
An n log n Algorithm for Hyper-Minimizing a
(Minimized) Deterministic Automaton✩

Markus Holzer1

Institut für Informatik, Universität Giessen

Arndtstr. 2, 35392 Giessen, Germany

Andreas Maletti�,2

Departament de Filologies Romàniques, Universitat Rovira i Virgili
Av. Catalunya 35, 43002 Tarragona, Spain

Abstract

We improve a recent result [Badr: Hyper-minimization inO(n2). Int. J. Found. Comput.
Sci. 20, 2009] for hyper-minimized �nite automata. Namely, we present an O(n log n)
algorithm that computes for a given deterministic �nite automaton (dfa) an almost-
equivalent dfa that is as small as possible�such an automaton is called hyper-minimal.
Here two �nite automata are almost-equivalent if and only if the symmetric di�erence
of their languages is �nite. In other words, two almost-equivalent automata disagree
on acceptance on �nitely many inputs. In this way, we solve an open problem stated
in [Badr, Geffert, Shipman: Hyper-minimizing minimized deterministic �nite state
automata. RAIRO Theor. Inf. Appl. 43, 2009] and by Badr. Moreover, we show that
minimization linearly reduces to hyper-minimization, which shows that the time-bound
O(n log n) is optimal for hyper-minimization. Independently, similar results were ob-
tained in [Gawrychowski, Je»: Hyper-minimisation made e�cient. Proc. MFCS,
LNCS 5734, 2009].

Key words: Deterministic �nite automaton, minimization, lossy compression
2010 MSC: 68Q45, 68Q17

✩This is an extended and revised version of: M. Holzer, A. Maletti. An n logn algorithm for hyper-
minimizing states in a (minimized) deterministic automaton. Proc. 14th Int. Conf. Implementation and
Application of Automata. LNCS 5642, 4�13, Springer-Verlag 2009.

�Corresponding author
Email addresses: holzer@informatik.uni-giessen.de (Markus Holzer),

andreas.maletti@urv.cat (Andreas Maletti)
1Part of the work was done while the author was at Institut für Informatik, Technische Universität

München, Boltzmannstraÿe 3, D-85748 Garching bei München, Germany.
2Supported by the Ministerio de Educación y Ciencia (MEC) grant JDCI-2007-760.

Preprint submitted to Theoretical Computer Science April 30, 2010

1. Introduction

Early studies in automata theory revealed that nondeterministic and deterministic
�nite automata are equivalent [1]. However, nondeterministic automata can be exponen-
tially more succinct [2, 3] (with respect to the number of states). In fact, �nite automata
are probably best known for being equivalent to right-linear context-free grammars, and
thus, for capturing the lowest level of the Chomsky-hierarchy, which is the family of reg-
ular languages. Over the last 50 years, a vast literature documenting the importance of
�nite automata as an enormously valuable concept has been developed. Although, there
are a lot of similarities between nondeterministic and deterministic �nite automata, one
important di�erence is that of the minimization problem. The study of this problem
also dates back to the early beginnings of automata theory. It is of practical relevance
because regular languages are used in many applications, and one may like to represent
the languages succinctly. While for nondeterministic automata the computation of an
equivalent minimal automaton is PSPACE-complete [4] and thus highly intractable, the
corresponding problem for deterministic automata is known to be e�ectively solvable
in polynomial time [5]. An automaton is minimal if every other automaton with fewer
states disagrees on acceptance for at least one input.

Minimizing deterministic �nite automata (dfa) is based on computing an equivalence
relation on the states of the automaton and collapsing states that are equivalent. Here
two states p; q 2 Q, where Q is the set of states of the automaton under consideration, are
equivalent, if the automaton starting its computation in state p accepts the same language
as the automaton if q is taken as the start state. Minimization of two equivalent dfa leads
to minimal dfa that are isomorphic up to the renaming of states. Hence, minimal dfa
are unique. This yields a nice characterization: A dfa M is minimal if and only if in M :
(i) there are no unreachable states and (ii) there is no pair of di�erent but equivalent
states.

The computation of this equivalence can be implemented in a straightforward fash-
ion by repeatedly re�ning partitions starting with the partition that groups accepting
and rejecting states together [5]. This yields a polynomial-time algorithm of O(n2).
Hopcroft's algorithm [6] for minimization slightly improves the naïve implementation
to a running time of O(m log n) with m = jQ��j and n = jQj, where � is the alphabet
of input symbols of the �nite automaton. It is up to now the best known minimization
algorithm for dfa in general. Recent developments have shown that this bound is tight
for Hopcroft's algorithm [7, 8]. Thus, minimization can be seen as a form of lossless
compression that can be done e�ectively while preserving the accepted language exactly.

Recently, a new form of minimization, namely hyper-minimization, was studied in
the literature [9, 10, 11]. There the minimization or compression is done while giving up
the preservation of the semantics of �nite automata; i.e., the accepted language. It is
clear that the semantics cannot vary arbitrarily. A related minimization method based
on cover automata is presented in [12, 13]. Hyper-minimization [9, 10, 11] allows the
accepted language to di�er in acceptance on a �nite number of inputs, which is called
almost-equivalence. Thus, hyper-minimization aims to �nd an almost-equivalent dfa that
is as small as possible. Here an automaton is hyper-minimal if every other automaton
with fewer states disagrees on acceptance for an in�nite number of inputs.

In [9] basic properties of hyper-minimization and hyper-minimal dfa are investigated.
Most importantly, a characterization of hyper-minimal dfa is given, which is similar to

2

the characterization of minimal dfa mentioned above. Namely, a dfa M is hyper-minimal
if and only if in M : (i) there are no unreachable states, (ii) there is no pair of di�erent
but equivalent states, and (iii) there is no pair of di�erent but almost-equivalent states
such that at least one of them is a preamble state. Here a state is called a preamble
state if it is reachable from the start state by a �nite number of inputs, only. Other-
wise the state is called a kernel state. These properties allow a structural characteri-
zation of hyper-minimal dfa. Roughly speaking, the kernels (all states that are kernel
states) of two almost-equivalent hyper-minimal automata are isomorphic in the standard
sense, and their preambles are also isomorphic except for acceptance values. Thus, it
turns out that hyper-minimal dfa are not necessarily unique. Nevertheless, it was shown
in [9] that hyper-minimization can be done in time O(mn2), where m = j� � Qj and
n = jQj. For a constant alphabet size this gives an O(n3) algorithm. Later, the bound
was improved [10, 11] to O(mn). In this paper we improve this upper bound further
to O(m log n). If the alphabet size is constant, then this yields an O(n log n) algorithm.
In addition, we argue that this is reasonably good because any upper bound t(n) =
(n)
for hyper-minimization implies that (classical) minimization can be done within t(n). To
this end, we linearly reduce minimization to hyper-minimization. Similar results were
independently obtained in [14].

The results of this paper were �rst reported in [15]. This version contains the full,
detailed proofs of the claims, a more elaborate example, and a few minor corrections. The
paper is organized as follows: In the next section we introduce the necessary notation.
Then in Section 3 we �rst describe the general background needed to perform hyper-
minimization, namely identifying kernel states, computing almost-equivalent states, and
�nally merging almost-equivalent states. Next we present a running example, and show
how to implement these three sub-tasks in time O(m log n). The formal time-complexity
and correctness proofs are presented in Sections 4 and 5. In Section 4 we also show the
linear reduction from minimization to hyper-minimization. Finally we summarize our
results and state some open problems.

2. Preliminaries

The set of nonnegative integers is denoted by N. For sets S � A, T � B, and a
function h : A! B, we write h(S) = fh(s) j s 2 S g and h�1(T) = f s 2 A j h(s) 2 T g.
A relation on S is a subset of S � S. The relation R on S is more re�ned than the
relation R0 on S if R � R0. A relation on S is an equivalence relation if it is re�exive,
symmetric, and transitive. In the usual way, each equivalence relation induces a partition
of S, which is a set of disjoint subsets of S such that their union is S. Conversely, every
partition of S induces an equivalence relation on S.

Let S and T be sets. Their symmetric di�erence S	T is (S nT)[(T nS). The sets S
and T are almost-equal if S	T is �nite. An alphabet � is a �nite set. The cardinality of
an alphabet � is denoted by j�j. The set of all strings over � is ��, of which the empty
string is denoted by ". The concatenation of strings u;w 2 �� is denoted by the juxtapo-
sition uw, and jwj denotes the length of a word w 2 ��. A deterministic �nite automa-
ton (dfa) is a tupleM = (Q;�; q0; �; F) whereQ is the �nite set of states, � is the alphabet
of input symbols, q0 2 Q is the initial state, � : Q � � ! Q is the transition function,
and F � Q is the set of �nal states. The transition function � extends to � : Q��� ! Q

3

as follows: �(q; ") = q and �(q; �w) = �(�(q; �); w) for every q 2 Q, � 2 �, and w 2 ��.
The dfa M recognizes the language L(M) = fw 2 �� j �(q0; w) 2 F g.

Let ' be an equivalence relation on Q. It is a congruence if �(p; �) ' �(q; �) for every
p ' q and � 2 �. Two states p; q 2 Q are equivalent, denoted by p � q, if �(p; w) 2 F if
and only if �(q; w) 2 F for every w 2 ��. Note that � is the coarsest (i.e., least re�ned)
congruence that respects F (i.e., a �nal state cannot be congruent to a non�nal state).
The dfa M is minimal if it does not have equivalent states. The notion �minimal� is
justi�ed by the fact that no dfa with fewer states also recognizes L(M) if M is minimal.
A minimal dfa that is equivalent to M can e�ciently be computed using Hopcroft's
algorithm [6], which runs in time O(m log n) where m = jQ� �j and n = jQj.

In the following, let M be minimal. We recall a few central notions from [9] next. A
state q 2 Q is a kernel state if q = �(q0; w) for in�nitely many w 2 ��. Otherwise q is a
preamble state. We denote the set of kernel and preamble states by Ker(M) and Pre(M),
respectively. For two states p; q 2 Q we write p ! q if there exists a w 2 �� such that
�(p; w) = q. They are strongly connected, denoted by p $ q, if p ! q and q ! p. Note
that p $ p and q0 ! q for every q 2 Q because M is minimal. Two di�erent, strongly
connected states p$ q are also kernel states because q0 ! p! q ! p. Finally, q 2 Q is
a center state if �(q; w) = q for some nonempty string w 2 ��. In other words, a center
state is nontrivially strongly connected to itself.

3. Hyper-minimization

Minimization, which yields an equivalent dfa that is as small as possible, can be
considered as a form of lossless compression. Sometimes the compression rate is more
important than the preservation of the semantics. This leads to the area of lossy com-
pression where the goal is to compress even further at the expense of errors (typically
with respect to some error pro�le). Our error pro�le is very simple here: we allow a �nite
number of errors. Consequently, we call two dfa M1 and M2 almost-equivalent if their
languages L(M1) and L(M2) are almost-equal. A dfa that admits no smaller almost-
equivalent dfa is called hyper-minimal. Hyper-minimization [9, 10, 11] aims to �nd an
almost-equivalent hyper-minimal dfa. In [14] hyper-minimization is also discussed for a
more re�ned error pro�le, in which the length of the error-words can be restricted.

Recall that M = (Q;�; q0; �; F) is a minimal dfa. In addition, let m = jQ � �j
and n = jQj. The contributions [9, 10, 11, 14] report hyper-minimization algorithms
for M that run in time O(mn2), O(mn), and O(m log n), respectively. Note that [14]
was obtained independently from our research reported here. Our aim was to develop a
hyper-minimization algorithm that runs in time O(m log n).

Let us start with the formal development. Roughly speaking, minimization aims
to identify equivalent states, and hyper-minimization aims to identify almost-equivalent
states, which we de�ne next.

De�nition 1 (cf. [9, De�nition 2.2]). For all states p; q 2 Q, we say that p and q are
almost-equivalent, denoted by p � q, if there exists k � 0 such that �(p; w) = �(q; w) for
every w 2 �� with jwj � k.

The overall structure of the hyper-minimization algorithm of [10, 11] is presented in
Algorithm 1. Note that compared to [10, 11], we exchanged lines 2 and 3. Minimize

4

Algorithm 1 Overall structure of the hyper-minimization algorithm of [10, 11].

Require: a dfa M
Return: a hyper-minimal, almost-equivalent dfa

M Minimize(M) // Hopcroft's algorithm; O(m log n)
2: K ComputeKernel(M) // compute the kernel states; see Section 3.1
� AEquivalentStates(M) // compute almost-equivalence; see Section 3.2

4: M MergeStates(M;K;�) // merge almost-equivalent states; O(m)
return M

refers to the classical minimization, which can be implemented to run in time O(m log n)
using Hopcroft's algorithm [6]. The procedure MergeStates is described in [9, 10,
11], where it is also proved that it runs in time O(m). We present their algorithm
(see Algorithm 2) and the corresponding results next. Roughly speaking, merging a
state p into another state q denotes the usual procedure of redirecting in M all incoming
transitions of p to q. In addition, if p was the initial state, then q is the new initial state.
Formally, for every � : Q� � ! Q and p0; p; q 2 Q we de�ne merge(�; p0; p; q) = (�0; p0

0
)

where for every q0 2 Q and � 2 �

�0(q0; �) =

(
q if �(q0; �) = p

�(q0; �) otherwise
and p0

0
=

(
q if p0 = p

p0 otherwise.

Clearly, the state p could now be deleted because it cannot be reached from the initial
state anymore; i.e., �0(p0

0
; w) 6= p for all w 2 ��. Observe, that although state p could

have been a �nal state, the status of state q with respect to �nality (membership in F)
is not changed.

Whenever we discuss algorithms, we generally assume that the preconditions (Re-
quire) are met. If we call a procedure in one of our algorithms, then we will argue why
the preconditions of that procedure are met.

Theorem 2 ([9, Section 4]). Algorithm 2 returns a hyper-minimal dfa that is almost-
equivalent to M in time O(m).

Proof (Sketch). The correctness is proved in detail in [9]. Globally, the selection
process runs in time O(n) if the almost-equivalence is supplied as a partition. Then an
iteration over the transitions can perform the required merges in time O(m). Since the
surviving state of a merge is never merged into another state, each transition is redirected
at most once. In fact, if the merge is implemented by a pointer redirect, then Algorithm 2
can be implemented to run in time O(n). �

Example 3. Let us consider the minimal dfa of Figure 1. Its kernel states are

fE;F; I; J; L;M;P;Q;Rg:

It will be shown in Section 3.1, how to compute this set. The almost-equivalence � is the
equivalence relation induced by the partition

ffC;Dg; fG;H; I; Jg; fL;Mg; fP;Qgg ;

which we show in Section 3.2. Now we enter the main loop of Algorithm 2.
5

F J M Q

B E I L P R

A D H

C G

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a
b

a

b

a

b

a

b

a

b

a

b

a b

a

b

Figure 1: The example dfa of [9, Figure 2].

� From the block fC;Dg we select the preamble state D. Thus, the state C is merged
into D.

� From the block fG;H; I; Jg, we select the kernel state I, and consequently, the
states G and H are merged into I.

� In the blocks fL;Mg and fP;Qg there are no preamble states to be merged.

The result of all merges is the dfa displayed in Figure 2. It coincides with the dfa of [9,
Figure 3].

Consequently, if we can also implement the procedures: (i) ComputeKernel and
(ii) AEquivalentStates of Algorithm 1 in time O(m log n), then we obtain a hyper-

F J M Q

B E I L P R

A D

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a b

a

b

Figure 2: The resulting hyper-minimal dfa for the input dfa of Figure 1.

6

Algorithm 2 Merging almost-equivalent states (see [9]).

Require: a minimal dfa M , its kernel states K, and its almost-equivalent states �
Return: a hyper-minimal, almost-equivalent dfa

for all B 2 (Q=�) do
2: if B \K 6= ; then

select q 2 B \K // select a kernel state q from B, if one exists
4: else

select q 2 B // otherwise pick a preamble state of B
6: for all p 2 B nK do

(�; q0) merge(�; q0; p; q) // merge all preamble states of the block into q
8: return M

minimization algorithm that runs in time O(m log n). The next two sections will show
suitable implementations for both procedures.

3.1. Identi�cation of kernel states

As we have seen in Algorithm 2, kernel states play a special rôle because we never
merge two kernel states. It is shown in [9, 10, 11], how to identify the kernel states
in time O(mn). However, the kernel states can also be computed using a well-known
algorithm (see Algorithm 3) due to Tarjan [16] in time O(m).

Theorem 4. Ker(M) can be computed in time O(m).

Proof. With Tarjan's algorithm [16] (or equivalently the algorithms by Gabow [17,
18] or Kosaraju [19, 20]) we can identify the strongly connected components (strongly
connected states) in time O(m + n). Algorithm 3 presents a simpli�ed version of the
general known algorithm because in our setting all states of M are reachable from q0.
The initial call is Tarjan(M; q0). At the same time, we also identify all center states
because a center state is part of a strongly connected component of at least two states
or has a self-loop; i.e., �(q; �) = q for some � 2 �. Another depth-�rst search can then
mark all states q such that p! q for some center state p in time O(m). Clearly, such a
marked state is a kernel state and each kernel state q 2 Ker(M) is marked because there
exists a center state p 2 Q such that p! q by [9, Lemma 2.12]. �

Example 5. Let us again use the example dfa of Figure 1. Tarjan's algorithm returns
the set

ffAg; fBg; fCg; fDg; fE;Fg; fGg; fHg; fIg; fJg; fLg; fMg; fPg; fQg; fRgg

of strongly connected components. Consequently, the center states are fE;F; J;M;P;Rg,
and the depth-�rst search marks the states fE;F; I; J; L;M;P;Q;Rg, which is the set of
kernel states.

7

Algorithm 3 Tarjan's algorithm computing the strongly connected components of M .

Require: a dfa M = (Q;�; q0; �; F) and a state q 2 Q
Global: index; low: Q! N initially unde�ned, i = 0, S stack of states initially empty

index(q) i // set index of q to i; q is now explored
2: low(q) i // set lowest index (of a state) reachable from q to the index of q
i i+ 1 // increase current index

4: Push(S; q) // push state q to the stack S

for all � 2 � do
6: if index(�(q; �)) is unde�ned then

Tarjan(M; �(q; �)) // if successor not yet explored, then explore it
8: low(q) min(low(q); low(�(q; �))) // update lowest reachable index for q

else
10: if �(q; �) 2 S then

low(q) min(low(q); index(�(q; �))) // update lowest reachable index

12: if low(q) = index(q) then
repeat

14: p Pop(S) // found component; remove all states of it from stack S
: : : // store strongly connected components

16: until p = q

3.2. Identi�cation of almost-equivalent states

The identi�cation of almost-equivalent states is slightly more di�cult. We improve
the strategy of [9], which runs in time O(mn2),

� by avoiding pairwise comparisons, which yields an improvement by a factor n, and

� by merging states with a speci�c strategy, which reduces a factor n to log n.

Essentially, the same strategy was independently employed by [14].
Let us attempt to explain Algorithm 4. The vector (�(q; �) j � 2 �) is called the

follow-vector of q. Formally, the follow-vector is an element of Q�, which denotes the set
of all functions f : �! Q. The algorithm keeps a set I of states that need to be processed
and a set P of states that are still useful. Both sets are initially Q and the hash map h,
which is of type h : Q� ! Q, is initially empty; i.e., all values are unassociated. Moreover,
the algorithm sets up a partition � of Q, which is initially the trivial partition, in which
each state forms its own block (lines 1 and 2). The algorithm iteratively processes a
state of I and computes its follow-vector. If the follow-vector is not yet associated in h,
then the follow-vector will simply be stored in h. The algorithm proceeds in this fashion
until it �nds a state, whose follow-vector is already stored in h. It then extracts the state
with the same follow-vector from h and compares the sizes of the blocks in � that the
two states belong to. Suppose (without loss of generality) that p (q, respectively) is the
state that belongs to the smaller (larger, respectively) block. Then we merge p into q
and remove p from P because it is now useless. In addition, we update the block of q to
include the block of p and add all states that have transitions leading to p to I because
their follow-vectors have changed due to the merge. Note that the last step might add q

8

Algorithm 4 Algorithm computing �.

Require: minimal dfa M = (Q;�; q0; �; F)
Return: the almost-equivalence relation � represented as a partition

for all q 2 Q do
2: �(q) fqg // initial block of q contains just q itself

h ; // hash map of type h : Q� ! Q
4: I Q // states that need to be considered
P Q // set of current states

6: while I 6= ; do
q RemoveHead(I) // remove state from I

8: succ (�(q; �) j � 2 �) // compute vector of successors using current �

if HasValue(h; succ) then
10: p Get(h; succ) // retrieve state in bucket succ of h

if j�(p)j � j�(q)j then
12: Swap(p; q) // exchange rôles of p and q

P P n fpg // state p will be merged into q
14: I I [f r 2 P j 9� : �(r; �) = p g // add predecessors of p in P to I

(�; q0) merge(�; q0; p; q) // merge states p and q in �; q survives
16: �(q) �(q) [�(p) // p and q are almost-equivalent

h Put(h; succ; q) // store q in h under key succ
18: return �

to I again. The algorithm repeats this process until the set I is empty, which indicates
that all states have been processed.

Let us proceed with an example run of Algorithm 4.

Example 6. Consider the minimal dfa of Figure 1. Let us show the run of Algorithm 4
on it. We present a protocol (for line 10) in Table 1. At the end of the algorithm the
hash map contains the following entries (we list the follow-vectors as vectors, in which
the �rst and second component refer to a and b, respectively):�

B
C

�
! A

�
F
D

�
! B

�
H
G

�
! C

�
I
H

�
! D

�
I
F

�
! E�

J
E

�
! F

�
L
H

�
! G

�
M
I

�
! H

�
L
J

�
! I

�
M
J

�
! J�

P
M

�
! L

�
Q
M

�
!M

�
P
R

�
! P

�
R
R

�
! R

�
L
I

�
! I�

I
E

�
! F

�
I
I

�
! C

�
I
G

�
! E

�
F
C

�
! B :

From Table 1 we obtain the �nal partition

ffAg; fBg; fC;Dg; fEg; fFg; fG;H; I; Jg; fL;Mg; fP;Qg; fRgg :

This coincides with the partition obtained in [9, Figure 2].
9

I Q n P q p � (singleton blocks not shown)
fB; : : : ; Rg ; A

: : : ;
fRg ; P Q
fMg fQg R fP;Qg
; fQg M L fP;Qg
fHg fM;Qg J I fL;Mg; fP;Qg
fF; Ig fJ;M;Qg H fI; Jg; fL;Mg; fP;Qg
fIg fJ;M;Qg F fI; Jg; fL;Mg; fP;Qg

fC;D;Gg fJ;M;Qg I H fI; Jg; fL;Mg; fP;Qg
fD;Gg fH;J;M;Qg C fH; I; Jg; fL;Mg; fP;Qg
fGg fH;J;M;Qg D C fH; I; Jg; fL;Mg; fP;Qg
fBg fD;H; J;M;Qg G I fC;Dg; fH; I; Jg; fL;Mg; fP;Qg
; fD;G;H; J;M;Qg B fC;Dg; fG;H; I; Jg; fL;Mg; fP;Qg

Table 1: Run of Algorithm 4 (at line 10) on the automaton of Figure 1.

In the next sections we will take a detailed look at the time complexity (Section 4)
and the correctness (Section 5) of Algorithm 4.

4. Time complexity of Algorithm 4

In this and the next section, we only discuss Algorithm 4, so all line references are to
Algorithm 4 unless explicitly stated otherwise. Obviously, the hash map avoids the pair-
wise comparisons, and here we will show that our merging strategy realizes the reduction
of a factor n to just log n (compared to the algorithm of [9]). Line 14 is particularly
interesting for the time complexity because it might add to the set I, which controls the
main loop. We start with a few simple loop invariants.

(i) I � P ,

(ii) f�(p) j p 2 P g is a partition of Q,

(iii) (�(r; �) j � 2 �) 2 P� for every r 2 Q,

(iv) h(P�) = P n I, and

(v) h�1(P n I) \ P� = f (�(r; �) j � 2 �) j r 2 P n I g.

Naturally, the symbols used refer to the ones of Algorithm 4 with their current values.
Roughly speaking, (i) means that no useless state is ever active. The second state-
ment yields that for every q 2 Q there exists an equivalent p 2 P . The third and
fourth statement essentially show that useless states have no incoming transitions and
the follow-vectors that are stored in h belong to useful, but inactive states. Together,
those statements guarantee that p 6= q in lines 10�16. Finally, statements (iv) and (v)
together say that the current follow-vectors of all useful, but inactive states (and only
those) are stored in h and that they are all di�erent.

Lemma 7. Before every execution of line 6 we have:

(i) I � P ,

(ii) f�(p) j p 2 P g is a partition of Q,
10

(iii) (�(r; �) j � 2 �) 2 P� for every r 2 Q,
(iv) h(P�) = P n I, and
(v) h�1(P n I) \ P� = f (�(r; �) j � 2 �) j r 2 P n I g.

Proof. Clearly, we have to prove that the properties are true before entering the main
loop and are preserved in each iteration. Trivially, all statements are true before entering
the loop because I = Q = P , h(Q�) = ;, and each state is its own block (after execution
of lines 1�2). In the loop, the state q is removed from I in line 7. Thus, q 2 P by
statement (i). Next, its follow-vector succ is computed. Note that q 2 P n I because I
no longer contains q. Moreover, q =2 h(P�), which means that q has no association to a
current follow-vector.

If no value is stored in h for succ, then succ is associated to q in h. Clearly, I � P ,
which proves statement (i). Statements (ii) and (iii) trivially remain true because nei-
ther P nor � nor � are changed. Since q 2 P n I, succ 2 P�, and succ =2 h�1(Q),
statements (iv) and (v) are also true, where for statement (v) we additionally use that q
was not associated to a current follow-vector. This proves all statements in this case.

If the condition of line 9 is true, then the state p that is stored under the follow-
vector succ is retrieved. Note that p 2 P n I and p 6= q by statements (iii) and (iv).
Since we only know q 2 P n I about q, the swap is irrelevant for the remainder of the
proof. Without loss of generality, suppose that the condition in line 11 is false. If it is
true and the swap occurs, then we can prove the statements in the same fashion with p
and q exchanged. Next, p is removed from P in line 13 and all states of this new P
that have a transition to p are added to I. Note that we might add q to I, but cannot
add p to I. Since we only added states of P to I, we proved statement (i). Next, we
merge p into q, which yields that all transitions to p are redirected to q. Since p 6= q
and q 2 P , we proved statement (iii). In line 16 we combine the blocks of p and q in �.
Statement (ii) is true because p =2 P , q 2 P , and the result is clearly a partition. In the
�nal step, we associate succ with q in h. For statements (iv) and (v), let us remark that
P n I, when compared to its value U in the previous iteration, now no longer contains
p and every state added to I in line 14, but might now contain q if q =2 I. Each state of U
had exactly one association to its then (before the merge in line 15) current follow-vector
in h by statements (iv) and (v). If its follow-vector changed due to the merge, then it is
no longer in h(P�) and no longer in P n I because the follow-vector changes if and only
if it has a transition to p. If q =2 I, then succ 2 P� is the current follow-vector of q and
it replaces the entry for p. Thus, we obtain statements (iv) and (v). �

Now we are ready to state the main complexity lemma. To simplify the argument,
we call (r; �) a transition for every r 2 Q and � 2 �. Note that the value of �(r; �) might
change in the course of the algorithm due to merges. For this reason, we did not include
the target state in the transition (r; �). Recall that n = jQj.

Lemma 8. For every r 2 Q and � 2 �, the transition (r; �) is considered at most (log n)
times in lines 14 and 15 during the full execution of Algorithm 4.

Proof. Suppose that p = �(r; �) in line 14. Moreover, j�(p)j < j�(q)j by lines 11�12.
Then line 15 redirects the transition (r; �) to q; i.e., �(r; �) = q after line 15. Moreover,
j�(q)j > 2 � j�(p)j after the execution of line 16 because p 6= q and �(p) \ �(q) = ; by
statements (ii)�(iv) of Lemma 7. Moreover, j�(q)j � n for every q 2 Q by statement (ii)

11

of Lemma 7. Consequently, (r; �) can be considered at most (log n) times in lines 14
and 15, which proves the statement. �

Now we are ready to determine the run-time complexity of Algorithm 4. Recall that
m = jQ � �j and n = jQj. In addition, we exclude the nonsensical case � = ;. Thus
m � n. If we were to consider partial dfa, then we could set m to the number of existing
transitions in a partial dfa. However, we continue to work with (total) dfa.

Theorem 9. Algorithm 4 can be implemented to run in time O(m log n).

Proof. Clearly, we assume that all basic operations except for those in lines 14 and 15
execute in constant time. Then lines 1�5 execute in time O(n). Next we will prove that
the loop in lines 6�17 executes at most O(m log n) times. By statement (i) of Lemma 7
we have I � P . Now let us consider a particular state q 2 Q. Then q 2 I initially and it
has j�j outgoing transitions. By Lemma 8, every such transition is considered at most
(log n) times in line 14, which yields that q is added to I. Consequently, the state q can
be chosen in line 10 at most (1 + j�j � log n) times. Summing over all states of Q, we
obtain that the loop in lines 6�17 can be executed at most (n+m � log n) times, which is
in O(m log n) because m � n. Since all lines apart from lines 14 and 15 are assumed to
execute in constant time, this proves the statement for all lines apart from 14 and 15. By
Lemma 8 every transition is considered at most (log n) times in those two lines. Since
there are m transitions and each consideration of a transition can be assumed to run in
constant time, we obtain that lines 14 and 15 globally (i.e., including all executions of
those lines) execute in time O(m log n), which proves the statement. �

To obtain a lower bound on the complexity, let us argue that minimization linearly
reduces to hyper-minimization. Let M be a dfa that is not necessarily minimal. If
L(M) = ;, which can be veri�ed in time O(m), then we are done because the hyper-
minimal dfa with one state that accepts the empty language is also minimal. Now let
L(M) 6= ; and assume # to be a new input symbol not contained in �. We construct
a dfa M 0 = (Q;� [f#g; q0; �

0; F) by �0(q; �) = �(q; �) for every q 2 Q and � 2 �
and �0(q;#) = q0 for every q 2 Q. Observe, that by construction M 0 consists of kernel
states only. Thus, hyper-minimizing M 0 leads to a dfa M 00 that is unique because for
two almost-equivalent hyper-minimized automata the kernels are isomorphic to each
other [9, Theorem 3.5]. This should be compared with the characterization of minimal
and hyper-minimal dfa mentioned in the Introduction. Thus, M 00 is a minimal dfa
accepting L(M 0). Then it is easy to see that taking M 00 and deleting the #-transitions
yields a minimal dfa accepting L(M). Hence, minimization linearly reduces to hyper-
minimization. Thus, our algorithm achieves the optimal worst-case complexity in the
light of the recent developments for Hopcroft's state minimization algorithm, which
show that the O(m log n) bound is tight for that algorithm [7] even under any possible
implementation [8].

5. Correctness of Algorithm 4

In this section, we prove that Algorithm 4 is correct. We will use [9, Lemma 2.10]
for the correctness proof. To keep the paper self-contained, we repeat the required result
and sketch its proof. Recall that � is the almost-equivalence and that all congruences
are relative to M .

12

Lemma 10 ([9, Lemma 2.10]). The equivalence � is the most re�ned congruence '
such that (y) for every p; q 2 Q: �(p; �) ' �(q; �) for every � 2 � implies p ' q.

Proof. Clearly, the congruences with property (y) are closed under intersection. Since
there are only �nitely many congruences, the most re�ned congruence ' with property (y)
exists. Moreover, � is trivially a congruence [9, Lemma 2.9]. Thus, ' � �. For the
converse, suppose that p � q. Then by De�nition 1, there exists an integer k � 0 such
that �(p; w) = �(q; w) for all w 2 �� with jwj � k. Trivially, �(p; w) ' �(q; w) for all
such words w, and for every w0 2 �� if �(p; w0�) ' �(q; w0�) for every � 2 �, then
�(p; w0) ' �(q; w0) by (y). Consequently, p ' q, which proves the statement. �

By statement (ii) of Lemma 7, f�(p) j p 2 P g is a partition of Q before every
execution of line 6. Next, we prove that the induced equivalence relation is a congruence.

Lemma 11. Before every execution of line 6, � induces a congruence ' with ' � �.

Proof. Let � = � be the transition function of M at the beginning of the algorithm.
We prove the following loop invariants:

(i) ' is a congruence,

(ii) �(r; �) ' �(r; �) for every r 2 Q and � 2 �, and

(iii) p ' q implies p � q for every p; q 2 Q.

Before entering the main loop, � trivially induces the identity congruence, which also
shows statement (iii). Moreover, �(r; �) ' �(r; �) for every r 2 Q and � 2 � because
� = �0. If the condition in line 9 is false, then the statements trivially remain true. Thus,
let us consider lines 15 and 16 where � and � are changed to �0 and �0, respectively.
Moreover, let ' and �= be the equivalences corresponding to � and �0, respectively.
Finally, p and q are clearly such that �(p; �) = �(q; �) for every � 2 �.

Let q1 �= q2 and � 2 �. Note that ' is more re�ned than �=. In general,

�0(q1; �) =

(
q if �(q1; �) = p

�(q1; �) otherwise

�= �(q1; �) ' �(q1; �) (1)

because p �= q and by statement (ii). This proves statement (ii). For the remaining
statements (i) and (iii), either q1 ' q2 or q1 ' p and q ' q2. The third case, in which
q1 ' q and p ' q2 can be handled like the second case. Let us handle the �rst case, in
which statement (iii) trivially holds. Moreover, using the analogue of (1) for q2 and (1)
itself, we obtain

�0(q2; �) =

(
q if �(q2; �) = p

�(q2; �) otherwise

�= �(q2; �) ' �(q1; �) �= �0(q1; �)

using also the congruence property �(q2; �) ' �(q1; �). This proves �0(q2; �) �= �0(q1; �)
because ' � �=.

13

In the second case, q1 ' p and q ' q2. In the same way as in the �rst case, we obtain

�0(q1; �) �= �0(p; �) q1 � p (2)

�0(q2; �) �= �0(q; �) q2 � q : (3)

Since �0(p; �) = �0(q; �) we obtain �0(q1; �) �= �0(q2; �), which proves statement (i). More-
over, �(p; �) ' �(p; �) = �(q; �) ' �(q; �) by statement (ii), and thus, �(p; �) � �(q; �) for
every � 2 � by statement (iii). The almost-equivalence has property (y) by Lemma 10,
which yields p � q. Together with (2) and (3), we obtain q1 � q2, which completes the
proof. �

This proves that we compute a congruence that is more re�ned than the almost-
equivalence �. Thus, if we could show that the computed congruence also has prop-
erty (y), then we compute � by Lemma 10. This is achieved in the next theorem.

Theorem 12. The partition returned by Algorithm 4 induces �.

Proof. Before we can prove the theorem as already indicated, we need two auxiliary
loop invariants. Let � = � at the beginning of the algorithm, and let ' be the congruence
induced by �. We prove the two invariants

(i) q1 ' q2 implies q1 = q2 for every q1; q2 2 P , and

(ii) for every q1; q2 2 P n I: if �(q1; �) = �(q2; �) for every � 2 �, then q1 = q2.

Clearly, both statements are true before entering the loop because ' is the equality and
P = Q = I. If the condition in line 9 is false, then statement (i) trivially remains true.
Since q is no longer in I, we need to prove statement (ii) for q 2 fq1; q2g. Because there
was no entry at succ in h, succ 2 P�, and h(P�) = P n I by statements (iii) and (iv) of
Lemma 7, we know that q1 = q = q2, which proves statement (ii).

Now when � is changed in line 16, we already merged p into q in line 15. Let �= be
the equivalence induced by the new partition (after execution of line 17) and �0 be the
transition function after the potential merge. Moreover, let q1; q2 2 P such that q1 �= q2.
Note that q1 6= p 6= q2 because p =2 P . As in the proof of Lemma 10, either q1 ' q2 or
q1 ' p and q ' q2. The third case is again symmetric to the second. The second case is
contradictory because q1 ' p implies q1 = p by statement (i), but q1 6= p. Thus, q1 ' q2
and q1 = q2 by statement (i). For statement (ii), additionally, let q1; q2 2 P n I such that
�0(q1; �) = �0(q2; �) for every � 2 �. Then

�0(q1; �) =

(
q if �(q1; �) = p

�(q1; �) otherwise

�0(q2; �) =

(
q if �(q2; �) = p

�(q2; �) otherwise.

However, if the �rst case applies, then q1 2 I (q2 2 I, respectively), which is contra-
dictory. Thus, �(q1; �) = �0(q1; �) = �0(q2; �) = �(q2; �), and we can use statement (ii)
to prove the statement unless q 2 fq1; q2g. Without loss of generality, let q1 = q. Only
the state p extracted in line 10 has the same follow-vector by statement (v) of Lemma 7,
but q2 6= p. This proves q1 = q = q2, and thus, we proved the auxiliary statements.

14

Let ' be the equivalence returned by Algorithm 4. By Lemma 11, the congruence '
is more re�ned than the almost-equivalence �. Thus, if ' has property (y), then ' and �
coincide by Lemma 10. It remains to prove property (y) for '. Let q1; q2 2 Q be such
that �(q1; �) ' �(q2; �) for every � 2 �. By assumption, statement (ii) of Lemma 7, and
statements (i) and (ii) in the proof of Lemma 11, there exist p1 ' q1 and p2 ' q2 such
that

�(p1; �) ' �(q1; �) ' �(q1; �) ' �(q2; �) ' �(q2; �) ' �(p2; �) :

Due to statement (iii) of Lemma 7 we have �(p1; �) 2 P and �(p2; �) 2 P . With the help
of the �rst property we obtain �(p1; �) = �(p2; �) for every � 2 �. Since the algorithm
terminates with I = ;, we can apply statement (ii) to obtain p1 = p2, which together
with q1 ' p1 = p2 ' q2 proves that q1 ' q2. Thus, ' has property (y). �

Finally, we can collect our results in the next theorem, which is the main contribution
of this paper.

Theorem 13. For every dfa we can obtain an almost-equivalent, hyper-minimal dfa in
time O(m log n).

6. Conclusions

We have designed an O(m log n) algorithm, where m = jQ � �j and n = jQj, that
computes a hyper-minimized dfa from a given dfa (Q;�; q0; �; F). The hyper-minimized
dfa may have fewer states than the classical minimized dfa. Its accepted language is
almost-equal to the original one, which means that it di�ers in acceptance on only a
�nite number of inputs. Since hyper-minimization is a very new �eld of research, most of
the standard questions related to descriptional complexity such as, for example, nonde-
terministic automata to dfa conversion with respect to hyper-minimality, are problems
of further research.

Acknowledgements

We would like to thank the reviewers of the conference and journal draft version for
their helpful comments. In addition, we would like to express our gratitude to Artur
Je» for contacting us with his research and general discussion.

References

[1] M. O. Rabin, D. Scott, Finite automata and their decision problems, IBM J. Res. Dev. 3 (2) (1959)
114�125.

[2] A. R. Meyer, M. J. Fischer, Economy of description by automata, grammars, and formal systems,
in: 12th Annual Symposium on Switching and Automata Theory, IEEE Computer Society, 1971,
pp. 188�191.

[3] F. R. Moore, On the bounds for state-set size in the proofs of equivalence between deterministic,
nondeterministic, and two-way �nite automata, IEEE Trans. Comput. 20 (10) (1971) 1211�1214.

[4] T. Jiang, B. Ravikumar, Minimal NFA problems are hard, SIAM J. Comput. 22 (6) (1993) 1117�
1141.

[5] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Languages, and Computation,
Addison Wesley, 1979.

15

[6] J. E. Hopcroft, An n logn algorithm for minimizing states in a �nite automaton, in: Theory of
Machines and Computations, Academic Press, 1971, pp. 189�196.

[7] J. Berstel, O. Caston, On the complexity of Hopcroft's state minimization algorithm, in: Proc. 9th
Int. Conf. Implementation and Application of Automata, Vol. 3317 of LNCS, Springer, 2004, pp.
35�44.

[8] G. Castiglione, A. Restivo, M. Sciortino, Hopcroft's algorithm and cyclic automata, in: Proc. 2nd
Int. Conf. Languages, Automata Theory and Applications, Vol. 5196 of LNCS, Springer, 2008, pp.
172�183.

[9] A. Badr, V. Ge�ert, I. Shipman, Hyper-minimizing minimized deterministic �nite state automata,
RAIRO Theor. Inf. Appl. 43 (1) (2009) 69�94.

[10] A. Badr, Hyper-minimization in O(n2), in: Proc. 13th Int. Conf. Implementation and Application
of Automata, Vol. 5148 of LNCS, Springer, 2008, pp. 223�231.

[11] A. Badr, Hyper-minimization in O(n2), Int. J. Found. Comput. Sci. 20 (4) (2009) 735�746.
[12] C. Câmpeanu, N. Santean, S. Yu, Minimal cover-automata for �nite languages, Theoret. Comput.

Sci. 267 (1�2) (2001) 3�16.
[13] A. Paun, M. Paun, A. Rodríguez-Patón, On the Hopcroft's minimization technique for DFA and

DFCA, Theoret. Comput. Sci. 410 (24�25) (2009) 2424�2430.
[14] P. Gawrychowski, A. Je», Hyper-minimisation made e�cient, in: Proc. 34th Int. Symp. Mathemat-

ical Foundations of Computer Science, Vol. 5734 of LNCS, Springer, 2009, pp. 356�368.
[15] M. Holzer, A. Maletti, An n logn algorithm for hyper-minimizing states in a (minimized) determin-

istic automaton, in: Proc. 14th Int. Conf. Implementation and Application of Automata, Vol. 5642
of LNCS, Springer, 2009, pp. 4�13.

[16] R. E. Tarjan, Depth-�rst search and linear graph algorithms, SIAM J. Comput. 1 (2) (1972) 146�
160.

[17] J. Cheriyan, K. Mehlhorn, Algorithms for dense graphs and networks on the random access com-
puter, Algorithmica 15 (6) (1996) 521�549.

[18] H. N. Gabow, Path-based depth-�rst search for strong and biconnected components, Inf. Process.
Lett. 74 (3�4) (2000) 107�114.

[19] S. R. Kosaraju, Strong-connectivity algorithm, unpublished manuscript (1978).
[20] M. Sharir, A strong-connectivity algorithm and its applications in data �ow analysis, Computers

& Mathematics with Applications 7 (1) (1981) 67�72.

16

