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Abstract— For several semirings S, two weighted finite
automata with multiplicities in S are equivalent if and only
if they can be connected by a chain of simulations. Such a
semiring S is called “proper”. It is known that the Boolean
semiring, the semiring of natural numbers, the ring of
integers, all finite commutative positively ordered semirings
and all fields are proper. The semiring S is Noetherian if
every subsemimodule of a finitely generated S-semimodule
is finitely generated. First, it is shown that all Noetherian
semirings and thus all commutative rings and all finite
semirings are proper. Second, the tropical semiring is shown
not to be proper. So far there has not been any example of
a semiring that is not proper.
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1. Introduction
In this paper, we consider weighted (finite) automata [1],

[2] with multiplicities (or weights) in a semiring S. A
weighted automaton over a finite alphabet Σ with multi-
plicities in S defines a rational series [1], [2], [3] in the
semiring S〈〈Σ∗〉〉 of all formal series over Σ with coefficients
in S. Two automata are termed equivalent if they define the
same rational series.

In [4], [5], a notion of morphism between automata was
introduced in order to relate equivalent automata. These
morphisms, called “simulations” preserve the equivalence of
automata. It has been demonstrated that for many semirings,
any two equivalent automata over any finite alphabet can
be connected by a finite chain of simulations. Semirings
with this property for all finite alphabets include the Boolean
semiring [4], any finite commutative positively ordered semi-
ring [5], any field [6], the semiring N of natural numbers and
the ring of integers [6]. Such semirings are called proper.
Until now, there has not been any example of a semiring
that is not proper.

In this note, our aim is two-fold. First, we point out
additional classes of proper semirings. We call a semiring S
Noetherian if every subsemimodule of a finitely generated
S-semimodule is finitely generated. In Theorem 4.2 we show
that any Noetherian semiring and thus any commutative ring
and any finite semiring is proper. Then in Theorem 5.4
we prove that the tropical semiring [7], [8] used in many
combinatorial optimization problems is not proper.

2. Semirings and semimodules
We recall from [7], [8] that a semiring S = (S,+, ·, 0, 1)

consists of a commutative monoid (S,+, 0) and a monoid
(S, ·, 1) such that multiplication (or product) · distributes
over addition (or sum) +, and moreover, s · 0 = 0 = 0 · s
for all s ∈ S. A semiring S is called commutative if
ss′ = s′s for all s, s′ ∈ S. (When writing expressions,
we will follow the standard convention that multiplication
has higher precedence than addition.) Examples of semi-
rings include all fields and rings, all bounded distributive
lattices including the 2-element lattice B = {0, 1}, called
the Boolean semiring, the semiring N of natural numbers,
and the tropical semiring defined in Section 5. In order
to avoid trivial situations, we will only consider nontrivial
semirings in which 0 6= 1. When S is a semiring, so is
the collection Sn×n of all n × n matrices over S with the
usual operations and constants. We will identify any matrix
in S1×n with the corresponding row vector, and any matrix
in Sn×1 with the corresponding column vector.

When S is a semiring, an S-semimodule is a commutative
monoid V = (V,+, 0) that is equipped with a (left) S-action
S × V → V with (s, v) 7→ sv subject to the usual laws:

(s+ s′)v = sv + s′v

s(v + v′) = sv + sv′

(ss′)v = s(s′v)
1v = v

s0 = 0
0v = 0

for all s, s′ ∈ S and v, v′ ∈ V . Note that for any m,n ≥ 1,
the set Sm×n of m×n matrices equipped with the pointwise
sum operation is an S-semimodule.

Suppose that S is a semiring and Σ is a finite alphabet.
Let Σ∗ denote the free monoid of all words over Σ including
the empty word ε. Recall from [1], [3] that a formal series
over Σ with multiplicities in S is a function s : Σ∗ → S writ-
ten as a formal sum

∑
w∈Σ∗(s, w)w, where (s, w) = s(w)

for each w ∈ Σ∗. The support supp(s) of a series s is
{w | (s, w) 6= 0}. We let S〈〈Σ∗〉〉 denote the collection of
all such series. Each s ∈ S may be identified with the series
mapping ε to s and all nonempty words to 0. This defines
the series 0 and 1. Also, each letter a ∈ Σ may be identified
with the series mapping a to 1 and all other words of Σ∗



to 0. The sum and product operations are defined by

(s+ s′, w) = (s, w) + (s′, w)

(ss′, w) =
∑
uv=w

(s, u)(s′, v)

for all s, s′ ∈ S〈〈Σ∗〉〉. It is well-known (see e.g. [1], [3])
that, equipped with the above operations and constants,
S〈〈Σ∗〉〉 is a semiring. In particular, B〈〈Σ∗〉〉 is isomorphic
to the semiring P (Σ∗) of all languages over Σ equipped
with set union as sum and concatenation as product. The
canonical isomorphism B〈〈Σ∗〉〉 → P (Σ∗) maps a series in
B〈〈Σ∗〉〉 to its support.

Below we will denote by S〈Σ〉 the set of all series
in S〈〈Σ∗〉〉 whose support is a subset of Σ. Notice that each
element of S〈Σ〉 may be written as a linear combination
s1a1 + · · ·+snan, where a1, . . . , an are the letters of Σ and
each coefficient si is an element of S.

For later use we note that when si with i ∈ I are
series in S〈〈Σ∗〉〉 with pairwise disjoint support, then it is
possible to define their sum

∑
i∈I si as the series s with

(s, w) = (si, w) if w ∈ supp(si) for some i and (s, w) = 0
otherwise.

3. Automata and simulations
Suppose that S is a semiring and Σ is a finite alphabet.

A (finite) automaton in S〈〈Σ∗〉〉 of dimension n ≥ 1 is a
triplet A = (α,M, β), where α ∈ S1×n is the initial vector,
M ∈ S〈Σ〉n×n is the transition matrix, and β ∈ Sn×1

is the final vector of A. Note that we may write M as
a finite sum M =

∑
a∈ΣMaa with Ma ∈ Sn×n for all

a ∈ Σ, where (Ma)ij is the coefficient of a in Mij for each
1 ≤ i, j ≤ n.

Since each entry of M is a series in S〈Σ〉, for each k ≥ 0
it holds that each entry of Mk is a series whose support is
included in Σk = {w ∈ Σ∗ | |w| = k}, which is the set of
all words in Σ∗ of length k. Thus, it is possible to define M∗

as the matrix

M∗ = En +M +M2 + · · · =
∑
i≥0

M i

where M0 = En is the n × n identity matrix. It is
easy to see that for any 1 ≤ i, j ≤ n and w ∈ Σ∗,
we have ((M∗)ij , w) = (Mw)ij , where Mε = En and
Mva = MvMa for all v ∈ Σ∗ and a ∈ Σ. The behavior
of the automaton A is defined as the series

|A| = αM∗β ∈ S〈〈Σ∗〉〉.

Alternatively, |A| is the series with (|A|, w) = αMwβ for
all w ∈ Σ∗. We say that automata A and B are equivalent
if |A| = |B|. Note that an automaton in B〈〈Σ∗〉〉 is just an
ordinary finite nondeterministic automaton.

Simulations of automata were defined in [4], [5] in
order to provide a structural characterization of equivalent
automata.

Definition 3.1: Let A = (α,M, β) and B = (γ,N, δ) be
automata in S〈〈Σ∗〉〉 of dimension m and n, respectively.
We say that X ∈ Sm×n is a simulation A → B, in
notation A →X B, if

αX = γ

MX = XN

β = Xδ.
Note that the condition MX = XN can be expressed in

an equivalent way as MaX = XNa for all a ∈ Σ.
If X is a simulation A → B, then MkX = XNk and

MwX = XNw for all k ≥ 0 and w ∈ Σ∗ and thus

αMkβ = αMkXδ = αXNkδ = γNkδ

for all k ≥ 0, which proves that A and B are equivalent.
Definition 3.2: Call a semiring S proper if for any finite

alphabet Σ and for any two automata A and B in S〈〈Σ∗〉〉
the following two conditions are equivalent:
• A and B are equivalent.
• There exists a finite chain of simulations connect-

ing A and B; i.e., there is a sequence of automata
C0, . . . , Ck with k ≥ 0 such that C0 = A, Ck = B,
and for each 1 ≤ i ≤ k−1, either there is a simulation
Ci →Xi Ci+1 or a simulation Ci+1 →Xi Ci.

For later use we note:
Lemma 3.3: If every finitely generated subsemiring of a

semiring S is contained in a proper subsemiring of S, then
S is proper.

Proof: Suppose that A = (α,M, β) and B = (γ,N, δ)
are equivalent automata in S〈〈Σ∗〉〉. Let S0 denote the
subsemiring of S that is generated by the entries of α, β, γ, δ
and M,N . By assumption, S0 is contained in a proper sub-
semiring S1. Since S1 is proper and A and B are equivalent
automata in S1〈〈Σ∗〉〉, they can be connected by a finite chain
of simulations involving automata in S1〈〈Σ∗〉〉 and simulation
matrices over S1. Trivially, those are automata in S〈〈Σ∗〉〉 and
simulation matrices over S.

In [6], [4], [5] several proper semirings S have been
identified, including the Boolean semiring [4], any finite
positively ordered commutative semiring [5], any field [6],
the semiring N of natural numbers and the ring Z of
integers [6]. In Section 4, we will show that every Noetherian
semiring and thus every commutative ring and every finite
semiring is proper. Then, in Section 5, we will show that
the tropical semiring is not proper.

4. Noetherian semirings
Definition 4.1: We call a semiring S Noetherian if for

every finitely generated S-semimodule A, every subsemi-
module of A is finitely generated.

Theorem 4.2: Every Noetherian semiring is proper.
Proof: Suppose that S is a Noetherian semiring

and Σ is a finite alphabet. Let A = (α,M, β) and



B = (γ,N, δ) be equivalent automata in S〈〈Σ∗〉〉 of di-
mension m and n, respectively. Our aim is to construct an
automaton C = (κ,R, λ) of dimension p, say, together with
simulations C →X A and C →Y B, where X ∈ Sp×m and
Y ∈ Sp×n.

To this end, for each k ≥ 0, let

Vk = {(αw, γw) | |w| ≤ k},

where αw = αMw and γw = γNw. Moreover, let 〈Vk〉
be the subsemimodule of the S-semimodule of (m + n)-
dimensional row vectors over S generated by Vk. Since

αwβ = αMwβ = (|A|, w) = (|B|, w) = γNwδ = γwδ,

for all w ∈ Σ∗, we have α′β = γ′δ for all (α′, γ′) ∈ 〈Vk〉,
k ≥ 0 such that α′ ∈ Sm and γ′ ∈ Sn.

Since Vk ⊆ Vk+1, also 〈Vk〉 ⊆ 〈Vk+1〉 for each k ≥ 0.
Since S is Noetherian, it follows that there is some k0 with
〈Vk0〉 = 〈Vk0+1〉. Moreover, 〈Vk0〉 is finitely generated. Let
〈Vk0〉 = 〈{(α1, γ1), . . . , (αp, γp)}〉, say, where αi ∈ Sm and
γi ∈ Sn for all i. Since Vk0+1 ⊆ 〈Vk0〉 for each letter a ∈ Σ,
there is a matrix Ra ∈ Sp×p such that (αiMa, γiNa) is a
linear combination

(αiMa, γiNa) =
p∑
j=1

(Ra)ij(αj , γj). (1)

Also, (α, γ) ∈ 〈Vk0〉 yields that (α, γ) is a linear combina-
tion of the (αj , γj):

(α, γ) =
p∑
j=1

κj(αj , γj) (2)

where κj ∈ S for every 1 ≤ j ≤ p. Now let
• κ = (κ1, . . . , κp) ∈ S1×p and
• R =

∑
a∈ΣRaa ∈ S〈Σ〉p×p.

Moreover, let X be the p × m matrix over S whose
rows are the vectors α1, . . . , αp and Y the p × n matrix
over S whose rows are the vectors γ1, . . . , γp. Moreover, let
λ = Xβ = Y δ ∈ Sp×1.

Then C = (κ,R, λ) is an automaton of dimension p. In
addition, X is a simulation C → A and Y is a simula-
tion C → B. Indeed, κX = α and κY = γ by (2), and
RaX = XMa and RaY = Y Na for all a ∈ Σ by (1).
Finally, Xβ = λ = Y δ.

Corollary 4.3: Suppose that every finitely generated sub-
semiring of a semiring S is Noetherian. Then S is proper.

Proof: By Theorem 4.2 and Lemma 3.3.
Since every finitely generated commutative ring is Noethe-

rian, (cf. [1]), and since every finite semiring is clearly
Noetherian, we obtain:

Corollary 4.4: Every commutative ring is proper.
Corollary 4.5: Every finite semiring is proper.
Call an automaton (α,M, β) in S〈〈Σ∗〉〉 (strictly) deter-

ministic if α and each row of any Ma for a ∈ Σ is a
unit vector; i.e., it has a single nonzero component which

is 1. We end this section by pointing out that when S is
a finite semiring and A = (α,M, β) and B = (γ,N, δ)
are equivalent automata in S〈〈Σ∗〉〉, then the automaton
C = (κ,R, λ) in the proof of Theorem 4.2 can be chosen to
be deterministic. Indeed, since S is finite, there is some k0

such that Vk0 contains all vectors of the form (αw, γw) with
w ∈ Σ∗. We may choose (α1, γ1), . . . , (αp, γp) to be an
enumeration of Vk0 with (α1, γ1) = (α, γ), say. Now if
(αiMa, γiNa) = (αj , γj) for some a ∈ Σ and 1 ≤ i, j ≤ p,
then we may define the ith row of Ra to be the unit vector
whose jth component is 1 (and whose other components
are 0). Moreover, we can define κ1 = 1 and κi = 0
for 1 < i ≤ p. The vector λ is the same as before. We
clearly have (1) and (2), so that the matrices X and Y are
simulations C → A and C → B, respectively.

In [5] a different argument is given to show that every
finite positively ordered commutative semiring is proper.
However, the argument applies to all finite semirings.

5. The tropical semiring
Below we will say that a semiring S is effectively pre-

sentable if its carrier can be represented as a recursive
subset of N such that its operations are recursive functions.
Examples of effectively presentable semirings are all finite
semirings, the semiring N and the tropical semiring [7],
[8], which is T = (N ∪ {∞},min,+,∞, 0) where the sum
operation is the minimum, the product operation is ordinary
addition with n+∞ = ∞ = ∞+ n for all n ∈ N ∪ {∞},
and the constants are ∞ and 0.

Lemma 5.1: If S is effectively presentable, then it is
semidecidable whether two automata A and B in S〈〈Σ∗〉〉,
where Σ is a finite alphabet, are not equivalent.

Proof: Let w0, w1, . . . be a recursive enumeration
of Σ∗. For i ≥ 0 compute (|A|, wi) and (|B|, wi). If
(|A|, wi) 6= (|B|, wi) for some i, then A and B are not
equivalent.

Lemma 5.2: If S is a proper and effectively presentable
semiring, then it is semidecidable whether two finite au-
tomata in S〈〈Σ∗〉〉 over a finite alphabet Σ are equivalent.

Proof: Given two automata A = (α,M, β) and
B = (γ,N, δ) in S〈〈Σ∗〉〉, we generate all finite se-
quences of automata C0, . . . , Ck connecting A with B to-
gether with matrices X0, . . . , Xk−1 over S of appropriate
dimension. We check whether or not Xi is a simulation
Ci−1 → Ci or Ci → Ci−1 for each i. If a chain of simulations
is found, then A and B are equivalent.

From Lemmata 5.1 and 5.2 we can immediately conclude:
Corollary 5.3: Suppose that S is a proper and effectively

presentable semiring. Then it is decidable whether two
automata A and B in S〈〈Σ∗〉〉 are equivalent, where Σ is
any finite alphabet.

Theorem 5.4: The tropical semiring T is not proper.
Proof: Clearly, T is an effectively presentable semiring.

It was shown in [9] that the equivalence problem of automata



in T 〈〈Σ∗〉〉 is undecidable when Σ is a finite alphabet with
at least two letters. Thus, T is not proper by Corollary 5.3.

Other effectively presentable semirings that are not proper
are the variants of the tropical semiring studied in [9]. When
S embeds in S′ and S is not proper, then S′ is not proper
either.

6. Conclusion
We have shown that when S is a Noetherian semiring

and Σ is any finite alphabet, then two automata A and B
in S〈〈Σ∗〉〉 are equivalent if and only if they can be connected
by a finite chain of simulations. In fact, when A and B are
equivalent, then an automaton C was found together with
simulations A ← C → B. When S is finite, then C may
be chosen to be deterministic. Moreover, we have shown
that when S is the tropical semiring, then for any finite
alphabet Σ of size at least 2 there exist equivalent automata
in S〈〈Σ∗〉〉 that cannot be connected by any finite chain of
simulations.
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