
Compositions of

Bottom-Up Tree Series Transformations

Andreas Maletti∗

Technische Universität Dresden
Fakultät Informatik

D–01062 Dresden, Germany

e-mail: maletti@tcs.inf.tu-dresden.de

Abstract

Tree series transformations computed by bottom-up tree series trans-
ducers are called bottom-up tree series transformations. (Functional)
compositions of such transformations are investigated. It turns out that
bottom-up tree series transformations over commutative and ℵ0-complete
semirings are closed under left-composition with linear bottom-up tree
series transformations and right-composition with boolean deterministic
bottom-up tree series transformations.

1 Introduction

Tree series transducers [18, 9, 12] were introduced as the transducing devices
corresponding to weighted tree automata [1, 16, 3]. So far, the latter are applied
in code selection and tree pattern matching [11, 2]. Weighted transducers on
strings are applied in image manipulation [see, e. g., 7], where the images are
coded as weighted string automata, and speech processing [see, e. g., 19]. Since
natural language processing features many transformations on parse trees, which
come equipped with a degree of certainty, it seems natural to consider finite-state
devices capable of transforming weighted trees. For natural language processing,
the potential of tree series transducers over the semiring of the positive reals was
recently discovered [14].

Since tree series transducers generalize tree transducers [21, 20, 8] by adding
a cost component, we obtain top-down tree series transducers [18, 9, 12], where
the input tree is processed from the root towards the leaves, and bottom-up
tree series transducers [9, 12], where the input is processed from the leaves
towards the root. In this paper, we deal with bottom-up tree series transducers.
Moreover, four notions of substitution on tree series are known. These are

∗Financially supported by the German Research Foundation (DFG, GK 334/3).

pure IO-substitution [5, 9], o-IO-substitution [12], [IO]-substitution [6], and OI-
substitution [4, 18]. Here we deal with pure IO-substitution, since it seems to
be the most appropriate choice for bottom-up tree series transducers.

Roughly speaking, a bottom-up tree series transducer is a bottom-up tree
transducer [21, 20] in which the transitions carry a weight; a weight is an element
of some semiring [15, 13]. The rewrite semantics works as follows. Along a
successful computation on some input tree, the weights of the involved transitions
are combined by means of the semiring multiplication; if there is more than one
successful computation for some pair of input and output trees, then the weights
of these computations are combined by means of the semiring addition.

In the unweighted case, bottom-up tree transformations are closed under left-
composition with linear bottom-up tree transformations [8, Theorem 4.5] and
right-composition with deterministic bottom-up tree transformations [8, Theo-
rem 4.6]. In this paper we try to extend these results to bottom-up tree series
transformations. The first result was already generalized to bottom-up tree series
transformations [18, 9]. Essentially the authors obtain that, for arbitrary com-
mutative and ℵ0-complete semirings [15], bottom-up tree series transformations
are closed under left-composition with nondeleting, linear bottom-up tree series
transformations. We generalize this further by showing that the mentioned class
of bottom-up tree series transformations is even closed under left-composition
with linear bottom-up tree series transformations. The construction required to
show this statement is mostly standard (i. e., the transitions of the linear trans-
ducer are translated with the help of the second transducer) with one notable
exception.

For commutative and ℵ0-complete semirings, the class of bottom-up tree
series transformations is closed under right-composition with boolean homomor-
phism bottom-up tree series transformations [9]. Using an adaptation of the
standard construction, we also show that this class of bottom-up tree series
transformations is actually closed under right-composition with boolean deter-
ministic bottom-up tree series transformations.

2 Preliminaries

We use N to represent the set of nonnegative integers {0, 1, 2, . . . }, and we also
use N+ = N\{0}. In the sequel, let k, n ∈ N. We abbreviate { i ∈ N | 1 6 i 6 k }
simply by [k]. Given sets A and I, we write AI for the set of all mappings
f : I −→ A. Occasionally, we use the family notation (f(i))i∈I for f , and
moreover, if I = [k], then we generally write

(
f(1), . . . , f(k)

)
or just f(1) · · · f(k).

A set Σ which is nonempty and finite is also called alphabet, and the elements
thereof are called symbols. A ranked alphabet is an alphabet Σ together with
a mapping rkΣ : Σ −→ N associating to each symbol its rank. We use the
denotation Σk to represent the set of symbols (of Σ) having rank k. Furthermore,
we use the set X = { xi | i ∈ N+ } of (formal) variables and the finite subset
Xk = { xi | i ∈ [k] }. Given a ranked alphabet Σ and V ⊆ X, the set of Σ-trees
indexed by V , denoted by TΣ(V), is inductively defined to be the smallest set T

such that (i) V ⊆ T and (ii) for every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ T also
σ(t1, . . . , tk) ∈ T . Since we generally assume that Σ∩X = ∅, we write α instead
of α() whenever α ∈ Σ0. Moreover, we also write TΣ to denote TΣ(∅).

For every t ∈ TΣ(X), we denote by |t|x the number of occurrences of x ∈ X
in t, and in addition, we use var(t) = { i ∈ N+ | |t|xi > 1 }. Moreover, for every
finite I ⊆ N+ and family (ti)i∈I of ti ∈ TΣ(X), the expression t[ti]i∈I denotes
the result of substituting in t every xi by ti for every i ∈ I. If I = [n], then
we simply write t[t1, . . . , tn]. Let V ⊆ X be finite. We say that t ∈ TΣ(X) is
linear in V (respectively, nondeleting in V), if every x ∈ V occurs at most once
(respectively, at least once) in t.

A semiring is an algebraic structure A = (A,+, ·, 0, 1) consisting of a com-
mutative monoid (A,+, 0) and a monoid (A, ·, 1) such that · distributes over +
and 0 is absorbing with respect to · . The semiring is called commutative, if
· is commutative. As usual we use

∑
i∈I ai (respectively,

∏
i∈I ai for I ⊆ N) for

sums (respectively, products) of families (ai)i∈I of ai ∈ A where for only finitely
many i ∈ I we have ai 6= 0 (respectively, ai 6= 1). For products the order of the
factors is given by the order 0 < 1 < · · · on the index set I. We say that A is
ℵ0-complete, whenever it is possible to define an infinitary sum operation

∑
I

for each countable index set I (i. e., card(I) 6 ℵ0) such that for every family
(ai)i∈I of ai ∈ A the following three conditions are satisfied.

(i)
∑

I(ai)i∈I = aj , if I = {j}, and
∑

I(ai)i∈I = aj1 + aj2 , if I = {j1, j2}
with j1 6= j2.

(ii)
∑

I(ai)i∈I =
∑

J

(∑
Ij

(ai)i∈Ij

)
j∈J , whenever for some countable J we

have I =
⋃

j∈J Ij and Ij1 ∩ Ij2 = ∅ for all j1 6= j2.

(iii)
∑

I(a · ai · a′)i∈I = a ·
(∑

I(ai)i∈I

)
· a′ for all a, a′ ∈ A.

In the sequel, we simply write the accustomed
∑

i∈I ai instead of the cumbersome∑
I(ai)i∈I , and when speaking about an ℵ0-complete semiring, we implicitly

assume
∑

I to be given. Well-known ℵ0-complete semirings are the Boolean
semiring B = ({⊥,>},∨,∧,⊥,>) with disjunction and conjunction and the
semiring of the nonnegative reals R+ = (R+ ∪ {∞},+, ·, 0, 1).

Let S be a set and A = (A,+, ·, 0, 1) be a semiring. A (formal) power series ϕ
is a mapping ϕ : S −→ A. Given s ∈ S, we denote ϕ(s) also by (ϕ, s) and write
the series as

∑
s∈S(ϕ, s) s. The support of ϕ is supp(ϕ) = { s ∈ S | (ϕ, s) 6= 0 }.

Power series with finite support are called polynomials, and power series with
at most one support element are also called singletons. We denote the set
of all power series ϕ : S −→ A by A〈〈S〉〉. We call ϕ ∈ A〈〈S〉〉 boolean, if
(ϕ, s) = 1 for every s ∈ supp(ϕ). The boolean singleton with empty support
is denoted by 0̃. Power series ϕ,ϕ′ ∈ A〈〈S〉〉 are summed componentwise; i. e.,
(ϕ+ϕ′, s) = (ϕ, s) + (ϕ′, s) for every s ∈ S. Finally, we also multiply the power
series ϕ with a coefficient a ∈ A componentwise; i. e., (a · ϕ, s) = a · (ϕ, s) for
every s ∈ S.

In this paper, we only consider power series in which the set S is a set of
trees. Such power series are also called tree series. A tree series ϕ ∈ A〈〈TΣ(X)〉〉

is said to be linear (respectively, nondeleting) in V ⊆ X, if every t ∈ supp(ϕ)
is linear (respectively, nondeleting) in V . Let A be an ℵ0-complete semiring,
ϕ ∈ A〈〈TΣ(X)〉〉, I ⊆ N+ be finite, and (ψi)i∈I be a family of ψi ∈ A〈〈TΣ(X)〉〉.
The pure IO tree series substitution (for short: IO-substitution) (of (ψi)i∈I

into ϕ) [5, 9], denoted by ϕ←− (ψi)i∈I , is defined by

ϕ←− (ψi)i∈I =
∑

t∈TΣ(X),
(∀i∈I): ti∈TΣ(X)

(ϕ, t) ·
∏
i∈I

(ψi, ti) t[ti]i∈I .

Let A = (A,+, ·, 0, 1) be a semiring, Q be an alphabet, and Σ and ∆ be
ranked alphabets. A bottom-up tree representation µ (over Q, Σ, ∆, and A)
[18, 9] is a family (µk(σ))k∈N,σ∈Σk

of matrices µk(σ) ∈ A〈〈T∆(Xk)〉〉Q×Qk

. A
tree representation µ is said to be

• polynomial (respectively, boolean), if for every k ∈ N, σ ∈ Σk, q ∈ Q, and
w ∈ Qk the tree series µk(σ)q,w is polynomial (respectively, boolean),

• nondeleting (respectively, linear), if for every k ∈ N, σ ∈ Σk, q ∈ Q, and
w ∈ Qk the entry µk(σ)q,w is nondeleting (respectively, linear) in Xk,

• deterministic (respectively, total), if for every k ∈ N, σ ∈ Σk, and w ∈ Qk,
there exists at most one (respectively, at least one) (q, t) ∈ Q × T∆(Xk)
such that t ∈ supp(µk(σ)q,w).

Usually when we specify a tree representation µ, we just specify some entries
of µk(σ) and implicitly assume the remaining entries to be 0̃. A bottom-up tree
series transducer [9, 12] is a sextuple M = (Q,Σ,∆,A, F, µ) consisting of

• an alphabet Q of states,

• ranked alphabets Σ and ∆, also called input and output ranked alphabet,

• an ℵ0-complete semiring A = (A,+, ·, 0, 1),

• a vector F ∈ A〈〈T∆(X1)〉〉Q of nondeleting and linear tree series represent-
ing final outputs, and

• a bottom-up tree representation µ over Q, Σ, ∆, and A.

Bottom-up tree series transducers inherit the properties from their tree repre-
sentation; e. g., a bottom-up tree series transducer with a polynomial bottom-up
tree representation would be called polynomial bottom-up tree series transducer.
Additionally, we say that M is a homomorphism bottom-up tree series trans-
ducer, if Q = {?}, F? = 1 x1, and µ is deterministic and total.

Let M = (Q,Σ,∆,A, F, µ) be a bottom-up tree series transducer over the
ℵ0-complete semiring A = (A,+, ·, 0, 1). Then M induces a transformation
‖M‖ : A〈〈TΣ〉〉 −→ A〈〈T∆〉〉 defined as follows. For every k ∈ N, σ ∈ Σk, and

t1, . . . , tk ∈ TΣ we define the mapping hµ : TΣ −→ A〈〈T∆〉〉Q componentwise for
every q ∈ Q by

hµ

(
σ(t1, . . . , tk)

)
q

=
∑

q1,...,qk∈Q

µk(σ)q,q1···qk
←− (hµ(ti)qi)i∈[k] .

Moreover, hµ(ϕ)q =
∑

t∈TΣ
(ϕ, t) · hµ(t)q for every ϕ ∈ A〈〈TΣ〉〉. Then for every

ϕ ∈ A〈〈TΣ〉〉 the (IO) tree series transformation computed by M is

‖M‖(ϕ) =
∑
q∈Q

Fq ←− (hµ(ϕ)q) .

By BOT(A) we denote the class of tree series transformations computable by
bottom-up tree series transducers over the semiring A. Similarly, we also use
p–BOT(A) (respectively, b–BOT(A), l–BOT(A), n–BOT(A), d–BOT(A), and
h–BOT(A)) for the class of tree series transformations computable by polyno-
mial (respectively, boolean, linear, nondeleting, deterministic, and homomor-
phism) bottom-up tree series transducers over the semiring A. Combinations of
restrictions are handled in the usual manner; i. e., let x–BOT(A) and y–BOT(A)
be two classes of tree series transformations, then

xy–BOT(A) = x–BOT(A) ∩ y–BOT(A) .

According to custom, we write ◦ for function composition; so given two tree
series transformations τ1 : A〈〈TΣ〉〉 −→ A〈〈T∆〉〉 and τ2 : A〈〈T∆〉〉 −→ A〈〈TΓ〉〉, then
for every ϕ ∈ A〈〈TΣ〉〉 we have that (τ1 ◦ τ2)(ϕ) = τ2(τ1(ϕ)). This composition is
extended to classes of transformations in the usual manner.

3 Compositions

First let us review what is known about compositions of bottom-up tree series
transformations. Bottom-up tree transformations (i. e., polynomial bottom-up
tree series transformations over the Boolean semiring, [see 9, Section 4]) are
closed under left-composition with linear bottom-up tree transformations [8,
Theorem 4.5]; i. e., lp–BOT(B)◦p–BOT(B) = p–BOT(B). This result was gen-
eralized to bottom-up tree series transformations over commutative, ℵ0-complete
semirings A [17, 9]. More precisely, it is shown [17, Theorem 2.4] that

nl–BOT(A) ◦ nl–BOT(A) = nl–BOT(A) .

In fact it is shown for nondeleting, linear top-down tree series transducers [9],
but nondeleting, linear top-down tree series transducers and nondeleting, linear
bottom-up tree series transducers are equally powerful [see 9, Theorem 5.24].
Moreover, nl–BOT(A) ◦ h–BOT(A) ⊆ BOT(A) [9, Corollary 5.5]. So taking
those results together and a decomposition [9, Lemma 5.6], we obtain the fol-
lowing result.

Theorem 3.1 For every commutative and ℵ0-complete semiring A

nlp–BOT(A) ◦ p–BOT(A) = p–BOT(A) . (1)

Proof: The direction p–BOT(A) ⊆ nlp–BOT(A) ◦ p–BOT(A) is trivial, so it
remains to prove nlp–BOT(A) ◦ p–BOT(A) ⊆ p–BOT(A).

nlp–BOT(A) ◦ p–BOT(A)
⊆ nlp–BOT(A) ◦ nlp–BOT(A) ◦ h–BOT(A) [9, Lemma 5.6]
⊆ nlp–BOT(A) ◦ h–BOT(A) [17, Theorem 2.4]
⊆ p–BOT(A) [9, Corollary 5.5] �

We should like to obtain a result like l–BOT(A) ◦ BOT(A) = BOT(A) for
all commutative and ℵ0-complete semirings A. We try to follow the classical
(unweighted) construction, so we first extend hµ such that it can treat variables
(of X). We extend hµ to TΣ(X) by supplying, for some V ⊆ N+, a mapping
q ∈ QV , which associates a state q(v), often written as qv, to the variable xv

for v ∈ V . Intuitively speaking, the state qv represents the initial state, with
which the computation should be started at the leaves labeled xv in the input
tree. For all states q ∈ Q different from qv it should not be possible to start
a (meaningful) computation at xv (i. e., hq

µ(xv)q = 0̃). This mapping is then
extended to TΣ(X) in a manner analogous to hµ.

Definition 3.2 (Extension of hµ) Let (Q,Σ,∆,A, F, µ) be a bottom-up tree
series transducer. For every finite V ⊆ N+ and q ∈ QV we define the mapping
hq

µ : TΣ(X) −→ A〈〈T∆(X)〉〉Q componentwise for every q ∈ Q as follows. For
every v ∈ V , n ∈ N+ \ V , k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(X)

hq
µ(xn)q = 1 xn (2)

hq
µ(xv)q =

{
1 xv if q = qv ,

0̃ otherwise
(3)

hq
µ(σ(t1, . . . , tk))q =

∑
q1,...,qk∈Q

µk(σ)q,q1···qk
←−(hq

µ(ti)qi)i∈[k] . (4)

The mapping hq
µ : A〈〈TΣ(X)〉〉 −→ A〈〈T∆(X)〉〉Q is given for every ϕ ∈ A〈〈TΣ(X)〉〉

by
hq

µ(ϕ)q =
∑

t∈TΣ(X)

(ϕ, t) · hq
µ(t)q .

�

Next we define the composition of two bottom-up tree series transducers.
Let M1 = (Q1,Σ,Γ,A, F1, µ1) and M2 = (Q2,Γ,∆,A, F2, µ2) be bottom-up
tree series transducers, which are eligible for composition; i. e., they are defined
over the same semiring, and the output ranked alphabet of M1 is the input
ranked alphabet of M2. Then, similar to the (unweighted) product construc-
tion of bottom-up tree transducers, we translate the transitions of M1 with the

On subtree:
t′

a′

=⇒M1 u′
b′

=⇒M2 v′

Deletion:

t t′

a′a′′

=⇒M1

u u′

b′′

=⇒M2

v

Figure 1: Computation of M1 followed by M2.

help of the transitions of M2. Let k ∈ N, σ ∈ Σk, p, p1, . . . , pk ∈ Q1, and
q, q1, . . . , qk ∈ Q2. Roughly, we obtain the entry µk(σ)(p,q),(p1,q1)···(pk,qk) in the
tree representation µ of the composition of M1 and M2 by applying the ex-
tended mapping hq1···qk

µ2
to the entry (µ1)k(σ)p,p1···pk

. Thereby, we process the
output trees present in supp((µ1)k(σ)p,p1···pk

) with the help of M2 starting the
computation at the variables x1, . . . , xk in states q1, . . . , qk.

However, there is a small problem which does not arise in the unweighted
case. We depict the problem in Figures 1 and 2. Let us suppose that M1 trans-
lates an input tree t ∈ TΣ into an output tree u ∈ TΓ with weight a ∈ A. During
the translation, M1 decides to delete the translation u′ ∈ TΓ with weight a′ ∈ A
of an input subtree t′ ∈ TΣ. Then due to the definition of IO-substitution the
weight a′ of u′ contributes to the weight a of u, whereas u′ does not contribute
to u. Furthermore, let us suppose that M2 would transform u into v ∈ T∆ at
weight b ∈ A and u′ into v′ ∈ T∆ at weight b′ ∈ A. Since M2 does not process u′,
the weight b′ does not contribute to b. However, the composition of M1 and M2,
when processing the input subtree t′, transforms t′ into u′ at weight a′ using the
rules ofM1 and immediately also transforms u′ into v′ at weight b′ using the rules
of M2. If the composition tree series transducer now deletes the translation v′

of t′, then a′ and b′ still contribute to the weight of the overall transformation.
This contrasts the situation encountered when M1 and M2 run separately, be-
cause there only a′ contributed to the weight of the overall transformation. In
the classical case of tree transducers, b′ could only be 0 or 1, so that one just
had to avoid that b′ = 0. In principle, this is achieved by requiring M2 to be
total (however, by adjoining a dummy state, each bottom-up tree transducer
can be turned into a total one computing the same tree transformation). The
construction we propose here is similar, but has the major disadvantage that,
for example, determinism is not preserved.

Specifically, we address the aforementioned problem by manipulating the
second transducer M2 such that it has a state ⊥ which transforms each input
tree into some output tree α ∈ ∆0 at weight 1. Let us call the resulting bottom-
up tree series transducer M ′

2. Then we compose M1 and M ′
2 by processing those

On subtree:
t′

a′b′

=⇒M1◦M2 v′

Deletion:

t t′

a′a′′b′b′′

=⇒M1◦M2

v v′

Figure 2: Computation of M1 ◦M2.

subtrees, which M1 decided to delete, in state ⊥.

Definition 3.3 (Composition) LetA = (A,+, ·, 0, 1) be an ℵ0-complete semi-
ring. Moreover, let M1 = (Q1,Σ,Γ,A, F1, µ1) and M2 = (Q2,Γ,∆,A, F2, µ2) be
two bottom-up tree series transducers over A. Let ⊥ /∈ Q2, Q′2 = Q2 ∪ {⊥},
and α ∈ ∆0. We first construct M ′

2 = (Q′2,Γ,∆,A, F ′2, µ′2) with (F ′2)q = (F2)q

for every q ∈ Q2 and (F ′2)⊥ = 0̃. The tree representation µ′2 is defined for every
k ∈ N, γ ∈ Γk, and q, q1, . . . , qk ∈ Q2 by

(µ′2)k(γ)q,q1···qk
= (µ2)k(γ)q,q1···qk

(5)
(µ′2)k(γ)⊥,⊥...⊥ = 1 α . (6)

The composition of M1 and M2, denoted by M1 ◦ M2, is defined to be the
bottom-up tree series transducer (M1 ◦M2) = (Q1 ×Q′2,Σ,∆,A, F, µ) with

F(p,q) =
∑

q′∈Q′
2

(F ′2)q′←−
(
hq

µ′
2

(
(F1)p

)
q′

)
(7)

µk(σ)(p,q),(p1,q1)···(pk,qk) = hq1···qk

µ′
2

(∑
t∈TΓ(Xk),

(∀i∈[k]): i/∈var(t) ⇐⇒ qi=⊥

(
(µ1)k(σ)p,p1···pk

, t
)
t
)

q
(8)

µk(σ)(p,⊥),(p1,⊥)···(pk,⊥) = h⊥···⊥µ′
2

(
(µ1)k(σ)p,p1···pk

)
⊥ (9)

for every k ∈ N, σ ∈ Σk, p, p1, . . . , pk ∈ Q1, q ∈ Q2, and q1, . . . , qk ∈ Q′2. All
the remaining entries in F and µ are 0̃. �

It is quite clear that the composition M1 ◦ M2 does not always compute
‖M1‖ ◦ ‖M2‖, because already for bottom-up tree transducers (i. e., polyno-
mial bottom-up tree series transducers over B) it can be shown that the com-
puted transformations are not closed with respect to composition. However, we
have already mentioned that p–BOT(B) is closed under left-composition with
lp–BOT(B). This is why we assume M1 to be linear in the next lemma, which
shows that in this case we obtain ‖M1 ◦M2‖ = ‖M1‖ ◦ ‖M2‖.

Lemma 3.4 (Correctness of the composition) Let A be a commutative,
ℵ0-complete semiring, M1 = (Q1,Σ,Γ,A, F1, µ1) and M2 = (Q2,Γ,∆,A, F2, µ2)
be bottom-up tree series transducers, of which M1 is linear.

‖M1 ◦M2‖ = ‖M1‖ ◦ ‖M2‖ . (10)

Proof: We assume the symbols of Definition 3.3.

‖M2‖
(
‖M1‖(ϕ)

)
=

∑
p∈Q1,q′∈Q′

2

(F ′2)q′←−
(
hµ′

2

(
(F1)p←−(hµ1(ϕ)p)

)
q′

)
(by the definition of ‖ · ‖)

=
∑

p∈Q1,q∈Q′
2

(∑
q′∈Q′

2

(F ′2)q′←−
(
hq

µ′
2

(
(F1)p

)
q′

))
←−

(
hµ′

2
(hµ1(ϕ)p)q

)
(see [10, Lemma 6.5] and [17, Lemma 2.2])

=
∑

p∈Q1,q∈Q′
2

F(p,q)←−(hµ(ϕ)(p,q))

(by hµ′
2

(
hµ1(t)p

)
q = hµ(t)(p,q) and the definition of F(p,q))

= ‖M‖(ϕ)
(by the definition of ‖ · ‖) �

In the sequel we use the notation [y] where y is one of the abbreviations of
restrictions (i. e., y ∈ {p,b, l,n,d,h}) in equalities to mean that this restriction
is optional; i. e., throughout the statement [y] can be substituted by the empty
word or by y. For example, [l]p–BOT(A) = nlp–BOT(A) ◦ [l]h–BOT(A) states
that the class of tree series transformations computable by polynomial (respec-
tively, linear polynomial) bottom-up tree series transducers coincides with the
composition of the class of tree series transformations computable by nondelet-
ing and linear polynomial bottom-up tree series transducers with the class of
tree series transformations computable by homomorphism (respectively, linear
homomorphism) bottom-up tree series transducers.

It is easy to see that whenever M1 and M2 are polynomial (respectively,
nondeleting, linear), then also M1 ◦M2 is polynomial (respectively, nondeleting,
linear). Together with Lemma 3.4 this yields the first main theorem.

Theorem 3.5 Let A be a commutative and ℵ0-complete semiring.

[p][n]l–BOT(A) ◦ [p][n][l]–BOT(A) = [p][n][l]–BOT(A) (11)

Proof: The statement follows from Lemma 3.4. �

We note that our construction does not preserve determinism [cf. 9, Corol-
lary 5.5]. Further, neither the statement hl–BOT(A)◦h–BOT(A) = h–BOT(A)
nor hnl–BOT(A)◦h–BOT(A) = h–BOT(A) follow from Lemma 3.4, because we

introduce the state ⊥ and thus our composition M1 ◦M2, in general, has more
than one state. The correctness of the latter two statements thus remains open.

Let us consider an example. Imagine a game to be played between two
players. Player I moves first and the moves of the players alternate. Each player
can play one out of three potential moves (called l, m, and r), however the second
player may not play the same move as the first player just played. We model
this scenario by a game tree which contains three types of nodes. First there
are σ-nodes indicating that one of the players should make a move. Such a node
has exactly three successors, which represent the remaining game to be played
in case the moving player chooses to play l, m, and r, respectively. Second, there
are α- and β-nodes indicating that Player I, respectively Player II, has won the
game. Third, l-, m-, and r-nodes represent that the player played this option.
(Randomized) strategies for both players can now be coded as bottom-up tree
series transducers (in fact, it is easier to code them as linear top-down tree
series transducers, but given such we can easily obtain a semantically equivalent
linear bottom-up tree series transducer [12, Theorem 5.26]). The composition of
the two bottom-up tree series transducers (i. e., of the two strategies) can then
be applied to compute, for example, the chances of winning the game for each
player.

Example 3.6 Let Σ = Σ0 ∪Σ3 with Σ3 = {σ} and Σ0 = {α, β}, Γ′1 = {l,m, r},
and Γ = Γ′1∪Σ. Moreover, let M1 = ({⊥,>},Σ,Γ,R+, F1, µ1) be the bottom-up
tree series transducer with (F1)> = 1 x1 and (F1)⊥ = 0̃ and

(µ1)0(α)⊥ = (µ1)0(α)> = 1 α
(µ1)0(β)⊥ = (µ1)0(β)> = 1 β

(µ1)3(σ)>,⊥⊥⊥ = 0.1 l(x1) + 0.3 m(x2) + 0.6 r(x3)
(µ1)3(σ)⊥,>>> = 1 σ(x1, x2, x3) .

The first player’s strategy is modeled by M1, and we represent a strategy of the
second player by M2 = (Γ′1 ∪{>},Γ,Σ,R+, F2, µ2) with (F2)> = 1 x1, (F2)γ = 0̃
and for every γ ∈ Γ′1

(µ2)0(α)γ = (µ2)0(α)> = 1 α
(µ2)0(β)γ = (µ2)0(β)> = 1 β

(µ2)1(γ)>,γ = 1 x1

(µ2)3(σ)l,>>> = 0.4 x2 + 0.6 x3

(µ2)3(σ)m,>>> = 0.5 x1 + 0.5 x3

(µ2)3(σ)r,>>> = 0.7 x1 + 0.3 x2 .

Now let us consider the game tree t = σ
(
σ(α, β, α), β, σ(α, β, β)

)
. Then

‖M1‖(1 t) = 0.1 l
(
σ(α, β, α)

)
+ 0.3 m(β) + 0.6 r

(
σ(α, β, β)

)
‖M2‖

(
‖M1‖(1 t)

)
= 0.48 α+ 0.52 β ,

showing that for this particular game Player II has a slightly higher chance to
win the game.

Now let us compose the two bottom-up tree series transducers. The com-
position M1 ◦M2 = (Q,Σ,Σ,A, F, µ) is defined by Q = {⊥,>} × {⊥,>, l,m, r}
and F(>,>) = 1 x1 and Fq = 0̃ for all q ∈ Q \ {(>,>)}. Finally, the tree
representation µ is defined for every p ∈ {⊥,>}, q ∈ Γ′1 ∪ {>}, and γ ∈ Γ′1 by

µ0(α)(p,q) = µ0(α)(p,⊥) = µ0(β)(p,⊥) = 1 α
µ0(β)(p,q) = 1 β

µ3(σ)(>,>),(⊥,l)(⊥,⊥)(⊥,⊥) = 0.1 x1

µ3(σ)(>,>),(⊥,⊥)(⊥,m)(⊥,⊥) = 0.3 x2

µ3(σ)(>,>),(⊥,⊥)(⊥,⊥)(⊥,r) = 0.6 x3

µ3(σ)(⊥,γ),(>,>)(>,>)(>,>) =

0.4 x2 + 0.6 x3 if γ = l ,
0.5 x1 + 0.5 x3 if γ = m ,

0.7 x1 + 0.3 x2 if γ = r ,

µ3(σ)(⊥,⊥),(>,⊥)(>,⊥)(>,⊥) = 1 α .

If we compute ‖M‖(1 t), it shows the expected result 0.48 α+ 0.52 β. �

Finally, let us consider the second result, which states that bottom-up tree
transformations are closed under right-composition with deterministic bottom-
up tree transformations [8, Theorem 4.6]. This result was also generalized to
BOT(A)◦bh–BOT(A) = BOT(A) [9, Corollary 5.5]. Since we have already seen
that our previous construction destroys determinism, we simplify the construc-
tion somewhat to obtain a construction which is the analogue of the construction
for the unweighted case. Note that without loss of generality we may assume a
bottom-up tree series transducer to be total; the construction required to show
this is the usual one.

Definition 3.7 Let A = (A,+, ·, 0, 1) be an ℵ0-complete semiring. Further,
let M1 = (Q1,Σ,Γ,A, F1, µ1) and M2 = (Q2,Γ,∆,A, F2, µ2) be two bottom-
up tree series transducers over A. The (simple) composition of M1 and M2,
denoted by M1 ◦s M2, is defined to be the bottom-up tree series transducer
M1 ◦s M2 = (Q1 ×Q2,Σ,∆,A, F, µ) with

F(p,q) =
∑

q′∈Q2

(F2)q′←−
(
hq

µ2

(
(F1)p

)
q′

)
(12)

µk(σ)(p,q),(p1,q1)···(pk,qk) = hq1···qk
µ2

(
(µ1)k(σ)p,p1···pk

)
q

(13)

for every k ∈ N, σ ∈ Σk, p, p1, . . . , pk ∈ Q1, and q, q1, . . . , qk ∈ Q2. All the
remaining entries in F and µ are 0̃. �

It is easily seen that M1 ◦s M2 is deterministic, whenever M1 and M2 are
deterministic. Moreover, M1 ◦s M2 is a homomorphism, if M1 and M2 are ho-
momorphisms and M2 is boolean. Note that, in general, the restriction that M2

is boolean is necessary in the last statement, because otherwise the composition
M1 ◦s M2 might not be total.

Lemma 3.8 Let A be a commutative and ℵ0-complete semiring, M1 and M2

be bottom-up tree series transducers eligible for composition, of which M2 is
boolean, total, and deterministic.

‖M1 ◦s M2‖ = ‖M1‖ ◦ ‖M2‖ . (14)

Proof: The proof is similar to the proof of Lemma 3.4. �

Thus we obtain the following final theorem [see 9, Corollary 5.5].

Theorem 3.9 Let A be a commutative and ℵ0-complete semiring.

[p][n][l][d][h]–BOT(A) ◦ [p][n][l][h]bd–BOT(A) = [p][n][l][d][h]–BOT(A) (15)

Proof: The statement follows from Lemma 3.8. �

Acknowledgements: The author wishes to express his deepest gratitude to
the referees of the draft version of this paper. Their comments enabled the
author to substantially improve the presentation of the results.

References

[1] J. Berstel and C. Reutenauer. Recognizable formal power series on trees.
Theoret. Comput. Sci., 18(2):115–148, 1982.

[2] B. Borchardt. Code selection by tree series transducers. In Proc. 9th Int.
Conf. on Implementation and Application of Automata, volume 3317 of
LNCS, pages 57–67. Springer, 2004.

[3] B. Borchardt and H. Vogler. Determinization of finite state weighted tree
automata. J. Autom. Lang. Combin., 8(3):417–463, 2003.

[4] S. Bozapalidis. Equational elements in additive algebras. Theory Comput.
Systems, 32(1):1–33, 1999.

[5] S. Bozapalidis. Context-free series on trees. Inform. Comput., 169(2):186–
229, 2001.

[6] S. Bozapalidis and G. Rahonis. On the closure of recognizable tree series
under tree homomorphism. In M. Droste and H. Vogler, editors, Weighted
Automata—Theory and Applications, page 34. Technische Universität Dres-
den, 2004.

[7] K. Culik II and J. Kari. Digital images and formal languages. In G. Rozen-
berg and A. Salomaa, editors, Handbook of Formal Languages, volume 3 —
Beyond Words, chapter 10, pages 599–616. Springer, 1997.

[8] J. Engelfriet. Bottom-up and top-down tree transformations—a compari-
son. Math. Systems Theory, 9(3):198–231, 1975.

[9] J. Engelfriet, Z. Fülöp, and H. Vogler. Bottom-up and top-down tree series
transformations. J. Autom. Lang. Combin., 7(1):11–70, 2002.

[10] Z. Ésik and W. Kuich. Formal tree series. J. Autom. Lang. Combin., 8(2):
219–285, 2003.

[11] C. Ferdinand, H. Seidl, and R. Wilhelm. Tree automata for code selection.
Acta Inform., 31(8):741–760, 1994.

[12] Z. Fülöp and H. Vogler. Tree series transformations that respect copying.
Theory Comput. Systems, 36(3):247–293, 2003.

[13] J. S. Golan. Semirings and their Applications. Kluwer Academic, Dordrecht,
1999.

[14] J. Graehl and K. Knight. Training tree transducers. In S. Dumais, D. Marcu,
and S. Roukos, editors, Proc. of the Human Language Technology Conf. of
the North American Chapter of the ACL, pages 105–112. Association for
Computational Linguistics, 2004.

[15] U. Hebisch and H. J. Weinert. Semirings—Algebraic Theory and Applica-
tions in Computer Science. World Scientific, Singapore, 1998.

[16] W. Kuich. Formal power series over trees. In S. Bozapalidis, editor, Proc.
3rd Int. Conf. on Developments in Language Theory, pages 61–101. Aristo-
tle University of Thessaloniki, 1997.

[17] W. Kuich. Full abstract families of tree series I. In J. Karhumäki, H. A.
Maurer, G. Paun, and G. Rozenberg, editors, Jewels are Forever, pages
145–156. Springer, 1999.

[18] W. Kuich. Tree transducers and formal tree series. Acta Cybernet., 14(1):
135–149, 1999.

[19] M. Mohri. Finite-state transducers in language and speech processing. Com-
put. Linguist., 23(2):269–311, 1997.

[20] W. C. Rounds. Mappings and grammars on trees. Math. Systems Theory,
4(3):257–287, 1970.

[21] J. W. Thatcher. Generalized2 sequential machine maps. J. Comput. System
Sci., 4(4):339–367, 1970.

