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Abstract. The power of tree series transducers of type I and II is studied
for IO as well as OI tree series substitution. More precisely, it is shown
that the IO tree series transformations of type I (respectively, type II)
are characterized by the composition of homomorphism top-down IO tree
series transformations with bottom-up (respectively, linear bottom-up)
IO tree series transformations. On the other hand, polynomial OI tree
series transducers of type I and II and top-down OI tree series transducers
are equally powerful.

1 Introduction

In [1] (restricted) top-down tree transducers were generalized to tree series trans-
ducers [2, 3], in which each transition carries a weight taken from a semiring. It
was shown in Corollary 14 of [1] that nondeleting and linear top-down tree series
transformations preserve recognizable tree series [4–6]. In a sequel [7], Kuich
also showed that nondeleting, linear top-down tree series transformations are
closed under composition (see Theorem 2.4 in [7]). He built on those two prop-
erties the theory of full abstract families of tree series [7]. These results leave
an unexplained gap because nondeletion is not required for these results in tree
transducer theory; i. e., linear top-down tree transformations with regular look-
ahead [8] preserve recognizable tree languages and are closed under composition.
Consequently, the survey [9] poses Question 2, which asks for the power of tree
series transducers which allow look-ahead and copying of output trees [2, 3].

In the unweighted case, linear top-down tree transducers with regular look-
ahead are as powerful as linear bottom-up tree transducers, which was shown
in Theorem 5.13 of [8]. Moreover, the power of generalized finite-state tree trans-
ducers (respectively, top-down tree transducers with regular look-ahead) is char-
acterized by the composition of a homomorphism and a bottom-up (respectively,
linear bottom-up) tree transformation (see Theorems 5.10 and 5.15 of [8]). In
this paper we show that these results generalize nicely to tree series transducers.
In particular, we show that the linear tree series transducers of type II, which
are the canonical generalization of top-down tree transducers with regular look-
ahead, compute exactly the class of linear bottom-up tree series transformations
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(see Theorem 4). Similarly, we study the canonical extension of generalized finite-
state tree transducers, which are called tree series transducers of type I in the
sequel. We show that the class of tree series transformations of type I (respec-
tively, of type II) coincides with the composition of the class of homomorphism
top-down tree series transformations with the class of bottom-up (respectively,
linear bottom-up) tree series transformations (see Theorem 3). Altogether we
obtain the analogue of the diagram presented on page 228 of [8] for IO tree
series transformations over commutative and ℵ0-complete semirings.

Finally, we investigate tree series transducers of type I and II using OI-
substitution and thereby address Question 2 as originally posed in [9]. It turns
out that polynomial tree series transducers of type I and II and top-down tree
series transducers are equally powerful.

2 Preliminaries

We use IN to represent the nonnegative integers {0, 1, 2, . . . } and IN+ = IN \ {0}.
In the sequel, let k, n ∈ IN and [k] be an abbreviation for { i ∈ IN | 1 6 i 6 k }. A
set Σ which is nonempty and finite is also called an alphabet, and the elements
thereof are called symbols. As usual, Σ∗ denotes the set of all finite sequences of
symbols of Σ (also called Σ-words). Given w ∈ Σ∗, the length of w is denoted
by |w|, and for every 1 6 i 6 |w| the i-th symbol in w is denoted by wi (i. e.,
w = w1 · · ·w|w|).

A ranked alphabet is an alphabet Σ together with a mapping rkΣ : Σ −→ IN,
which associates to each symbol a rank. We use the denotation Σk to repre-
sent the set of symbols (of Σ) which have rank k. Furthermore, we use the set
X = { xi | i ∈ IN+ } of (formal) variables and the finite subset Xk = { xi | i ∈ [k] }.
Given a ranked alphabet Σ and V ⊆ X, the set of Σ-trees indexed by V , denoted
by TΣ(V ), is inductively defined to be the smallest set T such that (i) V ⊆ T
and (ii) for every k ∈ IN, σ ∈ Σk, and t1, . . . , tk ∈ T also σ(t1, . . . , tk) ∈ T . Since
we generally assume that Σ∩X = ∅, we write α instead of α() whenever α ∈ Σ0.
Moreover, we also write TΣ to denote TΣ(∅).

For every t ∈ TΣ(X), we denote by |t|x the number of occurrences of x ∈ X
in t. Given a finite I ⊆ IN+ and family ( ti )i∈I of ti ∈ TΣ(X), the expression
t[ti]i∈I denotes the result of substituting in t every xi by ti for every i ∈ I. If
I = [n], then we simply write t[t1, . . . , tn]. Let V ⊆ X be finite. We say that
t ∈ TΣ(X) is linear in V (respectively, nondeleting in V ), if every x ∈ V occurs
at most once (respectively, at least once) in t. The set of all Σ-trees, which are
linear and nondeleting in V , is denoted by T̂Σ(V ).

A semiring is an algebraic structure A = (A,+, ·, 0, 1) consisting of a com-
mutative monoid (A,+, 0) and a monoid (A, ·, 1) such that · distributes over +
and 0 is absorbing with respect to · . The semiring is called commutative, if
· is commutative. As usual we use

∑
i∈I ai (respectively,

∏
i∈I ai for I ⊆ IN) for

sums (respectively, products) of families ( ai )i∈I of ai ∈ A where for only finitely
many i ∈ I we have ai 6= 0 (respectively, ai 6= 1). For products the order of the
factors is given by the order 0 6 1 6 · · · on the index set I. We say that A is
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ℵ0-complete, whenever it is possible to define an infinitary sum operation
∑

I

for each countable index set I (i. e., card(I) 6 ℵ0) such that for every family
( ai )i∈I of ai ∈ A

(i)
∑

I( ai )i∈I = aj1 + aj2 , if I = {j1, j2} with j1 6= j2,
(ii)

∑
I( ai )i∈I =

∑
J(

∑
Ij

( ai )i∈Ij )j∈J , whenever I =
⋃

j∈J Ij for some count-
able J and Ij1 ∩ Ij2 = ∅ for all j1 6= j2, and

(iii)
(∑

I( ai )i∈I

)(∑
J( bj )j∈J

)
=

∑
I×J( aibj )(i,j)∈I×J for all countable J and

families ( bj )j∈J of bj ∈ A.

In the sequel, we simply write the accustomed
∑

i∈I ai instead of the cumbersome∑
I( ai )i∈I , and we implicitly assume

∑
I to be given whenever we speak about

an ℵ0-complete semiring.
Let S be a set and A = (A,+, ·, 0, 1) be a semiring. A (formal) power series

ϕ is a mapping ϕ : S −→ A. Given s ∈ S, we denote ϕ(s) also by (ϕ, s) and write
the series as

∑
s∈S(ϕ, s) s. The support of ϕ is supp(ϕ) = { s ∈ S | (ϕ, s) 6= 0 }.

Power series with finite support are called polynomials, and power series with
at most one support element are also called singletons. We denote the set of all
power series by A〈〈S〉〉 and the set of polynomials by A〈S〉. We call ϕ ∈ A〈〈S〉〉
boolean, if (ϕ, s) = 1 for every s ∈ supp(ϕ). The boolean singleton with empty
support is denoted by 0̃. Power series ϕ,ϕ′ ∈ A〈〈S〉〉 are added componentwise;
i. e., (ϕ + ϕ′, s) = (ϕ, s) + (ϕ′, s) for every s ∈ S, and the power series ϕ is
multiplied with a coefficient a ∈ A componentwise; i. e., (a · ϕ, s) = a · (ϕ, s) for
every s ∈ S.

In this paper, we consider only power series in which the set S is a set of
trees. Such power series are also called tree series. Let ∆ be a ranked alphabet.
A tree series ϕ ∈ A〈〈T∆(X)〉〉 is said to be linear (respectively, nondeleting) in
V ⊆ X, if every t ∈ supp(ϕ) is linear (respectively, nondeleting) in V . Let A
be an ℵ0-complete semiring, ϕ ∈ A〈〈T∆(X)〉〉, I ⊆ IN+ be finite, and (ψi )i∈I

be a family of ψi ∈ A〈〈T∆(X)〉〉. The pure IO tree series substitution (for short:
IO-substitution) (of (ψi )i∈I into ϕ) [10, 2], denoted by ϕ←− (ψi )i∈I , is defined
by

ϕ←− (ψi )i∈I =
∑

t∈T∆(X),
(∀i∈I) : ti∈T∆(X)

(ϕ, t) ·
∏
i∈I

(ψi, ti) t[ti]i∈I .

Let Q be an alphabet and V ⊆ X. We write Q(V ) for { q(v) | q ∈ Q, v ∈ V }.
We use the notation |w|x and the notions of linearity and nondeletion in V
accordingly also for w ∈ Q(X)∗. LetA = (A,+, ·, 0, 1) be a semiring andΣ and∆
be ranked alphabets. A (type I) tree representation µ (over Q, Σ, ∆, and A) [2,
9] is a family (µk(σ) )k∈IN,σ∈Σk

of matrices µk(σ) ∈ A〈〈T∆(X)〉〉Q×Q(Xk)∗ such
that for every (q, w) ∈ Q × Q(Xk)∗ it holds that µk(σ)q,w ∈ A〈〈T∆(X|w|)〉〉,
and we have µk(σ)q,w 6= 0̃ for only finitely many (q, w) ∈ Q × Q(Xk)∗. A tree
representation µ is said to be

– polynomial (respectively, boolean), if for every k ∈ IN, σ ∈ Σk, q ∈ Q, and
w ∈ Q(Xk)∗ the tree series µk(σ)q,w is polynomial (respectively, boolean),
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– of type II (respectively, top-down), if for every k ∈ IN, σ ∈ Σk, q ∈ Q,
and w ∈ Q(Xk)∗ the tree series µk(σ)q,w is linear (respectively, linear and
nondeleting) in X|w|,

– linear (respectively, nondeleting), if for every k ∈ IN, σ ∈ Σk, q ∈ Q, and
w ∈ Q(Xk)∗ such that µk(σ)q,w 6= 0̃ both µk(σ)q,w is linear (respectively,
nondeleting) in X|w|, and w is linear (respectively, nondeleting) in Xk,

– bottom-up, if for every k ∈ IN, σ ∈ Σk, and (q, w) ∈ Q × Q(Xk)∗ such that
µk(σ)q,w 6= 0̃ we have that w = q1(x1) · · · qk(xk) for some q1, . . . , qk ∈ Q,

– td-deterministic, if for every k ∈ IN, σ ∈ Σk, and q ∈ Q there exists at most
one (w, t) ∈ Q(Xk)∗ × T∆(X) such that t ∈ supp(µk(σ)q,w), and

– bu-deterministic, if for every k ∈ IN, σ ∈ Σk, and w ∈ Q(Xk)∗ there exists
at most one (q, t) ∈ Q× T∆(X) such that t ∈ supp(µk(σ)q,w).

Usually when we specify a tree representation µ, we just specify some entries
of µk(σ) and implicitly assume the remaining entries to be 0̃. A tree series
transducer [2, 9] is a sextuple M = (Q,Σ,∆,A, F, µ) consisting of

– an alphabet Q of states,
– ranked alphabets Σ and ∆, also called input and output ranked alphabet,
– a semiring A = (A,+, ·, 0, 1),
– a vector F ∈ A〈〈T̂∆(X1)〉〉Q of final outputs, and
– a tree representation µ over Q, Σ, ∆, and A.

Tree series transducers inherit the properties from their tree representation;
e. g., a tree series transducer with a polynomial bottom-up tree representation
is called a polynomial bottom-up tree series transducer. Additionally, we say
that M is a td-homomorphism (respectively, bu-homomorphism), if Q = {?},
F? = 1 x1, and µ is td-deterministic (respectively, bu-deterministic).

For the definition of the IO tree series transformation induced by M we
need IO-substitution, and consequently, A should be ℵ0-complete. Hence let
M = (Q,Σ,∆,A, F, µ) be a tree series transducer over the ℵ0-complete semiring
A = (A,+, ·, 0, 1). Then M induces a mapping ‖M‖ : A〈〈TΣ〉〉 −→ A〈〈T∆〉〉 as
follows. For every k ∈ IN, σ ∈ Σk, and t1, . . . , tk ∈ TΣ we define the mapping
hµ : TΣ −→ A〈〈T∆〉〉Q componentwise for every q ∈ Q by

hµ

(
σ(t1, . . . , tk)

)
q

=
∑

w∈Q(Xk)∗,
w=q1(xi1 )···qn(xin )

µk(σ)q,w←−
(
hµ(tij )qj

)
j∈[n]

.

Then for every ϕ ∈ A〈〈TΣ〉〉 the (IO) tree series transformation computed by M
is

‖M‖(ϕ) =
∑
t∈TΣ

(ϕ, t) ·
∑
q∈Q

Fq←−
(
hµ(t)q

)
.

By TOP(A) we denote the class of tree series transformations computable by top-
down tree series transducers over the semiring A. Similarly, we use p–TOP(A)
[respectively, b–TOP(A), l–TOP(A), n–TOP(A), d–TOP(A), and h–TOP(A)]
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for the classes of tree series transformations computable by polynomial (respec-
tively, boolean, linear, nondeleting, td-deterministic, and td-homomorphism)
top-down tree series transducers over the semiring A. Combinations of restric-
tions are handled in the usual manner; i. e., let x–TOP(A) and y–TOP(A) be
two classes of top-down tree series transformations, then

xy–TOP(A) = x–TOP(A) ∩ y–TOP(A) .

The same nomenclature using the stem TOPR (respectively, GST and BOT)
is applied to type II (respectively, type I and bottom-up) tree series trans-
ducers, where for bottom-up tree series transducers the properties beginning
with “td” are replaced by the corresponding ones starting with “bu”. For ex-
ample, hn–BOT(A) denotes the class of tree series transformations computable
by nondeleting bu-homomorphism bottom-up tree series transducers over the
semiring A.

We write ◦ for function composition; so if τ1 : A〈〈TΣ〉〉 −→ A〈〈T∆〉〉 and
τ2 : A〈〈T∆〉〉 −→ A〈〈TΓ 〉〉 then (τ1 ◦ τ2)(ϕ) = τ2

(
τ1(ϕ)

)
for every ϕ ∈ A〈〈TΣ〉〉.

This composition is extended to classes of functions in the usual manner.

3 IO tree series substitution

In this section we first show how to simulate a tree series transducer M of type
I or II by means of the composition of a td-homomorphism top-down tree series
transducer M1 and a bottom-up tree series transducer M2. Thereby we obtain a
limitation of the power of tree series transducers of types I and II. The idea of the
construction is to simply create sufficiently many copies of subtrees of the input
tree by M1. Then multiple visits of M to one input subtree such as, for example,
q(x1) and p(x1) can be simulated by q(x1) and p(x6) where x6 refers to a copy
of x1 created by M1. More precisely, we first compute the maximal number of
visits to one subtree spawned by one rule application. Let mx be that number.
We create a new output alphabet from the input alphabet Σ of M by keeping
the symbols of Σ but changing their rank to mx-times their rank in Σ. Reading
σ(t1, . . . , tk) in the input, M1 simply outputs σ(u1, . . . , u1, . . . , uk, . . . , uk) where
ui is the translation of ti for every i ∈ [k]. Then we can simulate M without
visiting input subtrees twice because enough copies are available. Altogether this
yields that at each node of the output tree of M1 each direct input subtree is
visited at most once and such a tree series transducer can be simulated by a
bottom-up tree series transducer M2.

In the sequel, we use the notation [y] where y is one of the abbreviations of
restrictions (i. e., y ∈ {p,b, l,n,d,h}) in equalities and inequalities to mean that
this restriction is optional; i. e., throughout the statement [y] can be substituted
by the empty word or by y. For example, [d]–TOP(A) ⊆ [d]–TOPR(A) states
that each tree series transformation computable by top-down (respectively, td-
deterministic top-down) tree series transducers is also computable by tree series
transducers of type II (respectively, td-deterministic tree series transducers of
type II).
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Lemma 1 (Decomposition). Let A be a commutative, ℵ0-complete semiring.

[p][b][l]–GST(A) ⊆ [l]bhn–TOP(A) ◦ [p][b][l]–BOT(A) (1)

[p][b][l]–TOPR(A) ⊆ [l]bhn–TOP(A) ◦ [p][b]l–BOT(A) (2)

Proof. Let M = (Q,Σ,∆,A, F, µ) be a tree series transducer. We construct a
td-homomorphism top-down tree series transducer M1 and a bottom-up tree
series transducer M2 such that ‖M‖ = ‖M1‖ ◦ ‖M2‖. Let w ∈ Q(X)∗. Recall
that by |w|x we denote the number of occurrences of x ∈ X in w. Let

mx = max
(
{1} ∪ { |w|xj | k, j ∈ IN, σ ∈ Σk, (q, w) ∈ Q×Q(X)∗, µk(σ)q,w 6= 0̃ }

)
and for every k ∈ IN we let Γk·mx = Σk and Γn = ∅ for every n ∈ IN that
is not a multiple of mx. We note that mx = 1 if M is linear. We construct
M1 = ({?}, Σ, Γ,A, F1, µ1) with (F1)? = 1 x1 and for every k ∈ IN and σ ∈ Σk

(µ1)k(σ)?,?(x1)···?(x1)︸ ︷︷ ︸
mx times

··· ?(xk)···?(xk)︸ ︷︷ ︸
mx times

= 1 σ(x1, . . . , xk·mx) .

Clearly, M1 is a boolean, nondeleting, homomorphism tree series transducer,
which is linear whenever M is so. In this case M1 just computes the identity.

Let ⊥ /∈ Q be a new state, Q′ = Q ∪ {⊥}, and d ∈ IN be the maximal
integer such that Σd 6= ∅. For every n ∈ [d] let In ∈ IN[d], where IN[d] is the set
of all mappings from [d] to IN (alternatively a vector with d entries of IN), be
In(n′) = 0 for every n′ ∈ [d] \ {n} and In(n) = 1. Moreover, let I =

∑
i∈[d] Ii.

For every k ∈ IN we define renk : Q(X)∗ × IN[d] −→ Q′(X)∗ for every f ∈ IN[d]

inductively on Q(X)∗ by

renk(ε, f) = ⊥(xf(1)) · · · ⊥(xmx)⊥(xmx+f(2)) · · · ⊥(x2·mx)
· · ·
⊥(x(k−2)·mx+f(k−1)) · · · ⊥(x(k−1)·mx)⊥(x(k−1)·mx+f(k)) · · · ⊥(xk·mx)

and for every q ∈ Q, i ∈ [d], w ∈ Q(Xd)∗ by

renk(q(xi)·w, f) = q(x(i−1)·mx+f(i))· renk(w, f + Ii) .

Secondly, let M ′
2 = (Q′, Γ,∆,A, F2, µ

′
2) with (F2)q = Fq for every q ∈ Q and

(F2)⊥ = 0̃ and (µ′2)k·mx(σ)q,renk(w,I) = µk(σ)q,w for every k ∈ IN, σ ∈ Σk, q ∈ Q,
and w ∈ Q(Xk)∗. Finally, let α ∈ Σ0 be arbitrary and

(µ′2)k·mx(σ)⊥,⊥(x1)···⊥(xk·mx) = 1 α .

Note that M ′
2 need not be bottom-up because there may be (µ′2)k(σ)q,w 6= 0̃

where w is of the form w1·q1(xj1)q2(xj2)·w2 with j1 > j2; i. e., the variables
in w do not occur in the order x1, . . . , xk. By a straightforward reordering of the
symbols qi(xj) in w and a corresponding substitution of variables in (µ′2)k(σ)q,w,
we can, however, turn M ′

2 into a bottom-up tree series transducer M2.
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We furthermore note that if M is of type II, then M ′
2 is actually a linear tree

series transducer of type II, and consequently, M2 is linear as well. Finally, it is
also obvious that M2 is polynomial (respectively, boolean, linear), whenever M
is so. Clearly, the homomorphism property (of M) is not preserved because we
added the extra state ⊥. ut

Now let us investigate the opposite direction; i. e., the composition of a td-
homomorphism top-down tree series transducer M1 and a bottom-up tree se-
ries transducer M2. The idea of the construction is quite straightforward; we
translate the output of M1 with the help of M2. Therefore, we need to gen-
eralize the mapping hµ2 to trees with variables. Roughly speaking, we supply
hµ2 with a mapping that assigns a state to each variable. A successful com-
putation may commence at a variable only in the state assigned to the vari-
able. So let M = (Q,Σ,∆,A, F, µ) be a tree series transducer over an ℵ0-
complete semiring A, and let V ⊆ IN+. For every q̄ ∈ QV we define the mapping
hq̄

µ : TΣ(X) −→ A〈〈T∆(X)〉〉Q as follows.

– For every j ∈ IN+ and q ∈ Q

hq̄
µ(xj)q =

{
0̃ if j ∈ V, q̄j 6= q ,

1 xj otherwise .

– For every k ∈ IN, σ ∈ Σk, t1, . . . , tk ∈ TΣ(X), and q ∈ Q

hq̄
µ

(
σ(t1, . . . , tk)

)
q

=
∑

w∈Q(Xk)∗,
w=q1(xi1 )···qn(xin )

µk(σ)q,w←− (hµ(tij )qj )j∈[n] .

We just write q̄1 · · · q̄n for q̄ whenever V = [n] for some n ∈ IN.

Lemma 2 (Composition). Let A be a commutative and ℵ0-complete semiring.

[l]h–TOP(A) ◦ [p][l][h]–BOT(A) ⊆ [p][l][h]–GST(A) (3)

[l]h–TOP(A) ◦ [p][h]l–BOT(A) ⊆ [p][l][h]–TOPR(A) (4)
[l]h–TOP(A) ◦ [p][h]nl–BOT(A) ⊆ [p][l][h]–TOP(A) (5)

Proof. Let M1 = ({?}, Σ, Γ,A, F1, µ1) be a homomorphism top-down tree series
transducer and M2 = (Q,Γ,∆,A, F, µ2) be a bottom-up tree series transducer.
We construct a tree series transducer M = (Q,Σ,∆,A, F, µ) as follows. For
every k ∈ IN, σ ∈ Σk, q ∈ Q, and w = q1(xi1) · · · qn(xin) ∈ Q(Xk)∗ let

µk(σ)q,w = hq1···qn
µ2

(
(µ1)k(σ)?,?(xi1 )···?(xin )

)
q
.

By the definition of top-down tree representations, (µ1)k(σ)?,?(xi1 )···?(xin ) is non-
deleting and linear in Xn. Whenever M2 is linear (respectively, nondeleting and
linear), then M will be of type II (respectively, top-down). The proof of preser-
vation of the additional properties is left to the reader. ut
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Putting Lemmata 1 and 2 together, we obtain the following characterization
of the power of tree series transducers of type I and II.

Theorem 3. Let A be a commutative and ℵ0-complete semiring.

[p][l]–GST(A) = [l]bh–TOP(A) ◦ [p][l]–BOT(A) (6)

[p][l]–TOPR(A) = [l]bh–TOP(A) ◦ [p]l–BOT(A) (7)

Proof. The statements follow directly from Lemmata 1 and 2. ut

Finally, we turn to the question concerning linear tree series transformations
of type II. So far, we have seen that l–TOPR(A) = lbh–TOP(A)◦ l–BOT(A) and
hence l–BOT(A) ⊆ l–TOPR(A). The converse [i. e., l–TOPR(A) ⊆ l–BOT(A)]
can be seen from our remark in the proof of Lemma 1. There we noted that if the
input transducer M is linear, then the first transducer M1 of the composition
just computes the identity; thus l–TOPR(A) ⊆ l–BOT(A). Hence we derived
the following theorem.

Theorem 4. Let A be a commutative and ℵ0-complete semiring.

l–TOPR(A) = l–BOT(A) (8)

The inclusions are displayed graphically for commutative and ℵ0-complete
semirings A in Fig. 1, where all line segments are directed upwards, so that, e. g.,
l–TOP(A) ⊆ l–BOT(A). However, none of the inclusions needs to be strict.

GST(A)

TOPR(A)

TOP(A)

BOT(A)

l–BOT(A)

= l–TOPR(A)

l–TOP(A)

=

=

=

=

=

=

=

Fig. 1. Hierarchy of IO tree series transformations.
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4 OI tree series substitution

Throughout the survey [9] the used tree series substitution is OI tree series
substitution [11, 1]. It is clear that as long as the tree representation of a tree
series transducer is linear and nondeleting (i. e., the tree series transducer is
top-down), the use of OI tree series substitution instead of pure IO tree series
substitution does not yield different results. If these conditions are, however,
not required (e. g., for tree series transducers of types I and II), the results
may diverge, and this section examines the ramifications of using OI tree series
substitution. Thereby we answer Question 2 as originally posed in [9].

Let A = (A,+, ·, 0, 1) be an ℵ0-complete semiring, k ∈ IN, δ ∈ ∆k be a
symbol of a ranked alphabet ∆, and ψ1, . . . , ψk ∈ A〈〈TΣ(X)〉〉. We define

δ(ψ1, . . . , ψk) =
∑

t1,...,tk∈T∆(X)

(ψ1, t1) · · · (ψk, tk) δ(t1, . . . , tk) .

Let I ⊆ IN+ be finite, ϕ ∈ A〈〈T∆(X)〉〉, and (ψi )i∈I be a family of tree series
ψi ∈ A〈〈TΣ(X)〉〉. The OI tree series substitution (of (ψi )i∈I into ϕ) [11, 1] (for
short: OI-substitution), denoted by ϕ[ψi]i∈I , is inductively defined as follows.

– For every j ∈ IN+

xj [ψi]i∈I =

{
ψj if j ∈ I ,

1 xj otherwise .

– For every k ∈ IN, δ ∈ ∆k, and t1, . . . , tk ∈ T∆(X)

δ(t1, . . . , tk)[ψi]i∈I = δ(t1[ψi]i∈I , . . . , tk[ψi]i∈I) .

Finally, ϕ[ψi]i∈I =
∑

t∈TΣ(X)(ϕ, t)·t[ψi]i∈I . We write ϕ[ψ1, . . . , ψn] for ϕ[ψi]i∈[n].
The semantics of tree series transducers using OI-substitution is defined next.

Let M = (Q,Σ,∆,A, F, µ) be a tree series transducer. We define the mapping
hOI

µ : TΣ −→ A〈〈T∆〉〉Q for every k ∈ IN, σ ∈ Σk, and t1, . . . , tk ∈ TΣ component-
wise for every q ∈ Q by

hOI
µ

(
σ(t1, . . . , tk)

)
q

=
∑

w∈Q(Xk)∗,
w=q1(xi1 )···qn(xin )

µk(σ)q,w

[
hOI

µ (tij )qj

]
j∈[n]

.

The OI tree series transformation computed by M , denoted by ‖M‖OI, is then
defined for every ϕ ∈ A〈〈TΣ〉〉 by

‖M‖OI(ϕ) =
∑
t∈TΣ

(ϕ, t) ·
∑
q∈Q

Fq

[
hOI

µ (t)q

]
.

We denote the class of OI tree series transformations computable by a class
of tree series transducers by the OI-subscripted denotation of the class of tree
series transformations computable by the same class of transducers using IO-
substitution. For example, p–TOPR

OI(A) denotes the class of all OI tree series

9



transformations computable by polynomial tree series transducers of type II
(over the semiring A).

Firstly, we show that tree series transducers of type II and top-down tree
series transducers are equally powerful supposed that OI-substitution is used.
Roughly speaking, this is due to the fact that the tree series to be substituted
for a deleted variable has absolutely no influence on the result of the substitution;
i. e., ϕ[ψi]i∈I = ϕ[ψi]i∈var(ϕ) where var(ϕ) =

⋃
t∈supp(ϕ) var(t).

Lemma 5. For every ℵ0-complete semiring A

[p][b][l][n][d][h]–TOPR
OI(A) = [p][b][l][n][d][h]–TOPOI(A) . (9)

Proof. Clearly, each top-down tree series transducer is also of type II, so it just
remains to prove y–TOPR

OI(A) ⊆ y–TOPOI(A). Let M = (Q,Σ,∆,A, F, µ) be a
tree series transducer and j ∈ IN+ be the maximal integer such that there exist
k ∈ IN, σ ∈ Σk, q ∈ Q, w ∈ Q(X)∗, and t ∈ supp(µk(σ)q,w) such that j 6 |w|
and |t|xj = 0. We construct a tree series transducer M ′ = (Q,Σ,∆,A, F, µ′)
such that ‖M‖ = ‖M ′‖ and for every k ∈ IN and σ ∈ Σk all tree series
in the range of µ′k(σ) will be nondeleting in Xk ∩ (X \ Xj−1). Clearly, since
max{ |w| | k ∈ IN, σ ∈ Σk, µk(σ)q,w 6= 0̃ } is finite, iteration of this construction
yields the desired result.

For every k ∈ IN, σ ∈ Σk, q ∈ Q, and w = q1(xi1) · · · qn(xin) ∈ Q(Xk)∗, if
j > n then we let µ′k(σ)q,w = µk(σ)q,w and otherwise we set

µ′k(σ)q,w =
∑

t∈T∆(X),
|t|xj

>1

(µk(σ)q,w, t) t+

+
∑

w′∈Q(Xk)n+1,
w=w′

1···w
′
j−1w′

j+1···w
′
n+1,

t∈T∆(X\{xj})

(µk(σ)q,w′ , t) t[x1, . . . , xj , xj , . . . , xn] .

Clearly, µ′k(σ)q,w is nondeleting in Xk ∩ (X \ Xj−1) as is every other tree series
in the range of µ′k(σ) for arbitrary k ∈ IN and σ ∈ Σk. Moreover, ‖M‖ = ‖M ′‖
because for every ϕ,ϕ′ ∈ A〈〈T∆(X)〉〉 and family (ψi )i∈I of ψi ∈ A〈〈T∆(X)〉〉
we have that (ϕ+ ϕ′)[ψi]i∈I = ϕ[ψi]i∈I + ϕ′[ψi]i∈I and ϕ[ψi]i∈I = ϕ[ψi]i∈I\{j},
whenever j /∈ var(ϕ). ut

Similarly, we can show that nonlinearity can be resolved by naming multiple
occurrences of the same variable apart. Let ren: T∆(X)× IN+ × IN+ −→ T∆(X)
be the mapping such that ren(t, j, n) is the tree obtained by renaming the first
occurrence (with respect to a depth-first left-to-right traversal of t) of xj in t
to xj , the second occurrence of xj to xn, the third occurrence of xj to xn+1,
and so on. Then roughly speaking, the construction is based on the observation
t[ψ1, . . . , ψk] = ren(t, j, k + 1)[ψ1, . . . , ψk, ψj , . . . , ψj ] for every t ∈ T∆(Xk) and
j ∈ [k].
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Lemma 6. For every ℵ0-complete semiring A

[b][l][n][d][h]p–TOPR
OI(A) = [b][l][n][d][h]p–GSTOI(A) . (10)

Proof. Let M = (Q,Σ,∆,A, F, µ) be a polynomial tree series transducer and
j ∈ IN+ be the maximal integer such that there exist k ∈ IN, σ ∈ Σk, q ∈ Q,
w ∈ Q(X)∗, and t ∈ supp(µk(σ)q,w) such that j 6 |w| and |t|xj > 1. We construct
a tree series transducer M ′ = (Q,Σ,∆,A, F, µ′) such that ‖M‖ = ‖M ′‖ and for
every k ∈ IN and σ ∈ Σk all tree series in the range of µ′k(σ) will be linear in
Xk ∩ (X\Xj−1). Clearly, since max{ |w| | k ∈ IN, σ ∈ Σk, µk(σ)q,w 6= 0̃ } is finite,
iteration of this construction yields the desired result.

For every k ∈ IN, σ ∈ Σk, q ∈ Q, and w = q1(xi1) · · · qn(xin
) ∈ Q(Xk)∗, if

j > n then we let µ′k(σ)q,w = µk(σ)q,w, and otherwise we set

µ′k(σ)q,w =
∑

t∈T∆(X),
|t|xj

61

(µk(σ)q,w, t) t+

+
∑

w′∈Q(Xk)∗,
t∈supp(µk(σ)q,w′ ),|t|xj

>1,

w′′=(w′
j)

|t|xj
−1

,w=w′w′′

(µk(σ)q,w′ , t) ren(t, j, |w′|+ 1) ,

Due to the fact that M is polynomial, µ′ is a tree representation. Moreover,
µ′k(σ)q,w is linear in Xk ∩ (X \ Xj−1) as is every other tree series in the range
of µ′k(σ) for arbitrary k ∈ IN and σ ∈ Σk. Moreover, ‖M‖ = ‖M ′‖ because for
every n ∈ IN, i ∈ [n], t ∈ T∆(Xn), and ψ1, . . . , ψn ∈ A〈T∆(X)〉 we have that

t[ψ1, . . . , ψn] = ren(t, i, n+ 1)[ψ1, . . . , ψn, ψi, . . . , ψi︸ ︷︷ ︸
|t|xi

−1

] .

The proof proceeds along the lines of the one of Lemma 5 and is therefore
omitted. ut

The proof of the previous result breaks down whenever M is not polynomial.
However, if there exists a constant n ∈ IN such that for every j ∈ IN+, k ∈ IN,
σ ∈ Σk, q ∈ Q, w ∈ Q(Xk)∗, and t ∈ supp(µk(σ)q,w) we have that |t|xj 6 n,
then the result holds and can be proved in essentially the same manner.

Theorem 7. For every ℵ0-complete semiring A

[b][l][n][d][h]p–TOP(A) = [b][l][n][d][h]p–TOPOI(A)

= [b][l][n][d][h]p–TOPR
OI(A) = [b][l][n][d][h]p–GSTOI(A) . (11)

Proof. The theorem is an immediate consequence of Lemmata 5 and 6. ut

Hence Question 2 of [9] can be answered by stating that polynomial tree
series transducers of type I, polynomial tree series transducers of type II, and
polynomial top-down tree series transducers are all equally powerful with respect
to OI-substitution.
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