
Hasse Diagrams for Classes of Deterministic

Bottom-Up Tree-to-Tree-Series

Transformations

Andreas Maletti 1

Technische Universität Dresden
Fakultät Informatik
D–01062 Dresden

Germany

Abstract

The relationship between classes of tree-to-tree-series and o-tree-to-tree-series trans-
formations, which are computed by restricted deterministic bottom-up weighted
tree transducers, is investigated. Essentially, these transducers are deterministic
bottom-up tree series transducers, except that the former are defined over monoids
whereas the latter are defined over semirings and only use the multiplicative monoid
thereof. In particular, the common restrictions of nondeletion, linearity, totality, and
homomorphism can equivalently be defined for deterministic bottom-up weighted
tree transducers.

Using well-known results of classical tree transducer theory and also new re-
sults on deterministic weighted tree transducers, classes of tree-to-tree-series and
o-tree-to-tree-series transformations computed by restricted deterministic bottom-
up weighted tree transducers are ordered by set inclusion. More precisely, for every
commutative monoid and all sensible combinations of the above mentioned restric-
tions, the inclusion relation of the classes of tree-to-tree-series and o-tree-to-tree-
series transformations is completely conveyed by means of Hasse diagrams.

Key words: Tree Transducer, Semiring, Tree Series, Hasse Diagram

Email address: maletti@tcs.inf.tu-dresden.de (Andreas Maletti).
1 Financially supported by the German Research Foundation (DFG, GK 334/3)

Preprint submitted to Theoretical Computer Science 5 October 2006

1 Introduction

Bottom-up tree series transducers [1–4] were introduced as a generalization of
bottom-up tree transducers [5–7] and bottom-up weighted tree automata [8–
11]. The latter have been applied to code selection in compilers [12,13] and
tree pattern matching [14]. Moreover, a rich theory of bottom-up tree transduc-
ers was developed (cf. [7,15–20] as seminal or survey papers and monographs)
during the seventies, whereas bottom-up weighted tree automata just recently
received more attention (e.g., [14,8–11,21–24]).

In [1,2,25,4] several generalizations of well-known theorems of the theory of
tree transducers have been proved for bottom-up tree series transducers, e.g.,

• the generalization of the decomposition of the class of bottom-up tree trans-
formations (cf. Theorem 5.7 of [1] and page 220 of [7]); in its turn the result
of [7] generalizes the decomposition of gsm-mappings as proved in [26];
• the generalization of (some) composition hierarchy results for bottom-up

tree transformation classes (cf. Theorem 6.24 of [4] and Corollary 8.13(iii)
of [17]);
• the generalization of the equivalence of a rewrite semantics and the initial al-

gebra semantics for bottom-up tree transducers (cf. Theorem 5.10 of [25]
and Lemma 5.6 of [7]).

Roughly speaking, a bottom-up tree series transducer is a bottom-up tree
transducer in which the transitions carry a weight; the weight is an element
of some semiring. The rewrite semantics works as follows. Suppose that the
transducer has processed all direct subtrees of some input tree, i.e., it (nonde-
terministically) computed output trees and their corresponding weights. Then,
according to the states in which the computation of the output trees ended, it
selects a tree and corresponding weight from its transition table. The selected
tree and the output trees are combined with the help of substitution and the
weights are combined by means of the semiring multiplication. If for some
pair of input and output trees there is more than one computation ending in
a final state, then the weights of these computations are combined by means
of the semiring addition.

In this paper, we deal with deterministic bottom-up tree series transducers.
In this case, for every input tree there is at most one successful computation
(cf. Proposition 3.12 of [1]), i.e., at most one computed output tree and its
corresponding weight. Thus the semiring addition is irrelevant and we base our
investigations on so-called deterministic bottom-up weighted tree transducers
(for short: deterministic bu-w-tt) over some multiplicative monoid. Essentially,
these are deterministic bottom-up tree series transducers over some semiring,
of which only the multiplicative part is used.

2

Specifically, we deal with two modes of tree series substitution. The first is
called pure tree series substitution [27,1] (for short: pure substitution) and
represents a computational approach, i.e., the output trees represent values of
computations, and the weight associated to an output tree can be viewed as
the cost of computing this value. When combining output trees, their weights
are simply multiplied to obtain the weight of the combined output tree. This
is irrespective of the number of uses of an output tree, i.e., an output may
be copied without penalty, which represents the computational approach in
the sense that a value is available and can be reused without recomputa-
tion. On the other hand, we also investigate tree series substitution respecting
occurrences [2] (for short: o-substitution), which represents a more material
approach. There the weights of the output trees are taken to the n-th power,
if the corresponding output tree is used in n copies. In this approach, an out-
put tree stands for a composite, and the weight of an output tree reflects
the (monetary) cost of creating or obtaining this particular composite. When
combining composites into a new composite, its cost is obtained by multiply-
ing the costs of its components; each component taken as often as needed to
assemble the composite.

In the same way as for deterministic bottom-up tree transducers or deter-
ministic bottom-up tree series transducers, we can also define restrictions for
deterministic bu-w-tt, e.g., the restrictions of nondeletion, linearity, totality,
and homomorphism (cf., e.g., [7]). The class of tree-to-tree-series transforma-
tions, which is computed by deterministic bu-w-tt obeying the restrictions π
(e.g., being a nondeleting homomorphism) over the monoid A, is denoted by
π–BOTmod(A) where mod is either ε (the empty word) or o. In the former
case, the semantics is defined using pure substitution, whereas o-substitution
is used in the latter case. We abbreviate each restriction by its first letter, e.g.,
h abbreviates homomorphism, and use juxtaposition of the letters to denote
a combination of restrictions, e.g., hn for nondeleting homomorphism.

The monoids (A,�,1) we employ have an absorbing element 0 ∈ A and are
denoted by (A,�,1,0). Our main results are present in the Hasse diagrams
contained in Section 4 (cf. Theorem 17, Theorem 25, Theorem 28, Theorem 32,
and Theorem 34). Specifically, we conclude that

• the monoids Z1 and Z2 are (up to isomorphism) the only monoids A such
that, for every combination π of restrictions, π–BOTo(A) = π–BOT(A)
holds (cf. Corollary 15), and
• only in idempotent monoids A the equality hn–BOTo(A) = hn–BOT(A)

holds (cf. Corollary 31).

Let us discuss the first item in some detail. It is rather clear that for Z1 and Z2

pure and o-substitution coincide, and for all other monoids A = (A,�,1,0)
there is at least one element a different from both 0 and 1. Consider an output

3

tree weighted a and another one weighted 1. The property, which separates
pure and o-substitution in this case, is that pure substitution may tell those
two different output trees apart even when deleting them. This is due to the
fact that, when using pure substitution, the weight of the deleted output tree
is still accounted, which is not the case for o-substitution.

Considering the second item, it is again straightforward to observe the equality,
because an = a for all elements a of the idempotent monoid and n ≥ 1.
In a non-idempotent monoid the property a 6= a2 can be used to separate
pure and o-substitution with the help of a copying homomorphism bu-w-tt.
Therefore, imagine an output tree with weight a. If this output is used in a
transition which copies it, then pure substitution accounts a just once while
o-substitution accounts a twice.

In the following let us consider combinations π of restrictions which do not
contain the homomorphism restriction. It turns out that

• π–BOTo(A) ⊆ π–BOT(A) for every periodic and commutative monoid A,
whenever the nondeletion restriction is present in π (cf. Lemma 21),
• π–BOT(A) ⊆ π–BOTo(A) for every periodic and commutative monoid A,

whenever the linearity restriction is present in π (cf. Lemma 21),
• π–BOT(A) ⊆ π–BOTo(A) for every periodic, commutative, and regular

monoid A (cf. Lemma 26), and
• π–BOTo(A) = π–BOT(A) for every periodic and commutative group A

(cf. Lemma 33).

All four results build on the properties of periodicity and commutativity, of
which the former allows us to keep track of the weights in the states (because
there are only finitely many different powers of any element), and the latter
allows us to reorder the factors. Furthermore, the results mentioned above
do not hold for π containing the homomorphism restriction, because of the
additional states required for the book-keeping.

In the situation encountered in the first item, the weight a of an output tree
is taken to the n-th power by means of o-substitution where n ≥ 1. Pure sub-
stitution does account for the weight a of the output tree exactly once, but
the remaining an−1 can be remembered in the state and applied to the transi-
tion weight. The nondeletion property is necessary, because otherwise a might
be raised to the 0-th power by o-substitution, thereby essentially neglecting a.
However, pure substitution again accounts a once, and in general, it is not
possible to “divide” by a. Given a group, the mentioned division is possible,
which is explains why π–BOTo(A) ⊆ π–BOT(A) in the fourth result.

The situation is quite similar for the second result. Pure substitution accounts
the weight a of an output tree exactly once and o-substitution may account a
once or not at all, because of the linearity restriction. Due to periodicity and

4

commutativity we can keep track of the missing factor a and apply it to the
transition weight, in case a is not accounted by o-substitution. Finally, if the
linearity condition is absent, then o-substitution may account the weight a
more often than pure substitution. In general there is no way to get rid of this
additional factor unless the monoid is regular, which explains the third result
and the direction π–BOT(A) ⊆ π–BOTo(A) in the last result.

Moreover, for every monoid A we have π–BOTo(A) = π–BOT(A), if both the
nondeletion and linearity restriction are present in π (cf. Theorem 5.5 of [2]
and Proposition 13). In the remaining cases for commutative monoids A and
combinations π of restrictions we have that π–BOTo(A) and π–BOT(A) are
incomparable with respect to set inclusion. In particular, if the monoid A
is non-periodic, then, for every combination π of restrictions not containing
both the nondeletion and linearity restriction, we obtain the incomparability
of π–BOTo(A) and π–BOT(A) (cf. Lemma 16).

This paper is structured as follows. Section 2 reviews the relevant basic mathe-
matical notions and notations, in particular partial orders, trees and bottom-
up tree transducers, monoids and semirings, and substitutions of formal tree
series. Section 3 recalls the definition of deterministic bottom-up tree se-
ries transducers from [1] and introduces deterministic bu-w-tt along with the
aforementioned restrictions. Moreover, we relate the notions of determinis-
tic bottom-up tree series transducer, deterministic bu-w-tt, and deterministic
tree transducer. Finally, Section 4 details the Hasse diagrams obtained for
the various subclasses of tree-to-tree-series and o-tree-to-tree-series transfor-
mations computed by restricted deterministic bu-w-tt. The Hasse diagrams
will be complete in the sense that we present a Hasse diagram for every
commutative monoid with an absorbing element 0.

2 Preliminaries

In this section we present some basic notions and notations required in the
sequel. The first subsection recalls partial orders [28] and associated notions.
Words, trees, and tree transducers [29,17,18] are considered in the second
subsection, whereas the third subsection is dedicated to algebraic structures
and, in particular, monoids [30,31] and semirings [32–34]. Finally, the section
is concluded by the presentation of formal tree series [35,32,27] and tree series
substitution [27,1,2].

The set {0, 1, 2, . . .} of all non-negative integers is denoted by N, and the set
{1, 2, . . .} of all positive integers is denoted by N+. For every i, j ∈ N the
interval { k ∈ N | i ≤ k ≤ j } is abbreviated by [i, j]. In particular, we use the
shorthand [j] instead of [1, j]. Recall that card(S) denotes the cardinality, i.e.,

5

the number of elements, of a finite set S, hence card([j]) = j. The power set
of a set S is the set of all its subsets, i.e., P(S) = {S ′ | S ′ ⊆ S }, and the set
of all finite subsets is Pf(S) = {S ′ ⊆ S | S ′ is finite }. We write f : S1 −→ S2

for a total mapping from the nonempty set S1 into the nonempty set S2. The
range of f is then defined to be the set { f(s1) | s1 ∈ S1 }.

2.1 Partial orders

Given a nonempty set S, a binary relation ≤ ⊆ S × S is called partial order
(on S), if ≤ is (i) reflexive, i.e., for every s ∈ S we have s ≤ s, (ii) antisym-
metric, i.e., for every s1, s2 ∈ S the facts s1 ≤ s2 and s2 ≤ s1 imply s1 = s2,
and (iii) transitive, i.e., for every s1, s2, s3 ∈ S with s1 ≤ s2 and s2 ≤ s3 also
s1 ≤ s3 holds.

A partial order ≤ ⊆ S × S, which fulfils for every s1, s2 ∈ S the condition
that s1 ≤ s2 or s2 ≤ s1, is said to be a total order. Contrary, whenever neither
s1 ≤ s2 nor s2 ≤ s1, then s1 and s2 are said to be incomparable. As usual,
the strict order < ⊆ S × S is derived from ≤ by setting s1 < s2, if and only
if s1 ≤ s2 and s1 6= s2. Moreover, we define the covering relation l ⊆ S × S
derived from ≤ by setting s1 l s2, if s1 < s2 and for every s ∈ S the condition
s1 ≤ s < s2 implies s = s1.

Finite partial orders can be visualized by means of Hasse diagrams [28]. A
Hasse diagram is a (directed, acyclic, and unlabelled) graph G = (S,l) with
the set S of vertices and the set l of edges, i.e., there is a directed edge from
vertex s1 ∈ S to vertex s2 ∈ S, if and only if s1 l s2. In pictorial expressions,
the vertices are displayed by naming the element of S, and the edges are drawn
as line segments connecting vertices. We generally assume that all edges are
directed upwards, and a line segment is only supposed to intersect with a
vertex, if the vertex is either its starting or ending point.

Finally, a binary relation ≡ ⊆ S×S is said to be an equivalence relation, if ≡
is (i) reflexive, (ii) transitive, and (iii) symmetric, i.e., for every s1, s2 ∈ S the
property s1 ≡ s2 implies s2 ≡ s1. The equivalence class of s ∈ S (with respect
to ≡) is the set [s]≡ = { s′ ∈ S | s ≡ s′ }.

2.2 Words, trees, and bottom-up tree transducers

By a word of length n ∈ N we mean an element of the n-fold Cartesian product
Sn = S × · · · × S of a set S. The set of all words over S is denoted by S∗,
where the particular element () ∈ S0, called the empty word, is displayed as ε,
and the length of a word w ∈ S∗ is denoted by |w|; thus |ε| = 0.

6

Every nonempty and finite set S is called alphabet, of which elements are
termed symbols. A ranked alphabet is defined to be a pair (Σ, rk), of which Σ
is an alphabet and rk : Σ −→ N associates to every symbol of Σ its rank.
For every n ∈ N we use Σ(n) to denote the set of symbols having rank n, i.e.,
Σ(n) = {σ ∈ Σ | rk(σ) = n }. In the following, we usually assume rk to be
implicitly given, identify (Σ, rk) with Σ, and specify the ranked alphabet by
listing the elements of Σ with their ranks put in parentheses as superscripts
as, for example, in {σ(2), α(0)}.

Henceforth, let Σ be a ranked alphabet and X = {xi | i ∈ N+ } be a fixed
countable set of (formal) variables. The set of (finite, labelled, and ordered)
Σ-trees indexed by V ⊆ X, denoted by TΣ(V), is inductively defined to be
the smallest set T such that (i) V ⊆ T and (ii) for every k ∈ N, σ ∈ Σ(k),
and s1, . . . , sk ∈ T also σ(s1, . . . , sk) ∈ T . Since we generally assume that
Σ ∩ X = ∅, we write α instead of α() for every α ∈ Σ(0). The set TΣ of
ground trees is an abbreviation for TΣ(∅). Moreover, given s ∈ TΣ(V) and
unary γ ∈ Σ(1), we abbreviate

γ(γ(· · · (γ(s)) · · ·))︸ ︷︷ ︸
n-times γ

simply by γn(s). Note that γ0(s) = s.

The number of occurrences of a given variable or symbol z ∈ V ∪ Σ in
s ∈ TΣ(V) is denoted by |s|z. For every n ∈ N we denote {x1, . . . , xn} by
the shorthand Xn (note that X0 = ∅). Given n ∈ N, s ∈ TΣ(Xn), and
t1, . . . , tn ∈ TΣ(V), the expression s[t1, . . . , tn] denotes the result of replac-
ing (in parallel) for every i ∈ [n] every occurrence of xi in s by ti, i.e.,
xi[t1, . . . , tn] = ti for every i ∈ [n] and

σ(s1, . . . , sk)[t1, . . . , tn] = σ(s1[t1, . . . , tn], . . . , sk[t1, . . . , tn])

for every k ∈ N, σ ∈ Σ(k), and s1, . . . , sk ∈ TΣ(Xn). Moreover, for tree lan-
guages L ⊆ TΣ(Xk) and L1, . . . , Lk ⊆ TΣ we use

L[L1, . . . , Lk] = { s[t1, . . . , tk] | s ∈ L, t1 ∈ L1, . . . , tk ∈ Lk } .

Let Y ⊂ X be finite and let s ∈ TΣ(X). The tree s is called nondeleting
in Y (respectively, linear in Y), if every y ∈ Y occurs at least once, i.e.,
|s|y ≥ 1, (respectively, at most once, i.e., |s|y ≤ 1) in s. We recursively define
size, height : TΣ(V) −→ N+ by the following equalities:

• for every v ∈ V we have size(v) = 1 = height(v),
• for every k ∈ N, σ ∈ Σ(k), and s1, . . . , sk ∈ TΣ(V) we have

7

size(σ(s1, . . . , sk)) = 1 +
∑
i∈[k]

size(si)

height(σ(s1, . . . , sk)) = 1 + max
i∈[k]

height(si) .

Let Σ be a ranked alphabet in which just one symbol is non-nullary, i.e.,⋃
n∈N+

Σ(n) = {σ}. The set of fully balanced (and symmetric) trees (over Σ) is

defined to be the smallest subset T ⊆ TΣ such that Σ(0) ⊆ T , and given a fully
balanced tree s ∈ T , the tree σ(s, . . . , s) ∈ T is fully balanced. Note that if
card(Σ(0)) = 1, then the height of a fully balanced tree already characterizes
the tree uniquely.

Finally, we shortly recall the concept of a deterministic bottom-up tree trans-
ducer [5–7,17] (splitting up a rule into its state behavior and the computed
output in an obvious way). A deterministic bottom-up tree transducer is a
tuple M = (Q,Σ,∆, F, δ, µ), where Q and F ⊆ Q are finite sets of states
and final states, respectively, Σ and ∆ are the input and output ranked al-
phabet, respectively, δ = (δkσ : Qk −→ Q)k∈N,σ∈Σ(k) is a family of transition
mappings, and (µkσ : Qk −→ Pf(T∆(Xk)))k∈N,σ∈Σ(k) is a family of output

mappings. Additionally, for every k ∈ N, σ ∈ Σ(k), and q1, . . . , qk ∈ Q we
require card(µkσ(q1, . . . , qk)) ≤ 1. The semantics of deterministic bottom-up
tree transducers is defined inductively as follows. Let δ̂ : TΣ −→ Q be the
mapping with δ̂(σ(s1, . . . , sk)) = δkσ(δ̂(s1), . . . , δ̂(sk)) for every k ∈ N, σ ∈ Σ(k),
and s1, . . . , sk ∈ TΣ. Further, let µ̂ : TΣ −→ Pf(T∆) with

µ̂(σ(s1, . . . , sk)) = µkσ(δ̂(s1), . . . , δ̂(sk))[µ̂(s1), . . . , µ̂(sk)] .

The tree transformation computed by M is τM : TΣ −→ Pf(T∆) defined by

τM(s) = { t ∈ µ̂(s) | δ̂(s) ∈ F } .

Note that card(τM(s)) ≤ 1 for every s ∈ TΣ. The class of tree transfor-
mations computable by deterministic bottom-up tree transducers is denoted
by d–BOTtt.

2.3 Monoids and semirings

A monoid is an algebraic structureA = (A,⊗,1) consisting of a carrier (set) A
together with a binary operation ⊗ : A2 −→ A and a constant element 1 ∈ A,
such that the operation ⊗ is associative, i.e., for every a1, a2, a3 ∈ A the
equality a1 ⊗ (a2 ⊗ a3) = (a1 ⊗ a2)⊗ a3 is satisfied, and 1 is the unit element
with respect to ⊗, i.e., for every a ∈ A we demand 1⊗a = a = a⊗1. A monoid
(B,�,1) is a submonoid of A, if B ⊆ A and for every b1, b2 ∈ B it holds that
b1 � b2 = b1 ⊗ b2. The submonoid generated by A′ ⊆ A, denoted by 〈A′〉⊗, is
the smallest submonoid (B,�,1) of A such that A′ ⊆ B. Further, A is said

8

to be commutative, if for every a1, a2 ∈ A the equality a1 ⊗ a2 = a2 ⊗ a1 is
fulfilled. The monoid A possesses an absorbing element 0 ∈ A, if for every
a ∈ A the equality a ⊗ 0 = 0 = 0 ⊗ a holds. If an absorbing element exists,
then it is necessarily unique. Moreover, it can be adjoined to every monoid not
possessing an absorbing element. To show this, let (A,⊗,1) be a monoid and
0 /∈ A. Then (A∪{0},�,1) with a1�a2 = a1⊗a2, if a1, a2 ∈ A, and otherwise
a1 � a2 = 0 is a monoid with an absorbing element, namely 0. We denote a
monoid (A,�,1) possessing the absorbing element 0 by (A,�,1,0). For the
sake of simplicity, we assume that, for no monoid considered, the element 1
is an absorbing element, i.e., we ignore the trivial monoid with the singleton
carrier set.

Let A = (A,⊗,1) be a monoid. As usual, for every a ∈ A and n ∈ N we
denote by an the n-fold product a ⊗ · · · ⊗ a and set a0 = 1. Further, given
n ∈ N and a family (ai)i∈[n] of ai ∈ A, we also use the product (notation)∏
i∈[n] ai = a1 ⊗ · · · ⊗ an, where the order is determined by the total order

1 < 2 < · · · on the index set. Note that
∏
i∈[0] ai = 1. Next we define some

common properties of monoids. The monoid A is said to be

• finite, if A is finite,
• idempotent, if for every a ∈ A we have a⊗ a = a,
• periodic, if for every a ∈ A there exist i, j ∈ N such that i 6= j and ai = aj.
• regular, if for every a ∈ A there exists an a′ ∈ A, also called a weak inverse

of a, such that a⊗ a′ ⊗ a = a, and
• a group, if for every a ∈ A there exists an a′ ∈ A, also called the inverse

of a, such that a⊗ a′ = 1 = a′ ⊗ a.

We denote groups by (A,⊗, (·)−1,1), where (·)−1 : A −→ Amaps each element
to its (unique) inverse. Furthermore, we say that a monoid A = (A,�,1,0)
with an absorbing 0 is a group (with an absorbing zero) and denote this by
(A,�, (·)−1,1,0), if for every a ∈ A \ {0} there exists an inverse element. The
following proposition collects some trivial interrelations between the afore-
mentioned properties.

Proposition 1 Let A = (A,⊗,1) be a monoid. We observe the following
implications between properties of A.

(i) Finiteness implies periodicity.
(ii) Idempotency implies periodicity and regularity.
(iii) If A is a group, then A is also regular and for every a ∈ A the equality

a = a2 implies a = 1.

Important monoids possessing an absorbing element include

• the multiplicative monoid of the non-negative integers N = (N, ·, 1, 0) with
the common operation of multiplication,

9

Table 1
Various monoids and their properties.

monoid commutative finite idempotent periodic regular group

N yes NO NO NO NO NO

Z∞ yes NO NO NO yes yes

Z2 yes yes yes yes yes yes

Z3 yes yes NO yes yes yes

Z4 yes yes NO yes NO NO

Z6 yes yes NO yes yes NO

Rmax yes NO yes yes yes NO

LS NO NO NO NO NO NO

• the additive group of the integers Z∞ = (Z ∪ {+∞},+, 0, (+∞)) with the
usual addition on integers Z extended to (+∞) such that (+∞) is an ab-
sorbing element,
• the multiplicative group Z2 = ([0, 1], ·, 1, 0),
• the multiplicative group Z3 = ([0, 2], ·, 1, 0) with multiplication modulo 3,
• the multiplicative monoid Z4 = ([0, 3], ·, 1, 0) with multiplication modulo 4,
• the multiplicative monoid Z6 = ([0, 5], ·, 1, 0) with multiplication modulo 6,
• the max-monoid over the reals Rmax = (R∪{+∞,−∞},max, (−∞), (+∞))

with the standard maximum operation on the reals R, and
• the language monoid LS = (P(S∗), ◦, {ε}, ∅) for some alphabet S with con-

catenation of words lifted to sets of words as multiplication.

The properties of the introduced monoids are summarized in Table 1, where
we assume that S is a non-trivial alphabet, i.e., card(S) > 1, otherwise LS is
commutative.

By a semiring (with one and absorbing zero) we mean an algebraic structure
A = (A,⊕,�,0,1) with the operations of addition ⊕ : A2 −→ A and multipli-
cation � : A2 −→ A, of which (A,⊕,0), also called the additive monoid, and
(A,�,1,0), also called the multiplicative monoid, are monoids. Additionally,
the former monoid is required to be commutative, the latter possesses 0 as an
absorbing element, and the monoids are connected via the distributivity laws,
i.e., for every a1, a2, a3 ∈ A the equalities a1� (a2⊕a3) = (a1�a2)⊕ (a1�a3)
and (a1 ⊕ a2) � a3 = (a1 � a3) ⊕ (a2 � a3) hold. A commutative semiring
A = (A,⊕,�,0,1) is defined to be a semiring, in which the monoid (A,�,1,0)
is commutative.

In semirings we use the product notation of the multiplicative monoid and the
sum (notation)

∑
i∈I ai for every index set I such that only finitely many ai ∈ A

with i ∈ I are different from 0. Note that the order is obviously irrelevant due

10

Table 2
Operation table of a commutative monoid.

� 0 1 a b

0 0 0 0 0

1 0 1 a b

a 0 a a b

b 0 b b a

to commutativity, and note further that
∑
i∈[0] ai = 0. By convention, we

assume that multiplication has a higher (binding) priority than addition, e.g.,
we read a1 ⊕ a2 � a3 as a1 ⊕ (a2 � a3). Examples of semirings can be found,
for example, in [33,34].

Proposition 2 There exists a monoid (A,�,1,0) with an absorbing 0 such
that there does not exist a semiring (A,⊕,�,0,1).

PROOF. We firstly provide the operation table (cf. Table 2) of such a monoid
({0,1, a, b},�,1,0), which is even commutative. Now suppose there exists a
commutative monoid ({0,1, a, b},⊕,0) such that ({0,1, a, b},⊕,�,0,1) is a
semiring. Consider the sum 1⊕ b.

(1) Let 1 ⊕ b ∈ {1, a}. Then by distributivity a � (1 ⊕ b) = a ⊕ b = a, but
b� (1⊕ b) = b⊕ a = b. Hence a⊕ b 6= b⊕ a which is contradictory.

(2) Let 1⊕ b = b. Then again by distributivity a� (1⊕ b) = a⊕ b = b, but
b� (1⊕ b) = b⊕ a = a. Hence a⊕ b 6= b⊕ a which is contradictory.

(3) Let 1⊕ b = 0. Then

(1⊕b)⊕a = a 6= 1 = 1⊕a�0 = 1⊕a�(1⊕b) = 1⊕a⊕b = 1⊕(b⊕a) ,

which is a contradiction to associativity. 2

However, we can always embed the multiplicative monoid (A,�,1,0) into
a semiring as follows. Let ⊥ /∈ A and let A′ = A ∪ {⊥}. Further, define
⊕,⊗ : A′ × A′ −→ A′ for every a1, a2 ∈ A′ by

a1 ⊕ a2 =


0 , if a1, a2 ∈ A
a1 , if a2 = ⊥
a2 , otherwise

and a1 ⊗ a2 =

a1 � a2 , if a1, a2 ∈ A
⊥ , otherwise .

Then (A′,⊕,⊗,⊥,1) is a semiring (with a new zero).

11

2.4 Formal tree series

Let ∆ be a ranked alphabet and additionally V ⊆ X. Every ϕ : T∆(V) −→ A
into a nonempty set A is called formal tree series (over ∆, V , and A). We
use A〈〈T∆(V)〉〉 to denote the set of all formal tree series over ∆, V , and A.
Given t ∈ T∆(V), we usually write (ϕ, t), termed the coefficient of t, instead
of ϕ(t) and

∑
t∈T∆(V)(ϕ, t) t instead of ϕ, in order to follow the established

conventions. For example,
∑
t∈T∆(V) size(t) t is the tree series which associates

to every tree its size. In addition, if there is an a ∈ A such that for every
t ∈ T∆(V) the coefficient (ϕ, t) = a is constant, then ϕ is said to be constant,
and we use ã to abbreviate such ϕ.

Let (A,�,1,0) be a monoid with an absorbing 0 and ϕ ∈ A〈〈T∆(V)〉〉. The
support of ϕ is defined to be the set supp(ϕ) = { t ∈ T∆(V) | (ϕ, t) 6= 0 }.
Whenever supp(ϕ) is finite, we say that ϕ is a polynomial, and moreover,
a polynomial ϕ is said to be a monomial, if card(supp(ϕ)) ≤ 1. Clearly, a
monomial ϕ obeys ϕ = a t for some a ∈ A and t ∈ T∆(V). The set of all
monomial (respectively, polynomial) formal tree series (over ∆, V , and A) is
denoted by A[T∆(V)] (respectively, A〈T∆(V)〉). A tree series ϕ ∈ A〈〈T∆(V)〉〉 is
said to be boolean, if for every t ∈ T∆(V) the coefficient obeys (ϕ, t) ∈ {0,1}.
Provided L ⊆ T∆(V), we define the characteristic tree series of L by

(char(L), t) =

1 , if t ∈ L
0 , otherwise

for every t ∈ T∆(V). Note that char(L) is boolean and char(L) ∈ A〈T∆(V)〉
if and only if L ∈ Pf(T∆(V)). Moreover, char(L) ∈ A[T∆(V)] if and only if
L ∈ Pf(T∆(V)) and card(L) ≤ 1.

If (A,⊕,�,0,1) is a semiring, we define the sum of ψ1, ψ2 ∈ A〈〈T∆(V)〉〉
pointwise by (ψ1 ⊕ ψ2, t) = (ψ1, t) ⊕ (ψ2, t) for every t ∈ T∆(V). Tree sub-
stitution can then be generalized to tree languages as well as to tree series
over semirings. Let (A,⊕,�,0,1) be a semiring, n ∈ N, ϕ ∈ A〈T∆(Xn)〉,
and ψ1, . . . , ψn ∈ A〈T∆(V)〉. In [27,1] the authors define an IO-substitution
[36,37], i.e., for two occurrences of a variable x ∈ X the same tree is to be
substituted, on tree series. (Pure) substitution of (ψ1, . . . , ψn) into ϕ, denoted
by ϕ←− (ψ1, . . . , ψn), is defined by

ϕ←− (ψ1, . . . , ψn) =
∑

t∈supp(ϕ),
(∀i∈[n]): ti∈supp(ψi)

(
(ϕ, t)�

∏
i∈[n]

(ψi, ti)
)
t[t1, . . . , tn] .

Irrespective of the number of occurrences of xi for some i ∈ [n], the coefficient
(ψi, ti) is taken into account exactly once, even if xi does not appear at all in t.
This particularity led to the introduction of a different notion of substitution,

12

which is also an IO-substitution, defined in [2] as follows.

ϕ
o←− (ψ1, . . . , ψn) =

∑
t∈supp(ϕ),

(∀i∈[n]): ti∈supp(ψi)

(
(ϕ, t)�

∏
i∈[n]

(ψi, ti)
|t|xi

)
t[t1, . . . , tn]

This notion of substitution, called o-substitution, takes (ψi, ti) into account as
often as the corresponding xi appears in t. However, both notions are defined
only for formal tree series over semirings. Next, we restrict the substitutions
to monomials and thereby obtain notions of substitutions also defined for

monoids. Note that
mod←− refers to ←− =

ε←−, if mod = ε, and to
o←−, if

mod = o.

Let (A,�,1,0) be a monoid, ϕ ∈ A[T∆(Xn)], ψ1, . . . , ψn ∈ A[T∆(V)] be an
n-tuple of monomials, and mod ∈ {ε, o} be a modifier. The mod-substitution

of (ψ1, . . . , ψn) into ϕ, denoted by ϕ
mod←−? (ψ1, . . . , ψn), is defined for every

a, a1, . . . , an ∈ A \ {0}, t ∈ T∆(Xn), i ∈ [n], and t1, . . . , tn ∈ T∆(V) by the
following axioms.

ϕ
mod←−? () =ϕ (1)

0̃
mod←−? (ψ1, . . . , ψn) = 0̃ (2)

ϕ
mod←−? (ψ1, . . . , ψi−1, 0̃, ψi+1, . . . , ψn) = 0̃ (3)

a t←−? (a1 t1, . . . , an tn) =
(
a�

∏
i∈[n]

ai

)
t[t1, . . . , tn] (4)

a t
o←−? (a1 t1, . . . , an tn) =

(
a�

∏
i∈[n]

a
|t|xi
i

)
t[t1, . . . , tn] (5)

This way (1)–(4) characterize pure substitution on monomials, and (1)–(3)
and (5) characterize o-substitution on monomials. It is easily seen using Propo-
sition 3.4 of [2], that these are really the restrictions of the respective notions
of substitution, which are defined for semirings (A,⊕,�,0,1), to their multi-
plicative monoid (A,�,1,0), i.e.,

ϕ
mod←− (ψ1, . . . , ψn) = ϕ

mod←−? (ψ1, . . . , ψn) .

Henceforth, we drop the star from the substitution on monomials.

Finally, we mention that [10,3] introduces a notion of substitution based on the
OI-substitution approach [36,37], in which different trees may be substituted
for different occurrences of one variable. There the number of occurrences of
a certain formal variable is taken into account as well. In this paper, we only
deal with the IO-substitution approach.

13

3 Deterministic bottom-up weighted tree transducers

In this section, we recall the notion of a deterministic bottom-up tree series
transducer [1,2]. Then we present another model called deterministic bottom-
up weighted tree transducer (abbreviated deterministic bu-w-tt), and show
that deterministic bu-w-tt over the multiplicative monoid (A,�,1,0) of a
semiring A = (A,⊕,�,0,1) are equivalent to deterministic bottom-up tree
series transducers over A. The main advantage of deterministic bu-w-tt is the
fact that they are defined over a monoid (A,�,1,0) only, and hence that we
can deal with more general algebraic structures (cf. Proposition 2). We present
the necessary definitions in a compact style and refer the reader to [1,2] for
an elaborated introduction into general tree series transducers and weighted
tree transducers.

Before we proceed with the definition of deterministic bottom-up tree series
transducers, we recall some basic notions concerning matrices. Let I and J be
countable index sets and let S be a set of entries. An (I × J)-matrix over S
is a mapping K : I × J −→ S. The set of all matrices over S with indices of
I × J is denoted by SI×J . The element K(i, j) is called the (i, j)-entry of the
matrix K and also written as Ki,j. If it is understood that the matrix K is a
row-vector or column-vector (i.e., I or J is a singleton set, respectively), then
we generally omit the element of the singleton set when indexing elements
of the matrix K. Accordingly, we write, for example, KI instead of KI×{1},
whenever we do not want to stress that the matrix K is a column-vector.

Given a finite set Q of states, input and output ranked alphabets Σ and ∆,
respectively, and a semiring A = (A,⊕,�,0,1), a deterministic bottom-up
tree representation (over Q, Σ, ∆, and A) is a family (µk)k∈N of mappings,
where for every k ∈ N the mapping µk has type

µk : Σ(k) −→ A[T∆(Xk)]
Q×Qk

.

Moreover, for every k ∈ N, σ ∈ Σ(k), and w ∈ Qk there exists at most one
q ∈ Q such that µk(σ)q,w 6= 0̃. A deterministic bottom-up tree series transducer
(over Σ and ∆) is defined as a six-tuple M = (Q,Σ,∆,A, F, µ), where

• Q and F ⊆ Q are nonempty, finite sets of states and final states, respectively,
• Σ and ∆ are the input and output ranked alphabet, respectively; both disjoint

to Q;
• A = (A,⊕,�,0,1) is a semiring, and
• µ is a deterministic bottom-up tree representation over Q, Σ, ∆, and A.

For every mod ∈ {ε, o}, k ∈ N, and σ ∈ Σ(k) the deterministic bottom-

up tree representation µ induces µk(σ)
mod

: (A〈T∆〉Q)k −→ A〈T∆〉Q defined

14

componentwise for every q ∈ Q and R1, . . . , Rk ∈ A〈T∆〉Q by

µk(σ)
mod

(R1, . . . , Rk)q =
∑

q1,...,qk∈Q
µk(σ)q,(q1,...,qk)

mod←−
(
(R1)q1 , . . . , (Rk)qk

)
.

Note that (A〈T∆〉Q, (µk(σ)
mod

)k∈N,σ∈Σ(k)) defines a Σ-algebra, and TΣ is the
initial Σ-algebra. There exists a unique homomorphism hmod

µ : TΣ −→ A〈T∆〉Q,

which is defined for every k ∈ N, σ ∈ Σ(k), and s1, . . . , sk ∈ TΣ by

hmod
µ (σ(s1, . . . , sk)) = µk(σ)

mod
(hmod

µ (s1), . . . , h
mod
µ (sk)) .

It can easily be proved by structural induction that hmod
µ (s) ∈ A[T∆]Q for

every s ∈ TΣ, hence we can replace A〈T∆〉Q by A[T∆]Q in the types of

µk(σ)
mod

and hmod
µ . Finally, the mod-tree-to-tree-series transformation, for

short: mod-t-ts transformation, computed by M is τmod
M : TΣ −→ A[T∆]

specified for every s ∈ TΣ by τmod
M (s) =

∑
q∈F h

mod
µ (s)q.

Definition 3 A deterministic bottom-up weighted tree transducer (over A),
abbreviated deterministic bu-w-tt, is defined as M = (Q,Σ,∆,A, F, δ, µ) where

• Q and F ⊆ Q are finite and nonempty sets of states and final states,
respectively,
• Σ and ∆ are the input and output ranked alphabet, respectively; both dis-

joint to Q;
• A = (A,�,1,0) is a monoid with an absorbing element 0,
• δ = (δkσ : Qk −→ Q)k∈N,σ∈Σ(k) is a family of state transition mappings,

and
• µ = (µkσ : Qk −→ A[T∆(Xk)])k∈N,σ∈Σ(k) is a family of output mappings.

The deterministic bu-w-tt M is boolean, if for every k ∈ N and σ ∈ Σ(k) every
monomial in the range of µkσ is boolean. We also make use of the following
syntactic restrictions of deterministic bu-w-tt. Let M = (Q,Σ,∆,A, F, δ, µ)
be a deterministic bu-w-tt; we say that M is

• nondeleting (respectively, linear), if for every k ∈ N, q1, . . . , qk ∈ Q, and
σ ∈ Σ(k) every variable x ∈ Xk appears at least once, i.e., |t|x ≥ 1, (respec-
tively, at most once, i.e., |t|x ≤ 1) in any t ∈ supp(µkσ(q1, . . . , qk)),
• total, if F = Q and for every k ∈ N, σ ∈ Σ(k), and q1, . . . , qk ∈ Q we have
µkσ(q1, . . . , qk) 6= 0̃, and
• a homomorphism, if M is total and Q is a singleton.

In case M is a deterministic homomorphism bu-w-tt, we just say that M is
a homomorphism bu-w-tt. Finally, we should assign a formal semantics to
deterministic bu-w-tt. In fact, we define two different semantics, namely the
tree-to-tree-series transformation, abbreviated t-ts transformation, and the o-
tree-to-tree-series transformation, abbreviated o-t-ts transformation. Both are

15

defined in the very same manner except for the type of substitution being
used.

Definition 4 Let mod ∈ {ε, o} and M = (Q,Σ,∆,A, F, δ, µ) be a determin-
istic bu-w-tt over A = (A,�,1,0). For every s ∈ TΣ we define δ̂ : TΣ −→ Q
and µ̂mod : TΣ −→ A[T∆] by structural recursion as follows. For every k ∈ N,
σ ∈ Σ(k), and s1, . . . , sk ∈ TΣ we let δ̂(σ(s1, . . . , sk)) = δkσ(δ̂(s1), . . . , δ̂(sk)) and

µ̂mod(σ(s1, . . . , sk)) = µkσ(δ̂(s1), . . . , δ̂(sk))
mod←− (µ̂mod(s1), . . . , µ̂mod(sk)) .

The mod-tree-to-tree-series transformation computed by M is the mapping
τmod
M : TΣ −→ A[T∆] specified for every s ∈ TΣ by

τmod
M (s) =

µ̂mod(s) , if δ̂(s) ∈ F
0̃ , otherwise .

Example 5 The deterministic bu-w-tt Msize = ({?},Σ,Σ,Z∞, {?}, δ, µ) with
input and output ranked alphabet Σ = {σ(2), α(0)}, state transition mappings
δ = (δ2

σ, δ
0
α), and output mappings µ = (µ2

σ, µ
0
α) is defined by

δ2
σ(?, ?) = δ0

α() = ? , µ2
σ(?, ?) = 1 σ(x1, x2) , and µ0

α() = 1 α .

We observe that for every s ∈ TΣ we have τMsize
(s) = τ oMsize

(s) = size(s) s.
Moreover, Msize is a linear and nondeleting homomorphism bu-w-tt, which is
not boolean.

In the sequel, we investigate the computational power of various subclasses
of deterministic bu-w-tt and compare their computational power by means
of set inclusion. The next definition establishes shorthands for such classes of
mod-t-ts transformations also taking the two different notions of substitution
into account.

Definition 6 Let mod ∈ {ε, o} and A = (A,�,1,0) be a monoid. Fur-
ther, let Pref = {n, l, t, h} be a set of abbreviations standing for nondelet-
ing, linear, total, and homomorphism, respectively. Moreover, let r ⊆ Pref.
The class dr–BOTmod(A) denotes the class of all mod-t-ts transformations
τ : TΣ −→ A[T∆] such that there exists a deterministic bu-w-tt

M = (Q,Σ,∆,A, F, δ, µ)

with τmod
M = τ , and M obeys all the restrictions abbreviated in r. Henceforth,

we omit the set braces and the separating commata and just list the letters
in r. We say that r is a prefix.

We generally omit the d and the prefix t (standing for deterministic and total)
in case the prefix h (standing for homomorphism) is present, because homo-
morphism tree transducers are deterministic and total by definition. Finally,

16

we define the set Π = {d, dn, dl, dt, h, dnl, dnt, hn, dlt, hl, dnlt, hnl} of sensible
combinations and the restrictions Πr = { π ∈ Π | r ∈ π } for every r ∈ Pref.

We note that all the restrictions and classes have been defined for deterministic
bottom-up tree series transducers [1,2] as well. Next, we establish relations be-
tween deterministic bu-w-tt, deterministic bottom-up tree series transducers,
and deterministic bottom-up tree transducers.

Let us start by showing that deterministic bu-w-tt over multiplicative monoids
of semirings compute the same class of mod-t-ts transformations as determin-
istic bottom-up tree series transducers. Let A = (A,⊕,�,0,1) be a semiring,
M1 = (Q1,Σ,∆,A, F1, µ1) be a deterministic bottom-up tree series transducer,
and M2 = (Q2,Σ,∆, (A,�,1,0), F2, δ2, µ2) be a deterministic bu-w-tt over
the multiplicative monoid of A. The device M1 is related to M2, if Q1 = Q2,
F1 = F2, and for every k ∈ N, σ ∈ Σ(k), and q, q1, . . . , qk ∈ Q1 we have
(µ1)k(σ)q,(q1,...,qk) 6= 0̃ implies

(δ2)
k
σ(q1, . . . , qk) = q and (µ2)

k
σ(q1, . . . , qk) = (µ1)k(σ)q,(q1,...,qk) ,

as well as (µ1)k(σ)(δ2)k
σ(q1,...,qk),(q1,...,qk) = (µ2)

k
σ(q1, . . . , qk). A straightforward

induction on the structure of s ∈ TΣ then shows for every mod ∈ {ε, o} that

(µ̂2)mod(s) = hmod
µ1

(s)
δ̂2(s)

and thus τmod
M1

(s) = τmod
M2

(s), whenever M1 is related to M2. Note that M1

obeys the restrictions of π ∈ Π, if and only if M2 obeys the restrictions of π.

Proposition 7 Let A = (A,⊕,�,0,1) be a semiring. Then for every π ∈ Π
and mod ∈ {ε, o} we have

π–BOTmod
t-ts (A) = π–BOTmod((A,�,1,0)) ,

where π–BOTmod
t-ts (A) denotes the class of all mod-t-ts transformations com-

putable by bottom-up tree series transducers obeying all the restrictions of π
(cf. [1,2]).

Next, we transfer the obvious relationship between deterministic bottom-up
tree transducers on the one hand and deterministic bottom-up tree series
transducers over the Boolean semiring B = ({0, 1},∨,∧, 0, 1) on the other
hand (cf. Corollary 4.7 of [1] and Corollary 5.9 of [2]) to the corresponding re-
lationship between deterministic bottom-up tree transducers and deterministic
bu-w-tt over Z2. Let S = {L ∈ Pf(T∆) | card(L) ≤ 1 } and ∼ ⊆ Z2[T∆] × S
be the relation defined by ϕ ∼ L, if and only if L = supp(ϕ). Indeed the
relation ∼ is a bijection. Consequently, for every τ1 : TΣ −→ Z2[T∆] and
τ2 : TΣ −→ S, let τ1 ∼ τ2 if and only if for every s ∈ TΣ we have τ1(s) ∼ τ2(s).
Moreover, let ∼ also be defined on classes of mappings in the obvious way.

17

Proposition 8 For every π ∈ Π and modifier mod ∈ {ε, o} we have

π–BOTmod(Z2) ∼ π–BOTtt ,

where π–BOTtt denotes the class of all tree transformations computable by
bottom-up tree transducers obeying all the restrictions of π (cf. [7]).

PROOF. In the same spirit as ∼, a relation between deterministic bottom-
up tree transducers and deterministic bu-w-tt over the group Z2 can be es-
tablished (cf. Corollary 4.7 of [1]). More precisely, a deterministic bottom-up
tree transducer M1 = (Q1,Σ,∆, F1, δ1, µ1) is related to a deterministic bu-w-tt
M2 = (Q2,Σ,∆,Z2, F2, δ2, µ2), if Q1 = Q2, F1 = F2, δ1 = δ2, and for every
k ∈ N, σ ∈ Σ(k), and q1, . . . , qk ∈ Q1 the following condition holds.

(µ1)
k
σ(q1, . . . , qk) = supp((µ2)

k
σ(q1, . . . , qk))

Note that for every combination π ∈ Π we have that M1 obeys the restrictions
of π, if and only if M2 obeys them. Moreover, if M1 is related to M2, then
τM1 ∼ τmod

M2
(cf. Corollary 4.7 of [1] and Corollary 5.9 of [2]). The proof of the

last statement is straightforward and left to the reader. 2

Thus, deterministic bottom-up tree transducers and deterministic bu-w-tt over
the group Z2 are equally powerful, which allows us to treat deterministic
bottom-up tree transducers as if they were deterministic bu-w-tt over the
group Z2 in order to have a unique presentation.

Corollary 9 For every combination π ∈ Π we have

π–BOTo(Z2) = π–BOT(Z2) .

4 Hasse diagrams

In this section, we investigate the relation between classes of t-ts and o-t-ts
transformations computed by deterministic bu-w-tt with respect to set in-
clusion. We derive several Hasse diagrams displaying the relationships given
certain properties of the underlying monoid. As a starting point, we state the
well-known Hasse diagram for deterministic bu-w-tt over the group Z2, i.e.,
for deterministic bottom-up tree transducers. Figure 1 displays the Hasse dia-
gram for all classes of t-ts and o-t-ts transformations defined in Definition 6 (for
A = Z2). In order to present concise diagrams, we shorten the denotation of
the classes from π–BOTmod(A) to just πmod for every combination π ∈ Π and
mod ∈ {ε, o}. Moreover, we use π= to express that π–BOTo(A) = π–BOT(A).

18

d=

dn= dl= dt=

dnl= dnt= dlt= h=

dnlt= hn= hl=

hnl=

Fig. 1. Hasse diagram for the group Z2.

Let A = (A,�,1,0) be a commutative monoid with at least three elements. In
Section 4.1, we derive some statements which hold for every such monoid A.
In the sequel, we consider the case that A is non-periodic (cf. Section 4.2).
Section 4.3 is dedicated to periodic, but non-regular monoids A. Automati-
cally, such a monoid A is non-idempotent and no group with an absorbing
element by Proposition 1. The next case, which is handled in Section 4.4, ad-
ditionally assumes that A is regular, but still not idempotent and no group
with an absorbing element. Thereafter, we consider the case in which A is
idempotent. This again excludes the case that A is actually a group with an
absorbing element. The final case of groups (with an absorbing element) is
taken care of in Section 4.6.

Theorem 10 Figure 1 is the Hasse diagram of the displayed classes of t-ts
and o-t-ts transformations over Z2 ordered by set inclusion.

PROOF. The equalities are concluded from Corollary 9 and all the inclusions
hold by definition. Finally, the following four statements are sufficient to prove
strictness and incomparability.

dnlt–BOT(Z2) 6⊆ h–BOT(Z2) (6)

dnl–BOT(Z2) 6⊆ dt–BOT(Z2) (7)

hn–BOT(Z2) 6⊆ dl–BOT(Z2) (8)

hl–BOT(Z2) 6⊆ dn–BOT(Z2) (9)

The inequalities (6) and (7) are trivial, and (8) and (9) are due to Theorem 3.3
of [38]. 2

19

4.1 Results for arbitrary monoids

In this section, we derive some statements which hold irrespective of the un-
derlying monoid A = (A,�,1,0). We show how to use the results of the
Hasse diagram in Figure 1 in order to obtain incomparability results for
classes of t-ts and o-t-ts transformations over monoids A different from Z2.
Roughly speaking, we show that all inequalities present in Figure 1 are pre-
served in the transition from Z2 to A. This is mainly due to the fact that
Z2 is a submonoid (with absorbing 0) of A. Hence we take a counterexample
in Z2, i.e., a mod1-t-ts transformation τ which is in the class π1–BOTmod1(Z2),
but not in the class π2–BOTmod2(Z2) for some modifiers mod1,mod2 ∈ {ε, o}
and π1, π2 ∈ Π. Then we prove that τ is also a counterexample for the inclu-
sion π1–BOTmod1(A) ⊆ π2–BOTmod2(A), i.e., τ is trivially in π1–BOTmod1(A)
because Z2 is a submonoid of A, but still not in π2–BOTmod2(A).

For the purpose of the next lemma, we restrict the counterexample τ to be
computed by a total deterministic bu-w-tt M = (Q,Σ,∆,Z2, F, δ, µ). Now
assume that τ ∈ π2–BOTmod2(A), i.e., there exists a deterministic bu-w-tt
M ′ = (Q′,Σ,∆,A, F ′, δ′, µ′) such that τmod2

M ′ = τ . It follows from the totality
of M that for every s ∈ TΣ there exists a unique t ∈ T∆ such that τ(s) = 1 t.
Moreover, it follows that all reachable states of M ′ must be final and that for
every k ∈ N, σ ∈ Σ(k), and all reachable states q1, . . . , qk ∈ Q′ of M ′ we have
that (µ′)kσ(q1, . . . , qk) is boolean. Then we can easily drop the states which
are not reachable from M ′ and obtain a boolean total deterministic bu-w-tt
M ′′ with τmod2

M ′′ = τ . However, boolean deterministic bu-w-tt compute solely
in Z2, and therefore, M ′′ can equivalently be specified as deterministic bu-w-tt
over Z2, which is a contradiction to the assumption that τ /∈ π2–BOTmod2(Z2).

Lemma 11 Let A = (A,�,1,0) be a monoid and mod1,mod2 ∈ {ε, o}. Fur-
thermore, let π1 ∈ Πt and π2 ∈ Π. If π1–BOTmod1(Z2) 6⊆ π2–BOTmod2(Z2),
then also π1–BOTmod1(A) 6⊆ π2–BOTmod2(A).

PROOF. Let τ ∈ π1–BOTmod1(Z2) \ π2–BOTmod2(Z2) be a mod1-t-ts trans-
formation, hence there exists a deterministic bu-w-tt M ′ obeying the restric-
tions π1 such that τ = τmod1

M ′ . Obviously, π1–BOTmod1(Z2) ⊆ π1–BOTmod1(A),
because Z2 is a submonoid of A. Thus there exists a total deterministic
bu-w-tt M1 = (Q1,Σ,∆,A, F1, δ1, µ1) obeying the restrictions of π1 such that
τmod1
M1

= τ . Note that µ̂1mod1
(s) 6= 0̃ for every s ∈ TΣ.

Now we prove by contradiction that τ /∈ π2–BOTmod2(A). Therefore, as-
sume that τ ∈ π2–BOTmod2(A), i.e., there exists a deterministic bu-w-tt
M2 = (Q2,Σ,∆,A, F2, δ2, µ2) obeying the restrictions of π2 with τmod2

M2
= τ .

The remaining proof first shows that there also exists a boolean deterministic

20

bu-w-tt M ′′ obeying the restrictions of π2 such that τmod2
M ′′ = τ . The final step

then shows that the existence of M ′′ would yield that τ ∈ π2–BOTmod2(Z2)
contrary to the fact that τ /∈ π2–BOTmod2(Z2). Hence τ /∈ π2–BOTmod2(A).

We construct a boolean deterministic bu-w-tt M ′′ = (Q2,Σ,∆,A, F2, δ2, µ
′′)

obeying the restrictions π2 and τmod2
M ′′ = τmod2

M2
= τ . Let µ′′ = ((µ′′)kσ)k∈N,σ∈Σ(k)

and for every k ∈ N, σ ∈ Σ(k), and q1, . . . , qk ∈ Q2 let

(µ′′)kσ(q1, . . . , qk) = char(supp((µ2)
k
σ(q1, . . . , qk))) .

Obviously, M ′′ is boolean and obeys the restrictions of π2. For our subgoal,
it remains to show that τmod2

M ′′ = τmod2
M2

. Therefore we obviously have to prove

that µ̂′′mod2
(s) = µ̂2mod2

(s) for every s ∈ TΣ. We perform induction over the
structure of s.

Let s = σ(s1, . . . , sk) for some k ∈ N, σ ∈ Σ(k), and s1, . . . , sk ∈ TΣ. We
distinguish two separate cases.

(i) Let i ∈ [k] be such that µ̂2mod2
(si) = 0̃ or (µ2)

k
σ(δ̂2(s1), . . . , δ̂2(sk)) = 0̃.

Then τmod2
M2

(s) = 0̃, but contrary τmod2
M2

(s) = τmod1
M1

(s) 6= 0̃ because M1 is
boolean and total.

(ii) Assume that for every i ∈ [k] we have µ̂2mod2
(si) 6= 0̃ and

(µ2)
k
σ(δ̂2(s1), . . . , δ̂2(sk)) = a t

for some a ∈ A \ {0} and t ∈ T∆(Xk). By induction hypothesis also
µ̂2mod2

(si) = µ̂′′mod2
(si) holds, and consequently, µ̂2mod2

(si) = 1 ti for
some ti ∈ T∆ because M ′′ is boolean. Then

µ̂2mod2
(σ(s1, . . . , sk))

= (µ2)
k
σ(δ̂2(s1), . . . , δ̂2(sk))

mod2←− (µ̂2mod2
(s1), . . . , µ̂2mod2

(sk))

= a t
mod2←− (1 t1, . . . ,1 tk)

= a t[t1, . . . , tk] .

Since τmod1
M1

(s) 6= 0̃ we conclude that τmod2
M2

(s) = µ̂2mod2
(s). Further, M1

is boolean, so also µ̂2mod2
(s) is boolean, and we continue with

µ̂2mod2
(σ(s1, . . . , sk))

= a t[t1, . . . , tk]

=1 t[t1, . . . , tk]

=1 t
mod2←− (1 t1, . . . ,1 tk)

= (µ′′)kσ(δ̂2(s1), . . . , δ̂2(sk))
mod2←− (µ̂′′mod2

(s1), . . . , µ̂′′mod2
(sk))

= µ̂′′mod2
(σ(s1, . . . , sk)) .

21

Hence there also exists a boolean deterministic bu-w-tt M ′′ obeying the re-
strictions of π2 such that τmod2

M ′′ = τ . Immediately, we obtain that

M = (Q2,Σ,∆,Z2, F2, δ2, µ
′′)

is a deterministic bu-w-tt obeying all the restrictions of π2 over Z2 such that
τmod2
M = τ . However, this is contradictory to the assumption, because τ was

chosen such that τ /∈ π2–BOTmod2(Z2), which finally proves the lemma. 2

Thus we can derive inequality for classes of t-ts and o-t-ts transformations over
the monoid A = (A,�,1,0) simply by observing inequality for the respective
classes of t-ts and o-t-ts transformations over the group Z2. Roughly speaking,
these latter inequalities are based solely on a deficiency in the tree output
component of one class. For example, for any mod ∈ {ε, o} the mod-t-ts
transformation which maps each input tree to a fully balanced binary tree of
the same height with whatever nonzero cost cannot be computed by a linear
deterministic bu-w-tt. In order to generate the fully balanced binary trees, one
definitely needs the copying of output trees. Another example is totality. The
mod-t-ts transformation which maps every input tree to 0̃ obviously cannot
be computed by a total deterministic bu-w-tt.

The following lemma presents the conclusions of Figure 1 and Lemma 11.
Moreover, it adds the missing case of totality, which is straightforward using
the remark of the previous paragraph.

Lemma 12 Let A = (A,�,1,0) be a monoid and mod1,mod2 ∈ {ε, o}. For
every π1, π2 ∈ Π such that there exists r ∈ Pref which occurs in π2 but not
in π1, i.e., r ∈ π2 \ π1, we have

π1–BOTmod1(A) 6⊆ π2–BOTmod2(A) .

PROOF. We distinguish two cases.

(i) Let r 6= t. Apparently, r /∈ π1∪{t}, so let π′1 = π1∪{t}. From Figure 1, we
can check that π′1–BOTmod1(Z2) 6⊆ π2–BOTmod2(Z2) and with the help
of Lemma 11 we conclude π′1–BOTmod1(A) 6⊆ π2–BOTmod2(A). Trivially,
π′1–BOTmod1(A) ⊆ π1–BOTmod1(A), hence

π1–BOTmod1(A) 6⊆ π2–BOTmod2(A) .

(ii) Let r = t. Moreover, let Σ = {α(0)}. We construct the linear and non-
deleting deterministic bu-w-tt M = ({?},Σ,Σ,A, {?}, δ, µ) with tran-
sition mappings δ = (δ0

α) and output mappings µ = (µ0
α) specified

by δ0
α() = ? and µ0

α() = 0̃. Apparently, τmod1
M ∈ π1–BOTmod1(A) and

22

τmod1
M /∈ π2–BOTmod2(A), because t ∈ π2. Hence

π1–BOTmod1(A) 6⊆ π2–BOTmod2(A) .

2

Due to the previous corollary, we can restrict our attention to the compari-
son of classes of t-ts transformations with the corresponding classes of o-t-ts
transformations. As a first comparison we restate the equality of the classes
of t-ts and o-t-ts transformations for all restrictions which contain both the
nondeletion as well as the linearity restriction. This equality was shown for
tree series transducers in [2], but can also be seen from the definition of pure
and o-substitution, because both notions coincide whenever the participating
tree series are nondeleting and linear.

Proposition 13 Let A = (A,�,1,0) be a monoid. Then

π–BOTo(A) = π–BOT(A)

for every π ∈ {dnl, dnlt, hnl}.

The final result of this section shows two inequality results. Essentially, we
prove that the classes of t-ts transformations and o-t-ts transformations com-
puted by linear homomorphism bu-w-tt are incomparable. Due to the Hasse
diagram presented in Figure 1, we cannot prove this result for every monoid
with absorbing element, but rather we require that the monoid (A,�,1,0)
has at least three elements, i.e., 0 6= 1, and it is not isomorphic to Z2.

Since we often deal with homomorphism bu-w-tt, of which the state behaviour
is completely determined, in the sequel, we do not explicitly specify the state
transition mappings δ, but assume that they are specified in the only possible
way. The result hl–BOT(A) 6⊆ h–BOTo(A) is proved essentially by exploiting
the property that pure substitution can distinguish two output trees with
different weights, although it deletes them. On the other hand, this distinction
vanishes in o-substitution, and we cannot use the state to signal the difference,
because we consider homomorphism bu-w-tt. The same properties are used to
prove hl–BOTo(A) 6⊆ h–BOT(A).

Lemma 14 Let A = (A,�,1,0) be a monoid and A 6= {0,1}. Then

hl–BOT(A) 6⊆ h–BOTo(A) and hl–BOTo(A) 6⊆ h–BOT(A) .

PROOF. Let us prove the former statement. We choose a ∈ A \ {0,1}
arbitrarily. Let Σ = {γ(1), α(0), β(0)} and M1 = ({?},Σ,Σ,A, {?}, δ1, µ1) be

23

the linear homomorphism bu-w-tt with µ1 = ((µ1)
1
γ, (µ1)

0
α, (µ1)

0
β) specified by

(µ1)
1
γ(?) = 1 α , (µ1)

0
α() = a α , (µ1)

0
β() = 1 β .

Let τ = τM1 . Clearly, τ ∈ hl–BOT(A), and moreover, τ(γ(α)) = a α and
τ(γ(β)) = 1 α.

Now let us prove that τ /∈ h–BOTo(A). We prove this statement by contra-
diction, so assume that there exists a homomorphism bu-w-tt

M2 = ({?},Σ,Σ,A, {?}, δ2, µ2)

such that τ oM2
= τ . Trivially, δ2 = δ1 and µ2 = ((µ2)

1
γ, (µ2)

0
α, (µ2)

0
β) with

(µ2)
1
γ(?) = c t , (µ2)

0
α() = a α , (µ2)

0
β() = 1 β

for some c ∈ A and t ∈ TΣ(X1). Moreover, we readily observe t = α, otherwise
supp(τ oM2

(γ(β))) 6= {α}. Consequently, τ oM2
(γ(α)) = τ oM2

(γ(β)) = cα. Thus we
obtain the contradiction a = 1 and conclude that τ /∈ h–BOTo(A).

To show the latter statement, i.e., hl–BOTo(A) 6⊆ h–BOT(A), let τ o = τ oM1
.

Obviously, τ o ∈ hl–BOTo(A), and moreover, τ o(γ(α)) = τ o(γ(β)) = 1 α. Let
us prove that τ o /∈ h–BOT(A). We prove this statement by contradiction, so
suppose that there exists a homomorphism bu-w-tt

M3 = ({?},Σ,Σ,A, {?}, δ3, µ3)

such that τM3 = τ o. Trivially, we see that δ3 = δ1 and µ3 = ((µ3)
1
γ, (µ3)

0
α, (µ3)

0
β)

with
(µ3)

1
γ(?) = c t , (µ3)

0
α() = a α , (µ3)

0
β() = 1 β

for some c ∈ A and t ∈ TΣ(X1). Moreover, we again readily observe t = α,
else supp(τM3(γ(β))) 6= {α}. Consequently,

τM3(γ(α)) = (c� a) α = 1 α = c α = τM3(γ(β)) ,

which yields c = 1 and hence also a = 1. This is contrary to the assumption
that a ∈ A \ {0,1}. Thus we conclude that τ o /∈ h–BOT(A). 2

In particular, the former lemma also proves that the classes of t-ts and o-t-ts
transformations computed by homomorphism bu-w-tt are incomparable for
all monoids different from Z2. In fact, it can be seen from the proof of the
previous lemma that there is a single homomorphism bu-w-tt M such that
τM /∈ h–BOTo(A) and τ oM /∈ h–BOT(A).

Corollary 15 We have A = Z2, if and only if for every π ∈ Π the equality
π–BOTo(A) = π–BOT(A) holds.

24

PROOF. The equality in Z2 is shown in Theorem 10, and Lemma 14 proves
the incomparability of hl–BOTo(A) and hl–BOT(A) in all other monoids. 2

However, without additional information about the monoid we are unable
to prove further comparability or incomparability results. Hence we consider
monoids with certain properties in subsequent sections. The properties are
chosen such that we obtain a Hasse diagram for every commutative monoid.

4.2 Non-periodic monoids

In this section, we show that for non-periodic monoids almost all classes of t-ts
and o-t-ts transformations (except the ones containing both the nondeletion
and linearity restriction) computed by restricted deterministic bu-w-tt are
incomparable with respect to set inclusion. An example of a non-periodic
monoid is the multiplicative monoid of N. To be precise, we even show that

π–BOT(A) 6⊆ d–BOTo(A) and π–BOTo(A) 6⊆ d–BOT(A)

for every π ∈ {hn, hl} and non-periodic monoid A.

The general idea of the proof is the following. Let a ∈ A be such that
ai 6= aj, whenever i 6= j where i, j ∈ N. We construct a homomorphism
bu-w-tt M1, which computes a t-ts transformation τ in which arbitrarily large
powers of a occur as weights in the range. Let us first consider the result
hl–BOTmod1(A) 6⊆ d–BOTmod2(A) where mod1 and mod2 are different. Our
input ranked alphabet will have two unary symbols; encountering γ1 in the in-
put we stack another a to the weight computed so far and output a prolonged
output tree, and encountering γ2 we delete the computed output tree at no
cost. Since every deterministic bu-w-tt M = (Q,Σ,∆,A, F, δ, µ), which also
computes τ but as a mod2-t-ts transformation, has only finitely many states,
it must permit at least one final state q which accepts infinitely many input
trees. In particular, the transition from q to some state reading γ2 is interest-
ing. In the case of mod2 = o, the weight of the outputted tree is reset to the
weight present in the monomial µ1

γ2
(q), which is to be defined. On the other

hand, pure substitution stacks another a to the weight of the output tree com-
puted. It can be shown that among those infinitely many input trees which q
accepts, there are two for which the weights an1 and an2 of their corresponding
output trees is different (this is mainly due to the fact that arbitrarily large
powers of a can occur). Since all the powers of a are different, there is no
consistent way to define µ1

γ2
(q). Similarly, when mod2 = ε one encounters the

problem that o-substitution resets the weight to 1, whenever a γ2 is read in
the input. The above remarks about the weights an1 and an2 apply as well
and in order to define µ1

γ2
(q) in this case there should be an element b ∈ A

25

such that an1 � b = 1 = an2 � b which is shown to be contradictory. Summing
up, with pure substitution one can remember the number of γ2 encountered in
the whole input tree even if a part of the transformation of the input tree was
deleted. On the other hand, using o-substitution when deleting a computed
output tree, we can easily reset the weight to a determined value irrespective
of the weight of the output tree computed so far.

The arguments required for the result on nondeleting homomorphism bu-w-tt
are similar, but use copying instead of deletion. In principle, pure substitution
has the problem that it is supposed to square the weight of the computed
output tree. However, those output trees may have infinitely many different
weights, so that this information cannot be stored in the states and there is no
element b ∈ A which squares an1 and an2 , i.e., a2n1 = an1�b and a2n2 = an2�b,
for suitable n1, n2 ∈ N. Conversely, o-substitution squares the weight of the
computed output tree and therefore needs an element which when multiplied
to a2n1 and a2n2 computes their square roots. It is shown that for selected
n1, n2 ∈ N such an element cannot exist.

Lemma 16 Let A be a non-periodic monoid. For every π ∈ {hn, hl} and
{mod1,mod2} = {ε, o} we have

π–BOTmod1(A) 6⊆ d–BOTmod2(A) .

PROOF. Since A is non-periodic, there exists an a ∈ A such that for every
i, j ∈ N we have ai = aj, if and only if i = j. Further let ∆ = {γ(1), α(0)}.
Let us prove the statement by case analysis on π. Case (1) considers the case
where π = hl and Case (2) supposes π = hn.

(1) Let Γ = {γ(1)
1 , γ

(1)
2 , α(0)}. We construct the linear homomorphism bu-w-tt

M1 = ({?},Γ,∆,A, {?}, δ1, µ1) with µ1 = ((µ1)
1
γ1
, (µ1)

1
γ2
, (µ1)

0
α) specified

by
(µ1)

1
γ1

(?) = a γ(x1) , (µ1)
1
γ2

(?) = (µ1)
0
α() = 1 α .

Moreover, we define l1 : TΓ −→ N recursively for every t ∈ TΓ as follows.

l1(γ1(t)) = l1(t) + 1 and l1(γ2(t)) = l1(α) = 0 .

Note that M1 computes the t-ts transformation τM1 : TΓ −→ A[T∆] map-
ping every s ∈ TΓ to the monomial a|s|γ1 γl1(s)(α), and the o-t-ts transfor-
mation τ oM1

: TΓ −→ A[T∆] mapping s to the monomial al1(s) γl1(s)(α).

Next, we prove that τmod1
M1

/∈ d–BOTmod2(A), which yields

hl–BOTmod1(A) 6⊆ d–BOTmod2(A) .

Suppose there exists a deterministic bu-w-tt M = (Q,Γ,∆,A, F, δ, µ)
such that τmod2

M = τmod1
M1

.

26

We observe that for every s ∈ TΓ we have that τmod1
M1

(s) 6= 0̃, and

consequently, τmod2
M (s) = µ̂mod2(s) as well as δ̂(s) ∈ F . (Note that if

an = 0 for some n ∈ N, then an = an+1 which contradicts to our as-
sumption.) Next we prove that there are q ∈ F and s1, s2 ∈ TΓ such that
δ̂(s1) = q = δ̂(s2) and |s1|γ1 6= |s2|γ1 and l1(s1) 6= l1(s2). Therefore, we

let Γ′ = {γ(1)
1 , α(0)} ⊂ Γ, hence TΓ′ ⊆ TΓ. We show that s1 and s2 can

actually be chosen from TΓ′ . Clearly, there exist q ∈ F and an infinite set
S ⊆ TΓ′ such that q = δ̂(s) for every s ∈ S, because Q is finite whereas
TΓ′ is infinite. For every s ∈ S we have size(s) = |s|γ1 + 1 = l1(s) + 1,
because S ⊆ TΓ′ . We observe that [s]≡size

, where s ≡size s
′ if and only

if size(s) = size(s′), is finite for every s ∈ S, hence by the pigeon-hole
principle there must exist s1, s2 ∈ S such that size(s1) 6= size(s2), i.e.,
|s1|γ1 6= |s2|γ1 and l1(s1) 6= l1(s2).

Hence we can safely assume that there exist q ∈ F and s1, s2 ∈ TΓ such
that δ̂(s1) = q = δ̂(s2) and |s1|γ1 6= |s2|γ1 and l1(s1) 6= l1(s2). Since

supp(τmod1
M1

(γ2(s1))) = supp(τmod1
M1

(γ2(s2))) = {α} ,

and

τmod2
M (γ2(si)) = µ̂mod2(γ2(si)) = µ1

γ2
(q)

mod2←− (µ̂mod2(si))

for every i ∈ [2], we have µ1
γ2

(q) 6= 0̃, and thereby, µ1
γ2

(q) = a′ t for
some a′ ∈ A \ {0} and t ∈ T∆(X1). Next we prove that t = α. Since
τmod2
M = τmod1

M1
we have that

supp(τmod1
M1

(si)) = supp(µ̂mod2(si)) = supp(τmod2
M (si)) = {γl1(si)(α)} .

Then

α= supp(τmod1
M1

(γ2(si))) = supp(τmod2
M (γ2(si)))

= supp(µ1
γ2

(q)
mod2←− (µ̂mod2(si)))

= t[γl1(si)(α)] .

Now using l1(s1) 6= l1(s2) we conclude |t|x1 = 0, thus finally, t = α.
We obtain for every i ∈ [2]

τmod2
M (γ2(si)) = a′ α

mod2←− (τmod1
M1

(si))

=

(a′ � al1(si)) α , if mod2 = ε

a′ α , if mod2 = o .

Recall now that mod1 6= mod2 and τM1(γ2(si)) = a|si|γ1 α and

τ oM1
(γ2(si)) = al1(γ2(si)) α = 1 α .

27

Hence for every i ∈ [2] we derive the equation

a′ � al1(si) = 1 = (τ oM1
(γ2(si)), α) , if mod2 = ε

a′ = a|si|γ1 = (τM1(γ2(si)), α) , if mod2 = o .

In case mod2 = o this yields a contradiction since a′ = a|s1|γ1 = a|s2|γ1 ,
which apparently is contradictory due to a|s1|γ1 6= a|s2|γ1 by |s1|γ1 6= |s2|γ1 .
Finally, in the other case, i.e., mod2 = ε, we effectively have

1 = a′ � al1(s1) = a′ � al1(s2) .

Now let y1 = min(l1(s1), l1(s2)), y2 = max(l1(s1), l1(s2)), and d = y2− y1.
Obviously, y1 6= y2 and thereby d 6= 0 by l1(s1) 6= l1(s2). We consider

1 = a′ � ay2 = a′ � ay1+d = a′ � ay1 � ad = 1� ad = ad ,

however 1 = a0 = ad, if and only if 0 = d, which is a contradic-
tion. Irrespective of mod2 we have thus proved that there is no de-
terministic bu-w-tt M having the property that τmod2

M = τmod1
M1

. Thus

τmod1
M1

/∈ d–BOTmod2(A).
(2) Let Σ = {σ(2), α(0)}. We define the nondeleting homomorphism bu-w-tt

M2 = ({?},∆,Σ,A, {?}, δ2, µ2) with µ2 = ((µ2)
1
γ, (µ2)

0
α) given by

(µ2)
1
γ(?) = a σ(x1, x1) , (µ2)

0
α() = a α .

For every s ∈ T∆ let ts ∈ TΣ be the fully balanced output tree such
that height(ts) = height(s). The t-ts transformation τM2 : T∆ −→ A[TΣ]
computed by M2 maps s to asize(s) ts, whereas the o-t-ts transformation
τ oM2

: T∆ −→ A[TΣ] computed by M2 maps s to asize(ts) ts. Note that
size(ts) = 2size(s) − 1.

Let us prove τmod1
M2

/∈ d–BOTmod2(A), thereby showing

hn–BOTmod1(A) 6⊆ d–BOTmod2(A) .

To derive a contradiction assume that there exists a deterministic bu-w-tt
M = (Q,∆,Σ,A, F, δ, µ) such that τmod2

M = τmod1
M2

.

We again observe that for every s ∈ T∆ we have τmod1
M2

(s) 6= 0̃, and

consequently, τmod2
M (s) = µ̂mod2(s) as well as δ̂(s) ∈ F . Moreover, T∆ is

infinite. In contrast M has only a finite set of final states F ; hence there
must exist a final state q ∈ F and s1, s2 ∈ T∆ with q = δ̂(si) and s1 6= s2

such that tsi
∈ supp(µ̂mod2(si)) for i ∈ [2]. Since s1 6= s2 we also have

size(s1) 6= size(s2) and ts1 6= ts2 .

Apparently, µ̂mod2(γ(si)) = µ1
γ(q)

mod2←− (τmod1
M2

(si)), and furthermore,

also τmod1
M2

(γ(si)) 6= 0̃, hence δ̂(γ(si)) ∈ F and µ1
γ(q) 6= 0̃. Let µ1

γ(q) = a′ t
for some a′ ∈ A \ {0} and t ∈ TΣ(X1).

28

Next, we observe that t = σ(x1, x1), which can easily be proved by
contradiction as follows. Assume that t 6= σ(x1, x1). Then for some j ∈ [2]
the tree t[tsj

] is not fully balanced or its height is not 1 + height(tsj
),

because ts1 6= ts2 . Hence we obtain for every i ∈ [2]

τmod2
M (γ(si)) = a′ σ(x1, x1)

mod2←− (τmod1
M2

(si))

=

(a′ � asize(tsi)) σ(tsi
, tsi

) , if mod2 = ε

(a′ � a2·size(si)) σ(tsi
, tsi

) , if mod2 = o .

Recall that

τM2(γ(si)) = asize(si)+1 σ(tsi
, tsi

)

τ oM2
(γ(si)) = a2·size(tsi)+1 σ(tsi

, tsi
) .

Hence for every i ∈ [2] we derive the equation

a′ � asize(tsi) = a2·size(tsi)+1 = (τ oM2
(γ(si)), σ(tsi

, tsi
)) , if mod2 = ε

a′ � a2·size(si) = asize(si)+1 = (τM2(γ(si)), σ(tsi
, tsi

)) , if mod2 = o .

For every i ∈ [2] we let yi = size(tsi
), if mod2 = ε, whereas we let

yi = size(si) in case mod2 = o. Note that in both cases y1 6= y2. We
continue with the equations

ay1+2·y2+1 = a′ � ay2 � ay1 = a2·y1+y2+1 , if mod2 = ε

ay1+2·y2+1 = a′ � a2·y1 � a2·y2 = a2·y1+y2+1 , if mod2 = o .

Thus in any case ay1+2·y2+1 = a2·y1+y2+1. Since ai 6= aj whenever i 6= j for
all i, j ∈ N, we conclude y1 +2 ·y2 +1 = 2 ·y1 +y2 +1 and thereby y1 = y2

which contradicts to y1 6= y2. Consequently, irrespective of mod2 we have
proved that there is no deterministic bu-w-tt M having the property that
τmod2
M = τmod1

M2
. Thus τmod1

M2
/∈ d–BOTmod2(A).

2

Together with the results of Section 4.1, we can already derive the Hasse
diagram (cf. Figure 2) for non-periodic monoids. We observe that the classes
of t-ts and o-t-ts transformations are incomparable, whenever inclusion is not
trivial by definition or given as a result of Proposition 13.

Theorem 17 Let A = (A,�,1,0) be a non-periodic monoid with an absorb-
ing element 0. Figure 2 is the Hasse diagram of the displayed classes of t-ts
and o-t-ts transformations ordered by set inclusion.

29

d do

dt dl dn dno dlo dto

h dlt dnt dnl= dnto dlto ho

hl hn dnlt= hno hlo

hnl=

Fig. 2. Hasse diagram for non-periodic monoids.

PROOF. All the inclusions are trivial and the equalities are due to Propo-
sition 13. Then for every {mod1,mod2} = {ε, o} the following six statements
are sufficient to prove strictness and incomparability.

dnlt–BOT(A) 6⊆ h–BOTmod1(A) (10)

dnl–BOT(A) 6⊆ dt–BOTmod1(A) (11)

hn–BOTmod1(A) 6⊆ dl–BOTmod1(A) (12)

hl–BOTmod1(A) 6⊆ dn–BOTmod1(A) (13)

hl–BOTmod1(A) 6⊆ d–BOTmod2(A) (14)

hn–BOTmod1(A) 6⊆ d–BOTmod2(A) (15)

The inequalities (10)–(13) are proved in Lemma 12, whereas inequalities (14)
and (15) follow from Lemma 16. 2

4.3 Periodic and commutative monoids

In this section, we consider monoids which are periodic and commutative. For
example, the monoid Z4 is periodic and commutative (without being regular).
It is easily seen that in commutative and periodic monoids A = (A,�,1,0)
the carrier set 〈A′〉� of the least submonoid with the absorbing element 0
generated from a finite set A′ ⊆ A is again finite. This property is essential in
the core construction of this section, because it allows us to keep track of the
current weight in the states.

Proposition 18 Let A = (A,�,1,0) be a commutative and periodic monoid.
For every finite A′ ⊆ A we have that 〈A′〉� is finite.

30

PROOF. We first observe that 〈∅〉� = {0,1}. Let A′ = {a1, . . . , ak} ⊆ A for
some k ∈ N+. Then

〈A′〉� = { ai11 � · · · � a
ik
k | i1, . . . , ik ∈ N }

= { ai11 � · · · � a
ik
k | i1 ∈ [0, n1], . . . , ik ∈ [0, nk] } ,

where for every j ∈ [k] the integer nj ∈ N is the smallest non-negative integer
such that there exists mj ∈ N with mj < nj and a

nj

j = a
mj

j . Hence 〈A′〉� is a
finite set. 2

Given a deterministic bu-w-tt computing a t-ts transformation τ , we construct
another deterministic bu-w-tt computing τ as o-t-ts transformation. Moreover,
most of the restrictions defined for deterministic bu-w-tt (namely nondeletion,
linearity, and totality) are preserved by this construction. However, a homo-
morphism bu-w-tt might yield a non-homomorphism bu-w-tt, because the
construction increases the state-space compared to the given bu-w-tt.

The next definition abstracts the central feature required to model one type
of substitution with the help of the other. We encapsulate this feature in a
family of mappings in order to be able to invoke the construction later under
different premises. More precisely, in subsequent lemmata we prove that such
a family of mappings exists provided that the monoid has certain properties,
e.g., is a group.

Definition 19 Let A = (A,�,1,0) be a monoid, M = (Q,Σ,∆,A, F, δ, µ) be
a deterministic bu-w-tt, and mod ∈ {ε, o}. Further, let fM,mod = (fkM,mod)k∈N
be a family of mappings where for every k ∈ N we have

fkM,mod :
(⋃
σ∈Σ(k),q1,...,qk∈Q

supp(µkσ(q1, . . . , qk))
)
× [k]× A −→ A .

If f satisfies for every t ∈ ⋃
σ∈Σ(k),q1,...,qk∈Q supp(µkσ(q1, . . . , qk)), i ∈ [k], and

a ∈ A the statements

(i) fkM,mod(t, i, a) = 0, if a = 0,

(ii) fkM,mod(t, i, a)� a|t|xi = a, if mod = ε, and

(iii) fkM,mod(t, i, a)� a = a|t|xi , if mod = o,

then f is called a family of mod-translation mappings for M .

Let mod1,mod2 ∈ {ε, o}. For every deterministic bu-w-tt M1, for which there
exists a family of mod1-translation mappings, we can construct another deter-
ministic bu-w-tt M2 computing the mod2-t-ts transformation τmod2

M2
= τmod1

M1
.

31

Due to the periodicity and commutativity of the monoid A, the set of com-
putable weights is finite (cf. Proposition 18). LetM1 = (Q1,Σ,∆,A, F1, δ1, µ1).
Given s ∈ TΣ, we have already seen that µ̂1mod1

(s) = a t for some a ∈ A and
t ∈ T∆. Since the set of computable weights is finite, we can encode a into the
state, i.e., we can construct a deterministic bu-w-tt

M ′
1 = (Q′

1,Σ,∆,A, F ′
1, δ

′
1, µ

′
1)

such that τmod1
M1

= τmod1

M ′
1

and δ̂′1(s) = (δ̂1(s), a) and µ̂′1mod1
(s) = a t.

Let us take a closer look at a family of translation mappings. Let mod1 = o.
Then, when substituting an output tree weighted a into a tree t for variable
xi, o-substitution accounts a exactly |t|xi

-times, whereas pure substitution
accounts a exactly once. In Item (iii) of Definition 19 we see that fkM ′

1,o
(t, i, a)

provides the factor which translates the pure substitution coefficient into the o-
substitution coefficient, because fkM ′

1,o
(t, i, a)�a = a|t|xi . So we need to multiply

fkM ′
1,o

(t, i, a) to the weight of the considered transition. This is possible, because

a is encoded in the state, in which the bu-w-tt M ′
1 processed the i-th direct

input subtree of s. In this way we can define the weight of the transitions
using the weight of the subcomputations.

Lemma 20 Let A = (A,�,1,0) be a periodic and commutative monoid and
mod1,mod2 ∈ {ε, o}. Moreover, let M1 = (Q1,Σ,∆,A, F1, δ1, µ1) be a deter-
ministic bu-w-tt obeying all the restrictions of π ∈ Π \ Πh. Whenever there
exists a family of mod1-translation mappings fM1,mod1 = (fkM1,mod1

)k∈N, there
also exists a deterministic bu-w-tt M2 = (Q2,Σ,∆,A, F2, δ2, µ2) obeying the
restrictions of π such that τmod1

M1
= τmod2

M2
.

PROOF. If mod1 = mod2, then the statement becomes trivial. So it remains
to prove the property for distinct mod1 and mod2. Let

C = {0} ∪
{

((µ1)
k
σ(q1, . . . , qk), t)

∣∣∣∣ k ∈ N, σ ∈ Σ(k), q1, . . . , qk ∈ Q1,

t ∈ supp((µ1)
k
σ(q1, . . . , qk))

}

be the finite set of monoid elements occurring in the monomials in the range
of µ1. Since A is periodic and commutative, we conclude that 〈C〉� is finite.
We construct the bu-w-tt M2 by setting the set Q2 of states to Q2 = Q1×〈C〉�
and the set F2 of final states to F2 = F1×〈C〉�. Moreover, let k ∈ N, σ ∈ Σ(k),
q1, . . . , qk ∈ Q1, and a1, . . . , ak ∈ 〈C〉�. Now we define a and the monomial m
as follows. If (µ1)

k
σ(q1, . . . , qk) = 0̃ or for some i ∈ [k] we have ai = 0, then

let a = 0 and m = 0̃. Otherwise suppose that (µ1)
k
σ(q1, . . . , qk) = a0 t for

a0 ∈ C \ {0} and t ∈ T∆(Xk) and let

a =

a0 � a1 � · · · � ak , if mod1 = ε

a0 � a
|t|x1
1 � · · · � a|t|xk

k , if mod1 = o

32

and m = (fkM1,mod1
(t, 1, a1)� · · · � fkM1,mod1

(t, k, ak)� a0) t. Clearly, a ∈ 〈C〉�,
so we let

(δ2)
k
σ((q1, a1), . . . , (qk, ak)) = ((δ1)

k
σ(q1, . . . , qk), a)

(µ2)
k
σ((q1, a1), . . . , (qk, ak)) =m .

Obviously, M2 is nondeleting (respectively, linear and total), if M1 is non-
deleting (respectively, linear and total). Let s ∈ TΣ. Finally, suppose that
µ̂1mod1

(s) = a t for some a ∈ 〈C〉� and t ∈ T∆. We show that the following
equalities hold.

µ̂2mod2
(s) = µ̂1mod1

(s) and δ̂2(s) = (δ̂1(s), a) .

(1) Let s = α with α ∈ Σ(0). Then

µ̂2mod2
(s) = (µ2)

0
α() = (µ1)

0
α() = µ̂1mod1

(s) .

Moreover, δ̂2(s) = (δ2)
0
α() = ((δ1)

0
α(), a

′) = (δ̂1(s), a
′) where

a′ =

0 , if supp((µ1)
0
α()) = ∅

((µ1)
0
α, t

′) , if supp((µ1)
0
α()) = {t′}

=

0 , if supp(µ̂1mod1
(α)) = ∅

(µ̂1mod1
, t′) , if supp(µ̂1mod1

(α)) = {t′}
= a .

(2) Let s = σ(s1, . . . , sk) for some k ∈ N+, σ ∈ Σ(k), and s1, . . . , sk ∈ TΣ.
Then we have

µ̂2mod2
(s)

= (µ2)
k
σ(δ̂2(s1), . . . , δ̂2(sk))

mod2←− (µ̂2mod2
(s1), . . . , µ̂2mod2

(sk))

= (µ2)
k
σ(δ̂2(s1), . . . , δ̂2(sk))

mod2←− (µ̂1mod1
(s1), . . . , µ̂1mod1

(sk)) .

For every i ∈ [k] let µ̂1mod1
(si) = ai ti for some ai ∈ 〈C〉� and ti ∈ T∆.

By induction hypothesis we have further that δ̂2(si) = (δ̂1(si), ai).
(a) In the first case, let (µ1)

k
σ(δ̂1(s1), . . . , δ̂1(sk)) = 0̃ or for some i ∈ [k] let

ai = 0. Then by construction we obtain (µ2)
k
σ(δ̂2(s1), . . . , δ̂2(sk)) = 0̃.

Hence µ̂1mod1
(s) = 0̃ = µ̂2mod2

(s).
(b) Let a0 ∈ C \ {0} and t′ ∈ T∆(Xk) be such that

(µ1)
k
σ(δ̂1(s1), . . . , δ̂1(sk)) = a0 t

′ .

We deduce

µ̂2mod2
(s)

33

= (µ2)
k
σ(δ̂2(s1), . . . , δ̂2(sk))

mod2←− (µ̂1mod1
(s1), . . . , µ̂1mod1

(sk))

= (µ2)
k
σ((δ̂1(s1), a1), . . . , (δ̂1(sk), ak))

mod2←−
mod2←− (µ̂1mod1

(s1), . . . , µ̂1mod1
(sk))

=
(∏
i∈[k]

fkM1,mod1
(t′, i, ai)� a0

)
t′

mod2←−

mod2←− (µ̂1mod1
(s1), . . . , µ̂1mod1

(sk))

=
(∏
i∈[k]

fkM1,mod1
(t′, i, ai)� a0 � am1

1 � · · · � a
mk
k

)
t′[t1, . . . , tk]

=
(∏
i∈[k]

(fkM1,mod1
(t′, i, ai)� ami

i)� a0

)
t′[t1, . . . , tk]

where for every i ∈ [k] we let

mi =

1 , if mod2 = ε

|t′|xi
, if mod2 = o .

Recall that our general assumption was mod1 6= mod2, so we now
distinguish two cases, in each of which we take a closer look at the
product fkM1,mod1

(t′, i, ai)�ami
i for every i ∈ [k]. Firstly, let mod1 = ε.

Then fkM1,ε
(t′, i, ai) � a

|t′|xi
i = ai by Definition 19(ii). On the other

hand, let mod1 = o. Immediately we obtain fkM1,o
(t′, i, ai)�ai = a

|t′|xi
i

by Definition 19(iii). Hence we continue with

µ̂2mod2
(s)

=
(∏
i∈[k]

(fkM1,mod1
(t′, i, ai)� ami

i)� a0

)
t′[t1, . . . , tk]

= a0 t
′ mod1←− (a1 t1, . . . , ak tk)

= (µ1)
k
σ(δ̂1(s1), . . . , δ̂1(sk))

mod1←− (µ̂1mod1
(s1), . . . , µ̂1mod1

(sk))

= µ̂1mod1
(s) .

This concludes the proof of the first property.
Let µ̂1mod1

(s) = a t for some a ∈ 〈C〉� and t ∈ T∆. Thus it remains to

show that δ̂2(s) = (δ̂1(s), a). In a straightforward manner we derive

δ̂2(s) = (δ2)
k
σ(δ̂2(s1), . . . , δ̂2(sk))

= (δ2)
k
σ((δ̂1(s1), a1), . . . , (δ̂1(sk), ak))

= ((δ1)
k
σ(δ̂1(s1), . . . , δ̂1(sk)), a

′)

= (δ̂1(s), a
′) ,

where a′ = 0, if (µ1)
k
σ(δ̂1(s1), . . . , δ̂1(sk)) = 0̃ or for some i ∈ [k] we have

ai = 0. Hence a′ = a. Otherwise let (µ1)
k
σ(δ̂1(s1), . . . , δ̂1(sk)) = a0 t

′ for

34

some a0 ∈ C \ {0} and t′ ∈ T∆(Xk). Consequently,

a′ =

a0 � a1 � · · · � ak , if mod1 = ε

a0 � a
|t′|x1
1 � · · · � a|t

′|xk
k , if mod1 = o .

Hence µ̂2mod2
(s) = µ̂1mod1

(s) = a′t′[t1, . . . , tk] and a = a′, which concludes
the proof of the statement.

2

The next lemma shows that in case we have a nondeleting (respectively, lin-
ear) deterministic bu-w-tt, then we can specify a family of mod-translation
mappings with mod = o (respectively, mod = ε) and then apply the previous
lemma to obtain an inclusion result.

Lemma 21 Let A = (A,�,1,0) be a periodic and commutative monoid and
mod1,mod2 ∈ {ε, o}. We have π–BOTmod1(A) ⊆ π–BOTmod2(A) for every
π ∈ P where

P =

Πn \ Πh , if mod1 = o

Πl \ Πh , if mod1 = ε .

PROOF. Trivially the statement holds, if mod1 = mod2. Thus assume that
mod1 and mod2 are distinct.

(1) Let mod1 = o and τ o ∈ π–BOTo(A) for some π ∈ Πn \Πh. Consequently,
there exists a nondeleting deterministic bu-w-tt

M1 = (Q1,Σ,∆,A, F1, δ1, µ1)

obeying the restrictions of π such that τ oM1
= τ o. Let fM1,o = (fkM1,o

)k∈N
be the family of mappings

fkM1,o
:

(⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)
k
σ(q1, . . . , qk))

)
× [k]× A −→ A

defined for every k ∈ N, t ∈ ⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)
k
σ(q1, . . . , qk)),

i ∈ [k], and a ∈ A by

fkM1,o
(t, i, a) =

0 , if a = 0

a|t|xi−1 , otherwise .

Each fkM1,o
(t, i, a) is well-defined, because by the nondeletion restriction

we have |t|xi
≥ 1 for every t ∈ ⋃

σ∈Σ(k),q1,...,qk∈Q1
supp((µ1)

k
σ(q1, . . . , qk))

35

and i ∈ [k]. Consequently, the exponent is non-negative in the defini-
tion of fkM1,o

(t, i, a). Moreover, fM1,o is trivially a family of o-translation
mappings. Thus, due to Lemma 20, there exists a nondeleting determin-
istic bu-w-tt M2 obeying the restrictions of π such that τM2 = τ o. Hence
π–BOTo(A) ⊆ π–BOT(A) for every π ∈ Πn \ Πh.

(2) Secondly, let mod1 = ε and τ ∈ π–BOT(A) for some π ∈ Πl \ Πh.
Consequently, there exists a linear deterministic bu-w-tt

M1 = (Q1,Σ,∆,A, F1, δ1, µ1)

obeying the restrictions of π such that τM1 = τ . Let fM1,ε = (fkM1,ε
)k∈N

be the family of mappings

fkM1,ε
:

(⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)
k
σ(q1, . . . , qk))

)
× [k]× A −→ A

defined for every k ∈ N, t ∈ ⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)
k
σ(q1, . . . , qk)),

i ∈ [k], and a ∈ A by

fkM1,ε
(t, i, a) =

0 , if a = 0

a1−|t|xi , otherwise .

Each fkM1,ε
(t, i, a) is well-defined, because by the linearity restriction we

obtain |t|xi
≤ 1 for every t ∈ ⋃

σ∈Σ(k),q1,...,qk∈Q1
supp((µ1)

k
σ(q1, . . . , qk))

and i ∈ [k]. Consequently, the exponent is non-negative in the defini-
tion of fkM1,ε

(t, i, a). Moreover, fM1,ε is obviously a family of translation
mappings. Thus there exists a linear deterministic bu-w-tt M2 obey-
ing the restrictions of π such that τ oM2

= τ due to Lemma 20. Hence
π–BOT(A) ⊆ π–BOTo(A) for every π ∈ Πl \ Πh.

2

These are all the non-trivial inclusion results we are able to prove without
requiring further properties of the monoid. So it remains to show incompa-
rability results similar to Lemma 16. We start by showing that as long as
the monoid is not regular, there exists a nondeleting homomorphism bu-w-tt
computing a t-ts transformation, which cannot be computed by a determin-
istic bu-w-tt as o-t-ts transformation. We finally note that periodicity is not
even required for the proof, which is similar to the proof of the corresponding
statement in non-periodic semirings (cf. Lemma 16).

Lemma 22 Let A = (A,�,1,0) be a commutative and non-regular monoid.

hn–BOT(A) 6⊆ d–BOTo(A)

36

PROOF. Since the monoid A is not regular, there exists an a ∈ A such that
there is no b ∈ A with b�a2 = a. Let M1 = ({?},Γ,Σ,A, {?}, δ1, µ1) be the ho-
momorphism bu-w-tt specified by the input ranked alphabet Γ = {γ(1), α(0)},
output ranked alphabet Σ = {σ(2), α(0)}, and µ1 = ((µ1)

1
γ, (µ1)

0
α).

(µ1)
1
γ(?) = 1 σ(x1, x1) , (µ1)

0
α() = a α .

Clearly, M1 is a nondeleting homomorphism bu-w-tt, so τM1 ∈ hn–BOT(A).
Let τ = τM1 . For every s ∈ TΓ let ts ∈ TΣ be the fully balanced output tree
such that the heights of the trees s and ts are equal. An easy calculation yields
that for every s ∈ TΓ the equality τ(s) = a ts holds.

Next we prove that τ /∈ d–BOTo(A). In order to derive a contradiction, assume
that there is a deterministic bu-w-tt M2 = (Q2,Γ,Σ,A, F2, δ2, µ2) such that
τ oM2

= τ . Since for every s ∈ TΓ it holds that τ(s) 6= 0̃ and M2 has only a
finite set Q2 of states, there must exist a final state q ∈ F2 such that for two
distinct s1, s2 ∈ TΓ, i.e., s1 6= s2, we have δ̂2(s1) = q = δ̂2(s2). Consequently,
τ oM2

(si) = µ̂2o(si) for every i ∈ [2]. Moreover, also δ̂2(γ(si)) ∈ F , hence

τ oM2
(γ(si)) = µ̂2o(γ(si)) = (µ2)

1
γ(δ̂2(si))

o←− (µ̂2o(si)) = (µ2)
1
γ(q)

o←− (τ(si)) .

Trivially, (µ2)
1
γ(q) 6= 0̃, otherwise τ oM2

(γ(si)) = 0̃. Let (µ2)
1
γ(q) = b t for some

b ∈ A and t ∈ TΣ(X1). Moreover, recall that τ(si) = a tsi
. We can readily

conclude that t = σ(x1, x1), else either t[ts1] or t[ts2] is not fully balanced or
height(t[tsi

]) 6= height(si) + 1 for some i ∈ [2]. We continue with

τ oM2
(γ(si)) = (µ2)

1
γ(q)

o←− (τ(si)) = bσ(x1, x1)
o←− (atsi

) = (b�a2)σ(tsi
, tsi

) .

According to τ oM2
= τ , we also derive

τ oM2
(γ(si)) = (b� a2) σ(tsi

, tsi
) = a σ(tsi

, tsi
) = τ(γ(si)) .

Consequently, we should have b�a2 = a, but a was chosen such that this is im-
possible. Thus we arrived at a contradiction which yields τ /∈ d–BOTo(A). 2

Next we show that there exists an o-t-ts transformation τ computed by a
linear homomorphism bu-w-tt such that there exists no deterministic bu-w-tt
computing τ as t-ts transformation, unless A = (A,�,1,0) is actually a group
with an absorbing element 0.

Lemma 23 Let A = (A,�,1,0) be a commutative monoid which is no group.

hl–BOTo(A) 6⊆ d–BOT(A)

PROOF. The monoid A is no group, hence there exists an a ∈ A \ {0},
which cannot be inverted, i.e., there is no b ∈ A such that b � a = 1. Let

37

M1 = ({?},Γ,Γ,A, {?}, δ1, µ1) be the homomorphism bu-w-tt specified by the
ranked alphabet Γ = {γ(1), α(0)} and output mappings µ1 = ((µ1)

1
γ, (µ1)

0
α).

(µ1)
1
γ(?) = 1 α , (µ1)

0
α() = a α .

Clearly, M1 is a linear homomorphism bu-w-tt, thus τ o = τ oM1
∈ hl–BOTo(A).

Straightforward calculation yields τ o(α) = aα and for every other s ∈ TΓ\{α}
the equality τ o(s) = 1 α holds.

Next we prove that τ o /∈ d–BOT(A). In order to derive a contradiction, assume
that there exists a deterministic bu-w-tt M2 = (Q2,Γ,Γ,A, F2, δ2, µ2) such
that τM2 = τ o. Obviously,

a α = τ o(α) = τM2(α) = µ̂2(α) = (µ2)
0
α() .

Since we also have τ o(γ(α)) = 1 α we immediately obtain

τM2(γ(α))

= µ̂2(γ(α))

= (µ2)
1
γ(δ̂2(α))←− (µ̂2(α))

= (µ2)
1
γ((δ2)

0
α())←− (a α)

= b t←− (a α)

= (b� a) t[α]

for some b ∈ A and t ∈ TΓ(X1). Moreover, we have that (b� a) t[α] = 1 α, so
b� a = 1. Contrary, a was chosen such that such an element b does not exist.
Thus we derived the desired contradiction and conclude τ o /∈ d–BOT(A). 2

We have already seen in Lemma 22 that the class of all t-ts transformations
computed by nondeleting homomorphism bu-w-tt is not contained in the class
of all o-t-ts transformations computed by deterministic bu-w-tt as long as the
monoid A is not regular, i.e., hn–BOT(A) 6⊆ d–BOTo(A). It is furthermore
clear that the class of all o-t-ts transformations computed by nondeleting
homomorphism bu-w-tt is properly contained in the class of all t-ts transfor-
mations computed by deterministic bu-w-tt due to Lemma 21 (on periodic
and commutative monoids), i.e., hn–BOTo(A) ⊆ d–BOT(A). However, the
relation between the class of o-t-ts transformations computed by nondeleting
homomorphism bu-w-tt and the class of t-ts transformations computed by
nondeleting homomorphism bu-w-tt is yet unsettled. The next lemma solves
this question for all non-idempotent monoids.

Lemma 24 Let A = (A,�,1,0) be a non-idempotent monoid.

hn–BOTo(A) 6⊆ h–BOT(A)

38

d do

dn dlo

dno dl

dt dnl= dto

dnt dlto

dnto dlt

h dnlt= ho

hn hno hl hlo

hnl=

Fig. 3. Hasse diagram for periodic, commutative, and non-regular monoids.

PROOF. Let a ∈ A\{0,1} be such that a�a 6= a. Such an element exists due
to the assumption that A is non-idempotent. Further, let Γ = {γ(1), α(0), β(0)}
and Σ = {σ(2), α(0)} and M1 = ({?},Γ,Σ,A, {?}, δ1, µ1) be the nondeleting
homomorphism bu-w-tt with µ1 = ((µ1)

1
γ, (µ1)

0
α, (µ1)

0
β) specified by

(µ1)
1
γ(?) = 1 σ(x1, x1) , (µ1)

0
α() = a α , (µ1)

0
β() = 1 α .

Let τ o = τ oM1
. Clearly, τ o ∈ hn–BOTo(A), and moreover, τ o(γ(α)) = a2σ(α, α)

as well as τ o(γ(β)) = 1 σ(α, α).

Now let us prove that τ o /∈ h–BOT(A). We prove this statement by contra-
diction, so assume that there exists a homomorphism bu-w-tt

M2 = ({?},Γ,Σ,A, {?}, δ2, µ2)

such that τM2 = τ o. Trivially, δ2 = δ1 and µ2 = ((µ2)
1
γ, (µ2)

0
α, (µ2)

0
β) with

(µ2)
1
γ(?) = c t , (µ2)

0
α() = a α , (µ2)

0
β() = 1 α

for some c ∈ A and t ∈ TΣ(X1). Moreover, we readily observe t = σ(x1, x1).
Consequently, τM2(γ(α)) = (c � a) σ(α, α) and τM2(γ(β)) = c σ(α, α). Thus
we obtain the equalities c = 1 and c � a = a2, which yield a = a2. Contrary,
a was chosen such that a 6= a2. Thus we derived the desired contradiction and
conclude that τ o /∈ h–BOT(A). 2

39

Finally, we are able to present the Hasse diagram for periodic and commuta-
tive monoids A, which are not regular. The latter restriction assures that A is
also neither idempotent nor a group. Those cases are handled in subsequent
sections.

Theorem 25 Let A = (A,�,1,0) be a periodic, commutative, and non-
regular monoid with an absorbing element 0. Figure 3 is the Hasse diagram of
the displayed classes of t-ts and o-t-ts transformations ordered by set inclusion.

PROOF. All the inclusions are either trivial or follow from Lemma 21,
whereas the equalities are due to Proposition 13. The following eight state-
ments are sufficient to prove strictness and incomparability with mod ∈ {ε, o}.

dnlt–BOT(A) 6⊆ h–BOTmod(A) (16)

dnl–BOT(A) 6⊆ dt–BOTmod(A) (17)

hn–BOTo(A) 6⊆ dl–BOTo(A) (18)

hl–BOT(A) 6⊆ dn–BOT(A) (19)

hn–BOT(A) 6⊆ d–BOTo(A) (20)

hl–BOTo(A) 6⊆ d–BOT(A) (21)

hn–BOTo(A) 6⊆ h–BOT(A) (22)

hl–BOT(A) 6⊆ h–BOTo(A) (23)

The inequalities (16)–(19) are proved in Lemma 12, whereas we obtain (20)
from Lemma 22, (21) from Lemma 23, (22) from Lemma 24, and (23) from
Lemma 14. 2

4.4 Periodic, commutative, and regular monoids

In this section we consider monoids A = (A,�,1,0) which are periodic, com-
mutative, and regular. An example of a periodic, commutative, and regular
monoid, which is neither idempotent nor a group, is Z6. Specifically the regu-
larity allows us to derive more inclusion results. The next corollary states this
formally. Roughly speaking, the classes of t-ts transformations become subsets
of the corresponding classes of o-t-ts transformations, except for the classes
bearing the homomorphism restriction.

Lemma 26 Let A = (A,�,1,0) be a periodic, commutative, and regular
monoid. Then for every π ∈ Π \ Πh we have π–BOT(A) ⊆ π–BOTo(A).

PROOF. Let τ ∈ π–BOT(A) for some π ∈ Π\Πh. Consequently, there exists
a deterministic bu-w-tt M1 = (Q1,Σ,∆,A, F1, δ1, µ1) obeying the restrictions

40

of π such that τM1 = τ . Moreover, let fM1,ε = (fkM1,ε
)k∈N be the family of

mappings

fkM1,ε
:

(⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)
k
σ(q1, . . . , qk))

)
× [k]× A −→ A

defined for every k ∈ N, t ∈ ⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)
k
σ(q1, . . . , qk)), i ∈ [k],

and a ∈ A by

fkM1,ε
(t, i, a) =


0 , if a = 0

a , if a 6= 0, |t|xi
= 0

b|t|xi−1 , otherwise ,

where b ∈ A is such that a2 � b = a. Such b ∈ A exists for every a ∈ A due to
regularity.

Each fkM1,ε
(t, i, a) is well-defined, because in the case distinction every expo-

nent is non-negative in the definition of fkM1,ε
(t, i, a). Moreover, it is straight-

forward to prove that fM1,ε is a family of translation mappings for M1. Thus,
due to Lemma 20, there exists a deterministic bu-w-tt M2 obeying the re-
strictions π such that τ oM2

= τ . Hence π–BOT(A) ⊆ π–BOTo(A) for every
π ∈ Π \ Πh.

Since we cannot apply Lemma 22 to show that the classes of t-ts and o-t-ts
transformations computed by nondeleting homomorphism bu-w-tt are incom-
parable, but Lemma 24 already delivers one half, we establish the remaining
half in the next lemma.

Lemma 27 Let A = (A,�,1,0) be a commutative and regular, but non-
idempotent monoid.

hn–BOT(A) 6⊆ h–BOTo(A)

PROOF. Since A is not idempotent, but regular, there exist a, b ∈ A\{0,1}
such that a 6= a2 and a2� b = a. Let Γ = {γ(1), α(0)} and Σ = {σ(2), α(0)} and
M1 = ({?},Γ,Σ,A, {?}, δ1, µ1) be the nondeleting homomorphism bu-w-tt
specified by

(µ1)
1
γ(?) = a σ(x1, x1) , (µ1)

0
α() = b α .

Let τ = τM1 . Clearly, τ ∈ hn–BOT(A), and moreover,

τ(γ(α)) = (a� b) σ(α, α)

τ(γ2(α)) = a σ(σ(α, α), σ(α, α))

τ(γ3(α)) = a2 σ(σ(σ(α, α), σ(α, α)), σ(σ(α, α), σ(α, α))) .

41

Now let us prove that τ /∈ h–BOTo(A). We prove this statement by contra-
diction, so assume that there exists a homomorphism bu-w-tt

M2 = ({?},Γ,Σ,A, {?}, δ2, µ2)

such that τ oM2
= τ . Trivially, δ2 = δ1, (µ2)

1
γ(?) = ct, and (µ2)

0
α() = bα for some

c ∈ A and t ∈ TΣ(X1). Moreover, we readily observe t = σ(x1, x1), otherwise
supp(τ oM2

(γ(α))) 6= {σ(α, α)} or supp(τ oM2
(γ2(α))) 6= {σ(σ(α, α), σ(α, α))}.

Hence

τ oM2
(γ(α)) = (b2 � c) σ(α, α)

τ oM2
(γ2(α)) = (b4 � c3) σ(σ(α, α), σ(α, α))

τ oM2
(γ3(α)) = (b8 � c7) σ(σ(σ(α, α), σ(α, α)), σ(σ(α, α), σ(α, α))) .

Thus we obtain the equalities

b2 � c = a� b , b4 � c3 = a , b8 � c7 = a2 .

Now we compute as follows

a= b4 � c3 = (b2 � c)� (b2 � c)� c
= (a� b)� (a� b)� c = (a2 � b)� b� c = a� b� c

and a2 = b8 � c7 = (b4 � c3) � (b4 � c3) � c = a2 � c. Next we multiply the
former equation with a, which gives a2 = a2 � b � c = a � c, and the latter
equation with b, which yields a = a2 � b = a2 � b� c = a� c. Hence a = a2,
which is a contradiction, because a was chosen such that a 6= a2. Thus we
conclude that τ /∈ h–BOTo(A). 2

At this point we have all the results necessary to derive the Hasse diagram
for periodic, commutative, and regular monoids, which are neither idempotent
nor groups.

Theorem 28 Let A = (A,�,1,0) be a periodic, commutative, and regular
monoid, which is neither idempotent nor a group with an absorbing element 0.
Figure 4 is the Hasse diagram of the displayed classes of t-ts and o-t-ts trans-
formations ordered by set inclusion.

PROOF. All the inclusions are either trivial or follow from Lemma 21 and
Lemma 26. The used equalities are due to Proposition 13, Lemma 21, and
Lemma 26. Then the following seven statements are sufficient to prove strict-
ness and incomparability. For every {mod1,mod2} = {ε, o}

42

do

d dlo

dn= dl

dnl= dto

dt dlto

dnt= dlt

dnlt=

h ho

hn hno hl hlo

hnl=

Fig. 4. Hasse diagram for periodic, commutative, and regular monoids, which are
neither idempotent nor a group.

dnlt–BOT(A) 6⊆ h–BOTmod1(A) (24)

dnl–BOT(A) 6⊆ dt–BOTo(A) (25)

hn–BOTmod1(A) 6⊆ dl–BOTo(A) (26)

hl–BOT(A) 6⊆ dn–BOT(A) (27)

hl–BOT(A) 6⊆ h–BOTo(A) (28)

hl–BOTo(A) 6⊆ d–BOT(A) (29)

hl–BOTmod1(A) 6⊆ d–BOTmod2(A) . (30)

The inequalities (24)–(27) are proved in Lemma 12, whereas (28) follows from
Lemma 14, (29) follows from Lemma 23, and (30) follows from Lemmata
24 and 27. 2

4.5 Commutative and idempotent monoids

This section is devoted to the study of commutative and idempotent monoids.
The monoid Rmax is an example of such a monoid. Clearly, an = a for every
n ∈ N+ and a ∈ A of such a monoid. Hence we easily derive the following
observation.

Proposition 29 Let A = (A,�,1,0) be an idempotent monoid, k ∈ N, and
∆ be a ranked alphabet. For every nondeleting (in Xk) t ∈ T∆(Xk), a ∈ A,

43

do

d dlo

dn= dl

dnl= dto

dt dlto

dnt= dlt

dnlt=

h ho

hn= hl hlo

hnl=

Fig. 5. Hasse diagram for commutative and idempotent monoids with at least three
elements.
and monomials m1, . . . ,mk ∈ A[T∆] we have that

a t←− (m1, . . . ,mk) = a t
o←− (m1, . . . ,mk) .

Corollary 30 Let A be an idempotent monoid. For every π ∈ Πn we have
π–BOTo(A) = π–BOT(A).

Corollary 31 For every monoid A, we have hn–BOTo(A) = hn–BOT(A) if
and only if A is idempotent.

PROOF. The equality in idempotent monoids is proved in Corollary 30 and
Lemma 24 proves the inequality in all non-idempotent monoids. 2

These are indeed all the new results necessary to prove the Hasse diagram.
Note that idempotent monoids are trivially regular and periodic, so we apply
some of the results derived in Section 4.4.

Theorem 32 Let A = (A,�,1,0) be a commutative and idempotent monoid
such that A 6= {0,1}. Figure 5 is the Hasse diagram of the displayed classes
of t-ts and o-t-ts transformations ordered by set inclusion.

PROOF. All the inclusions are either trivial or follow from Lemma 26. The

44

equalities are due to Proposition 13 and Corollary 30. Then the following six
statements are sufficient to prove strictness and incomparability. For every
mod ∈ {ε, o}

dnlt–BOT(A) 6⊆ h–BOTmod(A) (31)

dnl–BOT(A) 6⊆ dt–BOTo(A) (32)

hn–BOT(A) 6⊆ dl–BOTo(A) (33)

hl–BOT(A) 6⊆ dn–BOT(A) (34)

hl–BOT(A) 6⊆ h–BOTo(A) (35)

hl–BOTo(A) 6⊆ d–BOT(A) . (36)

The inequalities (31)–(34) are proved in Lemma 12, whereas (35) follows from
Lemma 14 and (36) follows from Lemma 23. 2

4.6 Periodic and commutative groups

Finally, in this last section we consider periodic and commutative groups with
an absorbing element 0. For example, the monoid Z3 fulfils all those restric-
tions. Note that all such monoids (except Z2) are non-idempotent. Due to the
existence of inverses we can now easily derive a final lemma which follows from
Lemma 20.

Lemma 33 Let A = (A,�,1,0) be a periodic and commutative group and
mod1,mod2 ∈ {ε, o}. For every π ∈ Π \ Πh

π–BOTmod1(A) ⊆ π–BOTmod2(A) .

PROOF. The statement is trivial, if mod1 = mod2. Henceforth let mod1 and
mod2 be distinct. Let τ ∈ π–BOTmod1(A) for some π ∈ Π \Πh. Consequently,
there exists a deterministic bu-w-tt M1 = (Q1,Σ,∆,A, F1, δ1, µ1) obeying the
restrictions of π such that τmod1

M1
= τ . Moreover, let fM1,mod1 = (fkM1,mod1

)k∈N
be the family of mappings

fkM1,mod1
:

(⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)
k
σ(q1, . . . , qk))

)
× [k]× A −→ A

defined for every k ∈ N, t ∈ ⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)
k
σ(q1, . . . , qk)), i ∈ [k],

and a ∈ A by

fkM1,mod1
(t, i, a) =


0 , if a = 0

a1−|t|xi , if a 6= 0,mod1 = ε

a|t|xi−1 , if a 6= 0,mod1 = o .

45

d=

dn= dl= dt=

dnl= dnt= dlt= h ho

dnlt= hn hno hl hlo

hnl=

Fig. 6. Hasse diagram for periodic and commutative groups with an absorbing
element 0 and at least three elements.

Each fkM1,mod1
(t, i, a) is trivially well-defined due to the existence of inverses.

Moreover, it is straightforward to prove that fM1,mod1 is a family of mod1-
translation mappings. Thus there exists a deterministic bu-w-tt M2 obeying
the restrictions π such that τmod2

M2
= τ due to Lemma 20. Hence we can con-

clude π–BOTmod1(A) ⊆ π–BOTmod2(A) for every π ∈ Π \ Πh. 2

Since we demand that we have at least three elements, our group is non-
idempotent, which allows us to reuse some the results of earlier sections. Fi-
nally, we present the last Hasse diagram.

Theorem 34 Let A = (A,�,1,0) be a periodic and commutative group with
an absorbing element 0 such that A 6= {0,1}. Figure 6 is the Hasse diagram of
the displayed classes of t-ts and o-t-ts transformations ordered by set inclusion.

PROOF. All the inclusions are either trivial or follow from Lemma 33. The
equalities are due to Proposition 13 and Lemma 33. Then the following six
statements are sufficient to prove strictness and incomparability. For every
{mod1,mod2} = {ε, o}

dnlt–BOT(A) 6⊆ h–BOTmod1(A) (37)

dnl–BOT(A) 6⊆ dt–BOT(A) (38)

hn–BOTmod1(A) 6⊆ dl–BOT(A) (39)

hl–BOTmod1(A) 6⊆ dn–BOT(A) (40)

hn–BOTmod1(A) 6⊆ h–BOTmod2(A) (41)

hl–BOTmod1(A) 6⊆ h–BOTmod2(A) . (42)

46

The inequalities (37)–(40) are proved in Lemma 12, whereas (41) follows from
Lemmata 24 and 27 and (42) follows from Lemma 14. 2

5 Conclusions

We have investigated the power of deterministic bu-w-tt using pure and o-
substitution. We presented Hasse diagrams conveying the relation between
classes of t-ts and o-t-ts transformations for all sensible combinations of the
common restrictions and all commutative monoids. It turned out that pure
and o-substitution not only differ conceptually, but the induced classes of t-ts
and o-t-ts transformations are also different for most monoids.

In principle, we observe that o-substitution is more appropriate, if the weight
is related to the output tree, whereas pure substitution handles weights related
to the input tree better. Concerning applications, deterministic bu-w-tt can
be used to compute, for example, the topmost leftmost instance of a pattern
in an input tree weighted by the size of the instance. For this purpose we
would use o-substitution. Deterministic bu-w-tt using pure substitution can
be applied to compute the same instance weighted by the size of the input
tree.

Acknowledgements

The author is deeply indebted to the two anonymous referees for pointing out
the deficiencies of a draft of the paper. Their suggestions were much appreci-
ated and greatly improved the readability of the present paper.

References

[1] J. Engelfriet, Z. Fülöp, H. Vogler, Bottom-up and top-down tree series
transformations, Journal of Automata, Languages and Combinatorics 7 (1)
(2002) 11–70.

[2] Z. Fülöp, H. Vogler, Tree series transformations that respect copying, Theory
of Computing Systems 36 (3) (2003) 247–293.

[3] W. Kuich, Tree transducers and formal tree series, Acta Cybernetica 14 (1)
(1999) 135–149.

[4] Z. Fülöp, Z. Gazdag, H. Vogler, Hierarchies of tree series transformations,
Theoretical Computer Science 314 (3) (2004) 387–429.

47

[5] W. C. Rounds, Mappings and grammars on trees, Mathematical Systems
Theory 4 (3) (1970) 257–287.

[6] J. W. Thatcher, Generalized2 sequential machine maps, Journal of Computer
and System Sciences 4 (4) (1970) 339–367.

[7] J. Engelfriet, Bottom-up and top-down tree transformations — a comparison,
Mathematical Systems Theory 9 (3) (1975) 198–231.

[8] H. Seidl, Finite tree automata with cost functions, Theoretical Computer
Science 126 (1) (1994) 113–142.

[9] W. Kuich, Formal power series over trees, in: S. Bozapalidis (Ed.), 3rd
International Conference on Developments in Language Theory, DLT 1997,
Thessaloniki, Greece, July 20–23, 1997, Proceedings, Aristotle University of
Thessaloniki, 1997, pp. 61–101.

[10] S. Bozapalidis, Equational elements in additive algebras, Theory of Computing
Systems 32 (1) (1999) 1–33.

[11] B. Borchardt, H. Vogler, Determinization of finite state weighted tree automata,
Journal of Automata, Languages and Combinatorics 8 (3) (2003) 417–463.

[12] C. Ferdinand, H. Seidl, R. Wilhelm, Tree automata for code selection, Acta
Informatica 31 (8) (1994) 741–760.

[13] B. Borchardt, Code selection by tree series transducers, in: M. Domaratzki,
A. Okhotin, K. Salomaa, S. Yu (Eds.), 9th International Conference on
Implementation and Application of Automata, CIAA 2004, Kingston, Canada,
July 22–24, 2004, Revised Selected Papers, Vol. 3317 of Lecture Notes in
Computer Science, Springer, 2004, pp. 57–67.

[14] H. Seidl, Finite tree automata with cost functions, in: J.-C. Raoult (Ed.),
17th Colloquium on Trees in Algebra and Programming, CAAP 1992, Rennes,
France, February 26–28, 1992, Proceedings, Vol. 581 of Lecture Notes in
Computer Science, Springer, 1992, pp. 279–299.

[15] B. S. Baker, Composition of top-down and bottom-up tree transductions,
Information and Control 41 (2) (1979) 186–213.

[16] J. Engelfriet, The copying power of one-state tree transducers, Journal of
Computer and System Sciences 25 (3) (1982) 418–435.

[17] F. Gécseg, M. Steinby, Tree Automata, Akadémiai Kiadó, Budapest, 1984.

[18] F. Gécseg, M. Steinby, Tree languages, in: G. Rozenberg, A. Salomaa (Eds.),
Beyond Words, Vol. 3 of Handbook of Formal Languages, Springer, 1997, Ch. 1,
pp. 1–68.

[19] M. Nivat, A. Podelski, Tree Automata and Languages, Studies in Computer
Science and Artificial Intelligence, North-Holland, 1992.

48

[20] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
M. Tommasi, Tree automata techniques and applications, Available at:
http://www.grappa.univ-lille3.fr/tata (1997).

[21] B. Borchardt, The Myhill-Nerode theorem for recognizable tree series, in:
7th International Conference on Developments in Language Theory, DLT 2003,
Szeged, Hungary, July 7–11, 2003, Proceedings, Vol. 2710 of Lecture Notes in
Computer Science, Springer, 2003, pp. 146–158.

[22] M. Droste, C. Pech, H. Vogler, A Kleene theorem for weighted tree automata,
Theory of Computing Systems 38 (1) (2005) 1–38.

[23] M. Droste, H. Vogler (Eds.), 1st Workshop on Weighted Automata: Theory and
Applications, Dresden, Germany, March 4–8, 2002, Selected Papers, Vol. 8 of
Journal of Automata, Languages and Combinatorics, 2003.

[24] Z. Ésik, W. Kuich, Formal tree series, in: Droste and Vogler [23], pp. 219–285.

[25] Z. Fülöp, H. Vogler, Weighted tree transducers, Journal of Automata,
Languages and Combinatorics 9 (1) (2004) 31–54.

[26] M. Nivat, Transduction des langages de Chomsky, Annales de l’Institut Fourier
de l’Université de Grenoble 18 (1) (1968) 339–456.

[27] S. Bozapalidis, Context-free series on trees, Information and Computation
169 (2) (2001) 186–229.

[28] B. A. Davey, H. A. Priestley, Introduction to Lattices and Order, 2nd Edition,
Cambridge University Press, 2002.

[29] A. Mateescu, A. Salomaa, Formal languages: an introduction and a synopsis,
in: G. Rozenberg, A. Salomaa (Eds.), Word, Language, Grammar, Vol. 1 of
Handbook of Formal Languages, Springer, 1997, pp. 1–39.

[30] N. Jacobsen, Basic Algebra I, 2nd Edition, W. H. Freeman and Company, New
York, 1985.

[31] N. Jacobsen, Basic Algebra II, 2nd Edition, W. H. Freeman and Company, New
York, 1989.

[32] W. Kuich, Semirings and formal power series: Their relevance to formal
languages and automata, in: G. Rozenberg, A. Salomaa (Eds.), Word, Language,
Grammar, Vol. 1 of Handbook of Formal Languages, Springer, 1997, Ch. 9, pp.
609–677.

[33] U. Hebisch, H. J. Weinert, Semirings — Algebraic Theory and Applications in
Computer Science, World Scientific, Singapore, 1998.

[34] J. S. Golan, Semirings and their Applications, Kluwer Academic Publishers,
Dordrecht, 1999.

[35] J. Berstel, C. Reutenauer, Recognizable formal power series on trees,
Theoretical Computer Science 18 (2) (1982) 115–148.

49

[36] J. Engelfriet, E. M. Schmidt, IO and OI. I, Journal of Computer and System
Sciences 15 (3) (1977) 328–353.

[37] J. Engelfriet, E. Schmidt, IO and OI. II, Journal of Computer and System
Sciences 16 (1) (1978) 67–99.

[38] Z. Fülöp, A complete description for a monoid of deterministic bottom-up tree
transformation classes, Theoretical Computer Science 88 (2) (1991) 253–268.

50

