � xi + p for some polynomial p 2 P (A;Xk n fxig) also ful�lling Item (i)
in Condition (linear-trans). 2

Now we are able to give our main characterization theorem for reduced tree au-
tomata with costs over �nitely factorizing and monotonic semirings in terms of linear
costs.

Bounds for Tree Automata with Polynomial Costs 151

Theorem 44. Let M = (Q;�; �; F) be a reduced tree automaton with cost function
c : � �! P (A;X) over a monotonic and �nitely factorizing semiring. The following
statements are equivalent.

(i) M is cost-�nite.

(ii) For every state q 2 Q and cost a 2 c(M)q the set [c(b	qq)(a)]� is �nite.

(iii) Condition (linear) holds.

(iv) Condition (linear-trans) holds.

Proof. The equivalence of Items (i) and (ii) is proved in Corollary 35. Moreover,
by Lemma 43, Item (iii) is equivalent to Item (iv). Lemma 37 yields that Item (ii)
implies Item (iii). If A is idempotent, then Item (iv) implies Item (i) by Lemma 41,
otherwise Item (iii) implies Item (i) by Corollary 39. 2

5.5. Decidability of cost-�niteness

In this subsection we establish the decidability of cost-�niteness of tree automata
with costs over �nitely factorizing and monotonic semirings. Since cost-�niteness
and Condition (linear-trans) are equivalent for such semirings by Theorem 44, it is
su�cient to show that this latter property is decidable.

Lemma 45. Let M be reduced and A = (A;�;�;0;1;�) be a �nitely factorizing and
monotonic semiring. Then it is decidable whether Condition (linear-trans) is satis�ed.

Proof. We have to check, for �nitely many transitions � 2 � and �nitely many vari-
ables x 2 Xmax rk�(�), whether we have either x =2 var(c(�)) or c(�) � x + p with
p 2 P (A;X n fxg), where in case A is not idempotent we additionally have p = 0.
The condition x =2 var(c(�)) is certainly decidable.

If A is not idempotent, then by Lemma 18 it is decidable if c(�) � x. Finally, in
case A is idempotent it is decidable if c(�) � x + p as follows. There are integers
n 2 N and i 2 [n] such that c(�) 2 P (A;Xn) and x = xi. Now, we have to decide if
p � xi+p

0, where p0 2 P (A;Xn nfxig). By Lemma 21, it is enough to decide whether
for some a1; : : : ; an 2 A n f0;1g, we have p1[a1; : : : ; ai�1; xi; ai+1; : : : ; an] � xi + a
where a 2 A. However, this is decidable by Lemma 19. 2

Now we are able to state and prove our main decidability result. Recall that, if
the underlying semiring is positive, one-summand free, and one-product free, then for
every tree automaton with cost function, a cost-equivalent reduced tree automaton
can e�ectively be constructed. Hence we could also require the underlying semiring
to have these properties, but indeed monotonic semirings have all the aforementioned
properties (cf. Lemma 14). Thus in the following main decidability theorem we can
(without loss of generality) drop the assumption of M being reduced.

Theorem 46. For every tree automaton M = (Q;�; �; F) with cost function
c : � �! P (A;X) over a monotonic and �nitely factorizing semiring it is decid-
able whether M is cost-�nite.

152 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

Proof. By Lemma 27, a reduced tree automaton M 0 = (Q0;�; �0; F 0) with cost func-
tion c0 : �0 �! P (A;X) can e�ectively be constructed such that c(M) � c0(M 0).
Hence M is cost-�nite if and only if M 0 is cost-�nite. On the other hand, by Theo-
rem 44, M 0 is cost-�nite if and only if Condition (linear-trans) holds for M 0. Finally,
by Lemma 45, it is decidable whether M 0 satis�es Condition (linear-trans). 2

6. From cost-�niteness to boundedness

In this section we relate cost-�niteness and boundedness (with respect to the natural
order) of tree automata with costs over naturally ordered, �nitely factorizing, and
monotonic semirings. Intuitively speaking, a tree automaton with cost function is
bounded, if there exists an upper bound for the set of accepting costs. Henceforth,
let M = (Q;�; �; F) be a tree automaton with cost function c : � �! P (A;X) over a
semiring A = (A;�;�;0;1). The exact de�nition for boundedness is then as follows.

De�nition 47. Let � � A2 is a partial order on A. The automaton M is said to
be bounded (with respect to �), if there exists an element b 2 A such that for every
a 2 A with a � p for some p 2 c(M) we have a � b.

We will consider tree automata with costs over naturally ordered semirings and
will consider if they are bounded with respect to the natural order (which is certainly
a partial order). For this, the following observation is very useful.

Lemma 48. Let A be naturally ordered (via v) and (A;�;0) be �nitely factorizing.
For every C � A, the following two statements are equivalent.

(i) C is �nite.

(ii) C is bounded with respect to v.

Proof. Firstly, we show (i)) (ii). Therefore, let C be �nite, then a =
L

c2C c is
de�ned and for every c 2 C we immediately observe c v a, because there exists an
a0 =

L
c02Cnfcg c

0 such that c � a0 = a. To prove the converse, we assume that C is
bounded with respect to v. Hence there exists an element a 2 A such that c v a
for every c 2 C. We consider the set A0 = f a0 2 A j a0 v a g. Apparently, C � A0.
Assume that A0 is in�nite, then D�(a) is also in�nite, because for every a0 2 A0 there
exists a semiring element a00 2 A such that a = a0 � a00 by a0 v a. This would yield
that the monoid (A;�;0) is not �nitely factorizing. This contradicts the assumption,
hence A0 and thereby also C is �nite. 2

Now the following lemma immediately follows from the de�nitions and the above
observation.

Lemma 49. Let A be naturally ordered (via v) and (A;�;0) be �nitely factorizing.
Then M is cost-�nite if and only if M bounded with respect to v.

Bounds for Tree Automata with Polynomial Costs 153

Proof. We prove the claim by a chain of equivalences.

M is cost-�nite

() [c(M)]� is �nite (De�nition 30)

() f a 2 A j (9q 2 F)(9p 2 c(q")) : p � a g is �nite

() f a 2 A j (9q 2 F)(9p 2 c(q")) : p � a g is bounded with respect to v

(see Lemma 48)

()M is bounded with respect to v (De�nition 47)

2

Now we can combine Theorem 46 and Lemma 49 for �nitely factorizing, monotonic,
and naturally ordered semirings. Note that the partial order � and natural order v,
such that A is monotonic with respect to �, may well be the di�erent.

Theorem 50. LetM be a tree automaton with cost function over a �nitely factorizing
and monotonic semiring A, which is naturally ordered (via v). Then it is decidable
whether M is bounded with respect to v.

Proof. By Lemma 49, M is bounded with respect to v if and only if it is cost-�nite.
Moreover, by Theorem 46, it is decidable whether M is cost-�nite. 2

To conclude this section, we apply the above theorem to some concrete instances
of semirings. Thereby, we reobtain two decidability results of [31] (see Theorems
3.2 and 3.4 of [31]) in the �rst two corollaries and demonstrate that our results can
be applied to other important semirings.

Corollary 51. It is decidable whether a tree automaton M with cost function over
the semiring Nat = (N;+; �; 0; 1) is bounded with respect to �.

Proof. Apparently, Nat is �nitely factorizing and naturally ordered (via �). More-
over, Nat is also monotonic with respect to �. Thus Theorem 50 yields the stated.

2

Corollary 52. LetM be a tree automaton with cost function over the arctic semiring
Arct = (N [f�1g;max;+; (�1); 0). It is decidable whether M is bounded with
respect to �.

Proof. As in the previous corollary, Arct is �nitely factorizing and naturally ordered
as well as monotonic with respect to �. Thus Theorem 50 again proves the statement.

2

Corollary 53. It is decidable whether a tree automaton M with cost function over
the naturally ordered lcm-semiring Lcm = (N; lcm; �; 0; 1) is bounded with respect to
the natural order v.

Proof. Clearly, Lcm is naturally ordered and �nitely factorizing. In fact, it is even
monotonic with respect to v. This allows us to apply Theorem 50, hence we can
decide whether M is bounded with respect to the natural order v. 2

154 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

We lift the order � on N to an order on matrices as follows. Let n 2 N and
M;M 0 2 Nn�n

+
[f0; 1g. Then

M �M 0 () (8i; j 2 [n]) : Mij �M
0
ij :

Corollary 54. For every n 2 N+, it is decidable whether a tree automaton M with
cost function over the square matrix semiring Matn(N+) = (Nn�n

+
[f0; 1g;+; �; 0; 1)

is bounded with respect to �.

Proof. It is easily seen that Matn(N+) is naturally ordered by � and �nitely factor-
izing as well as monotonic with respect to �. Hence Theorem 50 applies and we can
decide whether M is bounded with respect to �. 2

Next we apply Theorem 50 in a slightly di�erent manner because the partial order
for monotonicity and the natural order will not coincide.

Corollary 55. It is decidable whether a tree automaton M with cost function over
the �nite-language semiring FLang(�) = (Pf(�

�);[; �; ;; f"g) is bounded with respect
to �.

Proof. Clearly, FLang(�) is �nitely factorizing and naturally ordered by �. On the
other hand, it is not monotonic with respect to �. However, FLang(�) is monotonic,
because it is monotonic with respect to the partial order � � Pf(�

�)2 de�ned by
L1 � L2 if and only if there exists an injective mapping f : L1 �! L2, i.e., w1 6= w2

implies f(w1) 6= f(w2) for every w1; w2 2 L1, such that for every w1 2 L1 we have
that w1 is a subword of f(w1). We leave the proof of monotonicity (with respect to �)
to the reader. Hence we can decide cost-�niteness of M with respect to � with the
help of Theorem 50. 2

Corollary 56. It is decidable whether a tree automaton M with cost function over
the �nite subsets semiring FSet(N) = (Pf(N);[;+; ;; f0g) of [31] is bounded with
respect to �.

Proof. Again FSet(N) is naturally ordered by � and �nitely factorizing, but not
monotonic with respect to �. However we can again construct a partial order such
that FSet(N) is monotonic. Consider the partial order � � Pf(N)

2, which is de�ned
by N1 � N2, if and only if there exists an injective mapping f : N1 �! N2 such
that for every n 2 N1 we have that n � f(n). Again we leave the detailed proof
that FSet(N) is monotonic with respect to � to the reader and conclude that now
Theorem 50 applies. Hence we can decide whether M is bounded with respect to �.

2

Let us mention that the above result is not the same as Theorem 3.19 of [31], in
which the decidability of the �niteness of the set of cardinalities of the accepting sets
(costs) is proved. We decide whether the set of all accepting sets is �nite. If the
set of accepting sets is �nite, then clearly the set of cardinalities of the accepting
sets is �nite. However, the converse does not hold, e.g., the set of all singletons is a
counter-example.

Bounds for Tree Automata with Polynomial Costs 155

7. Conclusion

We have considered tree automata with costs over semirings. We have de�ned a big
class of semirings, namely the class of �nitely factorizing and monotonic semirings,
and shown that the cost-�niteness of tree automata with costs over this semiring
class is decidable. The key to this decidability results was the construction of the
cost-equivalent reduced tree automaton M 0 with costs for a given tree automaton M
with costs. We have shown that cost-�niteness and boundedness are equivalent for tree
automata with costs over �nitely factorizing and naturally ordered semirings. Hence
it is also decidable whether a tree automaton with costs over a �nitely factorizing,
monotonic, and naturally ordered semiring is bounded with respect to the natural
order. Here the partial order � of monotonicity and the partial order v of natural
orderedness might be di�erent. With this we have generalized the results of [31]
concerning the decidability of the boundedness of tree automata with costs over the
classical semiring Nat of natural numbers and the (max;+)-semiring Arct of natural
numbers.

In the whole paper we assumed that the semiring A = (A;�;�;0;1) is com-
putable, however with a little more e�ort one can show that our statements (except
Lemma 11(ii) and Lemma 19(ii)) are also valid provided that 1 � 1 = 1 is decid-
able. Actually, in the paper we use Lemma 11(ii) only to decide whether p � 0

or p � 1; those conditions are decidable in arbitrary positive, one-summand free,
and one-product free semirings (e.g., monotonic semirings), in which 1� 1 = 1 (i.e.,
idempotency) is decidable.

Furthermore, we believe that our method of proof can also be applied to monotonic
and cancellative semirings (cancellative with respect to addition as well as multipli-
cation), because they also enjoy the main property of �nitely factorizing semirings
(cf. Observation 2), namely for every
 2 f�;�g the result A1
 A2 for non-empty
set A1; A2 � A is in�nite provided that A1 or A2 is in�nite (and A1 6= f0g 6= A2).
A statement similar to Observation 3 clearly cannot be derived for cancellative semi-
rings, but monotonic semirings are necessarily positive, such that the main statements
concerning the decidability of �niteness should still be derivable for monotonic and
cancellative semirings. However, the proved connection between the �niteness and
boundedness problem (cf. Section 6) cannot be shown in this setting. Altogehter,
this would nevertheless yield �niteness theorems for further interesting semirings such
as, e.g., the real number semiring R = (f0g [fn 2 R j 1 � n g;+; �; 0; 1) which is
monotonic and cancellative.

References

[1] J. Berstel, C. Reutenauer, Recognizable formal power series on trees. The-
oret. Comput. Sci. 18 (1982) 2, 115�148.

[2] S. Bozapalidis, Equational elements in additive algebras. Theory Comput. Syst.
32 (1999) 1, 1�33.

156 B. Borchardt, Z. Fülöp, Zs. Gazdag, A. Maletti

[3] J. Doner, Decidability of the weak second-order theory of two successors. No-
tices Amer. Math. Soc. 12 (1965), Abstract No. 65T 648, 819.

[4] J. Doner, Tree Acceptors and Some of Their Applications. J. Comput. System
Sci. 4 (1970), 406�451.

[5] J. Engelfriet, Bottom-up and top-down tree transformations - a comparison.
Math. Systems Theory 9 (1975) 3, 198�231.

[6] J. Engelfriet, E. Schmidt, IO and OI.I. J. Comput. System Sci. 15 (1977)
3, 328�353.

[7] J. Engelfriet, E. Schmidt, IO and OI.II. J. Comput. System Sci. 16 (1978)
1, 67�99.

[8] M. Fitting, First-Order Logic and Automated Theorem Proving . Second edi-
tion, Graduate Texts in Computer Science, Springer, 1996.

[9] F. Gécseg, M. Steinby, Tree Automata. Akadémiai Kiadó, Budapest, 1984.

[10] F. Gécseg, M. Steinby, Tree Languages. In: G. Rozenberg, A. Salomaa
(eds.), Handbook of Formal Languages. 3. chapter 1, Springer-Verlag, 1997, 1�68.

[11] J. Golan, Semirings and their Applications. Kluwer Academic Publishers, Dor-
drecht, 1999.

[12] P. R. Halmos, Naive Set Theory . Springer, 1998.

[13] K. Hashiguchi, Limitedness Theorem on Finite Automata with Distance Func-
tions. J. Comput. System Sci. 24 (1982), 233�244.

[14] K. Hashiguchi, Regular Languages of Star Height One. Information and Con-
trol 53 (1982) 3, 199�210.

[15] K. Hashiguchi, Algorithms for Determining Relative Star Height and Star
Height. Information and Computation 78 (1988) 2, 124�169.

[16] K. Hashiguchi, Improved Limitedness Theorems on �nite Automata with Dis-
tance Functions. Theoret. Comput. Sci. 72 (1990), 27�38.

[17] K. Hashiguchi, New Upper Bounds to the Limitedness of Distance Automata.
Theoretical Computer Science 233 (2000) 1�2, 19�32.

[18] K. Hashiguchi, Erratum to: "New Upper Bounds to the Limitedness of Dis-
tance Automata". Theoretical Computer Science 290 (2003) 3, 2183�2184.

[19] U. Hebisch, H. Weinert, Semirings - Algebraic Theory and Applications in
Computer Science. World Scienti�c, Singapore, 1998.

[20] N. Jacobsen, Basic Algebra I . Second edition, W. H. Freeman and Company,
New York, 1985.

[21] N. Jacobsen, Basic Algebra II . Second edition, W. H. Freeman and Company,
New York, 1989.

[22] D. Kirsten, Desert Automata and the Finite Substitution Problem. In:
V. Diekert, M. Habib (eds.), 21st Annual Symposium on Theoretical Aspects
of Computer Science, STACS 2004, Montpellier, France, March 25�27, 2004,
Proceedings. Lecture Notes in Computer Science 2996, Springer, 2004, 305�316.

Bounds for Tree Automata with Polynomial Costs 157

[23] D. Krob, The Equality Problem for Rational Series with Multiplicities in the
Tropical Semiring in Undecidable. International Journal of Algebra and Compu-
tation 4 (1994) 3, 405�425.

[24] W. Kuich, Semirings and Formal Power Series: Their Relevance to Formal
Languages and Automata. In: G. Rozenberg, A. Salomaa (eds.), Handbook
of Formal Languages, Vol. 1 . chapter 9, Springer-Verlag, 1997, 609�677.

[25] W. Kuich, Formal power series over trees. In: S. Bozapalidis (ed.), 3rd Inter-
national Conference on Developments in Language Theory, DLT 1997, Thessa-
loniki, Greece, Proceedings. Aristotle University of Thessaloniki, 1998, 61�101.

[26] H. Leung, Limitedness Theorem on Finite Automata with Distance Functions:
An Algebraic Proof. Theoretical Computer Science 81 (1991) 1, 137�145.

[27] H. Leung, V. Podolskiy, The Limitedness Problem on Distance Automata:
Hashiguchi's Method Revisited. Theoretical Computer Science 310 (2004) 1�3,
147�158.

[28] M. Magidor, G. Moran, Finite Automata over Finite Trees. Technical Re-
port 30, Hebrew University, Jerusalem, 1969.

[29] M. D. Potter, Sets: An Introduction. �rst edition, Oxford University, New
York, 1990.

[30] M. Schützenberger, On the de�nition of a family of automata. Inf. and Con-
trol 4 (1961), 245�270.

[31] H. Seidl, Finite tree automata with cost functions. Theoret. Comput. Sci. 126
(1994) 1, 113�142.

[32] J. Thatcher, Generalized2 sequential machine maps. J. Comput. System Sci.
4 (1970) 4, 339�367.

[33] J. W. Thatcher, J. B. Wright, Generalized �nite automata. Notices of the
American Mathematical Society 12 (1965), Abstract No. 65T � 649, 820.

[34] A. Weber, Distance Automata Having Large Finite Distance or Finite Ambi-
guity. Mathematical Systems Theory 26 (1993) 2, 169�185.

[35] A. Weber, Finite Valued Distance Automata. Theoretical Computer Science
134 (1994) 1, 225�251.

[36] W. Wechler, Universal Algebra for Computer Scientists. Monogr. Theoret.
Comput. Sci. EATCS Ser. 25, �rst edition, Springer-Verlag, Heidelberg/Berlin,
1992.

