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Abstract. Tree series transformations computed by polynomial top-
down and bottom-up tree series transducers are considered. The hierar-
chy of tree series transformations obtained in [Fülöp, Gazdag, Vogler: Hi-
erarchies of Tree Series Transformations. Theoret. Comput. Sci. 314(3),
p. 387–429, 2004] for commutative izz-semirings (izz abbreviates idempo-
tent, zero-sum and zero-divisor free) is generalized to arbitrary positive
(i. e., zero-sum and zero-divisor free) commutative semirings. The latter
class of semirings includes prominent examples such as the natural num-
bers semiring and the least common multiple semiring, which are not
members of the former class.

1 Introduction

Tree series transducers were introduced in [1–3] as a generalization of
top-down and bottom-up tree transducers. With the advent of tree se-
ries [4–8], especially recognizable tree series [9, 10], in formal language
theory also transducing devices capable of (finitely) representing transfor-
mations on tree series became interesting. For example, in [11] the power
of (top-down) tree series transducers for natural language processing was
recognized.

In the seminal paper [12] the hierarchy of top-down tree transforma-
tion classes was proved to be proper. This result lead to the hierarchy
of top-down and bottom-up tree transformation classes (as, e. g., dis-
played in [13]). This hierarchy was generalized to classes of top-down and
bottom-up tree series transformations over izz-semirings (izz abbreviates
idempotent, zero-divisor and zero-sum free) in [14]. Let us explain this
generalization in some more detail.

By p–TOPε(A) and p–BOTε(A) we denote the classes of tree-to-tree-
series transformations computable by polynomial top-down and bottom-
up tree series transducers [2] over the semiring A [15, 16], respectively.
? Financially supported by the German Research Foundation (DFG GK/334).



Such a tree-to-tree-series transformation is a mapping τ : TΣ −→ A〈〈T∆〉〉
for some ranked alphabets Σ and ∆. Given ranked alphabets Σ, ∆,
and Γ and τ1 : TΣ −→ A〈〈T∆〉〉 and τ2 : T∆ −→ A〈〈TΓ 〉〉, the composition
of τ1 with τ2 is denoted by τ1 ◦ τ2 and is a mapping τ : TΣ −→ A〈〈TΓ 〉〉
(an output tree u produced by τ1 is subjected to τ2, and the result is
multiplied by the weight of u in the series produced by τ1). This composi-
tion is lifted to classes of transformations, and we write p–TOPn

ε (A) and
p–BOTn

ε (A) for the n-fold composition of p–TOPε(A) and p–BOTε(A),
respectively.

In [14] it is first proved that

p–TOPn
ε (A) ⊆ p–BOTn+1

ε (A) and p–BOTn
ε (A) ⊆ p–TOPn+1

ε (A)

for every commutative semiring and n > 1 (see Theorems 5.1 and 5.7
in [14], respectively). Then in [14, Theorem 6.20] it is proved that

p–TOPn
ε (A) 6⊆ p–BOTn

ε (A) and p–BOTn
ε (A) 6⊆ p–TOPn

ε (A)

for every izz-semiring and n > 1. Thus the hierarchy that is obtained
in [14] is proved for commutative izz-semirings. We generalize the incom-
parability result to positive (i. e., zero-sum and zero-divisor free) semi-
rings and thereby obtain the hierarchy for all positive and commutative
semirings (see Figure 1 for the Hasse diagram).

Our approach used to prove the incomparability is (in essence) similar
to the one presented in [14]. However, we carefully avoid the introduction
of idempotency by a simpler proof method. We furthermore claim that
our method of proof is more illustrative than the one of [14].

Apart from this introduction, the paper has 3 sections. Section 2 in-
troduces the essential notation, Section 3 generalizes the mentioned in-
comparability result, and Section 4 presents the obtained hierarchy (see
Figure 1).

2 Preliminaries

We use N to represent the nonnegative integers and N+ = N \ {0}. In the
sequel, let k, n ∈ N and [k] be an abbreviation for {i ∈ N | 1 6 i 6 k}.
A set Σ that is nonempty and finite is also called an alphabet, and the
elements thereof are called symbols. As usual, Σ∗ denotes the set of all
finite sequences of symbols of Σ (also called Σ-words). Given w ∈ Σ∗,
the length of w is denoted by |w|.

A ranked alphabet is an alphabet Σ with a mapping rkΣ : Σ −→ N,
which associates to each symbol a rank. We use Σk to represent the set of
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symbols of Σ that have rank k. Moreover, we use the set X = {xi | i ∈ N+}
of (formal) variables and Xk = {xi | i ∈ [k]}. Given a ranked alphabet Σ
and V ⊆ X, the set of Σ-trees indexed by V , denoted by TΣ(V ), is induc-
tively defined to be the smallest set T such that (i) V ⊆ T and (ii) for
every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ T also σ(t1, . . . , tk) ∈ T . Since we
generally assume that Σ ∩ X = ∅, we write α instead of α() whenever
α ∈ Σ0. Moreover, we also write TΣ to denote TΣ(∅).

Given t1, . . . , tn ∈ TΣ(X), the expression t[t1, . . . , tn] denotes the result
of substituting in t every xi by ti for every i ∈ [n]. Let V ⊆ X. We say
that t ∈ TΣ(X) is linear and nondeleting in V , if every x ∈ V occurs at
most once and at least once in t, respectively.

A semiring is an algebraic structure A = (A,+, ·, 0, 1) consisting of
a commutative monoid (A,+, 0) and a monoid (A, ·, 1) such that · dis-
tributes over + and 0 is absorbing with respect to · . The semiring is called
commutative, if · is commutative. As usual we use

∑
i∈I ai for sums of

families (ai)i∈I of ai ∈ A where for only finitely many i ∈ I we have
ai 6= 0. Let A = (A,+, ·, 0A, 1A) and B = (B,⊕,�, 0B, 1B) be semirings
and h : A −→ B. The mapping h is called homomorphism from A to B, if

– h(0A) = 0B and h(1A) = 1B, and
– h(a+ b) = h(a)⊕ h(b) and h(a · b) = h(a)� h(b) for every a, b ∈ A.

A semiring A = (A,+, ·, 0, 1) is called idempotent, if 1 + 1 = 1. More-
over, we say that a semiring A = (A,+, ·, 0, 1) is zero-sum free, if a+b = 0
implies that a = 0 = b for every a, b ∈ A. Moreover, A is zero-divisor free,
if a · b = 0 implies that 0 ∈ {a, b} for every a, b ∈ A. A zero-sum and
zero-divisor free semiring is also called positive. The Boolean semiring
B = ({0, 1},∨,∧, 0, 1) with the usual disjunction ∨ and conjunction ∧ is
an example of a positive semiring.

Let S be a set and A = (A,+, ·, 0, 1) be a semiring. A (formal)
power series ψ is a mapping ψ : S −→ A. Given s ∈ S, we denote ψ(s)
also by (ψ, s) and write the series as

∑
s∈S(ψ, s) s. The support of ψ

is supp(ψ) = {s ∈ S | (ψ, s) 6= 0}. Power series with finite support are
called polynomials. We denote the set of all power series by A〈〈S〉〉 and
the set of polynomials by A〈S〉. The polynomial with empty support is
denoted by 0̃. Power series ψ,ψ′ ∈ A〈〈S〉〉 are added componentwise; i. e.,
(ψ + ψ′, s) = (ψ, s) + (ψ′, s) for every s ∈ S, and we multiply ψ with a
coefficient a ∈ A componentwise; i. e., (a ·ψ, s) = a ·(ψ, s) for every s ∈ S.

In this paper, we only consider power series in which the set S is a set
of trees. Such power series are also called tree series. Let ∆ be a ranked
alphabet. A tree series ψ ∈ A〈〈T∆(X)〉〉 is said to be linear and nondeleting
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in V ⊆ X, if every t ∈ supp(ψ) is linear and nondeleting in V , respectively.
Let ψ ∈ A〈T∆(X)〉 and ψ1, . . . , ψn ∈ A〈T∆(X)〉. The pure IO tree series
substitution (for short: pure substitution) (of ψ1, . . . , ψn into ψ) [17, 2],
denoted by ψ←−ε (ψ1, . . . , ψn), is defined by

ψ←−ε (ψ1, . . . , ψn) =
∑

t∈T∆(X),
t1,...,tn∈T∆(X)

(ψ, t) · (ψ1, t1) · . . . · (ψn, tn) t[t1, . . . , tn] .

Let Q be an alphabet. We write Q(V ) for {q(v) | q ∈ Q, v ∈ V }. We
use the notions of linearity and nondeletion in V accordingly also for
w ∈ Q(X)∗. Let A = (A,+, ·, 0, 1) be a semiring and Σ and ∆ be ranked
alphabets. A tree representation µ (over Q, Σ, ∆, and A) [2] is a family
(µ(σ))σ∈Σ of matrices µ(σ) ∈ A〈〈T∆(X)〉〉Q×Q(Xk)∗ where k = rkΣ(σ) such
that for every (q, w) ∈ Q × Q(Xk)∗ it holds that µ(σ)q,w ∈ A〈〈T∆(Xn)〉〉
with n = |w|, and µ(σ)q,w 6= 0̃ for only finitely many (q, w) ∈ Q×Q(Xk)∗.
A tree representation µ is said to be

– polynomial, if µ(σ)q,w is polynomial for every k ∈ N, σ ∈ Σk, q ∈ Q,
and w ∈ Q(Xk)∗;

– linear, if µ(σ)q,w is linear in X|w| and w is linear in Xk for every k ∈ N,
σ ∈ Σk, q ∈ Q, and w ∈ Q(Xk)∗ such that µ(σ)q,w 6= 0̃;

– top-down (respectively, top-down with regular look-ahead), if µ(σ)q,w

is linear and nondeleting (respectively, linear) in X|w| for every k ∈ N,
σ ∈ Σk, q ∈ Q, and w ∈ Q(Xk)∗; and

– bottom-up, if for every k ∈ N, σ ∈ Σk, q ∈ Q, and w ∈ Q(Xk)∗ such
that µ(σ)q,w 6= 0̃ we have w = q1(x1) · · · qk(xk) for some q1, . . . , qk ∈ Q.

A tree series transducer [2, 6] (with designated states), in the sequel
abbreviated to tst, is a sixtuple M = (Q,Σ,∆,A, F, µ) consisting of

– an alphabet Q of states,
– ranked alphabets Σ and ∆, also called input and output ranked al-

phabet, respectively,
– a semiring A = (A,+, ·, 0, 1),
– a subset F ⊆ Q of designated states, and
– a tree representation µ over Q, Σ, ∆, and A.

Tst inherit the properties from their tree representation; e. g., a tst
with a polynomial bottom-up tree representation is called a polynomial
bottom-up tst. Additionally, we abbreviate bottom-up tst to bu-tst and
top-down tst to td-tst.
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We introduce the semantics only for polynomial tst because we defined
pure substitution only for polynomial tree series (in order to avoid a well-
definedness issue related to infinite sums). Let M = (Q,Σ,∆,A, F, µ)
be a polynomial tst. Then M induces a mapping ‖M‖ : TΣ −→ A〈T∆〉
as follows. For every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ we define the
mapping hµ : TΣ −→ A〈T∆〉Q componentwise for every q ∈ Q by

hµ(σ(t1, . . . , tk))q =
∑

w∈Q(Xk)∗,
w=q1(xi1

)···qn(xin )

µk(σ)q,w←−ε (hµ(ti1)q1 , . . . , hµ(tin)qn) .

For every t ∈ TΣ the tree-to-tree-series (for short: ε-t-ts) transformation
computed by M is ‖M‖(t) =

∑
q∈F hµ(t)q.

By p–TOPε(A) and p–BOTε(A) we denote the class of ε-t-ts transfor-
mations computable by polynomial td-tst and bu-tst over the semiring A,
respectively. Likewise we use the prefix l for the linearity property and
the stems TOPR

ε and GSTε for td-tst with regular look-ahead and unre-
stricted tst, respectively.

We compose ε-t-ts transformations as follows. Let τ1 : TΣ −→ A〈T∆〉
and τ2 : T∆ −→ A〈TΓ 〉 then (τ1 ◦ τ2)(t) =

∑
u∈T∆

(τ1(t), u) · τ2(u) for every
t ∈ TΣ . This composition is extended to classes of ε-t-ts transformations
in the usual manner. By p–TOPn

ε (A) and p–BOTn
ε (A) with n ∈ N+

we denote the n-fold composition p–TOPε(A) ◦ · · · ◦ p–TOPε(A) and
p–BOTε(A) ◦ · · · ◦ p–BOTε(A), respectively.

3 Incomparability results

We show the incomparability of p–TOPn
ε (A) and p–BOTn

ε (A) for ev-
ery n ∈ N+ and positive semiring A. Together with the results of [14]
this yields the Hasse diagram (see Figure 1) that displays the top-down,
bottom-up, and alternating hierarchy of tree series transformations. We
arrive at the same Hasse diagram as [14], but we can prove it for a distinc-
tively larger class of semirings; namely positive commutative semirings
instead of positive, idempotent, and commutative semirings as in [14].

First we show the main property that we exploit in the sequel. Roughly
speaking, given a positive semiringA we present a specific homomorphism
from A to the Boolean semiring B. We later use this homomorphism to lift
the incomparability of the top-down and bottom-up tree transformation
classes to the level of ε-t-ts transformation classes.
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Lemma 1. Let A = (A,+, ·, 0A, 1A) be a positive semiring. Moreover,
let χ : A −→ {0, 1} be such that χ(0A) = 0 and χ(a) = 1 for every
a ∈ A \ {0A}. Then χ is a homomorphism from A to B.

Let A = (A,+, ·, 0A, 1A) and B = (B,⊕,�, 0B, 1B) be semirings,
τ : TΣ −→ A〈〈T∆〉〉, and h : A −→ B. The image of τ under h, denoted
by h(τ), is defined by (h(τ)(t), u) = h((τ(t), u)) for every t ∈ TΣ and
u ∈ T∆. Clearly, h(τ) : TΣ −→ B〈〈T∆〉〉. If h is a homomorphism, then we
also call h(τ) the homomorphic image of τ . This notion of (homomorphic)
image is lifted to classes of ε-t-ts transformations in the usual manner.

Next we show that, given an ε-t-ts transformation τ computed by
a polynomial td-tst or bu-tst M over the semiring A and a homomor-
phism h from A to B, there exists a polynomial td-tst or bu-tst M ′ over
the semiring B such that M ′ computes the homomorphic image of τ ; i. e.,
h is applied to all coefficients in the range of the ε-t-ts transformation τ .
This is also the main idea of the construction; we simply apply the ho-
momorphism to all coefficients in the tree representation of M to obtain
the tree representation of M ′.

Moreover, we show that computable ε-t-ts transformations are also
closed under inverse homomorphisms. For this we need the following defi-
nition. Let h : A −→ B and τ ′ : TΣ −→ B〈〈T∆〉〉. By h−1(τ ′) we denote the
set {τ ∈ A〈〈T∆〉〉TΣ | h(τ) = τ ′}. This is again lifted to classes as usual.

Lemma 2. Let A and B be semirings and h be a homomorphism from A
to B.

h(p–TOPε(A)) ⊆ p–TOPε(B) and h(p–BOTε(A)) ⊆ p–BOTε(B)

If h is surjective, then also

h−1(p–TOPε(B)) ⊆ p–TOPε(A) and h−1(p–BOTε(B)) ⊆ p–BOTε(A)

Proof. Let C = (C,+, ·, 0C , 1C) and D = (D,⊕,�, 0D, 1D). Moreover, let
f : C −→ D and M = (Q,Σ,∆, C, F, µ) be a tst. We construct the tst
f(M) = (Q,Σ,∆,D, F, µ′) as follows. For every k ∈ N, σ ∈ Σk, q ∈ Q,
and w ∈ Q(Xk)∗

µ′(σ)q,w =
⊕

u∈supp(µ(σ)q,w)

f((µ(σ)q,w, u)) u .

Clearly, f(M) is top-down and bottom-up whenever M is top-down and
bottom-up, respectively.
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Let us first prove the former statement. Let τ ∈ p–TOPε(A) or
τ ∈ p–BOTε(A). There exists a polynomial td-tst or bu-tst M such that
‖M‖ = τ . We claim that ‖h(M)‖ = h(‖M‖). The proof of this statement
can be found below.

For the second statement, let τ ∈ p–TOPε(B) or τ ∈ p–BOTε(B).
There exists a polynomial td-tst or bu-tst M such that ‖M‖ = τ . More-
over, let f : B −→ A be such that h(f(b)) = b for every b ∈ B. Such an f
exists, because h is surjective. The claim ‖f(M)‖ ∈ h−1(‖M‖) follows
from h(‖f(M)‖) = ‖M‖, whose proof can also be found below.

Now we prove the twice-mentioned result. Let h be a homomorphism
from A to B with A = (A,+, ·, 0A, 1A) and B = (B,⊕,�, 0B, 1B). More-
over, let M = (Q,Σ,∆,A, F, µ) be a tst. Then ‖h(M)‖ = h(‖M‖). Let
h(M) = (Q,Σ,∆,B, F, µ′). We first prove the auxiliary statement that
(hµ′(t)q, u) = h((hµ(t)q, u)) for every q ∈ Q, t ∈ TΣ , and u ∈ T∆. This is
proved inductively, so let t = σ(t1, . . . , tk) for some k ∈ N, σ ∈ Σk, and
t1, . . . , tk ∈ TΣ .

(hµ′(σ(t1, . . . , tk))q, u)
= (by definition of hµ′)( ⊕

w∈Q(Xk)∗,
w=q1(xi1

)···qn(xin )

µ′(σ)q,w←−ε (hµ′(ti1)q1 , . . . , hµ′(tin)qn), u
)

= (by definition of ←−ε )( ⊕
w∈Q(Xk)∗,

w=q1(xi1
)···qn(xin )

⊕
u′∈T∆(Xn),
u1,...,un∈T∆

(µ′(σ)q,w, u
′)�

� (hµ′(ti1)q1 , u1)� · · · � (hµ′(tin)qn , un) u′[u1, . . . , un], u
)

= (by definition of µ′ and induction hypothesis)( ⊕
w∈Q(Xk)∗,

w=q1(xi1
)···qn(xin )

⊕
u′∈T∆(Xn),
u1,...,un∈T∆

h((µ(σ)q,w, u
′))�

� h((hµ(ti1)q1 , u1))� · · · � h((hµ(tin)qn , un)) u′[u1, . . . , un], u
)

= (by homomorphism property)⊕
w∈Q(Xk)∗,

w=q1(xi1
)···qn(xin )

( ⊕
u′∈T∆(Xn),
u1,...,un∈T∆

h
(
(µ(σ)q,w, u

′) ·

· (hµ(ti1)q1 , u1) · . . . · (hµ(tin)qn , un)
)
u′[u1, . . . , un], u

)
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= (by homomorphism property and definition of ←−ε )⊕
w∈Q(Xk)∗,

w=q1(xi1
)···qn(xin )

h
(
µ(σ)q,w←−ε (hµ(ti1)q1 , . . . , hµ(tin)qn), u

)
= (by homomorphism property)

h
( ∑

w∈Q(Xk)∗,
w=q1(xi1

)···qn(xin )

µ(σ)q,w←−ε (hµ(ti1)q1 , . . . , hµ(tin)qn), u
)

= (by definition of hµ)
h((hµ(σ(t1, . . . , tk))q, u))

With this statement the proof is easy. We observe that for every t ∈ TΣ
and u ∈ T∆

(‖h(M)‖(t), u) =
(⊕

q∈F

hµ′(t)q, u
)

=
⊕
q∈F

(hµ′(t)q, u)

= (by the auxiliary statement)⊕
q∈F

h((hµ(t)q, u)) = h
(∑

q∈F

(hµ(t)q, u)
)

= h
((∑

q∈F

hµ(t)q, u
))

= h((‖M‖(t), u)) .

This lemma admits an important corollary, which will form the basis
of our new lifting result. Roughly, the corollary states that every ε-t-ts
transformation computed by a polynomial td-tst or bu-tst over B can also
be computed as the homomorphic image (under χ) of the ε-t-ts trans-
formation computed by a polynomial td-tst or bu-tst over the positive
semiring A. The statement also holds vice versa.

Corollary 3. Let A be a positive semiring.

χ(p–TOPε(A)) = p–TOPε(B) and χ(p–BOTε(A)) = p–BOTε(B)

Proof. We have seen in Lemma 1 that χ is a homomorphism from A to B.
Consequently, the statement holds by Lemma 2 because χ is surjective.

Next we show that homomorphisms are compatible with the compo-
sition introduced for ε-t-ts transformations.

Lemma 4. Let h be a homomorphism from the semiring A to the semi-
ring B. Moreover, let τ1 : TΣ −→ A〈T∆〉 and τ2 : T∆ −→ A〈TΓ 〉.

h(τ1 ◦ τ2) = h(τ1) ◦ h(τ2)
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Proof. Let t ∈ TΣ and u′ ∈ TΓ be an input and output tree, respectively.
Further, let A = (A,+, ·, 0A, 1A) and B = (B,⊕,�, 0B, 1B).

h
(
((τ1 ◦ τ2)(t), u′)

)
= h

(( ∑
u∈T∆

(τ1(t), u) · τ2(u), u′
))

=
⊕
u∈T∆

h
(
((τ1(t), u) · τ2(u), u′)

)
=

⊕
u∈T∆

h((τ1(t), u))� h((τ2(u), u′))

=
⊕
u∈T∆

(h(τ1)(t), u)� (h(τ2)(u), u′) =
(
(h(τ1) ◦ h(τ2))(t), u′

)
Now we ready to state our main theorem, which states the incompa-

rability of p–TOPn
ε (A) and p–BOTn

ε (A) in all positive semirings.

Theorem 5. Let A be a positive semiring and n ∈ N+.

p–TOPn
ε (A) 6⊆ p–BOTn

ε (A) p–BOTn
ε (A) 6⊆ p–TOPn

ε (A)

Proof. We prove the statement by contradiction. For this, suppose that
p–TOPn

ε (A) ⊆ p–BOTn
ε (A). Then

χ(p–TOPn
ε (A))

= χ(p–TOPε(A)) ◦ · · · ◦ χ(p–TOPε(A)) by Lemma 4
= p–TOPε(B) ◦ · · · ◦ p–TOPε(B) by Corollary 3
= p–TOPn

ε (B) by definition

Analogously we obtain χ(p–BOTn
ε (A)) = p–BOTn

ε (B). It follows that
p–TOPn

ε (B) ⊆ p–BOTn
ε (B). This, however, contradicts the famous tree

transducer hierarchy [18] due to [2, Corollaries 4.7 and 4.14]. The second
statement is proved analogously.

4 Hierarchy results

In this section we state the hierarchy result that can be obtained with the
new incomparability result. First we recall the inclusion results of [14].

Proposition 6 (Theorems 5.1 and 5.7 of [14]). Let A be commuta-
tive and n ∈ N+.

p–BOTn
ε (A) ⊆ p–TOPn+1

ε (A) p–TOPn
ε (A) ⊆ p–BOTn+1

ε (A)

With these inclusions and the incomparability results of Theorem 5
we obtain the following hierarchy result for positive and commutative
semirings. Important semirings like
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. . . . . .

p–BOTn+1
ε (A) p–TOPn+1

ε (A)

p–BOTn
ε (A) p–TOPn

ε (A)

. . . . . .

p–BOT2
ε(A) p–TOP2

ε(A)

p–BOT1
ε(A) p–TOP1

ε(A)

Fig. 1. Hasse diagram of the hierarchies.

– the semiring of nonnegative integers N = (N,+, ·, 0, 1),
– the least common multiple semiring Lcm = (N, lcm, ·, 0, 1), and
– the matrix semiring Matn(N+) = (Nn×n

+ ∪ {0, 1},+, ·, 0, 1) over N+

(where 0 is the n× n zero matrix and 1 is the n× n unit matrix)

are all positive, but not idempotent. However, the matrix semiring is not
commutative.

p–GSTε(A)

p–TOPR
ε (A)

p–TOPε(A)

p–BOTε(A)

lp–BOTε(A)
= lp–TOPR

ε (A)

lp–TOPε(A)

Fig. 2. Hasse diagram of general tst.
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Theorem 7. Let A be a positive and commutative semiring. Figure 1 is
the Hasse diagram for the depicted classes of transformations (ordered
by inclusion).

Proof. The inclusions are trivial or follow from Proposition 6. Incompa-
rability is shown in Theorem 5.

Similarly, we can use the approach also for other incomparability re-
sults. For example, in [19] a diagram of inclusions is presented (for com-
mutative semirings, cf. Section 6 of [20]), however the properness of the
inclusions remained open. Using our approach we can now prove this
diagram to be a Hasse diagram.

Theorem 8. Let A be a positive and commutative semiring. Figure 2 is
the Hasse diagram for the depicted classes of transformations (ordered
by inclusion).

Proof. Note that the inclusions are proved in [19]. It remains to prove
strictness and incomparability.

First we note that the construction of Lemma 2 preserves all intro-
duced properties (thus also linearity and top-down with regular look-
ahead). Thus we obtain the following statements.

χ(p–TOPR
ε (A)) = p–TOPR

ε (B) χ(p–GSTε(A)) = p–GSTε(B)

χ(lp–TOPR
ε (A)) = lp–TOPR

ε (B) χ(lp–GSTε(A)) = lp–GSTε(B)
χ(lp–TOPε(A)) = lp–TOPε(B) χ(lp–BOTε(A)) = lp–BOTε(B)

In Section 5 of [20] the diagram is proved to be Hasse diagram for the
Boolean semiring and we lift the incomparability results of this diagram
using the approach used in the proof of Theorem 7. This proves the cor-
rectness of the diagram presented in Figure 2.
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