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ABSTRACT

Bottom-up tree series transducers (tst) over the semiring A are implemented with
the help of bottom-up weighted tree automata (wta) over an extension of A. Therefore
bottom-up D-weighted tree automata (D-wta) with D a distributive Ω-algebra are intro-
duced. A D-wta is essentially a wta but uses as transition weight an operation symbol
of the Ω-algebra D instead of a semiring element. The given tst is implemented with the
help of a D-wta, essentially showing that D-wta are a joint generalization of tst (using
IO-substitution) and wta. Then a semiring and a wta are constructed such that the
wta computes a formal representation of the semantics of the D-wta. The applicability
of the obtained presentation result is demonstrated by deriving a pumping lemma for
deterministic finite D-wta from a known pumping lemma for deterministic finite wta.
Finally, it is observed that the known decidability results for emptiness cannot be applied
to obtain decidability of emptiness for finite D-wta. Thus with help of a weaker version
of the derived pumping lemma, decidability of the emptiness problem for finite D-wta is
shown under mild conditions on D.

Keywords: weighted tree automaton, distributive Ω-algebra, tree series transducer, semi-
ring, decidability result

1. Introduction

In formal language theory several different accepting and transducing devices
were intensively studied [21]. A classical folklore result shows how to implement
generalized sequential machines (see, e. g., [1]) on weighted automata [22,9,18] with
the help of the particular semiring (P(Σ∗),∪, ◦) of languages over the alphabet Σ.
Naturally, this semiring is not commutative; notwithstanding, the representation
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allows us to transfer results obtained for weighted automata to generalized sequen-
tial machines. In this sense, the study of arbitrary weighted automata subsumes
the study of generalized sequential machines.

tree series
transducer

‖M‖ : TΣ −→ A〈〈T∆〉〉

weighted tree
automaton

‖M‖ ∈ A〈〈TΣ〉〉

weighted transducer

‖M‖ : Σ∗ −→ A〈〈∆∗〉〉

tree transducer

‖M‖ : TΣ −→ B〈〈T∆〉〉

weighted automaton

‖M‖ ∈ A〈〈Σ∗〉〉

tree automaton

‖M‖ ∈ B〈〈TΣ〉〉

generalized
sequential machine

‖M‖ : Σ∗ −→ B〈〈∆∗〉〉

string automaton

‖M‖ ∈ B〈〈Σ∗〉〉

Fig. 1. Generalization hierarchy.

We translate the above representation result to tree languages (see, e. g., [8]);
i. e., we show how to implement bottom-up tree transducers [20,23] on bottom-
up weighted tree automata (wta) [2,5,16]. More generally, we even unearth a re-
lationship between wta and bottom-up tree series transducers (tst) [10,12] using
IO-substitution [6,10]. Therefore we first introduce bottom-up D-weighted tree au-
tomata (D-wta) with D a distributive Ω-algebra [11,16]. These devices are essen-
tially wta where the weight of a transition is an operation symbol of an Ω-algebra
instead of a semiring element. Such devices can easily simulate both wta and tst by
a proper choice of the distributive Ω-algebra (see Proposition 2). Next we devise
a monoid A which is capable of emulating the effect of the operation symbols of
a distributive Ω-algebra D (see Theorem 1). Then we extend A to a semiring using
the addition of a semiring B for which D is a semimodule (see Theorem 2). In
this way we obtain an abstract addition (of B), which allows us to perform the
concrete addition (of D) later. Thereby we obtain a representation result in which
a tst or a D-wta is presented as wta, which computes a formal representation of the
semantics of the tst or D-wta.

We note that the construction of the semiring preserves many beneficial prop-
erties (concerning the addition) of the original distributive Ω-algebra. Hence the
study of wta partly subsumes the study of tst. In fact, subsumption holds for de-
terministic devices; i. e., the study of deterministic wta fully subsumes the study
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of deterministic tst or D-wta. To illustrate the applicability of the relationship we
transfer a pumping lemma [3] for deterministic finite wta to finite D-wta. This
is possible, because the semiring addition is irrelevant for deterministic wta and
the determinism property is preserved by the constructions. This yields that for
a given D-wta M we can construct a wta M ′ such that ‖M ′‖ = ‖M‖. Hence the
pumping lemma for wta can readily be transfered to D-wta. Since D-wta are a gen-
eralization of tst, we implicitly also obtain a pumping lemma for tst. A spelt-out
version of this pumping lemma may be found in [19].

However, the results concerning decidability of emptiness for wta [2,3] all re-
quire the underlying semiring to be commutative. Not surprisingly, the semiring
constructed in order to simulate a tst or D-wta is (usually) not commutative. Thus
we reinvestigate decidability of emptiness in the setting of D-wta. Inspired by the
derived pumping lemma, we obtain mild restrictions on D, that if imposed, guaran-
tee decidability of emptiness of (not necessarily deterministic) D-wta. It turns out
that this way we obtain a generalization of the decidability result of [3], because
commutativity of the semiring will trivially imply our restrictions. One of the re-
strictions we impose is zero-sum freeness. In [2] a statement—similar to a pumping
lemma—is derived for wta over fields. However, no interesting field is zero-sum free,
so there is still a gap to be bridged.

2. Preliminaries

The set of non-negative integers is denoted by N, and we let N+ = N \ {0}. In
the following, let k, n ∈ N and A and B be sets. The interval [k, n] abbreviates
{ i ∈ N | k 6 i 6 n }, and we use [n] to stand for [1, n]. The cardinality of A is
denoted by card(A). The set of all subsets of A is denoted by P(A), and the set
of all (total) mappings f : A −→ B is denoted by BA as customary. Finally, we
write A∗ for the set of all words over A, |w| for the length of a word w ∈ A∗, and ·
for concatenation of words.

2.1. Trees and Substitutions

A nonempty set Ω equipped with a mapping rkΩ : Ω −→ N is called a ranked
set, and Ωk = {ω ∈ Ω | rkΩ(ω) = k } denotes the set of operators of rank k. Finite
ranked sets (i. e., Ω is finite) are ranked alphabets. Given a ranked set Ω disjoint
with B, we write Ω ∪ B to denote the ranked set obtained from Ω by adding the
elements of B as nullary symbols. An Ω-tree is a partial mapping t : N∗

+ 99K Ω
such that dom(t) is finite and prefix-closed, and if w ∈ dom(t) and t(w) ∈ Ωk,
then also w·i ∈ dom(t) for every i ∈ [k]. The set of all Ω-trees is denoted by TΩ.
We let height(t) = 1 + max{ |w| | w ∈ dom(t) } and size(t) = card(dom(t)) for
every t ∈ TΩ. For convenience, we assume a countably infinite set X = { xi | i ∈ N+ }
of (formal) variables and its subsets Xn = { xi | i ∈ [n] }. Let Xn ⊆ Ω0 and
t, t′1, . . . , t

′
n ∈ TΩ. The set T̂Ω(Xn) contains exactly those trees in which every x ∈ Xn

occurs exactly once. The expression t[t′1, . . . , t
′
n] denotes the (parallel) substitution
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of t′i for every occurrence of xi in t; i. e., t[t′1, . . . , t
′
n](w·w′) = t′i(w

′) for every
w′ ∈ N∗

+ and w ∈ dom(t) such that t(w) = xi and t[t′1, . . . , t
′
n](w) = t(w) otherwise.

Let t ∈ T̂Ω(Xn) with n > 1 and t′ ∈ T̂Ω(Xk). The non-identifying substitu-
tion of t′ into t, denoted by t〈|t′|〉, yields a tree of T̂Ω(Xk+n−1) which is defined by
t〈|t′|〉 = t[t′, xk+1, . . . , xk+n−1]. This way no variable of t′ is identified with a vari-
able of t. To complete the definition we let t〈|t′|〉 = t whenever n = 0. One can
compare this with the classical lambda-calculus, where (except for reordering of the
arguments) (λx1 · · · xn.t)(λx1 · · · xk.t

′) ⇒ λx1 · · · xk+n−1.t〈|t′|〉. Henceforth, we will
also use the usual term denotation of trees [13,14] (i. e., t = ω(t1, . . . , tk) for some
ω ∈ Ωk and t1, . . . , tk ∈ TΩ) and the corresponding induction principle.

2.2. Algebraic Structures

Let A be a set, Ω be a ranked set, and I = ( Ik )k∈N be a family such that
for every k ∈ N and ω ∈ Ωk we have that Ik(ω) : Ak −→ A. The triple (A,Ω, I)
is called an (abstract) Ω-algebra and the particular Ω-algebra (TΩ,Ω, IΩ) where
(IΩ)k(ω)(t1, . . . , tk) = ω(t1, . . . , tk) for every k ∈ N, ω ∈ Ωk, and t1, . . . , tk ∈ TΩ

is called the initial (term) Ω-algebra. Let X and Ω be disjoint. Every t ∈ TΩ∪Xn

induces a mapping tI : An −→ A defined inductively for every k ∈ N, ω ∈ Ωk,
t1, . . . , tk ∈ TΩ∪Xn

, and a1, . . . , an ∈ A by

ω(t1, . . . , tk)I(a1, . . . , an) = Ik(ω)(tI1(a1, . . . , an), . . . , tIk(a1, . . . , an)) (1)

and xI
i (a1, . . . , an) = ai for every i ∈ [n]. In the sequel we often do not differentiate

between the operation symbol ω and the actual operation Ik(ω) as well as the term
t ∈ TΩ∪Xn

and the induced mapping tI . Usually the context will provide sufficient
information as to clarify which meaning is intended. Further, if the set of operations
is finite, we commonly list the operations instead of specifying I.

A monoid is an algebra A = (A,⊗) with an associative operation ⊗ : A2 −→ A

and a neutral element 1 ∈ A. The neutral element is unique and denoted by 0A or 1A

in the sequel. The monoid A is said to be commutative, if ⊗ is commutative, and
it is said to be idempotent, if a = a ⊗ a for every a ∈ A. Now let A = (A,⊗) be a
commutative monoid. We say that A is complete, if it is possible to define an (in-
finitary) operation

⊗
such that the following two axioms hold for all index sets I, J

and all families ( ai )i∈I of ai ∈ A.

(i)
⊗

i∈{j} ai = aj and
⊗

i∈{j1,j2} ai = aj1 ⊗ aj2 for j1 6= j2.
(ii)

⊗
j∈J

⊗
i∈Ij

ai =
⊗

i∈I ai, if
⋃

j∈J Ij = I and Ij1 ∩ Ij2 = ∅ for j1 6= j2.

Henceforth, when we speak about complete monoids we silently assume the opera-
tion

⊗
to be given. The relation v ⊆ A2 is defined by a1 v a2 if and only if there

exists a ∈ A such that a1 ⊗ a = a2. It is easily checked that v is reflexive and
transitive, and if v is even antisymmetric (and hence a partial order), then A is
said to be naturally ordered. Finally, if A is naturally ordered and complete, then
A is continuous, if for every a ∈ A, index set I, and family ( ai )i∈I of ai ∈ A⊗

i∈E

ai v a for all finite E ⊆ I ⇐⇒
⊗
i∈I

ai v a . (2)
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Note that idempotent monoids are continuous, if and only if they are completely
idempotent (i. e., complete and for every nonempty index set I and a ∈ A we have
that

⊗
i∈I a = a).

Let A = (A,⊕,�) be an algebra made of two monoids (A,⊕) and (A,�) with
neutral elements 0A and 1A, respectively, of which the former monoid is commu-
tative and the latter has 0A as an absorbing element (i. e., a � 0A = 0A = 0A � a
for every a ∈ A). We assume that multiplicative operation symbols have a higher
binding priority than additive operation symbols and occasionally drop the multi-
plicative operation symbol altogether; i. e., simply write a1a2 instead of a1�a2. We
say that A is a semiring, if the monoids are connected via the distributivity laws
(hence (a1⊕a2)� (a3⊕a4) = a1a3⊕a1a4⊕a2a3⊕a2a4 for every a1, a2, a3, a4 ∈ A).
The semiring A is called (additively) idempotent, if (A,⊕) is idempotent. Finally, a
complete semiring consists of a complete monoid (A,⊕) and satisfies the additional
constraint that for every a, a′ ∈ A, index set I, and family ( ai )i∈I of ai ∈ A⊕

i∈I

aaia
′ = a

(⊕
i∈I

ai

)
a′ . (3)

Let B = (B,+) be a commutative monoid, A = (A,⊕,�) be a semiring,
and · : A×B −→ B. Then B is called a (left) A-semimodule (via ·), if the condi-
tions (i)-(iii) hold for all a, a1, a2 ∈ A and all b, b1, b2 ∈ B.

(i) a · 0B = 0B and 1A · b = b.
(ii) (a1 � a2) · b = a1 · (a2 · b).
(iii) a · (b1 + b2) = a · b1 + a · b2 and (a1 ⊕ a2) · b = a1 · b+ a2 · b.

Given that B and A are complete, B is called a complete A-semimodule, if for all
index sets I and J , families ( ai )i∈I of ai ∈ A, and families ( bj )j∈J of bj ∈ B

additionally the following axiom holds.(⊕
i∈I

ai

)
·
(∑

j∈J

bj

)
=

∑
i∈I,j∈J

ai · bj (4)

Clearly each commutative monoid B = (B,+) is an N-semimodule, where N
is the semiring of non-negative integers (N,+, ·), using · : N×B −→ B defined
as n · b =

∑
i∈[n] b for every n ∈ N and b ∈ B. Note that

∑
i∈[0] b = 0B. Sim-

ilarly, every commutative and continuous monoid is a complete N∞-semimodule
(see [16]), where N∞ = (N∪{∞},+, ·). Furthermore, any idempotent and commu-
tative monoid B is a B-semimodule where B = ({0, 1},∨,∧) is the Boolean semiring,
and B is a complete B-semimodule, if B is completely idempotent (see [16]).

Let (D,Ω) be an Ω-algebra and (D,+) be a commutative monoid with neutral
element 0D. Then we say that the algera (D,+,Ω) is a distributive Ω-algebra [11,16],
if for every k ∈ N, ω ∈ Ωk, i ∈ [k], and d, d1, . . . , dk ∈ D

(i) ω(d1, . . . , di−1, 0D, di+1, . . . , dk) = 0D,
(ii) ω(d1, . . . , di−1, d+ di, di+1, . . . , dk) = ω(d1, . . . , d, . . . , dk) + ω(d1, . . . , dk).

For convenience, we assume that there exists an operation 0k ∈ Ωk for every k ∈ N
such that 0k(d1, . . . , dk) = 0D for all d1, . . . , dk ∈ D. We say that D is complete,
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whenever (D,+) is complete and for all k ∈ N, ω ∈ Ωk, index sets I1, . . . , Ik, and
families ( di )i∈Ij

of di ∈ D for every j ∈ [k] the equality

ω(
∑

i1∈I1

di1 , . . . ,
∑

ik∈Ik

dik
) =

∑
i1∈I1

· · ·
∑

ik∈Ik

ω(di1 , . . . , dik
) (5)

is satisfied. Accordingly, D is continuous, if D is complete and (D,+) is contin-
uous. The distributive Ω-algebra D is an A-semimodule for some commutative
semiring A = (A,⊕,�), if (D,+) is an A-semimodule and for every k ∈ N, ω ∈ Ωk,
a ∈ A, i ∈ [k], and d1, . . . , dk ∈ D the equality

ω(d1, . . . , di−1, a · di, di+1, . . . , dk) = a · ω(d1, . . . , dk) (6)

holds. Finally, D is a complete A-semimodule, if both A and D are by itself complete
and for index sets I and J and family ( ai )i∈I of ai ∈ A and ( dj )j∈J of dj ∈ D we
have (⊕

i∈I

ai

)
·
(∑

j∈J

dj

)
=

∑
i∈I,j∈J

ai · dj . (7)

Clearly, every distributive Ω-algebra is an N-semimodule.

2.3. Formal Power Series and Tree Series Substitution

Any mapping ϕ : B −→ A into a commutative monoid A = (A,⊕) is also
called (formal) power series. The set of all power series is denoted by A〈〈B〉〉.
We write (ϕ, b) instead of ϕ(b) for every b ∈ B. The sum ϕ1⊕ϕ2 of ϕ1, ϕ2 ∈ A〈〈B〉〉
is defined pointwise by (ϕ1 ⊕ ϕ2, b) = (ϕ1, b) ⊕ (ϕ2, b) for every b ∈ B. The sup-
port supp(ϕ) of ϕ is defined by supp(ϕ) = { b ∈ B | (ϕ, b) 6= 0A }. If the support
of ϕ is finite, then ϕ is said to be a polynomial. The polynomial with empty support
is denoted by 0̃A.

If B = TΩ for some ranked set Ω, then ϕ is also called tree series. Let
A = (A,⊕,�) be a complete semiring, and let n ∈ N, Xn ⊆ Ω0, ϕ ∈ A〈〈TΩ〉〉,
and ψ1, . . . , ψn ∈ A〈〈TΩ〉〉. We define the IO tree series substitution [6, 10] (for
short: IO-substitution) of (ψ1, . . . , ψn) into ϕ, denoted by ϕ←− (ψ1, . . . , ψn), as

ϕ←− (ψ1, . . . , ψn) =
⊕

t∈TΩ,
t1,...,tn∈TΩ

(ϕ, t)(ψ1, t1) · · · (ψn, tn) t[t1, . . . , tn] . (8)

Note that irrespective of the number of occurrences of xi the coefficient (ψi, ti)
is taken into account exactly once, even if xi does not appear in t. Other no-
tions of substitution, like o-IO-substitution [12], OI-substitution [17,6], and [OI]-
substitution [7], have been defined for tree series as well, but in this paper we will
exclusively deal with IO-substitution.

2.4. Weighted Tree Automata and Tree Series Transducers

An (I × J)-matrix over a set S is a mapping M : I × J −→ S. The (i, j)-entry
with i ∈ I and j ∈ J of M is usually denoted by Mij instead of M(i, j). Let Ω be a

6



ranked set and A = (A,⊕) be a commutative monoid. Every family µ = (µk )k∈N
of µk : Ωk −→ AI×Ik

is called tree representation over Ω, I, and A. A deterministic
tree representation additionally fulfills the restriction that for every ω ∈ Ωk and
i1, . . . , ik ∈ I there exists at most one i ∈ I such that µk(ω)i,i1···ik

6= 0A.
A weighted tree automaton (wta) [4] is a system M = (I,Ω,A, F, µ) comprising

of a nonempty set I of states, a ranked alphabet Ω, a semiring A = (A,⊕,�), a
vector F ∈ AI of final weights, and a tree representation µ over Ω, I, and (A,⊕).
If I is infinite, then A must be complete, otherwise M is called finite. More-
over, M is deterministic, if µ is deterministic. Let ~µ = ( ~µk(ω) )k∈N,ω∈Ωk

where
~µk(ω) : (AI)k −→ AI is defined componentwise for every i ∈ I and V1, . . . , Vk ∈ AI

by
~µk(ω)(V1, . . . , Vk)i =

⊕
i1,...,ik∈I

µk(ω)i,i1···ik
� (V1)i1 � · · · � (Vk)ik

. (9)

Let hµ : TΩ −→ AI be the unique homomorphism from (TΩ,Ω, IΩ) to (AI ,Ω, ~µ).
The tree series ‖M‖ ∈ A〈〈TΩ〉〉 recognized by M is (‖M‖, t) =

⊕
i∈I Fi � hµ(t)i for

every t ∈ TΩ.
A tree series transducer (tst) [17,10] is a system M = (I,Ω,∆,A, F, µ) in which

I is a nonempty set of states, Ω is a ranked alphabet of input symbols, ∆ is a
ranked alphabet of output symbols disjoint with X, A = (A,⊕,�) is a semiring,
F ∈ A〈〈T̂∆(X1)〉〉I is a vector of final outputs, and µ is a tree representation over Ω, I,
and (A〈〈T∆∪X〉〉,⊕) such that µk(ω) ∈ A〈〈T∆∪Xk

〉〉I×Ik

for every k ∈ N and ω ∈ Ωk.
If I is finite and each tree series in the range of µk(σ) is a polynomial, then M is
called finite, otherwise A must be complete. The tst M is deterministic, if µ is
deterministic. Finite tst over the Boolean semiring B are also called tree transduc-
ers [13,14]. Let ~µ = ( ~µk(ω) )k∈N,ω∈Ωk

where ~µk(ω) : (A〈〈T∆〉〉I)k −→ A〈〈T∆〉〉I is
defined componentwise for every i ∈ I and V1, . . . , Vk ∈ A〈〈T∆〉〉I by

~µk(ω)(V1, . . . , Vk)i =
⊕

i1,...,ik∈I

µk(ω)i,i1···ik
←− ((V1)i1 , . . . , (Vk)ik

) . (10)

Let hµ : TΩ −→ A〈〈T∆〉〉I be the unique homomorphism from the algebra (TΩ,Ω, IΩ)
to (A〈〈T∆〉〉I ,Ω, ~µ). The tree-to-tree-series transformation (t-ts transformation)
‖M‖ : TΩ −→ A〈〈T∆〉〉 computed by M is ‖M‖(t) =

⊕
i∈I Fi←− (hµ(t)i) for every

t ∈ TΩ.

3. Establishing the Relationship

Let D = (D,+,Ω) be a distributive Ω-algebra. Inspired by the automaton
definition of [16] we define D-weighted tree automata (D-wta). Roughly speaking,
to each transition of a D-wta an operation symbol of the Ω-algebra is associated
and non-determinism is taken care of by the addition.
Definition 1 Let D = (D,+,Ω) be a distributive Ω-algebra. A D-weighted tree
automaton (D-wta) is a system M = (I,Σ,D, F, µ), where

• I is a nonempty set of states,
• Σ is a ranked alphabet of input symbols,
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• F ∈ ΩI
1 is the final weight vector, and

• µ = (µk )k∈N is the transition table fulfilling µk : Σk −→ ΩI×Ik

k .

If I is infinite, then D must be complete. Otherwise, M is called finite. Finally,
M is deterministic, if for every k ∈ N, σ ∈ Σk, and i1, . . . , ik ∈ I, there exists at
most one i ∈ I such that µk(σ)i,i1···ik

6= 0k.
Unless stated otherwise let M = (I,Σ,D, F, µ) be a D-wta over the distributive

Ω-algebra D = (D,+,Ω) and let k ∈ N, σ ∈ Σk, i ∈ I, and t = σ(t1, . . . , tk) ∈ TΣ.
Moreover, all function arguments range over their respective domains. Next we
define two semantics, namely initial algebra semantics [15] and a semantics based
on runs. In the latter the weight of a run is obtained by combining the weights
obtained for the direct subtrees with the help of the operation symbol associated
to the topmost transition. Nondeterminism is taken care of by adding the weights
of all runs on a given input tree.
Definition 2 Let ~µ = ( ~µk(σ) )k∈N,σ∈Σk

where ~µk(σ) : (DI)k −→ DI is defined
componentwise for every i ∈ I by

~µk(σ)(V1, . . . , Vk)i =
∑

i1,...,ik∈I

µk(σ)i,i1···ik
((V1)i1 , . . . , (Vk)ik

) . (11)

Let hµ : TΣ −→ DI be the unique homomorphism from (TΣ,Σ, IΣ) to (DI ,Σ, ~µ).
The tree series recognized by M is defined as (‖M‖, t) =

∑
i∈I Fi(hµ(t)i).

Definition 3 A run on t ∈ TΣ is a mapping r : dom(t) −→ I. The set of all runs
on t is denoted by R(t). The weight of r is defined by a mapping wtr : dom(t) −→ D

which is defined for w ∈ dom(t) with t(w) ∈ Σk by

wtr(w) = µk(t(w))r(w),r(w·1)···r(w·k)(wtr(w·1), . . . ,wtr(w·k)) . (12)

The run-based semantics of M is (|M |, t) =
∑

r∈R(t) Fr(ε)(wtr(ε)).
The next proposition states that the initial algebra semantics coincides with the

run-based semantics. Intuitively speaking, this reflects the property that nonde-
terminism can equivalently either be handled locally (initial algebra semantics) or
globally (run-based semantics) due to the distributivity of D.
Proposition 1 For every D-wta M = (I,Σ,D, F, µ) we have ‖M‖ = |M |.
Proof. We prove hµ(t)i =

∑
r∈R(t),r(ε)=i wtr(ε).

hµ(t)i

=
∑

i1,...,ik∈I

µk(σ)i,i1···ik
(hµ(t1)i1 , . . . , hµ(tk)ik

)

(by definition of hµ)

=
∑

i1,...,ik∈I

µk(σ)i,i1···ik

( ∑
r1∈R(t1),
r1(ε)=i1

wtr1(ε), . . . ,
∑

rk∈R(tk),
rk(ε)=ik

wtrk
(ε)

)

(by induction hypothesis)
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=
∑

i1,...,ik∈I

∑
r1∈R(t1),
r1(ε)=i1

· · ·
∑

rk∈R(tk),
rk(ε)=ik

µk(σ)i,i1···ik
(wtr1(ε), . . . ,wtrk

(ε))

(by distributivity of D)

=
∑

r1∈R(t1)

· · ·
∑

rk∈R(tk)

µk(σ)i,r1(ε)···rk(ε)(wtr1(ε), . . . ,wtrk
(ε))

(by the definition of runs)

=
∑

r∈R(t),r(ε)=i

wtr(ε) (13)

(by definition of wtr)

Finally, the statement is proved by

(‖M‖, t)

=
∑
i∈I

Fi(hµ(t)i) =
∑
i∈I

Fi

( ∑
r∈R(t),r(ε)=i

wtr(ε)
)

(by definition of ‖M‖ and (13) )

=
∑
i∈I

∑
r∈R(t),r(ε)=i

Fi(wtr(ε)) =
∑

r∈R(t)

Fr(ε)(wtr(ε)) = (|M |, t) (14)

(by distributivity of D and definition of |M | ) . �

In the next proposition we demonstrate the power of D-wta. In fact, weighted
tree automata and tree series transducers can be simulated by D-wta. Since tst can
easily simulate wta [10], let us only discuss tst. We use an Ω-algebra with all tree
series of ϕ ∈ A〈〈T∆∪Xk

〉〉 as k-ary operation symbols, and the effect of applying ϕ to
tree series ψ1, . . . , ψk ∈ A〈〈T∆〉〉 is just the substitution ϕ←− (ψ1, . . . , ψk). In [10]
it was shown that this Ω-algebra together with ⊕ as addition forms a distributive
Ω-algebra.
Proposition 2 Let M1 be a wta and M2 be a tst.

(i) There exists a D′-wta M ′
1 such that ‖M ′

1‖ = ‖M1‖.
(ii) There exists a D-wta M ′

2 such that ‖M ′
2‖ = ‖M2‖.

Proof. Since it is clear (see [10]), how to simulate a wta with the help of a
tst, we only show Statement (ii). Let M2 = (I2,Σ,∆,A, F2, µ2) be the considered
tst. We set Ωk = {ϕ

k
| ϕ ∈ A〈〈T∆∪Xk

〉〉 } and let ϕ
k
: A〈〈T∆〉〉k −→ A〈〈T∆〉〉 be

defined as ϕ
k
(ψ1, . . . , ψk) = ϕ ←− (ψ1, . . . , ψk). Then D = (A〈〈T∆〉〉,⊕,Ω) is a

distributive Ω-algebra [10], which is complete whenever A is [16]. Hence we let
M ′

2 = (I2,Σ,D, F, µ) with Fi = F2(i)1, and for every i, i1, . . . , ik ∈ I2 we set
µk(σ)i,i1···ik

= (µ2)k(σ)i,i1···ik k
. We firstly prove hµ(t)i = hµ2(t)i.

hµ(σ(t1, . . . , tk))i

=
∑

i1,...,ik∈I2

µk(σ)i,i1···ik
(hµ(t1)i1 , . . . , hµ(tk)ik

)

(by definition of hµ)
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=
∑

i1,...,ik∈I2

(µ2)k(σ)i,i1···ik k
(hµ2(t1)i1 , . . . , hµ2(tk)ik

)

(by induction hypothesis and definition of µk(σ)i,i1···ik
)

=
∑

i1,...,ik∈I2

(µ2)k(σ)i,i1···ik
←− (hµ2(t1)i1 , . . . , hµ2(tk)ik

)

(by definition of (µ2)k(σ)i,i1···ik k
)

= hµ2(σ(t1, . . . , tk))i (15)

(by definition of hµ2)

We conclude

(‖M ′
2‖, t)

=
∑
i∈I

Fi(hµ(t)i) =
∑
i∈I

F2(i)1(hµ2(t)i)

(by definition of ‖M ′
2‖ and Fi and (15) )

=
∑
i∈I

(F2)i←− hµ2(t)i = (‖M2‖, t) (16)

(by the definition of F2(i)1 and hµ2) . �

Note that M ′
2 is deterministic, whenever M2 is. Next we attack the problem

of constructing a semiring from the distributive Ω-algebra D = (D,+,Ω). In the
following ω ranges over Ωk. We denote the set {ω(x1, . . . , xk) | k ∈ N, ω ∈ Ωk }
of shallow trees simply by ΩX. We can define a monoid which simulates the
Ω-algebra (D,Ω) as follows. We use overlining as in ω(x1, . . . , xk) whenever we
want to refer to the tree obtained by top-concatenation of the overlined symbol
with its arguments.
Theorem 1 For every Ω-algebra (D,Ω) we can construct a monoid (B,←) such
that D ∪ ΩX ⊆ B and for all d1, . . . , dk ∈ D

ω(d1, . . . , dk) = ω(x1, . . . , xk)← d1← · · · ← dk . (17)

Proof. Assume that Ω and D are disjoint and let Ω′ = Ω ∪D. Firstly, we define
a mapping h : TΩ′∪X −→ TΩ′∪X for every v ∈ D ∪X as follows.

h(v) = v (18)

h(ω(t1, . . . , tk)) =

{
ω(h(t1), . . . , h(tk)) if h(t1), . . . , h(tk) ∈ D ,

ω(h(t1), . . . , h(tk)) otherwise
(19)

The mapping h evaluates terms in an inside-out fashion (i. e., parameters of func-
tions are evaluated before the function definition is applied). Note that t ∈ T̂Ω′(Xn)
implies h(t) ∈ T̂Ω′(Xn). Secondly, let

B = D∗ ∪
⋃

n∈N+

D∗ · T̂Ω′(Xn) . (20)

10



Next we define the operation ← : B2 −→ B for every m,n ∈ N+, w ∈ D∗, b ∈ B,
t ∈ T̂Ω′(Xm), and t′ ∈ D ∪ T̂Ω′(Xn) by

w← b = w·b (21)

w·t← ε = w·t (22)

w·t← t′·b = w·(h(t〈|t′|〉))← b . (23)

Clearly, ε acts as neutral element. An easy inductive proof (on the length of b)
shows that a·u← b = a·(u← b) for every a ∈ D∗, u ∈ D ∪

⋃
n∈N+

T̂Ω′(Xn), and
b ∈ B. Let us denote this property by (?). Next we prove associativity (i. e.,
(b1← b2)← b3 = b1← (b2← b3) for all b1, b2, b3 ∈ B) by induction on the lengths of
the participating words (precisely, the length of b1, b2, and b3 in this order).

Induction base: The cases involving ε are trivial.

Induction step: We prove (a·s← t·b)← u·c = a·s← (t·b← u·c) for every a ∈ D∗,
s, t, u ∈ D ∪

⋃
n∈N+

T̂Ω′(Xn), and b, c ∈ B where b = ε if t /∈ D and c = ε if u /∈ D
by case analysis.

Case 1: Let s ∈ D. Then by repeatedly applying (?) we obtain

(a·s← t·b)← u·c = a·s·t·b← u·c = a·s·(t·b← u·c) = a·s← (t·b← u·c) . (24)

Case 2: Let s /∈ D and b 6= ε. Then

(a·s← t·b)← u·c = (a·(s← t)← b)← u·c
= a·(s← t)← (b← u·c) = (a·s← t)← (b← u·c)

(by induction hypothesis because |a·(s← t)| = |a·s| and |b| < |t·b|)
= a·s← (t← (b← u·c)) = a·s← t·(b← u·c) = a·s← (t·b← u·c) (25)

(by induction hypothesis because |b| < |t·b|) .

Case 3: Let s /∈ D, b = ε, and h(s〈|t|〉) ∈ D. Note that the last assumption yields
t ∈ D. Then with the help of (?)

(a·s← t)← u·c = a·(s← t)← u·c = a·s← t·u·c = a·s← (t← u·c) . (26)

Case 4: Let s /∈ D, b = ε, and h(s〈|t|〉) /∈ D. Then

(a·s← t)← u·c = a·h
(
h(s〈|t|〉)〈|u|〉

)
← c = a·h

(
s〈|t|〉〈|u|〉

)
← c

= a·h
(
s〈|t〈|u|〉|〉

)
← c = a·h

(
s〈|h(t〈|u|〉)|〉

)
← c = (a·s← h(t〈|u|〉))← c

= a·s← (h(t〈|u|〉)← c) = a·s← (t← u·c) (27)

(by induction hypothesis because |h(t〈|u|〉)| = |t| and |c| < |u·c|) .

Hence (B,←) is a monoid with neutral element ε. It remains to prove (17).

ω(x1, . . . , xk)← d1← · · · ← dk = h(ω(d1, x2, . . . , xk))← d2← · · · ← dk (28)

= h(ω(d1, . . . , dk)) = ω(d1, . . . , dk) . �
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Roughly speaking, one can understand ← as function composition where the
arguments are lambda-terms and the evaluation (which is done via h) is call-by-
value. Next we would like to extend this monoid to a semiring by introducing the
addition of the distributive Ω-algebra D = (D,+,Ω). However, the addition should
also be able to sum up terms, hence we first use an abstract addition coming from
a semiring for which D is a complete semimodule.

Let A = (A,⊕,�) be a semiring. We lift the operation ← : B2 −→ B to an
operation ← : A〈〈B〉〉2 −→ A〈〈B〉〉 by

ψ1← ψ2 =
⊕

b1,b2∈B

(
(ψ1, b1)� (ψ2, b2)

)
(b1← b2) . (29)

Let (D,+,Ω) be a complete A-semimodule via · : A×D −→ D. Then we define
the sum (summed in D) of ϕ ∈ A〈〈D〉〉 by the mapping

∑
: A〈〈D〉〉 −→ D with∑

ϕ =
∑

d∈D(ϕ, d) · d. For a vector V ∈ A〈〈D〉〉I we let (
∑
V )i =

∑
Vi. We

identify 1A d with d.
Proposition 3 Let D be a complete A-semimodule where A = (A,⊕,�) is a semi-
ring. Furthermore, let ϕ1, . . . , ϕk ∈ A〈〈D〉〉. Then

(i)
∑

(
⊕

i∈I ϕi) =
∑

i∈I

∑
ϕi for every family (ϕi )i∈I of ϕi ∈ A〈〈D〉〉 and

(ii) ω(
∑
ϕ1, . . . ,

∑
ϕk) =

∑(
ω(x1, . . . , xk)← ϕ1← · · · ← ϕk

)
.

Proof. We prove the items separately.

(i) Let (ϕi )i∈I be a family of ϕi ∈ A〈〈D〉〉.∑(⊕
i∈I

ϕi

)
=

∑
d∈D

(⊕
i∈I

ϕi, d
)
· d =

∑
d∈D

(⊕
i∈I

(ϕi, d)
)
· d

=
∑
d∈D

(∑
i∈I

(ϕi, d) · d
)

=
∑
i∈I

(∑
d∈D

(ϕi, d) · d
)

=
∑
i∈I

∑
ϕi (30)

(ii) Now we prove ω(
∑
ϕ1, . . . ,

∑
ϕk) =

∑(
ω(x1, . . . , xk)← ϕ1← · · · ← ϕk

)
.

ω(
∑

ϕ1, . . . ,
∑

ϕk)

= ω(
∑

d1∈D

(ϕ1, d1) · d1, . . . ,
∑

dk∈D

(ϕk, dk) · dk)

=
∑

d1,...,dk∈D

ω((ϕ1, d1) · d1, . . . , (ϕk, dk) · dk)

=
∑

d1,...,dk∈D

(⊙
j∈[k]

(ϕj , dj)
)
· ω(d1, . . . , dk)

=
∑ ⊕

d1,...,dk∈D

(⊙
j∈[k]

(ϕj , dj)
)
ω(d1, . . . , dk)

=
∑ ⊕

d1,...,dk∈D

(⊙
j∈[k]

(ϕj , dj)
)
ω(x1, . . . , xk)← d1← · · · ← dk

=
∑

ω(x1, . . . , xk)← ϕ1← · · · ← ϕk (31)

�
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Thus combining Theorem 1 and Proposition 3, we can construct a semiring with
the following properties. In fact, we use this semiring for our presentation results.
Theorem 2 For every continuous D there exists a semiring (C,⊕,←) such that
D ∪ ΩX ⊆ C and for all d1, . . . , dk ∈ D

(i) ω(d1, . . . , dk) = ω(x1, . . . , xk)← d1← · · · ← dk and
(ii)

∑
(
⊕

i∈I di) =
∑

i∈I di.

Proof. Let A = (A,⊕,�) be a semiring such that D is a complete A-semimodule.
For example, A can always be chosen to be N∞. By Theorem 1 there exists a
monoid (B,←) such that Statement (i) holds for elements of B. Consequently, let
C = A〈〈B〉〉 and ← : C2 −→ C be the extension of ← on B. Clearly, (C,⊕,←) is a
semiring and by Theorem 1 and Proposition 3 the Statements (i) and (ii) hold. �

The semiring (A〈〈B〉〉,⊕,←) constructed in Theorem 2 will be denoted byGA(D)
in the sequel. We note that GA(D) is complete, because A is complete (see [16]).
Hence we are ready to state our main representation theorem.
Theorem 3 Let M1 = (I1,Σ,D, F1, µ1) be a D-wta and M2 be a tst.

• There exists a wta M ′
1 = (I1,Σ, GA(D), F, µ) such that ‖M1‖ =

∑
‖M ′

1‖.
• There exists a wta M ′

2 such that ‖M2‖ =
∑
‖M ′

2‖.
Proof. The second statement follows from the first and Proposition 2, so it
remains to prove the first statement. Let Fi = (F1)i(x1) and

µk(σ)i,i1···ik
= (µ1)k(σ)i,i1···ik

(x1, . . . , xk) . (32)

We first prove
∑
hµ(t)i = hµ1(t)i by induction.

hµ1(σ(t1, . . . , tk))i

=
∑

i1,...,ik∈I1

(µ1)k(σ)i,i1···ik
(hµ1(t1)i1 , . . . , hµ1(tk)ik

)

(by definition of hµ1)

=
∑

i1,...,ik∈I1

(µ1)k(σ)i,i1···ik

(∑
hµ(t1)i1 , . . . ,

∑
hµ(tk)ik

)
(by induction hypothesis)

=
∑

i1,...,ik∈I1

∑
(µ1)k(σ)i,i1···ik

(x1, . . . , xk)← hµ(t1)i1 ← · · · ← hµ(tk)ik

(by Proposition 3(ii) )

=
∑ ⊕

i1,...,ik∈I1

(µ1)k(σ)i,i1···ik
(x1, . . . , xk)← hµ(t1)i1 ← · · · ← hµ(tk)ik

(by Proposition 3(i) )

=
∑ ⊕

i1,...,ik∈I1

µk(σ)i,i1···ik
← hµ(t1)i1 ← · · · ← hµ(tk)ik

(by definition of µk(σ)i,i1···ik
)

=
∑

hµ(σ(t1, . . . , tk))i (33)
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Using this property we can easily show

(‖M1‖, t)

=
∑
i∈I1

(F1)i(hµ1(t)i) =
∑
i∈I1

(F1)i

(∑
hµ(t)i

)
(by definition of ‖M1‖ and (33) )

=
∑
i∈I1

∑
(F1)i(x1)← hµ(t)i =

∑ ⊕
i∈I1

Fi← hµ(t)i =
∑

(‖M ′
1‖, t) (34)

(by Proposition 3 and definition of Fi and ‖M ′
1‖) . �

Note that again M ′
1 can be chosen to be deterministic, whenever M1 is deter-

ministic. The main reason for the remaining summation is the fact that we do not
know how to define sums like ω(x1, . . . , xk) + ω′(x1, . . . , xk) for ω, ω′ ∈ Ωk. Hence,
we finally consider deterministic D-wta, because there the summation is irrelevant.
Corollary 1 Let M be a deterministic D-wta. Then there exists a wta M ′ such
that ‖M‖ = ‖M ′‖.
Proof. Let B = (B,←) be the monoid constructed from D in Theorem 1. We
embed B into the following semiring A = (A,⊕,�). Let A = B ∪ {⊥} for some
⊥ /∈ B and define ⊕,� : A×A −→ A for every a1, a2 ∈ A by

a1 ⊕ a2 =


⊥ if a1, a2 ∈ B ,

a1 if a2 = ⊥ ,

a2 otherwise ,

and a1 � a2 =

{
a1← a2 if a1, a2 ∈ B ,

⊥ otherwise .
(35)

Then A is a semiring with ⊥ and ε as additive and multiplicative neutral element,
respectively. Let M = (I,Σ,D, F, µ) be the deterministic D-wta. We construct
M ′ = (I,Σ,A, F ′, µ′) as follows. Let F ′

i = Fi(x1) whenever Fi 6= 01 and F ′
i = ⊥

otherwise. Moreover, let

µ′k(σ)i,i1···ik
=

{
µk(σ)i,i1···ik

(x1, . . . , xk) if µk(σ)i,i1···ik
6= 0k ,

⊥ otherwise .
(36)

We can then easily prove hµ′(t)i = hµ(t)i and ‖M ′‖ = ‖M‖ by induction. �

In [19] we have shown that for tst over completely idempotent semirings we can
refine the semiring and obtain a wta which computes exactly the semantics of the
tst. This allowed us to conclude that all tree transducers (which are finite tst over
the Boolean semiring) can be simulated by wta. Thus we successfully generalized
the classical result which shows that generalized sequential machines are weighted
automata over the semiring (P(Σ∗),∪, ◦).

4. Decidability of the Emptiness Problem

In [19] we showed how to apply the obtained characterization of tst and D-wta
to a pumping lemma [3] for deterministic wta. From that we obtained a pumping
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lemma for deterministic D-wta, and using this pumping lemma we can derive decid-
ability of the emptiness problem for deterministic D-wta. However, we generalize
this result and obtain decidability of the emptiness problem for D-wta, which are
not necessarily deterministic.

In this section, let A = (A,⊕,�) be a semiring and D = (D,+,Ω) be a distribu-
tive Ω-algebra. Finally, let SΣ(D) (respectively, Sd

Σ(D)) be the class of recognizable
(by a D-wta) tree series (respectively, deterministically recognizable tree series);
i. e., for every S ∈ SΣ(D) (respectively, S ∈ Sd

Σ(D)) there exists a finite (respec-
tively, determinisitic finite) D-wta M = (Q,Σ,D, F, µ) such that S = ‖M‖.
Theorem 4 (Theorem 13 in [19]) Let S ∈ Sd

Σ(D) and let Ω′ = Ω ∪ D. There
exists an m ∈ N such that for every t ∈ supp(S) with height(t) > m+ 1 there exist
C,C ′ ∈ T̂Σ(X1), t′ ∈ TΣ, and a, a′ ∈ T̂Ω′(X1), and d ∈ D such that

• t = C ′[C[t′]],
• height(C[t′]) 6 m+ 1 and C 6= x1, and
• (S,C ′[Cn[t′]]) = a′← an← d for every n ∈ N.

It follows from the proof of Corollary 5.8 of [3] that m can be chosen to be
the number of states of a deterministic D-wta recognizing S. Let S ∈ Sd

Σ(D) and
M = (Q,Σ,D, F, µ) be a deterministic D-wta recognizing S with m = card(Q). The
pumping lemma suggests that S = 0̃D if and only if

∑
t∈TΣ,height(t)6m(S, t) t = 0̃D.

In the following proposition we prove this fact for mildly restricted distributive
Ω-algebras D and (not necessarily deterministic) D-wta M .

First let us define the restrictions. We say that D is zero-sum free, if d1+d2 = 0D

implies d1 = 0D = d2 for all d1, d2 ∈ D. Note that whenever D is complete,
then it is also zero-sum free. In [3] commutativity of the semiring is required to
show decidability of the emptiness problem. The next notion presents a suitable
restriction for Ω-algebras. In fact, it is weaker than commutativity and covers only
the essence needed to make the proof of [3] work for semirings. We say that D

has Property (P), if for every %1, %2 ∈ T̂Ω(X1) and d ∈ D the fact %I
1(%

I
2(d)) 6= 0D

implies %I
1(d) 6= 0D.

t =

C

C ′

u

t′ =

C

u

Fig. 2. The decomposition employed in Proposition 4.

Proposition 4 Let D be zero-sum free distributive Ω-algebra with Property (P),
and let M = (Q,Σ,D, F, µ) be a finite D-wta. Then

0̃D = ‖M‖ ⇐⇒ 0̃D =
∑

t∈TΣ,height(t)6card(Q)

(‖M‖, t) t . (37)
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Proof. The direction ⇒ is clear, so it remains to prove the direction ⇐. The
proof is by contradiction; hence assume that the right hand side of (37) holds
while ‖M‖ 6= 0̃D. Consequently, there exists a minimal (with respect to the size)
t ∈ TΣ such that (‖M‖, t) 6= 0D. From the assumption it is immediate that
height(t) > card(Q). Moreover, by Proposition 1 we know that ‖M‖ = |M |, which
allows us to concentrate on runs in the remaining proof.

Since (|M |, t) =
∑

r∈R(t) Fr(ε)(wtr(ε)), there exists a run r ∈ R(t) such that
Fr(ε)(wtr(ε)) 6= 0D. Due to the fact that height(t) > card(Q) there exist n ∈ N and
w1 · · ·wn ∈ dom(t) such that n > card(Q). By the pigeon-hole principle there exist
j1, j2 ∈ [0, n] such that j1 < j2 and r(w1 · · ·wj1) = r(w1 · · ·wj2). Now consider the
trees C,C ′ ∈ T̂Σ(X1) and u ∈ TΣ defined by

C(w) =


t(w) if w1 · · ·wj1 is not a prefix of w ,

x1 if w = w1 · · ·wj1 ,

undefined otherwise ,

(38)

C ′(w) =


t(w1 · · ·wj1 ·w) if wj1+1 · · ·wj2 is not a prefix of w ,

x1 if w = wj1+1 · · ·wj2 ,

undefined otherwise ,

(39)

and u(w) = t(w1 · · ·wj2 ·w) for every w ∈ N∗
+. Clearly, t = C[C ′[u]], and we let

t′ = C[u]. It is easily checked that there is an r′ ∈ R(t′) defined by

r′(w) =

{
r(w′) if w = w1 · · ·wj1 ·w′ for some w′ ∈ N∗

+ ,

r(w) otherwise .
(40)

Let eval : TΣ∪X × dom(t) −→ TΩ∪X be defined for every w ∈ dom(t), x ∈ X, k ∈ N,
σ ∈ Σk, and C1, . . . , Ck ∈ TΣ∪X by

eval(x,w) = x (41)

eval(σ(C1, . . . , Ck), w) = µk(σ)r(w),r(w·1)···r(w·k)(eval(C1, w·1), . . . , eval(Ck, w·k)) .
(42)

Hence the trees C,C ′ induce trees %, %′ ∈ T̂Ω(X1) by setting % = eval(C, ε) and
%′ = eval(C ′, w1 · · ·wj1). Finally, we let d = eval(t, w1 · · ·wj2). Now we observe
wtr(ε) = %(%′(d)) and wtr′(ε) = %(d). Due to the fact that r(ε) = r′(ε) we con-
clude that Fr′(ε)(wtr′(ε)) = Fr(ε)(%(d)) 6= 0D using Property (P). By zero-sum
freeness this allows us to derive (|M |, t′) 6= 0D. However, size(t′) < size(t) and
card(Q) < height(t′) because (|M |, t′) 6= 0D. This constitutes a contradiction be-
cause t was chosen minimal with the property that (‖M‖, t) 6= 0D. Hence there is
no minimal tree t such that (‖M‖, t) 6= 0D; and thus ‖M‖ = 0̃D. �

The previous proposition essentially shows that the emptiness problem for finite
D-wta M is decidable, because in order to show that the recognized tree series is
empty (i. e., ‖M‖ = 0̃D), we only have to check finitely many small trees (i. e.,
trees whose height is at most the number of states of M). The next theorem makes
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the required assumptions explicit. It turns out that only the operations (in fact,
the operations that occur in the transition table of M are sufficient) need to be
recursive. By that we mean that there exists a suitable coding of the elements of D
and for each k ∈ N and ω ∈ Ωk there exists a Turing machine, which presented
the coding of d1, . . . , dk ∈ D on k input tapes eventually stops with the coding of
ω(d1, . . . , dk) on the output tape. Moreover, we assume that the input tree series
S ∈ SΣ(D) is finitely presented. For the sake of this paper, we assume that we are
given a finite D-wta recognizing S.
Theorem 5 Let D be a zero-sum free distributive Ω-algebra with Property (P).
Moreover, let the operations of Ω be recursive functions and S ∈ SΣ(D). Then
emptiness of S ( i. e., S = 0̃D) is decidable.
Proof. Let M = (Q,Σ,D, F, µ) be a finite D-wta recognizing S. By Proposition 4
it suffices to decide 0̃D =

∑
t∈TΣ,height(t)6card(Q)(‖M‖, t) t. By Proposition 1 we

have ‖M‖ = |M |, so we again use the run-based semantics for the remainder of
the proof. Since there are only finitely many trees t ∈ TΣ with a height at most
card(Q) and at most finitely many runs on t, we have to check for finitely many
runs r ∈ R(t) whether Fr(ε)(wtr(ε)) 6= 0D. Since the operations of Ω are recursive,
we can decide this inequality. With the help of zero-sum freeness we can conclude
that the existence of one such run ensures ‖M‖ 6= 0D. On the other hand, if there
is no such run, then clearly ‖M‖ = 0̃D. �

Note that zero-sum freeness is sufficient for the proof; in particular, the addition
of D need not be recursive. Let us instantiate the last theorem to tst and wta. A
semiring A = (A,⊕,�) is said to be zero-sum free, if for every a1, a2 ∈ A the fact
a1⊕a2 = 0A implies a1 = 0A = a2. Recall the distributive Ω-algebra D = (D,+,Ω)
used in Proposition 2 to simulate a tst M = (Q,Σ,∆,A, F, µ).
Corollary 2 Let A = (A,⊕,�) be a commutative and zero-sum free semiring such
that � and ⊕ are recursive and M = (Q,Σ,∆,A, F, µ) be a finite tst. Then it is
decidable whether ‖M‖(t) = 0̃A for every t ∈ TΣ.
Proof. According to Proposition 2 we have seen that there exists a distributive
Ω-algebra D = (A,⊕,Ω) and a Ω-wta M ′ such that ‖M‖ = ‖M ′‖. Recall that
Ωk = {ϕ

k
| ϕ ∈ A〈〈T∆∪Xk

〉〉 } with ϕ
k
(ψ1, . . . , ψk) = ϕ←− (ψ1, . . . , ψk). Clearly,

the substitution operation is recursive, if all participating tree series are polynomial.
In [10] it is shown that finite tst compute on polynomial tree series solely.

Moreover, we note that D is zero-sum free, where the zero of D is 0̃A. Due to
commutativity of A, also Property (P) holds for D. Hence we can apply Theorem 5
to decide emptiness of ‖M ′‖ and thereby emptiness of ‖M‖. �

Actually, by refining the proof one can even show that ⊕ need not be recursive.
Note that every idempotent semiring is zero-sum free as well as every naturally
ordered or complete semiring. Consequently, the above corollary applies to a very
large class of semirings.
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Corollary 3 Let A = (A,⊕,�) be a commutative and zero-sum free semiring such
that � is recursive and M = (Q,Σ,A, F, µ) be a finite wta. Then it is decidable
whether ‖M‖ = 0̃A.
Proof. The proof is analogous to the proof of Corollary 2. �

The statement in [2], which is similar to a pumping lemma, holds for wta over
fields. Naturally, no interesting field is zero-sum free, so our results cannot be
applied. This leaves a gap to be explored. Identifying the necessary conditions
for the construction of [2] would have a two-fold benefit. Firstly, we may be able
to close the aforementioned gap, and secondly we may be able to generalize the
statement to tst or D-wta.
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