
Bisimulation Minimisation of
Weighted Automata on Unranked Trees

J. Högberg 1, A. Maletti 2, H. Vogler 3

1 Department of Computing Science, Ume å University
2 Int. Computer Science Institute, Berkeley

3 Inst. für Theoretische Informatik, TU Dresden

TUD-FI08-03 — März 2008

TECHNISCHE UNIVERSITÄT
DRESDEN

Fakult ät Informatik

Technische Berichte

Technical Reports
ISSN 1430-211X

Technische Universität Dresden
Fakultät Informatik
D-01062 Dresden
Germany

URL: http://www.inf.tu-dresden.de/

Bisimulation Minimisation of

Weighted Automata on Unranked Trees

Johanna H�ogberg1 Andreas Maletti2 Heiko Vogler3

1 Department of Computing Science, Ume�a University
S-90187 Ume�a, Sweden

2 International Computer Science Institute
1947 Center Street, Suite 600, CA-94704 Berkeley, USA

3 Faculty of Computer Science, Technische Universit�at Dresden
D-01062 Dresden, Germany

March 3, 2008

Abstract

Two examples of automata-theoretic models for the validation of xml
documents against user-de�ned schema are the stepwise unranked tree
automaton (suta) and the parallel unranked tree automaton (puta). By
adding a weight, taken from some semiring, to every transition we gen-
eralise these two qualitative automata models to quantitative models,
thereby obtaining weighted stepwise unranked tree automata (wsuta) and
weighted parallel unranked tree automata (wputa); the qualitative au-
tomata models are reobtained by choosing the Boolean semiring. We
deal with the minimisation problem of wsuta and wputa by using (for-
ward and backward) bisimulations and we prove the following results:
(1) for every wsuta an equivalent forward (resp. backward) bisimulation
minimal wsuta can be computed in time O(mn) where n is the number
of states and m is the number of transitions of the given wsuta; (2) the
same result is proved for wputa instead of wsuta; (3) if the semiring is
additive cancellative or the Boolean semiring, then the bound can be
improved to O(m log n) for both wsuta and wputa; (4) for every deter-
ministic puta we can compute a minimal equivalent deterministic puta in
time O(m log n); (5) the automata models wsuta, wputa, and weighted
unranked tree automaton have the same computational power.

1 Introduction

A recent product of language technology is the extensible markup language
(xml), a tag-based language for structuring document data [2, 24]. In xml there
is no �xed set of available tags. These are instead de�ned through customisable

1

xml schemas to suit the situation at hand. An xml document that complies
with a particular schema is valid with respect to it. There is, at present, a
number of veri�cation tools designed to validate xml documents against a user-
provided schema. Some of these use unranked tree automata as an internal
representation for the target language: an input document d is only approved
if the internal automaton accepts the tree structure contained in d. Because
validation is an operation that is frequently used, it is important that it can
be done in a time- and memory-e�cient way. For this reason the automaton
that carries out the veri�cation should be as small as possible. A minimisation
algorithm for unranked tree automata would thus be a useful instrument to tune
the performance of xml validators.

Several models for automata on unranked trees have been described in the liter-
ature. The most prominent of these are probably the unranked tree automaton
(uta) [6, 29], the stepwise unranked tree automaton (suta) [8], and the parallel
unranked tree automaton (puta) [9]. Minimisation of bottom-up and left-to-right
deterministic versions of uta, suta, and puta are investigated in [26]. Martens

andNiehren show that there is no unique minimal deterministic uta recognising
a given language, and �nding any minimal deterministic uta is NP-complete,
whereas deterministic suta and puta allow e�cient minimisation. Regarding
representation size, it is stated that a deterministic uta can always be converted
into an equivalent deterministic puta, but not without risking an exponential
blow-up. In addition, deterministic suta are known to be more succinct than
deterministic puta, but only quadratically so.

In this paper, we consider the minimisation problem for, not necessarily deter-
ministic, suta and puta. As unranked tree automata generalise both ranked tree
automata (fta) [15, 16] and �nite-state string automata (fsa), many results about
minimisation carry over immediately. For instance, it is well-known that there
is, in general, no unique solution to the minimisation problem for fsa. There can
be several minimal, but pairwise non-isomorphic, fsa that recognise a given reg-
ular language. Furthermore, minimising fsa is PSPACE-complete [27, 23, 25],
and the minimisation problem for fsa with n states cannot even be e�ciently
approximated within the factor o(n) unless P = PSPACE [18]. In other words,
supposing that P 6= PSPACE we cannot �nd a natural number c such that
there is an algorithm with polynomial run-time that, for every fsa, returns an
equivalent fsa of size at most c times the size of a minimal equivalent fsa.

As these statements also hold for automata on unranked trees, we see that
any algorithmic solution to the minimisation problem for this family of devices
must be a heuristic. The type of heuristic that we have chosen to work with
here is called bisimulation. Bisimulation equivalence, as interpreted for various
devices, typically implies language equality (it does in the cases considered here),
however the opposite does not hold in general [28]. So-called backward and
forward bisimulation is introduced in [7] for weighted string automata (wsa)
and generalised to fta [19] and weighted tree automata (wta) [21].

Also in this paper we choose to work with weighted automata. These gener-

2

alise the Boolean (i.e. the unweighted) case, but are arguably more useful, as
they let us express not only qualitative but also quantitative properties such as
probabilities and costs. Originally, wta [4] used �elds as weight structure, but
they were later generalised to semirings [3]. The wta generalises the fta and the
wsa. We take this generalisation one step further, as the weighted versions of
the uta, the suta, and the puta (wuta, wsuta, and wputa, respectively) that are
presented in this paper all generalise the wta.

Let us attempt an intuitive description of these weighted devices. Suppose
that Q is a �nite set of states and � is an input alphabet. A common trait
is that they all parse their input tree bottom-up, one node at a time. The
weight c with which a state q is assigned to an f -labelled position w in the
input tree is obtained by running a wsa on the sequence of states q1 � � � qk that
have already been assigned to the positions w1; : : : ; wk immediately below w.
How c is computed di�ers between the models:

� A wuta has one wsa A(p;f 0) for every p 2 Q and f 0 2 �. It computes c by
running A(q;f) on q1 � � � qk.

� A wputa has one wsa Af 0 with Q-output for every f 0 2 �. It computes c
by taking the q-component of the vector that results when Af is run
on q1 � � � qk.

� A wsuta has only a single wsa, but it has one initial vector �f 0 for every
f 0 2 �. It computes c as the weight with which the state q is reached on
the word q1 � � � qk using the initial vector �f .

When comparing the weighted unranked tree automata models we �nd that
wuta, wputa, and wsuta are all equally powerful (see Theorem 6.6). The con-
struction that converts a wuta to a wputa merely re-groups the states and
transitions of the wuta and is thus size-preserving. When converting a wsuta
to a wuta we make one copy of its transition graph for every state and input
symbol, increasing the size by a factor nj�j where n is the number of states.
Changing a wputa into a wsuta requires O(mn) computation steps, where m is
the number of transitions and n is the number of states, but the construction
preserves the size.

The main contribution of this paper is bisimulation minimisation for wsuta and
wputa, which is obtained by reducing the problem to bisimulation minimisation
for wta (see [21, Theorems 11{29] and [20, Theorems 12{27]). We show that
for every wsuta an equivalent forward (resp., backward) bisimulation minimal
wsuta can be computed in time O(mn) [see Theorem 4.9]. If the used semiring
is additively cancellative (i.e., a + b = a + c implies that b = c for all a; b; c)
or the Boolean semiring (i.e., the wsuta is essentially a suta), then we can
improve the running time to O(m log n). In particular, for every deterministic
suta, we can use the forward bisimulation minimisation algorithm to compute
an equivalent minimal deterministic suta in time O(m log n) [see Corollary 4.10].
It is known [26, 19] that the minimisation problem for deterministic suta can
be solved in O(m log n). Similarly, for every wputa M an equivalent forward
(resp., backward) bisimulation minimal wputa can be computed in time O(mn)

3

[see Theorems 5.15 and 5.10, respectively], which can be improved to O(m log n)
for additively cancellative semirings and the Boolean semiring. Moreover, it
is known [9] that deterministic puta can be minimised in quadratic time. We
improve this result by showing that for every deterministic puta we can construct
a minimal equivalent deterministic puta in time O(m log n) [see Theorem 5.16].

The results of [21, 20] concerning bisimulation minimisation of wta are readily
transferable to wsuta since wsuta can be seen as wta over a special encoding
(cf. [26]) of the input tree. Due to the similarity between wsuta and wputa,
the same results can also be adopted for wputa, albeit with a bit more work.
The situation is di�erent for uta (and hence its generalisation wuta), as here the
deterministic case does not submit toMyhill-Nerode avoured minimisation.
The reason is, as pointed out in [26], that a deterministic uta as de�ned in [26]
is, although unambiguous, not truly deterministic. Hence we cannot hope to
obtain an e�cient minimisation algorithm for deterministic uta with the help of
bisimulation minimisation. However, it might still be possible to obtain e�cient
forward and backward bisimulation minimisation algorithms, but we leave this
as an open problem.

Outline. In Section 2 we give the technical preliminaries needed to make
this paper self-contained. For the same reason we also restate adopted versions
of the main theorems on bisimulation of wta [19, 21] in Section 3. Section 4 and
Section 5 treat bisimulation minimisation of wsuta and wputa, respectively, and
are followed by Section 6 in which it is shown that wuta, wputa, and wsuta are
equally expressive.

2 Preliminaries

Sets, numbers, and relations. We denote the set of all reals by R and the
set R [f�g by R� for every � =2 R. The set of all natural numbers including 0
(resp., excluding 0) is denoted by N (resp., N+). The subset f1; 2; : : : ; kg of N+
is abbreviated by [k]. Note that [0] = ;. An alphabet � is a �nite nonempty set
of symbols. We denote the empty string by " and the length of a string w 2 ��

by jwj. Let w = f1 � � � fk with fi 2 � for every i 2 [k]. The label at position
i 2 [k] of w is w(i) = fi.

Let P and R be equivalence relations on a set Q. We say that P is coarser
than R (or equivalently: R is a re�nement of P) if R � P. The equivalence
class (or block) of q 2 Q with respect to R is the set [q]R = fp j (q; p) 2 Rg.
Whenever R is obvious from the context, we simply write [q] instead of [q]R. It
should be clear that [q] and [p] are equal if (q; p) 2 R, and disjoint otherwise,
so R induces a partition Q=R = f[q] j q 2 Qg of Q.

Algebraic structures. Let K be a nonempty set, and let � be an associative
binary operation on K. If K contains an element 1 such that 1 � � = � = � � 1
for every � 2 K, then (K; �) is a monoid with identity 1. A monoid (K; �) is

4

commutative if the equation �1 � �2 = �2 � �1 holds for every �1; �2 2 K. We
henceforth adopt the convention of identifying an algebraic structure with its
carrier set.

A commutative semiring is a nonempty set K on which a binary addition + and
a binary multiplication � have been de�ned such that the following conditions
are satis�ed:

� (K;+) and (K; �) are commutative monoids with identities 0 and 1, re-
spectively;

� the operation � distributes over + from both sides; and
� 0 is absorbing (i.e., 0 � � = 0 = � � 0 for every � 2 K).

Important commutative semirings are for example:

� the Boolean semiring (B;_;^; 0; 1);
� the arctic semiring (R�1;max;+;�1; 0); and
� the semiring (N;+; �; 0; 1) of natural numbers.

The semiring K is additively cancellative if �+ �1 = �+ �2 implies �1 = �2 for
every �; �1; �2 2 K. Note that if Q is a set and K a commutative semiring, then
also KQ with component-wise addition and multiplication is a commutative
semiring (we will use � to denote componentwise multiplication). With the
usual matrix addition + and multiplication �, the structure (KQ�Q;+; �) is a
noncommutative semiring (i.e., multiplication is not commutative). For a more
thorough introduction to semirings we refer the reader to [17].

From now on, we will drop the pre�x commutative when we talk about semirings.
We assume that the used semirings are always commutative. This allows us to
freely reorder factors except in matrix multiplications.

Formal power series. Let K be a semiring and Z a set. A formal power
series over K and Z is a mapping S : Z ! K. The set of all power series over
K and Z is denoted by KhhZii. As convention bids, for every z 2 Z we usually
write the value S(z) as (S; z).

Weighted string automata. A weighted string automaton (wsa) [30, 13] is
a tuple A = (Q;�;K; �; �; �) where

� Q is an alphabet (of states);
� � is an alphabet (of input symbols);
� K is a semiring;
� � : �! KQ�Q assigns a transition weight matrix to each symbol; and
� �; � 2 KQ are an initial and a �nal weight vector, respectively, where � is
considered to be a (1�Q) matrix and � a (Q� 1) matrix.

The size of the wsa A, denoted by size(A), is n + m, where n is the number
of states and m is the total number of nonzero entries in the transitions weight
matrices.

The mapping � : � ! KQ�Q uniquely extends to a monoid homomorphism �
from (��; �) to (KQ�Q; �). The formal power series kAk 2 Khh��ii recognised

5

by A is de�ned for every w 2 �� by (kAk; w) = � � �(w) � � (where � and � are
seen as row and column vector, respectively). We denote by Rec(K;�) the set
of all power series of Khh��ii that are recognisable by some wsa.

For later convenience, for every q 2 Q we de�ne the wsa Aq = (Q;�;K; �; �; �0)
where �0(q) = �(q) and �0(p) = 0 for every p 2 Q n fqg. The wsa A is determin-
istic if (i) there exists at most one q 2 Q such that �(q) 6= 0; and (ii) for every
f 2 � and p 2 Q there exists at most one q 2 Q such that �(f)p;q 6= 0.

Next, we recall certain constructions that modify wsa. We start with a slightly
non-standard construction, which will prove useful in Section 5. Let P be
an equivalence relation on �. We de�ne the wsa AP = (Q;�=P;K; �; �0; �)
where �0(B)p;q =

P
f2B �(f)p;q for every B 2 �=P and p; q 2 Q. A straight-

forward proof shows that �0(B1 � � �Bk) is equal to
P

f12B1;:::;fk2Bk
�(f1 � � � fk)

and that (kAPk; B1 � � �Bk) is equal to
P

f12B1;:::;fk2Bk
(kAk; f1 � � � fk) for every

B1; : : : ; Bk 2 �=P.

The following recalls notions from [7]. Let R be an equivalence relation on Q.
We say that R is a forward bisimulation on A if for every (p1; p2) 2 R

(i) �(p1) = �(p2) and
(ii)
P

q2B �(f)p1;q =
P

q2B �(f)p2;q for every f 2 � and B 2 Q=R.

The forward-aggregated wsa, denoted by A=R, is the wsa (Q=R;�;K; �0; �0; �0)
with

� �0(B) =
P

q2B �(q) for every B 2 Q=R;
� �0(f)B;[q] =

P
p2B �(f)p;q for every f 2 �, q 2 Q, and B 2 Q=R; and

� �0([q]) = �(q) for every q 2 Q.

The reversed wsa Rev(A) is (Q;�;K; �; �0; �) with �0(f) = �(f)T [i.e., the trans-
pose of �(f)] for every f 2 �. With this at hand, R is a backward bisimulation
on A if R is a forward bisimulation on Rev(A). The backward-aggregated wsa is
Rev(Rev(A)=R). We will denote it by A=R provided that it is understood that
R is a backward bisimulation on A.

Finally, we consider a slight extension of wsa. Let P be a set. A wsa with
P -output is a tuple A = (Q;�;K; �; �; �) where Q, �, K, �, and � are as in a
wsa and � 2 KQ�P . The semantics kAk is de�ned as for wsa with the di�erence
that now kAk 2 KP hh��ii. For consistency, we will try to avoid to handle wsa
with P -output directly. Instead, we commonly assume that P \ Q = ; and
simulate A by the wsa sim(A) = (Q [P;� [f�g;K; �0; �0; �0) where

� � =2 � is a new special symbol that we reserve for exactly this use;
� �0(q) = �(q) for every q 2 Q;
� �0(f)q;q0 = �(f)q;q0 for every f 2 � and q; q0 2 Q;
� �0(�)q;p = �q;p for every q 2 Q and p 2 P ; and
� �0(p) = 1 for every p 2 P .
� All remaining entries in �0, �0, and �0 are 0.

The following informal description of sim(A) shall illustrate its de�nition. We
present its matrices �0, �0, and �0 by blocks where we assume that the states

6

of Q have smaller indices than those of P .

�0 =

�
�
0

�
8f 2 �: �0(f) =

�
�(f) 0
0 0

�
�0(�) =

�
0 �
0 0

�
�0 =

�
0 1

�
It is easily seen that (ksim(A)pk; w�) = (kAk; w)p for every p 2 P and w 2 ��.
A wsa with P -output is deterministic if sim(A) is deterministic. Moreover, the
size of A, denoted size(A), is simply the size of sim(A).

Unranked trees and ranked trees. Let � be an alphabet. The set U�

of (unranked) trees over � is the smallest subset of (� [f[;]g [f;g)� such that
for every f 2 �, k 2 N, and t1; : : : ; tk 2 U� also f [t1; : : : ; tk] 2 U�. To improve
readability, we henceforth identify f [] with f . The set of positions in the tree t,
denoted by Pos(t), is inductively de�ned for every t = f [t1; : : : ; tk] 2 U� by
Pos(t) = f"g [fiw j 1 � i � k and w 2 Pos(ti)g.

Let t = f [t1; : : : ; tk] 2 U�, u 2 U�, and w 2 Pos(t). The height of t, denoted
by height(t), is 0 if k = 0, and 1 + maxfheight(ti) j i 2 [k]g otherwise. The
rank of t at w, the label of t at w, the subtree of t at w, and the replacement
of the subtree at w in t by u are denoted by rank t(w), t(w), tjw, and t[u]w,
respectively. They are de�ned as follows: rank t(") = k, t(") = f , tj" = t, and
t[u]" = u; and rank t(iv) = rank ti(v), t(iv) = ti(v), tjiv = tijv, and t[u]iv =
f [t1; : : : ; ti�1; ti[u]v; ti+1; : : : ; tk] for every i 2 [k] and v 2 Pos(ti). Now let
� � �. We de�ne the set Pos�(t) = fw 2 Pos(t) j t(w) 2 �g for every t 2 U�.

A ranked alphabet is an alphabet � together with a mapping rk : � ! N. The
set T� of ranked trees over � is the subset of U� that is given by

T� = ft 2 U� j 8w 2 Pos(t) : rankt(w) = rk(t(w))g :

Since ranked trees are particular unranked trees, the notions of position, sub-
trees, label, and replacement are also de�ned for ranked trees. For every k � 0,
we let �(k) = rk�1(k) and max� = max fk j �(k) 6= ;g. Let � be a ranked
alphabet and Q a �nite set disjoint with �. We de�ne the ranked alphabet �
by �(0) = �(0) [Q and �(k) = �(k) for every k � 1. We henceforth use T�(Q)
as an alias for T�.

A power series S 2 KhhZii such that Z � U� is called (unranked) tree series.
When Z � T� we also say that S is a ranked tree series.

3 Weighted tree automata

In this section we briey recall the main de�nitions and required results on
weighted (ranked) tree automata. For more details on weighted tree automata
we refer to [4, 3, 14, 11, 10]. Let us start with the syntax.

De�nition 3.1 A weighted tree automaton (wta) is a tupleM = (Q;�;K; �; !)
where Q is an alphabet (of states), � is a ranked alphabet (of input symbols),

7

K is a semiring, � is an indexed family (�k)k2N of mappings �k : �(k) ! KQk�Q,
and ! 2 KQ is a vector (of root weights). The wta M is deterministic if for
every symbol f 2 �(k) and word w 2 Qk there exists at most one state q 2 Q
such that �k(f)w;q 6= 0. �

For the remainder of this section, let M = (Q;�;K; �; !) be a wta. To simplify
the following discussion, we assume, without loss of generality, that � is disjoint
to Q. Let us proceed with the semantics. We will use the de�nition of the run
semantics from [11] because we need the added exibility in the next section.

De�nition 3.2 Let t 2 T�(Q) be an input tree. A run of M on t is a mapping
r : Pos(t) ! Q such that r(w) = t(w) for every w 2 PosQ(t). The set of all
runs of M on t is denoted by runM(t). The weight of r is

weightM(r) =
Y

w2Pos�(t)
k=rk(t(w))

�k(t(w))r(w1)���r(wk);r(w) :

The ranked tree series recognised by M is kMk such that

(kMk; t) =
X

r2runM(t)

weightM(r) � !(r("))

for every t 2 T�. Any ranked tree series that can be recognised by a wta is said
to be recognisable. �

It should be noted that we use �nal weights whereas [11] uses only �nal states
(see [5] for a discussion). The following decomposition result for runs can be
obtained by instantiating [11, Observation 4.6]; note that the �nal weights do
not inuence the result.

Lemma 3.3 Let t 2 T� and w1; : : : ; wn 2 Pos(t) be such that wi 6= wjw for
all i; j 2 [n] with i 6= j and w 2 N� (i.e., w1; : : : ; wn are pairwise incomparable
with respect to the pre�x order on N�). Then for every q 2 Q

X
r2runM(t)
r(")=q

weightM(r) =
X

r02runM(tw);r0(")=q
8i2[n] : ri2runM(tjwi)

w=r1(")���rn(")

weightM(r0) �
nY
i=1

weightM(ri)

where tw = (� � � ((t[w(1)]w1)[w(2)]w2) � � �)[w(n)]wn . �

In Section 4, the computation of forward and backward bisimulations for wsuta
is reduced to reinterpreting the input wsuta M as a wta M 0 running on a binary
encoding of the unranked input trees, and then computing the corresponding
bisimulations on M 0 using the results of [21]. For the sake of this reduction
we now restate the de�nitions of backward and forward bisimulation for wta

8

and the de�nitions of the corresponding aggregated wta [21]. Note that these
details are only needed to verify some statements, so that on �rst reading these
de�nitions can safely be skipped.

De�nition 3.4 An equivalence relation R on Q is a backward bisimulation
on M if for every (q1; q2) 2 R, f 2 �(k), and B1; : : : ; Bk 2 Q=R

X
p12B1;:::;pk2Bk

�k(f)p1���pk;q1 =
X

p12B1;:::;pk2Bk

�k(f)p1���pk;q2 :

The backward-aggregated wta is the wta M=R = (Q=R;�;K; �0; !0) with

� !0(B) =
P

q2B !(q) for every B 2 Q=R; and
� for every f 2 �(k), B1; : : : ; Bk 2 Q=R, and q 2 Q

�0
k(f)B1���Bk;[q] =

X
p12B1;:::;pk2Bk

�k(f)p1���pk;q : �

Let � =2 Q and k � 0. The set of contexts is CQ

(k) =
S

k=i+j+1Q
i � f�g �Qj .

For every c 2 CQ

(k) and q 2 Q we write c[[q]] to denote the word that is obtained

from c by replacing the special symbol � with q.

De�nition 3.5 An equivalence relation R on Q is a forward bisimulation on M
if for every (q1; q2) 2 R

(i) !(q1) = !(q2) and

(ii) for every f 2 �(k), B 2 Q=R, and c 2 CQ

(k)X
p2B

�k(f)c[[q1]];p =
X
p2B

�k(f)c[[q2]];p :

The forward-aggregated wta is the wta M=R = (Q=R;�;K; �0; !0) with

� !0([q]) = !(q) for every q 2 Q; and
� for every f 2 �(k), q1; : : : ; qk 2 Q, and B 2 Q=R

�0
k(f)[q1]���[qk];B =

X
p2B

�k(f)q1���qk;p : �

4 Weighted stepwise unranked tree automata

In this section, we introduce one of our main models: a generalisation of the
stepwise unranked tree automaton (suta) of [26, 8]. The main di�erence between
the suta and other models of unranked tree automata is that the fsa generating
the recognisable languages of states share one transition graph and additionally
work with the same states as the overall suta.

9

De�nition 4.1 (cf. [26, Sect. 4.2]) A weighted stepwise unranked tree au-
tomaton (wsuta) is a tuple M = (Q;�;K; (�f)f2�; �; �; !), where

� Q is an alphabet (of states);
� � is an alphabet (of input symbols);
� K is a semiring;
� �f 2 KQ is an initial weight vector for every f 2 �;
� � : Q ! KQ�Q assigns a matrix (of transitions weights) to each state;
� � 2 KQ is a �nal weight vector ; and
� ! 2 KQ is a root weight vector.

The wsutaM is deterministic if (i) for every f 2 � there exists at most one q 2 Q
such that �f (q) 6= 0; and (ii) the wsa (Q;Q;K; �f ; �; �) is deterministic for
every f 2 �. �

In the unweighted case (i.e., the semiring K is the Boolean semiring), the
model coincides exactly with the model of [26] apart from the �nal weight vector,
which we have added. However, we will show that this slight change does not
increase the computational power.

Henceforth, let M = (Q;�;K; (�f)f2�; �; �; !) be a wsuta. For every f 2 �
we denote by Mf the wsa (Q;Q;K; �f ; �; �). This identi�es the wsa that is
responsible for the input symbol f . As evidenced by the de�nition, only the
initial state vector depends on the symbol f . Let us proceed with the de�nition
of the semantics of wsuta.

De�nition 4.2 Let t 2 U�. A run of M on t is a mapping r : Pos(t) ! Q.
The set of all runs of M on t is denoted by runM(t). The weight of r is

weightM(r) =
Y

w2Pos(t)
k=rankt(w)

(kM
r(w)
t(w) k; r(w1) � � � r(wk)) :

Note that Mq
f stands for (Mf)

q. The unranked tree series recognised by M ,
denoted by kMk, is de�ned for every t 2 U� by

(kMk; t) =
X

r2runM(t)

weightM(r) � !(r(")) :

Any unranked tree series that is recognised by a wsuta is recognisable. �

Two wsuta are equivalent if they recognise the same unranked tree series. It is
not di�cult to show that every recognisable ranked tree series is also unranked
recognisable, using the fact that, for every k 2 N, every power series of KhhQkii
is recognisable.

Example 4.3 Let � = fa; bg and t 2 U�. A sequence of positions in t is
horizontally-connected if it is equal to ", or can be written in the form wi; : : : ; wj
for some position w 2 Pos(t) and indices i; j 2 [rankt(w)], such that i � j.

10

Consider now the unranked tree series S 2 RhhU�ii such that (S; t) is the length
of the longest horizontally-connected sequence of a-labelled positions in t. To
recognise S, we introduce the wsuta M = (Q;�;Arct; (�f)f2�; �; �; !) where
Q = fqa; qx; q; q?g, Arct = (R�1;max;+;�1; 0), the mappings � and ! take
every state to 0, and �a, �b, and � are given in Figure 1. All transitions with
weight �1 have been omitted. The wsuta M computes the coe�cient of a
tree t in S as follows. In each run, M nondeterministically selects a number
of positions labelled a and counts them. It then veri�es that these positions
form a horizontally connected sequence by entering into the states q and q?.
The transitions of M are such that it cannot count the length of two distinct
sequences in a single run. The weight of each run ofM on t is thus the length of a
horizontally connected sequence of a-labelled positions in t, and the summation
over all runs (i.e., the maximum in Arct) yields the maximal such length.

Let us demonstrateM on the tree t = b[aa[aab]a]. Figure 2 shows two runs ofM
on t that have non-zero weight. Here, the state assigned to a position w 2 Pos(t)
is one possible outcome of running the wsa Mt(w) on the word t(w1) � � � t(wk),
where k = rank t(w). If we examine the left run r1 closer, then we see that
the states r1(21) = qa, r1(22) = qx, and r1(23) = qx can be obtained by
executing Ma, Ma, and Mb, respectively, all on the empty word in Q�, guessing
the initial states qa, qx, and qx, respectively. The states r1(1) = qx, r1(2) = q?,
and r1(3) = qx can be derived by running Ma on ", on qaqxqx, and on ",
respectively, each time guessing the initial state qx. The state r1(") = q? is
the result of running Mb on the word qxq?qx again guessing q? as initial state.
An easy computation yields that weightM (r1) = 1. Had M instead guessed
qa as initial state when computing r1(22), then the local optimum of 2 would
have been found. The global optimum is however identi�ed by run r2 with
weight weightM (r2) = 3, viz. the length of the longest horizontally-connected
sequence of a-labelled positions in t. �

The �nal mapping of the wsuta discussed in Example 4.3 takes every element
to 0 (the multiplicative identity of the arctic semiring). As we shall see, this
is not a restriction, but something that can always be achieved. The wsuta
M = (Q;�;K; (�f)f2�; �; �; !) is in �nal weight normal form if � = ~1 (i.e.,
�(q) = 1 for every q 2 Q).

Lemma 4.4 There exists a wsuta M 0 in �nal weight normal form that is equiv-
alent to M . If M is deterministic, then so is M 0.

Proof Intuitively speaking, we move the �nal weights from � to the tran-
sitions of � and to the root weights !. Formally, we construct the wsuta
M 0 = (Q;�;K; (�f)f2�; �

0;~1; !0) where �0(q) = �(q)��(q) and !0(q) = !(q)��(q)
for every q 2 Q. Note that M 0 is deterministic if M is so. It remains to prove
that M and M 0 are equivalent. To this end, we �rst observe that

�0(w) =

jwjY
i=1

�0(w(i)) =

jwjY
i=1

�
�(w(i)) � �(w(i))

�
= �(w) �

jwjY
i=1

�(w(i))

11

qa

qx q q?

�a j 1

�a j 0

�b j 0

qx j 0

qx j 0 qa j 0 qx j 0

qa j 0 qx j 0

q; q? j 0

Figure 1: The wsuta M maps each t 2 Ufa;bg to the length of of the longest
horizontally-connected sequence of a-labelled positions in t.

b q?

a qx a q?

a qa a qx b qx

a qx

b q

a qa a qa

a qx a qx b qx

a qa

Figure 2: Two runs of the wsutaM in Example 4.3 on the input tree b[aa[aab]a].
The run on the left has weight 1, whereas the run on the right has weight 3.

for every w 2 Q�. From this we can easily conclude

(k(M 0)qfk; w) =
�
�f � �(w)

�
q
�

jwjY
i=1

�(w(i)) (1)

for every f 2 �, q 2 Q, and w 2 Q�. Now, let t 2 U� and r 2 runM(t). Clearly,
runM(t) = runM 0(t). Then

weightM 0(r) � �(r(")) =
Y

v2Pos(t)
n=rankt(v)

w=r(v1)���r(vn)

(k(M 0)
r(v)
t(v)k; w) � �(r("))

= fby (1)g

12

Y
v2Pos(t)
n=rankt(v)

w=r(v1)���r(vn)

�
�t(v) � �(w)

�
r(v)

�
nY
i=1

�(w(i)) � �(r("))

=
Y

v2Pos(t)
n=rankt(v)

w=r(v1)���r(vn)

�
�t(v) � �(w) � �

�
r(v)

=
Y

v2Pos(t)
n=rankt(v)

w=r(v1)���r(vn)

(kM
r(v)
t(v) k; w)

= weightM(r) :

This allows us to complete the proof for every t 2 U� as follows:

(kM 0k; t) =
X

r2run
M0(t)

weightM 0(r) � !(r(")) � �(r("))

=
X

r2runM(t)

weightM(r) � !(r(")) = (kMk; t) :

In the sequel, we assume that M is in �nal weight normal form. Consequently,
we drop the �nal weight component and just write (Q;�;K; (�f)f2�; �; !). We
now present de�nitions of backward and forward bisimulation for M , but later
we will show that these are the notions known for wta [21].

De�nition 4.5 (cf. Def. 3.4) An equivalence relation R on Q is a backward
bisimulation on M if for every (q1; q2) 2 R

� �f (q1) = �f (q2) for every f 2 �; and
� for every B1; B2 2 Q=RX

p12B1;p22B2

�(p1)p2;q1 =
X

p12B1;p22B2

�(p1)p2;q2 : �

De�nition 4.6 (cf. Def. 3.5) An equivalence relation R on Q is a forward
bisimulation on M if for every (q1; q2) 2 R

� !(q1) = !(q2),
�
P

p2B �(q)q1;p =
P

p2B �(q)q2;p for every q 2 Q and B 2 Q=R; and
�
P

p2B �(q1)q;p =
P

p2B �(q2)q;p for every q 2 Q and B 2 Q=R. �

Our objective is now to provide minimisation algorithms based on De�nitions
4.5 and 4.6. It was already remarked in [26] that suta can be seen as fta over
a special encoding of the input trees. Since this correspondence will yield all
of the desired results, let us make this precise here. Let � =2 � be a special
symbol of rank 2. We de�ne the binary encoding c : U� ! T�[f�g as follows.
Let u = f [u1; : : : ; un] for some f 2 � and u1; : : : ; un 2 U�. We de�ne c(u) =
�[�[� � ��[�[f; c(u1)]; c(u2)] � � � ; c(un�1)]; c(un)]. Note that c(f) = f and that
c is a bijection. We extend c to c : KhhU�ii ! KhhT�[f�gii by (c(S); t) =
(S; c�1(t)), for every S 2 KhhU�ii and t 2 T�[f�g. It is easy to see that also
c : KhhU�ii ! KhhT�[f�gii is a bijection.

13

De�nition 4.7 The wta corresponding to M is c(M) = (Q;� [f�g;K; �0; !)
where

� every symbol of � has rank 0 and � has rank 2;
� �00(f)";q = �f (q) for every f 2 � and q 2 Q; and
� �02(�)q1q2;q = �(q2)q1;q for every q; q1; q2 2 Q. �

Clearly, we can reconstruct M from c(M). More generally, given an arbitrary
wta M 0 over the ranked alphabet �[f�g we can construct a wsuta M 00 over �
such that c(M 00) = M 0. So, we established a one-to-one correspondence; in fact,
c(M) is essentially just a reinterpretation of M . Note that M is deterministic if
and only if c(M) is deterministic. Next we show the semantic relation between
M and c(M).

Lemma 4.8 c(kMk) = kc(M)k.

Proof Let c(M) = (Q;� [f�g;K; �0; !) and

t = �[�[� � ��[�[f; t1]; t2] � � � ; tn�1]; tn]

for some f 2 � and t1; : : : ; tn 2 T�[f�g. Note that for n = 0, we obtain t = f .
Let w 2 Q� with jwj = n, and let tw = �[� � ��[�[f; w(1)]; w(2)] � � � ; w(n)]. First,
we calculate for every q 2 Q and f 2 � as follows:

(kMq
f k; w) =

�
�f � �(w)

�
q
=

X
p0;:::;pn2Q

pn=q

�f (p0) �
nY
i=1

�(w(i))pi�1;pi

= fset r(1i) = pn�i for every 1 � i � n and vice versag

X
r2runc(M)(tw)

r(")=q

�00(f)";r(1n) �
0Y

i=n�1

�02(�)r(1i+1)w(n�i);r(1i)

=
X

r2runc(M)(tw)
r(")=q

�
�00(tw(1

n))";r(1n) �
n�1Y
i=0

�02(tw(1
i))r(1i1)r(1i2);r(1i)

�

= fnote that f1i j 0 � i � ng = Pos�(tw)gX
r2runc(M)(tw)

r(")=q

weightc(M)(r) : (2)

We can now show by induction on the height of t that for every q 2 Q,X
r2runM(c�1(t))

r(")=q

weightM(r) =
X

r2runc(M)(t)
r(")=q

weightc(M)(r) : (3)

14

We compute as followsX
r2runM(c�1(t))

r(")=q

weightM(r) =
X

r2runM(f [c�1(t1);:::;c
�1(tn)])

r(")=q

weightM(r)

=
X

8i2[n] : ri2runM(c�1(ti))
w=r1(")���rn(")

(kMq
f k; w) �

nY
i=1

weightM(ri)

= fby distributivitygX
w2Qn

(kMq
f k; w) �

nY
i=1

� X
ri2runM(c�1(ti))

ri(")=w(i)

weightM(ri)
�

= fby (2) and the induction hypothesisgX
w2Qn

r02runc(M)(tw)

r0(")=q

weightc(M)(r
0) �

nY
i=1

� X
ri2runc(M)(ti)
ri(")=w(i)

weightc(M)(ri)
�

= fby distributivitygX
r02runc(M)(tw);r0(")=q

8i2[n] : ri2runc(M)(ti)
w=r1(")���rn(")

weightc(M)(r
0) �

nY
i=1

weightc(M)(ri)

= fby Lemma 3.3gX
r2runc(M)(t)

r(")=q

weightc(M)(r) :

Finally, we can complete the proof with the following calculation:

(kMk; c�1(t)) =
X
q2Q

� X
r2runM(c�1(t))

r(")=q

weightM(r)
�
� !(q)

= fby (3)gX
q2Q

� X
r2runc(M)(t)

r(")=q

weightc(M)(r)
�
� !(q) = (kc(M)k; t)

This close relation can now be used to transfer a multitude of results (e.g., on
determinisation, minimisation, bisimulation minimisation) from the ranked case
to the unranked case. Here, we are only interested in bisimulation minimisation,
which allows us to reduce the number of states of a (potentially nondeterminis-
tic) wsuta. Fortunately, every backward (resp., forward) bisimulation on M is

15

also a backward (resp., forward) bisimulation on c(M) and vice versa. This al-
lows us to use the existing algorithms [21, 20, 1] in order to minimise wsuta. We
say that M is backward (resp., forward) bisimulation minimal if it admits only
the identity as backward (resp., forward) bisimulation. For the reader's conve-
nience, we show the adaptation of the main theorems of [21, 20] to the case of
wsuta (the results of [1] are superseded by the others). Let n be the number of
states of M (i.e., n = jQj) and m be the number of nonzero entries in �.

Theorem 4.9 (see [21, Theorems 11{29] and [20, Theorems 12{27])
For every wsuta M an equivalent backward (resp., forward) bisimulation mini-
mal wsuta can be computed in time O(mn). If the used semiring is additively
cancellative or theBoolean semiring, then we can achieve it in time O(m log n).

Proof We �rst construct c(M). This is a purely representational issue and
thus can be implemented in constant time. By [21, Theorems 11,13,25,27], back-
ward (resp., forward) bisimulation minimisation on c(M) run in time O(mn) and
return an equivalent backward (resp., forward) bisimulation minimal wta M 0.
Next, we construct a wsuta M 00 such that c(M 00) = M 0 in constant time. By
Lemma 4.8, c(kM 00k) = kM 0k = kc(M)k = c(kMk). Since c is a bijection,
we obtain kM 00k = kMk. It should immediately be clear that M 00 is backward
(resp., forward) bisimulation minimal because every bisimulation on M 00 would
also be a bisimulation on M 0.

In the special case that the underlying semiring is additively cancellative or the
Boolean semiring, the minimisation can be implemented in time O(m log n)
by [21, Theorems 15 & 29] and [20, Theorems 12,15,26,27].

Finally, let us present a result for minimisation of deterministic suta (i.e., wsuta
over the Boolean semiring).

Corollary 4.10 (see [20, Theorems 27{29]) For every deterministic suta,
we can compute a minimal equivalent deterministic suta in time O(m log n).

5 Weighted parallel unranked tree automata

In this section, we consider a second automaton model used on unranked trees.
Weighted parallel unranked tree automata (wputa) are a generalisation of parallel
unranked tree automata (puta) [9]. Although similar to wsuta, wputa di�er from
wsuta in that their constituent wsa have Q-output and each has its own state
space and transition graph. Not surprisingly, wputa and wsuta are equally
expressive (see Theorem 6.6). It will show in the course of this section that
bisimulation minimisation of wsuta can be readily applied but we need to take
care not to merge states from di�erent wsa. Apart from this minor issue, we
basically follow the programme of the previous section and start with the formal
de�nition of wputa.

16

De�nition 5.1 A weighted parallel unranked tree automaton (wputa) is a tuple
M = (Q;�;K; (Af)f2�; !) where

� Q is an alphabet (of states);
� � is an alphabet (of input symbols);
� K is a semiring;
� Af = (Qf ; Q;K; �f ; �f ; �f) is a wsa with Q-output for every f 2 �; and
� ! 2 KQ is a root weight vector.

A wputa M is deterministic if Af is deterministic for every f 2 �. �

For the rest of this section, let M = (Q;�;K; (Af)f2�; !) be a wputa. The size
ofM is size(M) = jQj+

P
f2� size(Af). For the sake of simplicity, we henceforth

assume, without loss of generality, that Qf \Qf 0 = ; and Qf \Q = ;, for every
f; f 0 2 � such that f 6= f 0. Moreover, suppose that � =2 Q and � =2 Qf for every
f 2 �. Let us continue with the de�nition of the semantics.

De�nition 5.2 Let t 2 U�. A run r of M on t is a mapping r : Pos(t) ! Q,
and we denote by runM(t) the set of all runs ofM on t. Furthermore, the weight
of r is

weightM(r) =
Y

w2Pos(t)
k=rankt(w)

(kAt(w)k; r(w1) � � � r(wk))r(w) :

The unranked tree series recognised by M is de�ned for every t 2 U� by

(kMk; t) =
X

r2runM(t)

weightM(r) � !(r(")) : �

Example 5.3 We return to the problem of recognising the tree series S of
Example 4.3, this time using a wputa. A suitable wputa can be constructed
as follows. First we make one copy of the wsuta of Example 4.3 for each
input symbol. Then we adjust the initial weight vector in each copy. Fi-
nally we remove the unreachable states. In this way, we obtain the wputa
M 0 = (Q;�;Arct; (A0

f)f2�; !) where Q, �, Arct, and ! are as in Example 4.3,
and the wsa A0

a and A0
b are given in Figure 5. All transitions with weight �1

have been omitted, and every remaining transition has weight 0, unless other-
wise stated. �

We now prepare a semantic relation between wputa and wsuta for the purpose
of reducing the problem of bisimulation minimisation from wputa to wsuta. To
simplify the construction, we will immediately work with the wsa sim(Af) that
simulates the wsa Af with Q-output. To this end, let sim(Af) = (Q [Qf ; Q [
f�g;K; �f ; �f ; �f) for every f 2 �. Now we simply combine the various sim(Af)
and a special wsa A� into a wsuta. This wsuta is essentially the union of the
mentioned wsa where A� = (Q[Q�; Q[f�g;K; ��; ��; ��) with (i) Q� = f�g,
(ii) ��(�) = 1, (iii) ��(�)�;� = 1, (iv) ��(�) = 1, and (v) all remaining entries
in ��, ��, and �� are 0. Henceforth, let �0 = � [f�g.

17

A0

a
:

A0

b
:

papx p p?

p0
x p0 p0

?

1

qaqx

qx

q?

q?

q

q

qxqx qa qx

qx qa qx

qa qx

q; q?

qa qx

q; q?

Figure 3: The wputa above is equivalent to the wsuta of Example 4.3.

De�nition 5.4 The wsuta corresponding to M is

c(M) = (Q0;�0;K; (�0f)f2�0 ; �
0; !0) ;

where

� Q0 = Q [
S

f2�0 Qf ;
� �0f (q) = �f (q) for every f 2 �0 and q 2 Qf ;
� �0(q)p;p0 = �f (q)p;p0 for every f 2 �0, p 2 Qf , q 2 Q[f�g, and p0 2 Q[Qf ;
� !0(q) = !(q) for every q 2 Q; and
� all remaining entries in �0f , �

0, and !0 are 0. �

We note that c(M) is deterministic if and only if M is deterministic. Second,
supposing a suitable representation of M , the construction of c(M) can be
performed in constant time.

Now let us relate the semantics of c(M) to the one of M . Clearly, the two
devices run on trees over di�erent alphabets, so we again �rst de�ne an input
tree translation. Let c : U� ! U�0 be recursively de�ned by c(f [t1; : : : ; tk]) =
f [c(t1); : : : ; c(tk);�] for every f 2 � and t1; : : : ; tk 2 U�. Clearly, c is injective.
This mapping is lifted to tree series as follows: c : KhhU�ii ! KhhU�0ii by
(c('); u) =

P
t2c�1(u)('; t) for every u 2 U�0 . Note that the extended mapping c

is still injective.

Lemma 5.5 c(kMk) = kc(M)k.

Proof Let u 2 U�0 . If c�1(u) = ;, then it is easily seen that (c(kMk); u) =
0 = (kc(M)k; u). In the remaining case, let t 2 c�1(u); note that t is unique
because c is injective.

(c(kMk); u) = (kMk; t) =
X

r2runM(t)

weightM(r) � !(r("))

18

=
X

r2runM(t)

� Y
w2Pos(t)
k=rankt(w)

(kAt(w)k; r(w1) � � � r(wk))r(w)

�
� !(r("))

= fsee the part of wsa with P -output on page 7gX
r2runM(t)

� Y
w2Pos(t)
k=rankt(w)

(k(sim(At(w))
r(w)k; r(w1) � � � r(wk)�)

�
� !(r("))

= fbecause of the de�nition of A�gX
r2runc(M)(u)

� Y
w2Pos(u)
k=ranku(w)

(kc(M)
r(w)
t(w)k; r(w1) � � � r(wk))

�
� !(r("))

=
X

r2runc(M)(u)

weightc(M)(r) � !(r(")) = (kc(M)k; u)

Let us �rst consider backward bisimulation. We de�ne the notion of backward
bisimulation for M and then relate it to the corresponding notion for c(M).
Fortunately, the relation will be close enough to allow us to reduce the prob-
lem of backward bisimulation minimisation of M to the corresponding problem
of c(M). In the sequel, let R0 = R [

S
f2�0 Rf , where R is an equivalence

relation on Q and Rf is an equivalence relation on Qf for every f 2 �0.

De�nition 5.6 We say that R0 is a backward bisimulation on M if R [Rf is
a backward bisimulation on sim(Af)

R for every f 2 �0. �

Lemma 5.7 The relation R0 is a backward bisimulation on M if and only if
R0 is a backward bisimulation on c(M).

Proof Let c(M) = (Q0;�0;K; (�0f)f2�0 ; �0; !0) and (q1; q2) 2 R0. First suppose
R0 is a backward bisimulation on M . For every B1 2 (Q [f�g)=R0, f 2 �0,
and B2 2 Qf=Rf we haveX

q2B1
p2B2

�0(q)p;q1 =
X
q2B1
p2B2

�0(q)p;q2

by the construction of c(M) and because R [Rf is a backward bisimulation
on sim(Af)

R. For other blocks B1 and B2 we have that both sums are 0. Now,
let (q1; q2) 2 R. Then �0f (q1) = 0 = �0f (q2) for every f 2 �0. On the other
hand, if (q1; q2) 2 Rf for some f 2 �0, then �0f (q1) = �f (q1) = �f (q2) = �0f (q2)

since R[Rf is a backward bisimulation on sim(Af)
R. Moreover, �0f 0(q1) = 0 =

�0f 0(q2) for every f
0 6= f . It follows that R0 is a backward bisimulation on c(M).

The converse is proved in the same manner.

By de�nition every backward bisimulation R0 onM is a re�nement of the equiv-
alence induced by the partition � = fQg[fQf j f 2 �0g. Thus one direction of

19

Lemma 5.7 is readily applicable. If we run the backward bisimulation minimi-
sation algorithm initialised with the partition � on c(M), then we obtain the
coarsest backward bisimulation P 0 on c(M) that is a re�nement of � (by [22,
Lemma 4.13] and a minor modi�cation of [22, Lemma 4.14]). By Lemma 5.7, P 0

is also a backward bisimulation onM . In fact, it must be the coarsest backward
bisimulation on M because any coarser backward bisimulation P 00 on M is nat-
urally a re�nement of � and a backward bisimulation on c(M) by Lemma 5.7.
However, the algorithm returned the coarsest backward bisimulation on c(M)
that is a re�nement of �, which yields that P 0 = P 00. Thus, we can e�ciently
compute the coarsest backward bisimulation on M using the backward bisimu-
lation minimisation algorithm for c(M).

It remains to present how to collapse M with respect to a backward bisim-
ulation R0. Moreover, the collapsed wputa should clearly recognise the same
unranked tree series as M .

De�nition 5.8 If R0 is a backward bisimulation on M , then the backward-
aggregated wputa is M=R0 = (Q=R;�;K; (A0f)f2�; !

0) with

(i) A0f = (Qf=Rf ; Q=R;K; �
0
f ; �

0
f ; �

0
f) where

� �0f ([p]) = �f (p) for every p 2 Qf ;
� �0f (D)B;[p0] =

P
q2D;p2B �f (q)p;p0 for every f 2 �, D 2 Q=R, B 2

Qf=Rf , and p
0 2 Qf ; and

� �0f (B)[q] =
P

p2B �f (p)q for every f 2 �, B 2 Qf=Rf , and q 2 Q;

(ii) !0(D) =
P

q2D !(q) for every D 2 Q=R. �

Finally, let us prove that collapsing preserves the semantics. We achieve this in
an indirect manner using c(M).

Lemma 5.9 If R0 is a backward bisimulation on M , then c(M=R0) is isomor-
phic to c(M)=R0.

Proof Let M=R0 = (Q0;�;K; (A0f)f2�; !
0) [see De�nition 5.8]. We easily

observe that sim(A0f) is isomorphic to sim(Af)
R=(R[Rf). Hence c(M=R0),

which is essentially the union of the various sim(A0f) and A�, can be seen as
the union of the various sim(Af)

R=(R[Rf) and A�. This union is isomorphic
to c(M)=R0. Let us formally verify this to convince the reader.

The wsuta c(M)=R0 is (Q00;�0;K; (�00f)f2�0 ; �00; !00) where

� Q00 = (Q [
S
f2�0 Qf)=R

0 = Q=R[
S
f2�0 Qf=Rf ;

� �00f ([p]) = �f (p) for every f 2 �0 and p 2 Qf ;
� �00(D)B;[p0] =

P
q2D;p2B �f (q)p;p0 for every D 2 Q=R [ff�gg, f 2 �0,

B 2 Qf=Rf , and p
0 2 Q [Qf ;

� !00(D) =
P

q2D !(q) for every D 2 Q=R; and
� all remaining entries in �00f , �

00, and !00 are 0.

20

A straightforward check now shows that c(M)=R0 is isomorphic to the wsuta
c(M=R0). In fact, the isomorphism identi�es f�g and �.

As usual, we say that M is backward bisimulation minimal if it allows only the
identity as backward bisimulation. Now we can exploit the established relation
and formulate our main theorem of this section.

Theorem 5.10 A backward bisimulation minimal wputa that is equivalent
to M can be computed in time O(mn) where n = jQj +

P
f2� jQf j and m

is the sum over all f 2 � of the number of nonzero entries in �f . If K is
additively cancellative or the Boolean semiring, then we can achieve it in
time O(m log n).

Proof We �rst construct the wsuta c(M). By a slight modi�cation of the
method used to prove Theorem 4.9, we can compute the coarsest backward
bisimulationR0 on c(M) that re�nes � in time O(mn) (resp., in time O(m log n)
if K is additively cancellative or the Boolean semiring). We already argued
that R0 is then the coarsest backward bisimulation on M . Similar to [21,
Lemma 26], we can compute M=R0 in time O(m). So we constructed a back-
ward bisimulation minimal wputa M=R0 in the given time bound. It remains
to show that M=R0 and M are equivalent. We know that c(kMk) = kc(M)k
by Lemma 5.5. Moreover, we know that c(M)=R0 and c(M) are equivalent
by Theorem 4.9. By Lemma 5.9, c(M=R0) is isomorphic and hence equivalent
to c(M)=R0. Thus, we obtain

c(kM=R0k) = kc(M=R0)k = kc(M)=R0k = kc(M)k = c(kMk)

with the help of Lemma 5.5. Since c is injective, we conclude that M=R0 and M
are equivalent.

Let us now investigate forward bisimulation. We follow the same approach
as in the backward case and �rst de�ne forward bisimulation such that every
forward bisimulation on M is also a forward bisimulation on c(M). Recall that
R0 = R [

S
f2�0 Rf , where R is an equivalence relation on Q and Rf is an

equivalence relation on Qf for every f 2 �0.

De�nition 5.11 We say that R0 is a forward bisimulation on M if

� !(q1) = !(q2) for every (q1; q2) 2 R;
� R [Rf is a forward bisimulation on sim(Af) for every f 2 �0; and
� for every (q1; q2) 2 R, f 2 �0, p 2 Qf , and block B 2 Qf=RfX

p02B

�f (q1)p;p0 =
X
p02B

�f (q2)p;p0 : �

Lemma 5.12 The relation R0 is a forward bisimulation on M if and only if R0

is a forward bisimulation on c(M).

21

Proof We leave the proof of this fact as an exercise.

The argument that we used to show that we can compute the coarsest back-
ward bisimulation on M can also be used for the forward case (this time using
variations of [22, Lemmata 3.17 and 3.18]), so that we can compute the coars-
est forward bisimulation on M by computing the coarsest forward bisimulation
on c(M) that is a re�nement of �.

De�nition 5.13 Suppose that R0 is a forward bisimulation on M . Then the
forward-aggregated wputa is M=R0 = (Q=R;�;K; (A0

f)f2�; !
0) where

(i) A0
f = (Qf=Rf ; Q=R;K; �

0
f ; �

0
f ; �

0
f) with

� �0f (B) =
P

p2B �f (p) for every B 2 Qf=Rf ;
� �0f ([q])[p];B =

P
p02B �f (q)p;p0 for every q 2 Q, p 2 Qf , and B 2

Qf=Rf ; and
� �0f ([p])D =

P
q2D �f (p)q for every p 2 Qf and D 2 Q=R;

(ii) !0([q]) = !(q) for every q 2 Q. �

Lemma 5.14 IfR0 is a forward bisimulation onM , then c(M=R0) and c(M)=R0

are isomorphic.

Proof The wsuta c(M)=R0 = (Q0;�0;K; (�0f)f2�0 ; �0; !0) is given by

� Q0 = (Q [
S
f2�0 Qf)=R

0 = Q=R[
S
f2�0 Qf=Rf ;

� �0f (B) =
P

p2B �f (p) for every f 2 �0 and B 2 Qf=Rf ;
� �0([q])[p];B =

P
p02B �f (q)p;p0 for every f 2 �0, q 2 Q [f�g, p 2 Qf , and

B 2 (Q [Qf)=R
0;

� !0([q]) = !(q) for every q 2 Q; and
� all remaining entries in �0f , �

0, and !0 are 0.

We leave it to the reader to con�rm that it is isomorphic to c(M=R0).

The wputa is forward bisimulation minimal if it admits only the identity as
forward bisimulation.

Theorem 5.15 For every wputa M we can compute a forward bisimulation
minimal equivalent wputa in time O(mn) where n = jQj+

P
f2� jQf j and m is

the sum over all f 2 � of the number of nonzero entries in �f . If K is additively
cancellative or theBoolean semiring, then we can achieve it in time O(m log n).

Proof The proof mimics the one of Theorem 5.10.

Let us �nally look at determinism. By de�nition, M is deterministic if c(M) is
deterministic. Let M be deterministic and R0 be a forward bisimulation on M .
Clearly, c(M) and c(M)=R0 are then deterministic. Since c(M=R0) and c(M)=R0

are isomorphic by Lemma 5.14, we obtain that c(M=R0) and consequently also
M=R0 are deterministic. Thus we arrive at the following theorem, which shows
that minimisation of deterministic puta can be achieved in time O(m log n).
This improves [9, Theorem 4] where a quadratic time-bound was shown.

22

Theorem 5.16 For every deterministic puta M we can compute a minimal
equivalent deterministic puta in time O(m log n).

Proof Without loss of generality, suppose thatM is total and has no unreach-
able states (these are the requirements for the algorithm of [9]; see there for
details). We already proved in Theorem 5.15 that we can compute M=R0 where
R0 is the coarsest forward bisimulation on M in time O(m log n). Moreover, we
know that M=R0 is deterministic and equivalent to M . It remains to show that
it is minimal. To this end, consider Algorithm Equivalent-States of [9]. Let
P be the output of this algorithm when run on M , and let P 0 = P [f(�;�)g.
We show that P 0 is a forward bisimulation on M . It is immediately clear by
line 7 that P 0 is a re�nement of �. Let (q1; q2) 2 P 0. Let us list the consequences
of each line (using also the fact that M is deterministic):

1. If q1; q2 2 Q, then !(q1) = !(q2).

2. If q1; q2 2 Qf for some f 2 �, then
W
q2D �f (�)q1;q =

W
q2D �f (�)q2;q for

every D 2 Q=P 0.

3. If q1; q2 2 Qf for some f 2 �, then
W
p2B �f (q)q1;p =

W
p2B �f (q)q2;p for

every q 2 Q and B 2 Qf=P
0.

4. If q1; q2 2 Q, then
W
p02B �f (q1)p;p0 =

W
p02B �f (q2)p;p0 for every f 2 �,

p 2 Qf , and B 2 Qf=P
0.

Obviously, P 0 is a forward bisimulation on M (see De�nition 5.11). However,
R0 is the coarsest forward bisimulation on M that re�nes �, so consequently,
P 0 = R0. Finally, note that (�;�) 2 P 0 does not inuence M=P 0. Thus, M=R0

is a minimal equivalent puta.

6 Comparison of computational power

The last automaton model for unranked trees that we consider is the weighted
unranked tree automaton (wuta). This generalisation of fta on unranked trees [6]
is obtained by augmenting transitions with semiring weights [12]. For every
state q and input symbol f , a wuta has a recognisable power series �(q; f) on
its state space. It assigns to a state q at an f -labelled position w the weight
(�(q; f); q1 � � � qk), where q1; : : : ; qk are the states that are assigned to the posi-
tions immediately below w. Let us formalise this idea.

De�nition 6.1 A weighted unranked tree automaton (abbreviated wuta) is a
tuple (Q;�;K; �; !) where

� Q is an alphabet (of states);
� � is an alphabet (of input symbols);
� K is a semiring;

23

� � : ��Q! Rec(K;Q) is a transition mapping ; and
� ! 2 KQ is a root weight vector. �

De�nition 6.2 Let M = (Q;�;K; �; !) be a wuta. The set of all runs of M
on t 2 U�, denoted by runM(t), is the set of all mappings Pos(t) ! Q. The
weight of a run r 2 runM(t) is given by

weightM(r) =
Y

w2Pos(t)
k=rankt(w)

(�(t(w); r(w)); r(w1) � � � r(wk)) :

The unranked tree series kMk recognised by M is de�ned for every t 2 U� by

(kMk; t) =
X

r2runM(t)

weightM(r) � !(r(")) : �

Lemma 6.3 For every wuta M there is a wputa M 0 such that kM 0k = kMk.

Proof Let M = (Q;�;K; �; !) be a wuta. Clearly, for every f 2 � there
exists a wsa Af = (Qf ; Q;K; �f ; �f ; �f) such that kAq

fk = �(q; f) for every
q 2 Q (see [13]). We construct the wputa M 0 = (Q;�;K; (A0

f)f2�; !) where
for every f 2 � we have A0

f = (Qf ; Q;K; �f ; �f ; �
0
f) with (�0f)q;q = �f (q) for

every q 2 Q and (�0f)q;p = 0 for all p; q 2 Q such that p 6= q. It is clear

that (kAq
fk; w) = (kA0

fk; w)q for every f 2 �, w 2 Q�, and q 2 Q. Now let
t 2 U�. Clearly, runM(t) = runM 0(t), so it remains to prove that weightM(r) =
weightM 0(r) for every r 2 runM(t).

weightM(r) =
Y

w2Pos(t)
k=rankt(w)

(�(t(w); r(w)); r(w1) � � � r(wk))

=
Y

w2Pos(t)
k=rankt(w)

(kA0
t(w)k; r(w1) � � � r(wk))r(w) = weightM 0(r)

Lemma 6.4 For every wsuta M there is a wuta M 0 such that kM 0k = kMk.

Proof Let M = (Q;�;K; (�f)f2�; �; !) be a wsuta. Consider the wuta M 0 =
(Q;�;K; �; !) such that �(f; q) = k(M)qfk for every f 2 � and q 2 Q. The
statement kM 0k = kMk is obvious.

Lemma 6.5 For every wputa M there is a wsuta M 0 such that kM 0k = kMk.

Proof Let M = (Q;�;K; (Af)f2�; !) with Af = (Qf ; Q;K; �f ; �f ; �f) for
every f 2 �. Without loss of generality, suppose that Q and all Qf with f 2 �
are pairwise disjoint. We construct the wsuta M 0 = (Q0;�;K; (�0f)f2�; �

0; !0)
such that

24

wuta

wsuta wputa

Lemma 6.4 Lemma 6.3

Lemma 6.5

Figure 4: The automata models wsuta, wputa, and wuta have the same com-
putational power.

� Q0 = Q [
S
f2�Qf ;

� for every f 2 � and q 2 Q [Qf let

�0f (q) =

(
�f (q) if q 2 Qf

(�f � �f)q if q 2 Q

� for every f 2 �, p1 2 Qf , p2 2 Q [Qf , and q 2 Q let

�0(q)p1;p2 =

(
�f (q)p1;p2 if p2 2 Qf

(�f (q) � �f)p1;p2 if p2 2 Q

� !0(q) = !(q) for every q 2 Q.
� All remaining entries in �f , �, and ! are 0.

We �rst prove that (kAfk; w)q = (k(M 0)qfk; w) for every f 2 �, w 2 Q�, and
q 2 Q. Let w = q1 � � � qn for some q1; : : : ; qn 2 Q. If w = ", then

(kAfk; ")q = (�f � �f)q = �0f (q) =
X
p2Q0

�0f (p) � �
0(")p;q = (k(M 0)qfk; ") :

Otherwise, w = vqn and

(kAfk; w)q =
�
�f � �f (v) � �f (qn) � �f

�
q
=
�
�f � �

0(v) � �0(qn)
�
q
= (k(M 0)qfk; w):

Let t 2 U�. Note that weightM 0(r) = 0 for every r 2 runM 0(t) n runM(t). Thus
it remains to prove that weightM 0(r) = weightM(r) for every r 2 runM(t).

weightM 0(r) =
Y

w2Pos(t)
k=rankt(w)

(k(M 0)
r(w)
t(w)k; r(w1) � � � r(wk))

=
Y

w2Pos(t)
k=rankt(w)

(kAt(w)k; r(w1) � � � r(wk))r(w) = weightM(r) ;

which proves the statement.

We summarise Lemmata 6.5, 6.4, and 6.3 in Theorem 6.6.

25

Theorem 6.6 Let S 2 KhhU�ii. The following statements are equivalent:

� S is recognisable by a wputa.
� S is recognisable by a wsuta.
� S is recognisable by a wuta.

References

[1] P. A. Abdulla, J. H�ogberg, and L. Kaati. Bisimulation minimization of tree
automata. Int. J. Foundations of Computer Science, 18(4):699{713, 2007.

[2] S. Abiteboul, P. Bunemann, and D. Suciu. Data on the Web: From Rela-
tions to Semistructured Data and XML. Morgan Kaufmann, 1999.

[3] A. Alexandrakis and S. Bozapalidis. Weighted grammars and Kleene's
theorem. Information Processing Letters, 24(1):1{4, 1987.

[4] J. Berstel and C. Reutenauer. Recognizable formal power series on trees.
Theoretical Computer Science, 18(2):115{148, 1982.

[5] B. Borchardt. The theory of recognizable tree series. Akademische Abhand-
lungen zur Informatik. Verlag f�ur Wissenschaft und Forschung, 2005.

[6] A. Br�uggemann-Klein, M. Murata, and D. Wood. Regular tree and regu-
lar hedge languages over unranked alphabets. Technical Report HKUST-
TCSC-2001-0, The Hongkong University of Science and Technology, 2001.

[7] P. Buchholz. Bisimulation relations for weighted automata. Theoretical
Computer Science, 2008. to appear.

[8] J. Carme, J. Niehren, and M. Tommasi. Querying unranked trees with
stepwise tree automata. In Proc. 15th Int. Conf. Rewriting Techniques and
Applications, volume 3091 of LNCS, pages 105{118. Springer, 2004.

[9] J. Cristau, C. L�oding, and W. Thomas. Deterministic automata on un-
ranked trees. In Proc. 15th Int. Symp. Fundamentals of Computation The-
ory, volume 3623 of LNCS, pages 68{79. Springer, 2005.

[10] M. Droste, W. Kuich, and H. Vogler, editors. Handbook of Weighted Au-
tomata. Springer, 2008. to appear.

[11] M. Droste, C. Pech, and H. Vogler. A Kleene theorem for weighted tree
automata. Theory of Computing Systems, 38(1):1{38, 2005.

[12] M. Droste and H. Vogler. Weighted logics for XML. manuscript, 2008.

[13] S. Eilenberg. Automata, Languages, and Machines { Volume A, volume 59
of Pure and Applied Mathematics. Academic Press, 1974.

26

[14] Z. �Esik and W. Kuich. Formal tree series. J. Automata, Languages and
Combinatorics, 8(2):219{285, 2003.

[15] F. G�ecseg and M. Steinby. Tree Automata. Akad�emiai Kiad�o, 1984.

[16] F. G�ecseg and M. Steinby. Tree languages. In Handbook of Formal Lan-
guages, volume 3, chapter 1, pages 1{68. Springer, 1997.

[17] J. Golan. Semirings and their applications. Kluwer Academic, 1999.

[18] G. Gramlich and G. Schnitger. Minimizing nfas and regular expressions.
In Proc. 22nd Int. Symp. Theoretical Aspects of Computer Science, volume
3404 of LNCS, pages 399{411. Springer, 2005.

[19] J. H�ogberg, A. Maletti, and J. May. Backward and forward bisimulation
minimisation of tree automata. Technical Report ISI-TR-633, University
of Southern California, 2007.

[20] J. H�ogberg, A. Maletti, and J. May. Backward and forward bisimula-
tion minimisation of tree automata. In Proc. 12th Int. Conf. Implementa-
tion and Application of Automata, volume 4783 of LNCS, pages 109{121.
Springer, 2007.

[21] J. H�ogberg, A. Maletti, and J. May. Bisimulation minimisation for weighted
tree automata. In Proc. 11th Int. Conf. Developments in Language Theory,
volume 4588 of LNCS, pages 229{241. Springer, 2007.

[22] J. H�ogberg, A. Maletti, and J. May. Bisimulation minimisation for weighted
tree automata. Technical Report ISI-TR-634, University of Southern Cali-
fornia, 2007.

[23] T. Jiang and B. Ravikumar. Minimal NFA problems are hard. SIAM
Journal on Computing, 22(6):1117{1141, 1993.

[24] N. Klarlund, Th. Schwentick, and D. Suciu. XML: Models, Schemas, Types,
Logics, and Queries. In Proc. Dagstuhl Seminar: Logics for Emerging Ap-
plications on Databases, pages 1{41. Springer, 2003.

[25] A. Malcher. Minimizing �nite automata is computationally hard. Theoret-
ical Computer Science, 327(3):375{390, 2004.

[26] W. Martens and J. Niehren. Minimizing tree automata for unranked trees.
In Proc. 10th Int. Symp. Database Programming Languages, volume 3774
of LNCS, pages 232{246. Springer, 2005.

[27] A. Meyer and L. Stockmeyer. The equivalence problem for regular ex-
pressions with squaring requires exponential space. In Proc. 13th Symp.
Foundations of Computer Science, pages 125{129. IEEE Computer Soci-
ety, 1972.

[28] R. Milner. A Calculus of Communicating Systems. Springer, 1982.

27

[29] F. Neven. Automata, logic, and XML. In Proc. 16th Int. Workshop Com-
puter Science Logic, volume 2471 of LNCS, pages 2{26. Springer, 2002.

[30] M.P. Sch�utzenberger. On the de�nition of a family of automata. Informa-
tion and Control, 4:245{270, 1961.

28

