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CHAPTER 1

Introduction

There is nothing more di�cult to take in hand,
more perilous to conduct or more uncertain in its success

than to take the lead in the introduction
of a new order of things.

Niccolò Machiavelli (1469�1527): �The Prince� [Il Principe]
Translation by William K. Marriott, 1513

1. Overview

This thesis scrutinizes the power of restricted tree series transduc-
ers that use either pure or o-substitution. We compare the classes of
ε-tree-to-tree series and o-tree-to-tree-series transformations computed
by several classes of tree series transducers. The analysis is very de-
tailed (in the sense that we consider several syntactic restrictions on
tree series transducers and several classes of semirings) for the classes
of transformations computed by deterministic tree series transducers.
We also consider classes of transformations computed by polynomial
tree series transducers albeit in less detail. Finally, we also investigate
compositions of transformations computed by bottom-up and top-down
tree series transducers.

In this introduction we shortly recall the predecessors of tree se-
ries transducers and some of their applications. Then we present the
IO tree series substitutions (namely pure and o-substitution) that are
central in the de�nition of the semantics of tree series transducers.
We shortly discuss these devices thereafter. Next we start the analy-
sis of the power of deterministic tree series transducers and later also
arbitrary polynomial tree series transducers. Finally, we consider com-
positions of transformations and investigate whether they can also be
computed by a single tree series transducer.

Apart from this introduction, the thesis has six chapters. All chap-
ters but the preliminaries are introduced here. The examples presented
in the forthcoming chapters only serve to illustrate a certain construc-
tion or feature. Thus they are usually abstract in nature.

2. Historical notes and motivation

Tree series transducers [79, 41, 55, 58] were introduced as a joint
generalization of tree transducers [102, 106, 3, 35, 4] and weighted
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2 1. INTRODUCTION

tree automata [9, 104, 77, 18, 17]. They thereby serve as the trans-
ducing devices corresponding to weighted tree automata. Both histor-
ical predecessors of tree series transducers have successfully been mo-
tivated from and applied in practice. Speci�cally, tree transducers are
motivated from syntax-directed translations in compilers [68, 38, 57],
and they are applied in, e. g., functional program analysis and trans-
formation [75, 62, 70, 109], computational linguistics [94, 73, 92,
72], generation of pictures [29, 30], and query languages of xml
databases [11, 42]. Weighted tree automata have been applied to code
selection in compilers [49, 14] and tree pattern matching [104].

Weighted transducers on strings [10] are applied in image manipu-
lation [27], where the images are coded as weighted string automata,
and speech processing [93]. Since natural language processing features
many transformations on parse trees, which come equipped with a de-
gree of certainty, it seems natural to consider �nite-state devices capa-
ble of transforming weighted trees. For natural language processing,
the potential of tree series transducers over the semiring of the positive
real numbers was recently discovered [65]. Moreover, a rich theory of
tree transducers was developed (see [35, 5, 39, 40] as seminal papers
and [60, 96, 25, 61, 57] as survey papers and monographs) during the
seventies, whereas weighted tree automata just recently received some
attention (e. g., [104, 77, 13, 17, 31, 32, 48, 82, 87, 33]).

3. Tree series substitution

Tree substitution is at the core of the semantics of tree transducers,
and tree series substitution ful�lls this purpose for tree series trans-
ducers. In this thesis we discuss two tree series substitutions, namely
pure [20, 41] and o-substitution [58]. A tree series is a mapping from a
set of trees [60, 61] into a semiring [66, 64]. For the illustration here,
we use the natural numbers with minimum and addition as the under-
lying semiring (a tropical semiring). A tree series can then be seen as
a multiset [12] (sometimes also called bag) of trees. Let us suppose
that we want to substitute k tree series ψ1, . . . , ψk into a tree series ψ.
On the tree level the tree series substitutions just perform tree substi-
tution. But how do we obtain the natural number that is associated
with a tree u? For this we consider all decompositions u′[u1, . . . , uk] of
the tree u into a tree u′, which may contain the variables {z1, . . . , zk},
and trees u1, . . . , uk. The natural number that is associated with u in
the resulting tree series is computed as follows:

• for pure substitution (also called ε-substitution)

min
u′,u1,...,uk trees,
u=u′[u1,...,uk]

(
ψ(u′) + ψ1(u1) + · · ·+ ψk(uk)

)
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• for o-substitution

min
u′,u1,...,uk trees,
u=u′[u1,...,uk]

(
ψ(u′) + n1 · ψ1(u1) + · · ·+ nk · ψk(uk)

)
where n1, . . . , nk hold the number of occurrences of the vari-
ables z1, . . . , zk in u

′, respectively.

We deal with these two modes of tree series substitution. The �rst
is called pure tree series substitution [20, 41] (for short: pure substitu-
tion) and represents a computational approach; i. e., the output trees
represent values of computations, and the natural number that is as-
sociated to an output tree can be viewed as the cost of computing this
value. When we combine the results of smaller problems (output trees),
then their costs are simply added to obtain the cost of the combined
result (output tree). This happens irrespective of the number of uses
of a computed result; i. e., a result may be copied without penalty,
which represents the computational approach in the sense that a value
is available and can be reused without recomputation. Finally, we take
the minimum of the costs over all possible combinations that yield the
same �nal result.

On the other hand, we also investigate a tree series substitution
that respects occurrences [58] (for short: o-substitution), which rep-
resents a more material approach. There the natural number, that is
associated with an output tree, is taken n times, if the output tree is
used in n copies (the corresponding variable occurs n times). In this ap-
proach, an output tree stands for a composite, and the natural number
associated with the output tree re�ects the (monetary) cost of creating
or obtaining this particular composite. When we combine composites
into a new composite, then we obtain the cost of the composite by a
simple addition of the costs of its components; each component taken
as often as needed to assemble the composite.

Tree series substitutions have also been studied in relation with
recognizable tree series [9, 16]. Substitution is a standard operation on
tree series, and in particular, OI-substitution [18, 79] was studied with
respect to preservation of recognizability [78, 80]. A tree series is called
recognizable, if there exists a �nite state automaton (more speci�cally,
a bottom-up weighted tree automaton [16]) that computes this tree
series. Recognizable tree series are of particular interest, because they
are �nitely representable.

In Chapter 3 on tree series substitutions we introduce the mentioned
substitutions formally and study pure and o-substitution with respect
to the fundamental properties of distributivity, linearity, and associa-
tivity. Finally, we consider preservation of recognizability for pure and
o-substitution. The main result of this chapter, apart from the lem-
mata for distributivity, linearity, and associativity, is Theorem 3.28.
It states that o-substitution preserves recognizable tree series in the
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tree series
transducer

τ : TΣ −→ A〈〈T∆〉〉

weighted tree
automaton

L ∈ A〈〈TΣ〉〉

weighted transducer

τ : Σ∗ −→ A〈〈∆∗〉〉

tree transducer

τ : TΣ −→ B〈〈T∆〉〉

weighted automaton

L ∈ A〈〈Σ∗〉〉

tree automaton

L ∈ B〈〈TΣ〉〉

generalized
sequential machine

τ : Σ∗ −→ B〈〈∆∗〉〉

string automaton

L ∈ B〈〈Σ∗〉〉

Figure 1. Generalization hierarchy.

tropical semiring (N∪{∞},min,+), whenever the tree series are linear
(i. e., each variable may occur at most once in the trees). In general,
the result holds for all semirings (A,+, ·) that are continuous [48] and
additively idempotent (i. e., a+ a = a for every a ∈ A).

4. Tree series transducers

Figure 1 attempts to display the automata and transducer con-
cepts subsumed by tree series transducers. Roughly speaking, moving
upwards-left in this �gure adds weights (costs or multiplicity), moving
upwards performs the generalization from strings to trees, and �nally,
moving upwards-right adds an output component.

Intuitively, a (bottom-up or top-down) tree series transducer is a
(bottom-up or top-down) tree transducer [106, 102, 107] in which
the transitions carry a weight; a weight is an element of some semi-
ring [66, 64]. The rewrite semantics works as follows. Along a suc-
cessful computation on some input tree, the weights of the involved
transitions are combined by means of the semiring multiplication; if
there is more than one successful computation for some pair of input
and output trees, then the weights of these computations are combined
by means of the semiring addition.
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Tree series transducers, henceforth abbreviated to tst, capture both
(a) the way of translating input trees into output trees, which they
inherit from bottom-up and top-down tree transducers, and (b) the
computation of a weight (or cost) in a semiring, which they inherit
from weighted tree automata. More formally, a (bottom-up or top-
down) tst is a tuple M = (Q,Σ,∆,A, F, µ), where

• Q is a �nite set of states;
• Σ and ∆ are ranked alphabets of input and output symbols,
respectively;
• A = (A,+, ·) is a semiring;
• F : Q −→ AC∆(Z1) assigns top-most output to each state (with
C∆(Z1) being the set of all ∆-trees that contain the variable z1

exactly once); and
• µ = (µk)k∈N is a (bottom-up or top-down) tree representation.

The tree representation consists of mappings µk that map the set of
k-ary symbols of Σ into (Q×Q(Xk)

∗)-matrices over AT∆(Z), where T∆(Z)
denotes the set of ∆-trees indexed by variables of Z = {z1, z2, . . . }
and Q(Xk) = {q(xi) | q ∈ Q, 1 6 i 6 k}. The entries are mappings
ϕ : T∆(Z) −→ A, and such a mapping is called a tree series.

We use η-substitution of tree series (with η ∈ {ε, o}; see [58]) to sub-
stitute tree series into tree series. This way we can impose a Σ-algebraic
structure on the set of all mappings V : Q −→ AT∆ and thereby ob-
tain the unique Σ-homomorphism hηµ from TΣ to {V | V : Q −→ AT∆}.
Then the η-tree-to-tree-series (for short: η-t-ts) transformation com-
puted by M is the mapping ‖M‖η : TΣ −→ AT∆ de�ned by

‖M‖η(t) =
∑
q∈Q

F (q)←−η (hηµ(t))(q)

where ←−η denotes η-substitution. Thus, for a given input tree t ∈ TΣ,
the tst M computes a (potentially in�nite) set

supp(‖M‖η(t)) = {u ∈ T∆ | (‖M‖η(t))(u) 6= 0} ,

where 0 is the additively neutral element of A, of output trees and
associates a coe�cient (‖M‖η(t))(u) ∈ A to every output tree u ∈ T∆.

In the same way as tree transducers, also tst can have particu-
lar properties. For every so-called polynomial tst M and input tree
t ∈ TΣ, the set supp(‖M‖η(t)) of computed and relevant output trees
is �nite. Polynomial bottom-up and top-down tst over the boolean
semiring B = ({0, 1},∨,∧) essentially are bottom-up and top-down
tree transducers, respectively (see [41, Section 4]). Moreover, a tst
can be deterministic or a homomorphism (see, e. g., [35]). Note that
homomorphism tst are deterministic, and deterministic tst are poly-
nomial. The classes of η-t-ts transformations computed by bottom-up
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and top-down tst that have the properties x (e. g., that are determinis-
tic) over A are denoted by x�BOTη(A) and x�TOPη(A), respectively.
For brevity, we usually use only the �rst letter of the property.

In [41, 58, 59, 55] several generalizations of well-known theorems
of the theory of tree transducers have been proved for bottom-up tst,
e. g.,

• a generalization of the decomposition of the class of bottom-up
tree transformations (see [41, Theorem 5.7] and [35, p. 220]);
in its turn the result of [35] generalizes the decomposition of
gsm-mappings as proved in [95];
• a generalization of (some) composition hierarchy results for
bottom-up and top-down tree transformation classes (see [55,
Theorem 6.24] and [60, Corollary 8.13(iii)]);
• a generalization of the equivalence of a rewrite semantics and
the initial algebra semantics for bottom-up and top-down tree
transducers (see [59, Theorems 5.10 and 6.9] and [35, Lem-
mata 5.6 and 5.5]).

Chapter 4 formally recalls tree series transducers from [41] along
with some syntactic properties. We also present examples and some
simple statements on tree series transducers.

5. Deterministic tree series transducers

We start our investigation of the power of tree series transducers
with deterministic devices. The generating power of deterministic tree
transducers was already studied in [91].

We concentrate on deterministic bottom-up tst (for short: bu-tst)
and deterministic top-down tst (for short: td-tst). For such tst there
is at most one successful computation (see [41, Proposition 3.12] and
Proposition 5.1) for every input tree; i. e., at most one computed out-
put tree and its associated weight. Deterministic and total top-down
tree transducers formalize a restricted class of functional programs [75].
Consequently, they and their generalizations (e. g., macro tree trans-
ducers [37, 26, 45] and modular tree transducers [46]) were inten-
sively studied (e. g., [90, 74, 61] and references provided therein), in
particular in the area of functional programming [75, 76, 67, 81, 71,
109, 108]. Deterministic top-down tree transducers are also applied
in syntax-directed semantics [68, 38, 57]. All these applications could
potentially bene�t from the additional information (the weight or the
cost) that is attached to the output tree of a deterministic td-tst. In the
functional programming application, we could count reduction steps
using the weights, and this could enable us to study e�ciency e�ects
of constructions (as, e. g., in [108]) in a uniform setting. Moreover,
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we can perform a multitude of statistical computations while process-
ing the input tree. Such features are relevant in natural language and
speech processing [93, 65], for example.

Clearly the classes of ε-t-ts and o-t-ts transformations computed by
(restricted) deterministic bu-tst and (restricted) deterministic td-tst
can be ordered by inclusion. For tree transducers (i. e., polynomial
bu-tst and td-tst over the boolean semiring) there exist several results
relating classes of transformations computed by deterministic top-down
and bottom-up tree transducers [35]. In [56] a Hasse diagram [28]
shows the order relation between several classes of translations induced
by deterministic top-down tree transducers.

Our goal is to convey the order relation between classes of η-t-ts
transformations computed by restricted deterministic bottom-up and
top-down tst over �most� commutative semirings by means of Hasse
diagrams. In order to explain �most� in the previous sentence we need
two simple concepts. A multiplicatively nonperiodic semiring is a semi-
ring in which there exists an element such that all of its (multiplicative)
powers are di�erent. Moreover, a semiring has zero-divisors, if there ex-
ist nonzero elements whose product is zero. In fact, we cannot present
a Hasse diagram for those commutative semirings that are multiplica-
tively nonperiodic and have zero-divisors. For all other commutative
semirings we present a Hasse diagram. For our investigation we re-
strict ourselves to the properties of nondeletion, linearity, totality, and
homomorphism [41, 58] and their combinations. The boolean prop-
erty is not considered because boolean deterministic bu-tst and td-tst
compute essentially the same class of transformations as determinis-
tic bottom-up and top-down tree transducers (see [41, Theorem 4.6]
and [58, Theorem 5.8], where in both results the additive idempotency
is not needed for the results on deterministic devices), respectively.

For the discussion of the main results of this investigation we need
the residue semirings Z1 and Z2. Generally, for every natural number n
the residue semiring Zn is Zn = ({0, . . . , n − 1},+, ·) with the usual
operations of addition and multiplication modulo n. The main results
of this investigation are presented in the Hasse diagrams contained in
Chapter 5 (see Theorems 5.5, 5.19, 5.28, and 5.32). Speci�cally, we
conclude that:

• the semirings Z1, Z2, and B are (up to isomorphism) the only
semirings A such that x�BOTε(A) = x�BOTo(A) holds for
every combination x of restrictions (see Corollary 5.17); and
• only in multiplicatively idempotent semirings A, which are
semirings in which the square of every element coincides with
the element itself, the equality hn�BOTε(A) = hn�BOTo(A)
holds, where hn abbreviates homomorphism and nondeletion
(see Corollary 5.31).
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Let us discuss the �rst item in some detail. It is rather clear that,
for Z1, Z2, and B, pure and o-substitution coincide, and for all other
semirings A = (A,+, ·) with additive neutral element 0 and multi-
plicative neutral element 1 there is at least one element a di�erent
from both 0 and 1. Consider an output tree weighted a and another
one weighted 1. The property, which separates pure and o-substitution
in this case, is that pure substitution may tell those two di�erent out-
put trees apart even when deleting them. This is due to the fact that,
when we use pure substitution, the weight of the deleted output tree is
still accounted for, which is not the case for o-substitution.

Considering the second item, it is again straightforward to observe
the equality, because an = a for all elements a of the multiplicatively
idempotent semiring and n > 1. In a semiring, that is not multiplica-
tively idempotent, the property a 6= a2 can be used to separate pure
and o-substitution with the help of a copying (i. e., nonlinear) homo-
morphism bu-tst. For this, imagine an output tree with weight a. If
this output is used in a transition that copies it, then pure substitution
records a just once while o-substitution records a twice.

A multiplicatively periodic semiring is one in which, for every ele-
ment a, all powers of a form a �nite set. In the following let us consider
combinations x of properties which do not contain the homomorphism
property. Moreover, let us consider only commutative semirings A. It
turns out that:

• x�BOTε(A) = x�BOTo(A) if A is multiplicatively periodic
(see Corollary 5.23 and Lemma 5.24);
• h�BOTo(A) = h�TOPε(A) if and only if A is zero-divisor free
(see Proposition 5.13);
• hl�BOTε(A) 6⊆ d�BOTo(A) and hl�BOTo(A) 6⊆ d�BOTε(A)
if A is multiplicatively nonperiodic (see Lemma 5.18); and
• hn�BOTε(A) 6⊆ h�TOPε(A) and hn�BOTo(A) 6⊆ h�BOTε(A)
if A is multiplicatively non-idempotent (see Lemma 5.27).

The �rst result builds on the properties of periodicity and commu-
tativity, of which the former allows us to keep track of the weights in
the states (because there are only �nitely many di�erent powers of any
element), and the latter allows us to reorder the factors. Thus, we can
keep the current weight in the state and apply the weight only in the
very last step (to the top-most output). This result essentially shows
that the states can perform the duty of the weight computation in this
setting. The result does not hold for x containing the homomorphism
property because of the additional states required for the book-keeping.

The second result strengthens [58, Theorem 5.12]. There su�ciency
of the above statement is shown. Necessity is shown by an exploit of
the di�erent deletion behavior of bu-tst and td-tst. A bu-tst deletes
output trees (or better yet: tree series), whereas a td-tst deletes input
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trees. This means that a td-tst never inspects the deleted input sub-
tree, whereas a bu-tst �rst translates the input tree and then deletes
the computed output. Now let us imagine that the translation of the
input subtree fails (the input subtree is transformed into the zero tree

series 0̃; i. e., there is no output tree into which the input tree can
be translated). The td-tst is not a�ected by this failure, because it
does not inspect the o�ending input subtree. The bu-tst, however, also
fails to translate the whole input tree, because the failure is propa-
gated (see Observation 4.9). This feature is called �checking followed
by deletion� [35, Section 4.3] and is not implementable in td-tst. A ho-
momorphism bu-tst or td-tst can only reject input trees (i. e., o�er no
translation for them), if the semiring has a zero-divisor. We use exactly
this property to separate the class of o-t-ts transformations computed
by homomorphism bu-tst from the class of ε-t-ts transformations com-
puted by homomorphism td-tst in the second result.

We observe in Lemma 5.18 that, for a given input tree, pure and
o-substitution can realize di�erent powers of a as the weight of an out-
put tree. Pure substitution takes the weights of deleted subtrees into
account, so that with respect to deletion pure substitution can realize
larger exponents of a. However, bu-tst using o-substitution enjoy the
property that they can reset the computed weight to a predetermined
weight with the help of deletion. Essentially, these two properties sep-
arate the classes in the third item. Actually, the statement in the third
item also holds for the restriction hn instead of hl (see Lemma 5.18).
This strategy reappears in Chapter 6, where we essentially also use the
powers of an element a to separate classes of η-t-ts transformations.

Finally, for every semiring A we have x�BOTε(A) = x�BOTo(A),
if both the nondeletion and linearity restriction are present in x (see
Theorem 5.5 of [58] and Proposition 4.21). Several small results com-
plement the presented results; all of them are required to show the
validity of the presented Hasse diagrams.

In summary, we compare the transformational power of determinis-
tic bu-tst and td-tst in this chapter. Moreover, we also study the e�ect
of the two types of substitution (pure and o-substitution). The inves-
tigation is detailed in the sense that we not only consider the classes
of η-t-ts transformations computed by deterministic bu-tst and td-tst,
but also the classes of η-t-ts transformations computed by restricted
deterministic bu-tst and td-tst where the restriction is any combination
of nondeletion, linearity, totality, and homomorphism. Moreover, we
present results for �most� commutative semirings.

6. Polynomial tree series transducers

In Chapter 6 we continue the investigations of Chapter 5. How-
ever, we consider polynomial (not necessarily deterministic) bu-tst and
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td-tst. Since equality and inclusion results already exist in sizable num-
ber [41, 58], we concentrate on incomparability results.

Nondeterministic tst are interesting, because they can capture sev-
eral (combinatorial) possibilities that yield the same �nal output tree.
For example, in natural language processing the parse tree of an input
sentence is usually not uniquely determined because natural language
is inherently ambiguous. Thus the output consists of several parse trees
each annotated with its likelihood. The author believes that nondeter-
ministic tst provide a suitable formal model in this scenario [65].

In [58, Section 5] several classes of the form x�BOTη(A) and the
form x�TOPη(A) have been compared with respect to inclusion. Gen-
erally speaking, [58] introduces o-substitution and investigates the re-
lation to pure substitution. For instance, it is proved there that:

• x�TOPε(A) = x�TOPo(A) for every x ∈ {p, d, h} (see [58,
Theorem 5.2]);
• p�BOTε(N∞) on p�BOTo(N∞) where the semiring N∞ of non-
negative integers (with in�nity) is (N ∪ {∞},+, ·), and on de-
notes incomparability with respect to inclusion (see [58, Corol-
lary 5.18]); and
• p�BOTε(T) on p�BOTo(T) where T = (N ∪ {∞},min,+) is
the tropical semiring on the natural numbers (see [58, Corol-
lary 5.23]).

The latter two incomparability results motivate us to investigate the
question whether this incomparability also holds for semirings di�erent
from N∞ and T. In Chapter 6 we answer this question in the a�rma-
tive. Additionally, we compare classes of ε-t-ts transformations that are
computed by di�erent types of tst; i. e., bu-tst and td-tst. Our main re-
sult here is Theorem 6.30, which states that p�BOTε(A) on p�BOTo(A)
and p�BOTε(A) on p�TOPε(A) in every weakly growing and additively
idempotent semiring A.

Let us add some details and then brie�y discuss the way how to
prove this theorem. A partially ordered semiring A = (A,+, ·) is a
semiring equipped with a partial order 6 on A such that the order
is preserved by both semiring operations. A semiring that is partially
ordered by 6 is called weakly growing, if there exists an element a such
that:

(1) ai < aj for all nonnegative integers i < j; and
(2) for every a1, a2, b ∈ A \ {0} and d ∈ A and n ∈ N, if we have

an = a1 ·b·a2+d, then there exists anm ∈ N such that b 6 am.

Roughly speaking, Condition (2) requires that every element b that
occurs in a decomposition of a power of a can be bounded (from above)
by another power of a. In particular, the following semirings are weakly
growing:

• N∞ with the total order 6, a = 2, and m = n;
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• T with the total order 6, a = 1, and m = max(n, d);
• the arctic semiring A = (N ∪ {−∞},max,+) with the total
order 6, a = 1, and m = n; and
• the formal language semiring (P(S∗),∪, ◦) over the nonempty
and �nite set S with concatenation ◦ of languages [111], par-
tial order ⊆, a = {ε, s} for some s ∈ S, and m = n.

In order to prove the non-inclusion results of the main theorem,
we use the partial order on the semiring and establish a framework of
mappings called coe�cient majorizations. For a given η-t-ts transfor-
mation τ : TΣ −→ A〈〈T∆〉〉, a coe�cient majorization f : N −→ A is
a mapping such that f(n) is an upper bound of the set Cητ (n), which
is the set of all nonzero coe�cients of output trees generated from in-
put trees of height at most n (in the formal development in Chapter 6
a coe�cient majorization is de�ned with respect to a tst M). Given
two classes T1 and T2 of transformations, we can prove T1 6⊆ T2 by
exhibiting (i) a mapping f that is a coe�cient majorization for the
class T2 (i. e., a coe�cient majorization for every τ ∈ T2) and (ii) a
transformation τ ∈ T1 for which f is no coe�cient majorization. For
particular classes, this is achieved in Lemma 6.29.

The idea of coe�cient majorizations is not new. Coe�cient ma-
jorizations have been investigated for the speci�c case in which the
coe�cient is the height or size of the output tree, e. g., for top-down
tree transducers (see [57, Lemma 3.27]), for attributed tree transducers
(see [38, Lemma 3.3] and [57, Lemma 5.40]), for macro tree transducers
(see [38, Lemma 3.3] and [57, Lemma 4.22]), and for bottom-up tree
transducers (which have the same coe�cient majorization as top-down
tree transducers, which follows in a straightforward manner from the
decomposition in [35, Theorem 3.15]). As a byproduct of our inves-
tigation we obtain coe�cient majorizations for polynomial bu-tst (see
Theorem 6.8) and polynomial tst (see Theorem 6.15) over partially
ordered semirings.

7. Composition of tree series transducers

In the �nal chapter, we consider compositions of η-t-ts transfor-
mations. Such compositions arise naturally, because the strategy of
breaking down a transformation into several stages is well-known and
well-established in software development, for example [6, 99]. The im-
plementation of a single stage is often easier to understand and easier
to validate (and thus less prone to errors). The �nal result is then ob-
tained by running the stages one after the other where the output of one
stage becomes the input of the next stage. This strategy introduces an
overhead of communication between the stages (called intermediate re-
sult [99]), which might deteriorate e�ciency. Strategies that avoid this
intermediate result exist in abundance [99, 76, 7, 24, 97]. In those
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approaches the transformations are composed by composing the spec-
i�cations of the stages at compile time. The external communication
overhead is avoided because the system now uses internal communica-
tion; however, this need not yield an e�ciency gain [108].

In our setting, the speci�cation of the stage is a tst with some
properties (e. g., deterministic or linear). Let us explain the scenario
of natural language processing [93, 112] in some more detail. A tree
bank is a collection of parse trees (of natural language sentences) each
annotated with a weight (usually the relative frequency). When we
translate a natural language sentence from one language into another,
we �rst parse the original sentence in order to obtain a parse tree. Since
natural language is usually highly ambiguous we obtain a collection
of parse trees each annotated with a probability. The probability is
derived from the evidence found in the tree bank. The transformation
stage translates the annotated parse trees into parse trees of the output
language. Again there may be more than one possible translation for
one parse tree, so that for each input parse tree we again obtain a
collection of annotated output parse trees. A tree bank containing
parse trees of sentences in the output languages delivers the coe�cients
required to compute the probability.

Such collections of annotated parse trees are formal tree series. The
translation stage can thus be seen as a transformation which transforms
tree series into tree series and tst are �nite-state devices that compute
such transformations.

The complexity of the transformations involved in the translation
stage is usually high (automata requiring several million states), so that
modularity is of utmost importance. One designs small transducers
that only deal with one phenomenon at a time and then composes
the transformations (i. e., uses the output of the �rst transformation
as the input of a second transformation) to obtain the �nal result.
However, this approach is usually ine�cient because many intermediate
results are computed. By composing the transducers we can avoid
these intermediate results. Moreover, the analysis of a single transducer
is usually simpler than the analysis of a series of transducers. An
important problem in natural language processing is to �nd the most
likely path (i. e., the path with the highest probability) that yields a
given parse tree. This problem is very di�cult for compositions of
transformations, so that the composition of the transducers helps to
reduce the complexity.

We call the class of all tree series transformations, that are com-
putable by bu-tst (respectively, td-tst), simply bottom-up (respectively,
top-down) tree series transformations. In the same manner we deal
with other restrictions. In the unweighted case, bottom-up tree trans-
formations are closed under left-composition with linear bottom-up
tree transformations [35, Theorem 4.5] and right-composition with
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deterministic bottom-up tree transformations [35, Theorem 4.6] (see
also [5, Theorem 6]). In this chapter we try to extend these results
to bottom-up tree series transformations. The �rst result was already
generalized to bottom-up tree series transformations [79, 41]. Essen-
tially the authors obtain that, for arbitrary commutative and com-
plete semirings [66], bottom-up tree series transformations are closed
under left-composition with nondeleting, linear bottom-up tree series
transformations. We generalize this further by showing that the men-
tioned class of bottom-up tree series transformations is even closed un-
der left-composition with linear bottom-up tree series transformations
(see Theorem 7.13).

Roughly speaking, the construction that is required to show this
statement is as follows. Let

M ′ = (Q′,Σ,Γ,A, F ′, µ′) and M ′′ = (Q′′,Γ,∆,A, F ′′, µ′′)

be bu-tst over the commutative and complete [66, 64, 58] semiring A.
We construct a bu-tst M = (Q,Σ,∆,A, F, µ) that computes the com-
position of the transformations computed by M ′ and M ′′. We set
Q = Q′×Q′′. If we consider a transition that reads a k-ary symbol σ in
the input, changes into the state (p, q), and supposes that the subtrees
t1, . . . , tk have respectively been processed in states (p1, q1), . . . , (pk, qk),
then we �rst consult the tree representation entry µ′k(σ)p,p1···pk

, which
represents a transition of M ′. Each output tree present in this en-
try is processed using the tree representation µ′′ such that the com-
putation (of M ′′) ends in state q. Such an output tree may contain
variables from {z1, . . . , zk}. At a variable zi we start the computation
of M ′′ in state qi. The such processed output trees constitute the en-
try µk(σ)(p,q),(p1,q1)···(pk,qk). It shows however that some preprocessing
of M ′′ is necessary, otherwise the construction may return a tst that
does not compute the composition of the transformations computed by
M ′ and M ′′.

For the next result, the stated construction works without mod-
i�cation. Let A be a commutative and continuous semiring. It is
shown in [41, Corollary 5.5] that the class of bottom-up tree series
transformations over A is closed under right-composition with boolean
homomorphism bottom-up tree series transformations over A. Using
our construction, we also show that this class of bottom-up tree se-
ries transformations is actually closed under right-composition with
boolean, deterministic bottom-up tree series transformations (see The-
orem 7.18).

In the top-down case, we have that the class of top-down tree
transformations is closed under right-composition with nondeleting,
linear top-down tree transformations [5, Theorem 1]. Moreover, it is
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closed under left-composition with deterministic, total tree transforma-
tions [106, 102] (see also [5, Theorem 1]). These results were general-
ized for deterministic tst by [41, Theorem 5.18]. They showed that, for
every commutative and complete semiring, the class of deterministic
top-down tree series transformations is closed under right-composition
with nondeleting, linear, and deterministic tree series transformations
and under left-composition with boolean, deterministic, total tree series
transformations. We present a generalization of the former statement
and a statement similar to the latter. More precisely, we show that
the class of top-down tree series transformations is closed under right-
composition with nondeleting, linear top-down tree series transforma-
tions. Secondly, we show that the composition of a boolean, determin-
istic, total top-down tree series transformation with a linear top-down
tree series transformation is a top-down tree series transformation.



CHAPTER 2

Preliminaries

Do not worry if you have built your castles in the air.
They are where they should be.

Now put the foundations under them.

Henry David Thoreau (1817-1862)

1. Sets, relations, and mappings

A naive treatment of set theory [51] is su�cient for our purposes.
We assume that the reader is acquainted with knowledge of the empty
set (∅), the relations of membership (∈), subset (⊆), and strict sub-
set (⊂), and the operations of union (∪), intersection (∩), cartesian
product (×), and set di�erence (\).

From a given set A we can construct the set of all subsets of A, which
is called the power set of A and is denoted by P(A), and the set of all
elements of A that ful�ll a property p, which is called set comprehension
and is written as {a ∈ A | p(a)}. Whenever it is obvious from which
set A the element a is chosen, we simply write a instead of a ∈ A.
An excellent introduction into set theory can be found in [100]; more
historically inclined readers may consult [50, 8]. Classes are treated
similarly [69].

Moreover, we assume that the reader is familiar with the notion
of cardinality. The denotation card(A) is used for the cardinality of
the set A. Sets with cardinality 1 are called singletons. The set of
nonnegative integers is denoted by N and N+ = N \ {0}. The cardi-
nality of N is ℵ0 and any set that has a cardinality of at most ℵ0 is
called countable. A set whose cardinality is smaller than ℵ0 is said to
be �nite. For every k, n ∈ N we use the shorthand [k, n] for the set
{i ∈ N | k 6 i 6 n} and [n] for [1, n].

Let A, B, and C be sets. A relation % from A to B is a subset
of A×B. Instead of the cumbersome (a, b) ∈ % we usually write a % b.
The relation %−1 from B to A is then de�ned by {(b, a) | a % b}. More-
over, we write %(a) instead of {b ∈ B | a % b} for every a ∈ A, and %(A′)
instead of

⋃
a′∈A′ %(a′) for every A′ ⊆ A. Given a relation %1 from A

to B and a relation %2 from B to C, the composition of %1 with %2,
denoted by %1 ◦ %2, is de�ned by %1 ◦ %2 = {(a, c) | %1(a) ∩ %−1

2 (c) 6= ∅}.
A relation % on A is a subset of A× A. In particular, the identity

relation idA on A is de�ned by idA = {(a, a) | a ∈ A} for every set A.
Let % be a relation on A. We say that % is:

15
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• re�exive, if idA ⊆ %;
• symmetric, if % ⊆ %−1;
• anti-symmetric, if % ∩ %−1 ⊆ idA; and
• transitive, if % ◦ % ⊆ %.

A re�exive, anti-symmetric, and transitive relation is also called a par-
tial order (relation), and a re�exive, symmetric, and transitive relation
is also called an equivalence relation. A thorough introduction into
relations can be found, e. g., in [103].

Let 6 be a partial order on A. If 6 ∪ 6−1 = A × A, then 6 is
called total order. Let a, b ∈ A. The elements a and b are said to be
incomparable (with respect to 6), if neither a 6 b nor b 6 a. We write
a ./ b to denote incomparability of a and b. The strict order < on A
is derived from 6 by setting a < b, if and only if a 6 b and a 6= b.
Moreover, the covering relation l on A is de�ned by al b, if (i) a < b
and (ii) a 6 c < b implies that a = c for every c ∈ A.

Let B ⊆ A. An element a ∈ A is called an upper bound (with
respect to 6) of B, if b 6 a for every b ∈ B. The set of all upper
bounds of B is denoted by ↑B. If ↑B has a smallest element (i. e., an
element c ∈ ↑B such that c 6 b for every b ∈ ↑B), then this element is
called the supremum of B and denoted by supB. For more details on
partial orders we refer the reader to [28].

Finite partial orders (i. e., partial orders on �nite sets) can be visu-
alized by means of Hasse diagrams [28, p. 11]. The Hasse diagram
of a partial order 6 on A is the (directed, acyclic, and unlabeled)
graph [103] (A,l) with the set A of vertices and the set l of edges;
i. e., for every a, b ∈ A there is a directed edge from the vertex a to
the vertex b, if and only if a l b. In pictorial expressions the vertices
are displayed by naming the element of A, and the edges are drawn
as line segments connecting vertices, where we assume that all edges
are directed upwards (unless otherwise indicated by an arrow) and a
line segment is only supposed to intersect with a vertex, if the vertex
is either its starting or ending point.

A partial function f (from A to B), denoted by f : A 99K B, is a
relation from A to B such that card(f(a)) 6 1 for every a ∈ A. The set
ran(f) ⊆ B, called range of f , is given by ran(f) = f(A), and the set
dom(f) ⊆ A, called domain of f , is given by dom(f) = f−1(B). For
partial functions f we write f(a) = b, whenever b ∈ f(a). Given
f, g : A 99K B and a ∈ A we may write f(a) = g(a) to express
that either f(a) = ∅ = g(a) [i. e., f and g are unde�ned on a] or
f(a) = b = g(a) for some b ∈ B [i. e., f and g are both de�ned
on a and both return b]. We say that f is a mapping, denoted by
f : A −→ B, whenever dom(f) = A. For example, idA is a mapping
from A to A. Further details on partial functions and mappings can
be found in [105, Section 1.3].
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Let k ∈ N and A be a set. We use Ak to stand for the k-fold
cartesian product of A with itself; e. g., A3 = A × A × A. Note that
A0 = {()}. We often write the empty tuple () as ε. Finally, a k-ary
operation ∗ (on A) is a mapping ∗ : Ak −→ A. With binary (2-ary)
operations we prefer the notation a ∗ b to ∗(a, b) for every a, b ∈ A.

Let A and I and J be sets. An (I-indexed) family f (over A) is a
mapping f : I −→ A. Such a family is also called an I-vector (over A).
The set of all mappings from I to A is denoted by AI . Let f ∈ AI . We
occasionally abbreviate f(i) with i ∈ I to just fi. When possible, we
commonly write f as (fi)i∈I . Let (Ai)i∈I be a family over P(A). We
call (Ai)i∈I a partition of A, if

⋃
i∈I Ai = A and Ai ∩ Aj = ∅ for every

i, j ∈ I with i 6= j. Note that in comparison with de�nitions found in
standard textbooks (e. g., [23, De�nition 4.10]), we do not require that
Ai 6= ∅ for every i ∈ I. Finally, an (I × J)-matrix M (over A) is a
mapping M : I × J −→ A. The element M(i, j), usually written Mi,j,
is called the (i, j)-entry of M .

2. Words and trees

This section draws heavily on [60, 61]. Finite, nonempty sets are
also called alphabets and their elements are called symbols. Let A be
a set. The set of all words (over A), denoted by A∗, is

⋃
n∈NA

n. Note
that ∅∗ = {ε}. We usually write (a1, . . . , an) as a1 · · · an and de�ne
the operation of concatenation (on words) as follows. Let k, n ∈ N
and ai, bj ∈ A for every i ∈ [n] and j ∈ [k]. The concatenation of
v = a1 · · · an and w = b1 · · · bk, denoted by vw, is a1 · · · anb1 · · · bk. We
denote by |w| the length of w ∈ A∗ (i. e., the unique n ∈ N such that
w ∈ An). Moreover, we use |w|a to denote the number of occurrences
of an a ∈ A in w. Finally, given w ∈ An and i ∈ [n] we write wi to
refer to the i-th symbol in w.

Let Σ be a set and (Σk)k∈N be a partition of Σ. Then (Σk)k∈N is
called ranked set, though we usually just say that Σ is a ranked set and
implicitly assume the partition. A ranked alphabet is a ranked set Σ in
which Σ is an alphabet. We use mxΣ to denote the maximal rank of the
symbols in the ranked alphabet Σ; i. e., mxΣ = max{k ∈ N | Σk 6= ∅}.

In the sequel we often specify a ranked alphabet by a set of symbols
with their rank put in parentheses as superscript as in Σ = {σ(2), α(0)}.
Let Σ be a ranked set and V be a set. The set of Σ-trees (indexed by V ),
denoted by TΣ(V ), is the smallest set T such that (i) V ⊆ T and (ii) for
every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ T also σ(t1, . . . , tk) ∈ T . For
TΣ(∅) we simply write TΣ. We generally assume that Σ and V are
disjoint, and thus we may write α instead of α() for every α ∈ Σ0.
Moreover, for any ranked set Σ that we consider we presuppose that
Σ0 6= ∅. Thus, also TΣ 6= ∅. Finally, for every n ∈ N, t ∈ TΣ(V ), and
γ ∈ Σ1 we occasionally abbreviate γ(· · · (γ(︸ ︷︷ ︸

n times γ

t)) · · · ) to just γn(t).
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σ

σ

α β

σ

β σ

α α

Figure 1. Graphical representation of
σ
(
σ(α, β), σ(β, σ(α, α))

)
, which is a Σ-tree for the

ranked alphabet Σ = {σ(2), α(0), β(0)}.

In universal algebra [110], a tree is usually called a term [23, De�-
nition 10.1]; we use �tree� because it is an established notion in formal
language theory [61]. Our pictorial representation of trees is straight-
forward and an example is presented in Figure 1.

For every t ∈ TΣ(V ) we de�ne the following mappings [16]:

pos : TΣ(V ) −→ P(N∗
+) size : TΣ(V ) −→ N+

height : TΣ(V ) −→ N sub: TΣ(V ) −→ P(TΣ(V ))

labt : pos(t) −→ Σ ∪ V
For every v ∈ V

pos(v) = {ε} size(v) = 1 height(v) = 0

sub(v) = {v} labv(ε) = v

and for every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(V )

pos
(
σ(t1, . . . , tk)

)
= {ε} ∪ {iw | i ∈ [k], w ∈ pos(ti)}

size
(
σ(t1, . . . , tk)

)
= 1 +

∑
i∈[k]

size(ti)

height
(
σ(t1, . . . , tk)

)
= max{1 + height(ti) | i ∈ [k]}

sub
(
σ(t1, . . . , tk)

)
= {σ(t1, . . . , tk)} ∪

⋃
i∈[k]

sub(ti)

and for every p ∈ pos(σ(t1, . . . , tk))

labσ(t1,...,tk)(p) =

{
σ if p = ε,

labti(p
′) if p = ip′ with i ∈ [k], p′ ∈ pos(ti).

We note that for every α ∈ Σ0

pos(α) = {ε} size(α) = 1 height(α) = 0 sub(α) = {α} labα(ε) = α .

A subset of TΣ(V ) is also called a tree language. Let t ∈ TΣ(V ) and
s ∈ Σ ∪ V and V ′ ⊆ V . We denote by |t|s the number of occurrences
of s in t; i. e.,

|t|s = card({p ∈ pos(t) | labt(p) = s}) .
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Moreover, we say that t is linear (respectively, nondeleting) in V ′, if
|t|v 6 1 (respectively, |t|v > 1) for every v ∈ V ′. The set of Σ-trees that
are linear and nondeleting in V is denoted by CΣ(V ). Let L ⊆ TΣ(V ).
We say that L is linear (respectively, nondeleting) in V ′, if every t ∈ L
is linear (respectively, nondeleting) in V ′.

In the sequel we use the sets X = {xi | i ∈ N+} and Z = {zi | i ∈ N+}
of (formal) variables. Moreover, we use Xk = {xi | i ∈ [k]} and
Zk = {zi | i ∈ [k]} for every k ∈ N (note that X0 = Z0 = ∅). The ele-
ments of X and Z are used as variables in trees, however such that for
all considered trees t ∈ TΣ(X ∪ Z) it holds that t ∈ TΣ(X) or t ∈ TΣ(Z);
i. e., we do not mix variables from X and Z.

The following notions and notations deal with variables and are
de�ned for t ∈ TΣ(X) and t ∈ TΣ(Z). Since TΣ(X) ∩ TΣ(Z) = TΣ, this
should not lead to confusion. Let (i) V = X and v = x or (ii) V = Z
and v = z. The set var(t) is de�ned by var(t) = {i ∈ N+ | 1 6 |t|vi

} for
every t ∈ TΣ(V ). Moreover, for every L ⊆ TΣ(V ) we let var(L) stand
for

⋃
t∈L var(t). Tree languages L1, L2 ⊆ TΣ(V ) are called variable-

disjoint, if var(L1) ∩ var(L2) = ∅. We use VI = {vi | i ∈ I} for every
I ⊆ N+. Let I ⊆ N+ be �nite, t ∈ TΣ(V ), and ui ∈ TΣ(V ) for every
i ∈ I. We denote by t[ui]i∈I the result obtained from t by replacing,
for every j ∈ I, each occurrence of vj by uj; i. e.:

• vj[ui]i∈I = uj for every j ∈ I;
• vj[ui]i∈I = vj for every j ∈ N+ \ I; and
• σ(t1, . . . , tk)[ui]i∈I = σ(t1[ui]i∈I , . . . , tk[ui]i∈I) for every k ∈ N,
σ ∈ Σk, and t1, . . . , tk ∈ TΣ(V ).

For every n ∈ N we write t[u1, . . . , un] instead of t[ui]i∈[n]. Substitution
is generalized to tree languages as follows:

L[Li]i∈I = {t[ui]i∈I | t ∈ L, (∀i ∈ I) : ui ∈ Li}

for every �nite I ⊆ N+, L ⊆ TΣ(V ), and family (Li)i∈I ∈ P(TΣ(V ))I .
This notion of substitution is called IO substitution [43, 44].

Let Σ be a ranked set. A Σ-algebra is a pair (A, (fσ)σ∈Σ) where
A is an arbitrary set, which is called the carrier, and fσ : Ak −→ A for
every k ∈ N and σ ∈ Σk. Let A = (A, (fσ)σ∈Σ) and B = (B, (gσ)σ∈Σ)
be two Σ-algebras. A homomorphism (of Σ-algebras) from A to B
is a mapping h : A −→ B such that for every k ∈ N, σ ∈ Σk, and
a1, . . . , ak ∈ A

h
(
fσ(a1, . . . , ak)

)
= gσ

(
h(a1), . . . , h(ak)

)
.

We express that h is a homomorphism from A to B by h : A −→ B.
A homomorphism h : A −→ B such that h−1 : B −→ A is called an
isomorphism and the algebras A and B are called isomorphic. We
denote this fact by A ∼= B.
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Clearly, TΣ can easily be turned into a Σ-algebra (TΣ, (topσ)σ∈Σ)
where for every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ

topσ(t1, . . . , tk) = σ(t1, . . . , tk) .

The Σ-algebra (TΣ, (topσ)σ∈Σ) is called the Σ-term algebra and de-
noted by TΣ. It is known that TΣ is the initial Σ-algebra; i. e., for
every Σ-algebra A = (A, (fσ)σ∈Σ) there exists a unique homomorphism
from TΣ to A [23, Lemma 10.6].

Let Σ be a ranked alphabet. The set of fully balanced trees (over Σ)
[or mirror trees ] is the smallest set T ⊆ TΣ such that for every k ∈ N,
σ ∈ Σk, and t ∈ T also

σ(t, . . . , t︸ ︷︷ ︸
k times

) ∈ T .

Consequently, α is a fully balanced tree for every a ∈ Σ0.

3. Tree automata and tree transducers

Let us recall the notions of bottom-up and top-down tree transduc-
ers [102, 106, 107] from [36]. Let Σ and ∆ be ranked alphabets and
Q(V ) ⊆ (Q ∪ V ∪ {(, )})∗ be given by

Q(V ) = {q(v) | q ∈ Q, v ∈ V }
for all sets Q and V . Let n ∈ N, q ∈ Q, t ∈ TΣ(X) a tree, and
t1, . . . , tn ∈ TΣ(X). Then q(t)[t1, . . . , tn] = q(t[t1, . . . , tn]); i. e., we
treat q(t) as the tree that is build from the unary symbol q and t.
Analogously, substitution for variables of Z shall be de�ned.

A bottom-up tree transducer [107] (over Σ and ∆) is a tuple

(Q,Σ,∆, F,R)

where:

• Q is a �nite set of states;
• F ⊆ Q is a set of �nal states; and
• R is a �nite set of transitions (or rules) of the form:

σ(q1(z1), . . . , qk(zk))→ q(u)

where k ∈ N, σ ∈ Σk, q, q1, . . . , qk ∈ Q, and u ∈ T∆(Zk).

Let M = (Q,Σ,∆, F,R) be a bottom-up tree transducer. We follow
the presentation of [36] and present the rewrite semantics. The re-
lation ⇒M on TΣ(Q(T∆)) is de�ned for every s, s′ ∈ TΣ(Q(T∆)) by
s⇒M s′ if and only if:

• there exist C ∈ TΣ(X1 ∪Q(T∆)), that is nondeleting and linear
in X1, and t ∈ TΣ(Q(T∆)) such that C[t] = s;
• there exist u1, . . . , uk ∈ T∆ and (l → r) ∈ R such that
l[u1, . . . , uk] = t; and
• s′ = C[r[u1, . . . , uk] ].
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Let ⇒∗
M denote the re�exive, transitive closure [110] of ⇒M . The tree

transformation computed by M is denoted by τM and de�ned by

τM = {(t, u) ∈ TΣ × T∆ | (∃q ∈ F ) : t⇒∗
M q(u)} .

A (bottom-up) tree automaton M = (Q,Σ, F,R) [over Σ] is a
bottom-up tree transducer M = (Q,Σ,Σ, F,R) whose rules are of the
form

σ(q1(z1), . . . , qk(zk))→ q(σ(z1, . . . , zk))

where k ∈ N, σ ∈ Σk, and q, q1, . . . , qk ∈ Q. The tree language rec-
ognized by M is denoted by L(M) and de�ned by L(M) = τM(TΣ).
A tree language L ⊆ TΣ is called recognizable, if there exists a tree
automaton M over Σ such that L(M) = L. The set of all recognizable
tree languages over Σ is denoted by RECOG(Σ).

On the other hand, a top-down tree transducer [102, 106] (over
Σ and ∆) is a tuple M = (Q,Σ,∆, F,R) in which:

• Q is a �nite set of states;
• F ⊆ Q is a set of initial states; and
• R is a �nite set of transitions (or rules) of the form:

q(σ(x1, . . . , xk))→ u

where k ∈ N, σ ∈ Σk, q ∈ Q, and u ∈ T∆(Q(Xk)).

We de�ne the relation ⇒M on T∆(Q(TΣ)) for every s, s′ ∈ T∆(Q(TΣ))
by s⇒M s′ if and only if:

• there exist C ∈ T∆(Z1 ∪Q(TΣ)), that is nondeleting and linear
in Z1, and t ∈ Q(TΣ) such that C[t] = s;
• there exist trees t1, . . . , tk ∈ TΣ and a rule (l → r) ∈ R such
that l[t1, . . . , tk] = t; and
• s′ = C[r[t1, . . . , tk] ].

By ⇒∗
M we denote the re�exive, transitive closure [110] of ⇒M . The

tree transformation computed by M , denoted by τM , is de�ned by

τM = {(t, u) ∈ TΣ × T∆ | (∃q ∈ F ) : q(t)⇒∗
M u} .

In Chapter 4 we present a generalization of bottom-up and top-
down tree transducers, so we refrain from introducing a multitude of
properties for tree transducers and refer the reader to Chapter 4. Ex-
cellent, detailed introductions into the theory of tree automata and tree
transducers can be found in [36, 35, 37, 60, 61].

4. Monoids and semirings

Let A be a set and · : A2 −→ A. We say that · :
• is associative, if a · (b · c) = (a · b) · c for every a, b, c ∈ A;
• is commutative, if a · b = b · a for every a, b ∈ A;
• is extremal, if a · b ∈ {a, b} for every a, b ∈ A;
• admits a neutral element, if there exists an e ∈ A such that
e · a = a = a · e for every a ∈ A; and
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• admits an absorbing element, if there exists an o ∈ A such that
for every a ∈ A we have a · o = o = o · a.

It is easy to see, that if · admits a neutral (respectively, absorbing)
element, then this element is unique. We usually denote it by 1 (re-
spectively, 0). For brevity we denote by A+ the set A, if · does not
admit an absorbing element, and the set A \ {0}, when · admits the
absorbing element 0.

The pair (A, ·) is termed a monoid, if · is associative and admits a
neutral element 1. We usually abbreviate the n-fold product a · . . . · a
to an and set a0 = 1. Moreover, for every �nite I ⊆ N+ we use

∏
i∈I ai as

an abbreviation for ai1 ·. . .·ain where I = {i1, . . . , in} with i1 < · · · < in.
A submonoid of a monoid A = (A, ·A) is a monoid B = (B, ·B) such

that B ⊆ A and a ·B b = a ·A b for every a, b ∈ B. Note that with this
de�nition, the monoids A and B may have di�erent neutral elements.
Let C ⊆ A. The closure of C (with respect to ·A) is the smallest set D
such that 1 ∈ D and C ⊆ D ⊆ A and a ·A b ∈ D for every a, b ∈ D.
We denote the closure of C by 〈C〉. The submonoid generated by C is
the monoid (〈C〉, ·C) where a ·C b = a ·A b for every a, b ∈ 〈C〉.

Let A = (A, ·) be a monoid with neutral element 1. An element
a ∈ A is called:

• idempotent, if a2 = a;
• periodic, if there exist i, j ∈ N such that i 6= j and ai = aj;
• (left-) cancellative, if a·b = a·c implies b = c for every b, c ∈ A;
and
• invertible, if there exists a b ∈ A, called the inverse of a and
denoted by a−1, such that a · b = 1 = b · a.

It follows from the de�nitions that the neutral element 1 is invertible,
cancellative, idempotent and hence periodic. Additionally, the inverse
of an element is unique as the following observation shows.

Observation 2.1 (see [2, Chapter 1]). Let A = (A, ·) be a monoid
with neutral element 1. Moreover, let a, b, c ∈ A be such that

b · a = 1 = a · c .
Then b = c.

Proof. We derive b = b · 1 = b · (a · c) = (b · a) · c = 1 · c = c. �

Should · admit an absorbing element 0, then it is idempotent and
periodic, but neither cancellative nor invertible (unless A+ = ∅). This
motivates the following de�nition. The monoid A is called idempotent
(respectively, periodic, cancellative, and a group), if every a ∈ A+ is
idempotent (respectively, periodic, cancellative, and invertible). More-
over, we say that A is �nite, whenever A is �nite. Finally, a com-
mutative (respectively, extremal) monoid is a monoid (A, ·) such that
· is commutative (respectively, extremal). We note the following triv-
ial interrelations between the aforementioned properties. Every �nite
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monoid is periodic, every extremal monoid is idempotent, and every
idempotent monoid is periodic.

Let A = (A, ·) be a monoid such that · admits the absorbing ele-
ment 0. An element a ∈ A+ is called a (left) zero-divisor, if there exists
a b ∈ A+ such that a · b = 0. If A does not possess any zero-divisors,
then A is called zero-divisor free.

Observation 2.2 (see [64, p. 54]). Let A = (A, ·) be a monoid
with an absorbing element 0, and let a ∈ A be an invertible element.
Then a is not a zero-divisor.

Proof. Assume the contrary; i. e., there exists a b ∈ A+ such that
a · b = 0. Then b = 1 · b = (a−1 · a) · b = a−1 · (a · b) = a−1 · 0 = 0, which is a
contradiction. �

Finally, given +: A2 −→ A and · : A2 −→ A, the operation · dis-
tributes over +, if for every a, b, c ∈ A

a · (b+ c) = (a · b) + (a · c) and (a+ b) · c = (a · c) + (b · c) .

For succinctness we agree on the following conventions. The (binding)
priority of multiplicative operation symbols is assumed to be higher
than the one of additive operation symbols. This means, e. g., that
a · b+a · c is read as (a · b)+(a · c). Occasionally, we omit multiplicative
operation symbols altogether and just use juxtaposition (as in ab+ac).

A semiring [66, 64] (with neutral one and absorbing zero) is a
tuple (A,+, ·) that consists of a multiplicative monoid (A, ·) and an
additive monoid (A,+) subject to the following restrictions:

• the neutral element of (A,+) acts as the absorbing element
with respect to · ;
• (A,+) is commutative; and
• · distributes over +.

Now let us present some well-known semirings. Numerous examples
of additional semirings can be found in [66, 64].

• the boolean semiring B = ({0, 1},∨,∧) with disjunction ∨ and
conjunction ∧;
• the natural numbers N = (N,+, ·) with addition and multipli-
cation;
• the natural numbers extended by in�nity N∞ = (N∪{∞},+, ·)
with addition and multiplication extended such that ∞ is the
absorbing element of + and n · ∞ = ∞ = ∞ · n for every
n ∈ N+ ∪ {∞};
• the nonnegative reals R+ = (R,+, ·) with R = {r ∈ R | r > 0}
and the usual operations of addition and multiplication;
• the tropical semiring (on the natural numbers)

T = (N ∪ {∞},min,+)
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Table 1. Properties of semirings.

B N N∞ R+ T Tsf A A∞ Zn
commutative yes yes yes yes yes yes yes yes yes

cancellative yes yes no yes yes yes yes no yes, if n prime
no, otherwise

mult. idemp. yes no no no no no no no no, if n > 2
yes, otherwise

mult. periodic yes no no no no no no no yes

zero-div. free yes yes yes yes yes yes yes yes yes, if n prime
no, otherwise

semi�eld yes no no yes no yes no no yes, if n prime
no, otherwise

ring no no no no no no no no yes

subtractive no yes no yes no no no no yes

add. extremal yes no no no yes yes yes yes no, if n > 1
yes, otherwise

add. idemp. yes no no no yes yes yes yes no, if n > 1
yes, otherwise

zero-sum free yes yes yes yes yes yes yes yes no, if n > 1
yes, otherwise

naturally ord. yes yes yes yes yes yes yes yes no, if n > 1
yes, otherwise

with minimum and addition such that∞ is the neutral element
of min and the absorbing element of +;
• the tropical semi�eld (on the integers) Tsf = (Z∪{∞},min,+)
with minimum and addition such that∞ is the neutral element
of min and the absorbing element of +;
• the arctic semiring (on the natural numbers)

A = (N ∪ {−∞},max,+)

with maximum and addition such that −∞ is the neutral ele-
ment of max and the absorbing element of +;
• the arctic semiring (on the natural numbers) extended by in-
�nity

A∞ = (N ∪ {∞,−∞},max,+)

with the operations of A extended to ∞ such that ∞ is the
absorbing element of max and n+∞ =∞ =∞+ n for every
n ∈ N ∪ {∞}; and
• for every n ∈ N+ the residue semiring Zn = ([0, n − 1],+, ·)
with addition and multiplication modulo n.

Let A = (A,+, ·) be a semiring. We again use A+ to denote the set
A \ {0} where 0 is the multiplicatively absorbing element. We say that
A is:
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• (multiplicatively) commutative, if (A, ·) is commutative;
• (multiplicatively) cancellative, if (A, ·) is cancellative;
• multiplicatively idempotent, if (A, ·) is idempotent;
• multiplicatively periodic, if (A, ·) is periodic;
• zero-divisor free, if (A, ·) is zero-divisor free;
• a semi�eld, if (A, ·) is a group;
• a ring, if every a ∈ A is invertible in (A,+);
• subtractive, if every a ∈ A is cancellative in (A,+);
• additively extremal, if (A,+) is extremal;
• additively idempotent, if (A,+) is idempotent;
• zero-sum free, if a + b = 0 implies that a = 0 = b for every
a, b ∈ A; and
• naturally ordered, if the condition a + b + c = a implies that
a+ b = a for every a, b, c ∈ A.

The properties of the introduced semirings are displayed in Table 1.
The relation v on A is de�ned for every a, b ∈ A by

a v b ⇐⇒ (∃c ∈ A) : a+ c = b .

IfA is naturally ordered, thenv is a partial order [66, Theorem III.1.8].
Clearly, additively idempotent semirings are naturally ordered [66,
Corollary III.1.12], and naturally ordered semirings in turn are zero-
sum free [66, Corollary III.1.11].

Let A = (A,+, ·) and B = (B,⊕,�) be semirings. A mapping
f : A −→ B is a homomorphism (of semirings) from A to B, denoted
by f : A −→ B, if for every a, b ∈ A we have f(a + b) = f(a) ⊕ f(b)
and f(a · b) = f(a)� f(b).

Let A = (A,+, ·) be a semiring and
∑

I : A
I 99K A for every count-

able set I. Instead of the cumbersome
∑

I(ai)i∈I with (ai)i∈I ∈ AI we
generally write

∑
i∈I ai. We say that the class

∑
= (
∑

I)I countable set

constitutes an in�nitary summation (for A), if the following �ve ax-
ioms [66, Section IV.1] hold.

(U)
∑

i∈{x} ai = ax for every ax ∈ A;
(E)

∑
i∈{x,y} ai = ax + ay for every x 6= y and ax, ay ∈ A.

(GP) For all countable sets I and J , every family (ai)i∈I ∈ AI , and
every partition (Ij)j∈J of I we have that if

∑
i∈I ai is de�ned,

then ∑
i∈I

ai =
∑
j∈J

(∑
i∈Ij

ai

)
.

(GP′F) For every �nite set J , countable set I, family (ai)i∈I ∈ AI , and
partition (Ij)j∈J of I we have that if

∑
j∈J(

∑
i∈Ij ai) is de�ned,

then ∑
i∈I

ai =
∑
j∈J

(∑
i∈Ij

ai

)
.
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(D) For all countable sets I, J and (ai)i∈I ∈ AI and (bj)j∈J ∈ AJ
we have that if

∑
i∈I ai and

∑
j∈J bj are de�ned, then∑

(i,j)∈I×J

(ai · bj) =
(∑
i∈I

ai

)
·
(∑
j∈J

bj

)
.

The foundational problems of this de�nition are discussed in [66, Re-
mark IV.1.19].

The in�nitary summation induced by + is the class⊕
= (
⊕
I

)I countable set

where
⊕

I : A
I 99K A for every countable set I, and we de�ne

⊕
I for

every family (ai)i∈I ∈ AI by⊕
i∈I

ai =

{∑
i∈I,ai 6=0 ai if {i ∈ I | ai 6= 0} is �nite,

unde�ned otherwise.

It can readily be checked that
⊕

ful�lls axioms (U), (E), (GP), (GP′F),
and (D) [66, Theorem IV.1.14]. Thus for each semiring, there exists an
in�nitary summation. A semiring is called ℵ0-complete, if there exists
an in�nitary summation

∑
= (
∑

I)I countable set with
∑

I : A
I −→ A for

every countable set I. Note that in ℵ0-complete semirings the axiom
(GP′F) trivially holds even for countable sets J . Moreover, an ℵ0-com-
plete semiring is zero-sum free [64, Proposition 22.28].

Let A = (A,+, ·) be a semiring and
∑

be an in�nitary summation
for A. Then by (GP) and (GP′F) the following law [41, Observation 2.2]
holds whenever the left hand side is well-de�ned (i. e., whenever the
left hand side is not unde�ned, then the right hand side is also not
unde�ned and both sides are equal).∑

j∈J

(∑
i∈I

aij

)
=
∑
i∈I

(∑
j∈J

aij

)
(1)

for every �nite index set J , countable index set I, and (I × J)-matrix
(aij)(i,j)∈I×J ∈ AI×J .

Let A = (A,+, ·) be a naturally ordered semiring that is ℵ0-com-
plete with respect to

∑
. We say that A is continuous, if for every

countable set I and family (ai)i∈I ∈ AI the following supremum exists
and ∑

i∈I

ai = sup{
∑
i∈F

ai | F ⊆ I, F �nite} ,

where the supremum is taken with respect to the natural order v. Note
that the particular form of the above equation is suitable to de�ne
an in�nitary summation, so that if a semiring is continuous then the
in�nitary summation is uniquely determined. It is easily checked that
B, N∞, T, A∞, and Z1 are continuous, whereas N, R+, Tsf , A, and Zn
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for every n ∈ N with n > 2 are not continuous. In fact, the semirings
N, R+, Tsf , A, and Zn are not even ℵ0-complete [64, Proposition 22.27].

Excellent introductions into abstract algebra can be found in [52,
2], and we recommend [66, 64] as lucid expositions into semiring the-
ory.

5. Tree series

Our notions and notations for tree series are heavily in�uenced by
the presentation of tree series in [41, Section 2.5]. Let A = (A,+, ·) be
a semiring, ∆ be a ranked alphabet, and S and V be sets. A mapping
ψ : S −→ A is also called a (formal) power series (over S and A).
If S ⊆ T∆(V ), then such a power series is also called a (formal) tree
series. Let ψ : S −→ A. For every s ∈ S the semiring element ψ(s) is
called the coe�cient of s in ψ. According to the conventions, which
are established in the literature [79], we write (ψ, s) instead of ψ(s)
for every s ∈ S. Moreover, we occasionally write the power series ψ
as
∑

s∈S(ψ, s) s where the summation is merely formal (i. e., this rep-
resentation resembles a table with entries from A × S; the entries are
separated by +). Commonly we omit those summands where the co-
e�cient is 0, so that we write 1 α + 1 γ(α) + 1 γ2(α) + · · · instead
of
∑

t∈TΣ
|t|α t where we use the semiring N and the ranked alphabet

Σ = {γ(1), α(0), β(0)}.
The set of all power series over S and A is denoted by A〈〈S〉〉. This

set can be turned into a semiring B = (A〈〈S〉〉,+, ·) where for every
ψ, ϕ ∈ A〈〈S〉〉 and s ∈ S we de�ne (ψ + ϕ, s) = (ψ, s) + (ϕ, s) and
(ψ · ϕ, s) = (ψ, s) · (ϕ, s) and the neutral elements of + and · are, re-
spectively, 0̃ and 1̃, where, for every a ∈ A, ã is de�ned by (ã, s) = a
for every s ∈ S. Provided that A is equipped with an in�nitary sum-
mation

∑
, then

∑
can be lifted to an in�nitary summation for B (in a

manner analogous to +). Given a ∈ A and ψ ∈ A〈〈S〉〉, we write a ·ψ to
denote the pointwise multiplication of ψ with a; i. e., (a·ψ, s) = a·(ψ, s)
for every s ∈ S.

Power series in which all coe�cients are 0 or 1 are called boolean.
The support of ψ ∈ A〈〈S〉〉, denoted by supp(ψ), is de�ned by

supp(ψ) = {s ∈ S | (ψ, s) 6= 0} .

Clearly, supp(0̃) = ∅. Conversely, the characteristic power series cor-
responding to a given set L ⊆ S, denoted by χ(L), is de�ned for every
s ∈ S by

(χ(L), s) =

{
1 if s ∈ L,
0 otherwise.

Observation 2.3. Let S be a set.

(P(S),∪,∩) ∼= (B〈〈S〉〉,∨,∧)
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Proof. The homomorphism h from (P(S),∪,∩) to (B〈〈S〉〉,∨,∧) is χ
and the inverse homomorphism is supp. �

A power series with �nite support is called polynomial, and a power
series with at most one support element is called monomial. The set
of all polynomial power series over S and A is denoted by A〈S〉, and
the set of all monomial tree series over S and A is denoted by A[S].

Let S ⊆ T∆(V ) and ψ ∈ A〈〈S〉〉 and V ′ ⊆ V . We say that ψ is
linear (respectively, nondeleting) in V ′, if u is linear (respectively, non-
deleting) in V ′ for every u ∈ supp(ψ). The set var(ψ) is de�ned by
var(ψ) =

⋃
u∈supp(ψ) var(u).



CHAPTER 3

Tree Series Substitution

I soon realized, however,
that I could generalize this capability [. . . ].
I could also greatly increase its usefulness

by not limiting it to a simple, single substitution.

Chris Mair: �Enabling Constant Substitution in Property Values�
Java Developer's Journal 6(12), 2001

1. Bibliographic information

In this chapter we present the de�nition of pure and o-tree-series-
substitution (for short: pure and o-substitution, respectively). More-
over, we investigate the basic properties of distributivity, linearity, and
associativity. Most of the results for pure substitution are known [41,
58, 55, 84]. We add corresponding results for o-substitution. Finally,
we also consider preservation of recognizability [9]. OI tree series sub-
stitution [18, 77] has already been studied with respect to this prop-
erty [79], and we present results for pure and o-substitution.

2. De�nition and simple properties

Several notions of substitution on tree series have been de�ned in
the literature. Basically we distinguish between IO and OI tree se-
ries substitutions. Each type is a generalization of the correspond-
ing type of substitution on tree languages [43, 44]. Roughly speak-
ing, an IO substitution replaces all occurrences of a variable in a tree
with the same tree, which is chosen out of a set of trees. For exam-
ple, let L = {δ(z1, z1)} and L′ = {α, β} where δ is binary and both
α and β are nullary. Then IO substitution of L′ (for z1) in L yields
the tree language {δ(α, α), δ(β, β)}, whereas OI substitution yields
{δ(α, α), δ(α, β), δ(β, α), δ(β, β)}.

OI tree series substitution is introduced in [18, p. 7] and [77,
p. 14]. Several authors de�ne IO tree series substitutions; e. g., [20,
Section 3.3] and [41, De�nition 2.5] introduce pure substitution, [58,
De�nition 3.2] introduces o-substitution, and [22] introduces [IO] sub-
stitution.

Here we concern ourselves with IO tree series substitutions, and
in particular, with pure and o-substitution. We have chosen these
substitutions because bottom-up tree series transducers that use either
pure or o-substitution are genuine generalizations of the well-known

29
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bottom-up tree transducers (see [41, Section 4] and [58, Corollary 5.9]).
Essentially, this is true because the substitutions enjoy a property (see
Observation 3.4) that allows �checking followed by deletion� (see [35,
Section 2]). Next we recall those central notions of substitution. For
the rest of this chapter, let ∆ be a ranked alphabet and A = (A,+, ·)
be a semiring with in�nitary summation

∑
such that either (i) A is

ℵ0-complete with respect to
∑

or (ii)
∑

is the in�nitary summation
induced by +.

Definition 3.1 (see [58, De�nitions 3.1 and 3.2]). Let I ⊆ N+ be
�nite, ψ ∈ A〈〈T∆(Z)〉〉, and ψi ∈ A〈〈T∆(Z)〉〉 for every i ∈ I. The pure
substitution of (ψi)i∈I into ψ, denoted by ψ←−ε (ψi)i∈I , is de�ned by

ψ←−ε (ψi)i∈I =
∑

u∈supp(ψ),
(∀i∈I) : ui∈supp(ψi)

(
(ψ, u) ·

∏
i∈I

(ψi, ui)
)
u[ui]i∈I . (2)

For brevity we shortened the index of the sum. The line

(∀i ∈ I) : ui ∈ supp(ψi)

deserves explanation. Formally, the index should read

u∈supp(ψ),

(ui)i∈I∈T∆(Z)I ,
(∀i∈I) : ui∈supp(ψi)

.

Since the quanti�cation is usually obvious, we simply omit the second
line.

The o-substitution of (ψi)i∈I into ψ, denoted by ψ←−o (ψi)i∈I , is
de�ned by

ψ←−o (ψi)i∈I =
∑

u∈supp(ψ),
(∀i∈I) : ui∈supp(ψi)

(
(ψ, u) ·

∏
i∈I

(ψi, ui)
|u|zi

)
u[ui]i∈I . (3)

The binding priority of ←−ε and ←−o is assumed to be higher than
the priority of every additive symbol (like + or

∑
), but lower than the

priority of every multiplicative symbol (like · or
∏
). Thus, the term∑

j∈J aj · ψj←−ε (ψi)i∈I reads as∑
j∈J

(
(aj · ψj)←−ε (ψi)i∈I

)
.

Note that compared to [58] we have de�ned pure and o-substitution
also for non-contiguous blocks of variables. Let us illustrate on an ex-
ample, how the original notion can be obtained. Let I = {2, 4}. Then
ψ←−o (ψi)i∈I in our notation is equal to ψ

o← (1 z1, ψ2, 1 z3, ψ4) in the
notation of [58, De�nition 3.2]. We do not explicitly mention this little
di�erence when we reference results of [41, 58, 55]. The advantage of
this additional freedom is that it simpli�es some statements consider-
ably (e. g., compare [41, Proposition 2.10] with Proposition 3.19).
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The following mapping uni�es some of the discussions in the sequel.
Let sel∆ : T∆(Z)× N+ × {ε, o} −→ N be de�ned for every u ∈ T∆(Z),
n ∈ N+, and η ∈ {ε, o} by

sel∆(u, n, η) =

{
1 if η = ε,

|u|zn if η = o.
(4)

Since ∆ is usually obvious from the context, we regularly omit it and
just write sel.

Pure substitution represents a computational approach; i. e., the
output trees represent values of computations, and the coe�cient as-
sociated to an output tree can be viewed as the cost of computing this
value. When we combine output trees, we simply multiply their co-
e�cients to obtain the coe�cient of the combined output tree. This
is done irrespective of the number of uses of an output tree; i. e., an
output tree may be copied without penalty, which represents the com-
putational approach in the sense that a value is available and can be
reused without recomputation (call-by-value or eager evaluation [1]).

On the other hand, o-substitution represents a more material ap-
proach. There the coe�cient of an output tree is taken to the n-th
power, if the tree is used in n copies. In this approach, an output tree
stands for a composite, and the coe�cient of an output tree re�ects
the (monetary) cost of creating or obtaining this particular composite.
When we combine composites into a new composite, we obtain the cost
by multiplying the costs of the components; each component taken as
often as needed to assemble the composite.

Certainly, those analogies reach their limits when stressed. It may
be argued that a computation is successful only if all of its subcompu-
tations are successful (cf. eager evaluation [1]); i. e., if ψi = 0̃ for some

i ∈ I, then ψ←−ε (ψi)i∈I = 0̃ (even if i /∈ var(ψ); see Observation 3.4).
However, the analogy breaks down for o-substitution, which enjoys the
same property. If we follow the terminology of our analogy, then this
means that we cannot assemble a composite whenever one type of com-
ponent is not available. It holds true even for composites that do not
require the missing component.

Subsequently, we use ε-substitution as a synonym for pure substi-
tution. Let η ∈ {ε, o}. In an expression ψ←−η (ψi)i∈I we call ψ the
target and each ψi a source. If I = [n] for some n ∈ N, we occasionally
write ψ←−η (ψ1, . . . , ψn) instead of ψ←−η (ψi)i∈[n]. Now let us illustrate
pure and o-substitution on examples.

Example 3.2. Let ∆ = {δ(2), α(0)}.
(1) Consider the semiring N and the three monomial tree series

ψ1 = 2 δ(α, α) and ψ′1 = 2 δ(z1, α) and ψ′′1 = 2 δ(z1, z1). The
results of several substitutions are displayed in Table 1.
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Table 1. Pure and o-substitution compared; see Example 3.2(1).

ψ1←−η (ψ1) ψ′1←−η (ψ′1) ψ′′1←−η (ψ′′1)

η = ε 4 δ(α, α) 4 δ(δ(z1, α), α) 4 δ(δ(z1, z1), δ(z1, z1))

η = o 2 δ(α, α) 4 δ(δ(z1, α), α) 8 δ(δ(z1, z1), δ(z1, z1))

Decomposition along some path:

2 + 1

δ

δ

α α

z1

[ δ

α α

]
Decomposition along maximal path:

2 + 0

δ

δ

z1 α

δ

α α

[
α
]

Figure 1. Decompositions of δ(δ(α, α), δ(α, α)); see Example 3.2(2).

(2) Consider the tropical semiring T and the tree series

ψ2 = min
u∈C∆(Z1)

height(u) u and ψ′2 = min
u∈T∆

height(u) u .

Then ψ′2 = ψ2←−ε (ψ′2) = ψ2←−o (ψ′2) [see Figure 1].
(3) Consider the arctic semiring A and the tree series

ψ3 = max
u∈T∆(Z1)

|u|δ u .

Then ψ3←−ε (ψ3) and ψ3←−o (ψ3) are not well-de�ned. If we
reconsider the above substitutions in the continuous semiring
A∞ with in�nitary summation sup, then ψ3 = ψ3←−o (ψ3),
but ψ3 6= ψ3←−ε (ψ3). The latter can be seen on the example
u = δ(α, α). Clearly, u = δ(α, α)[δ(α, α)] and |δ(α, α)|δ = 1.
Consequently, (ψ3←−ε (ψ3), u) > 2 but |u|δ = 1. In fact, for
every u ∈ T∆(Z1)(

ψ3←−ε (ψ3), u
)

=

{
∞ if u ∈ T∆,

|u|δ otherwise.

The last two examples raise the question of well-de�nedness of
η-substitutions. Recall that we consider a countable sum

∑
i∈I ψi well-

de�ned, if and only if A is ℵ0-complete with respect to
∑

or for every
u ∈ T∆(Z) there exist only �nitely many i ∈ I such that (ψi, u) 6= 0.
In the latter case, the coe�cient of every u in

∑
i∈I ψi is given by an

essentially �nite sum. When one uses this notion of well-de�nedness,
it is evident that, in general, an η-substitution might be unde�ned.
However, the substitutions in Example 3.2(2) are well-de�ned because
ψ2 is nondeleting in Z1. Clearly, all η-substitutions are well-de�ned in
ℵ0-complete semirings. The next observation presents su�cient condi-
tions for the well-de�nedness of ψ←−η (ψi)i∈I in not necessarily ℵ0-com-
plete semirings. For the rest of this section, let η ∈ {ε, o}, I ⊆ N+ be



2. DEFINITION AND SIMPLE PROPERTIES 33

�nite, ψ ∈ A〈〈T∆(Z)〉〉, and ψi ∈ A〈〈T∆(Z)〉〉 for every i ∈ I. Some of
the following results are not needed in their full generality in this the-
sis. For the sake of completeness, we nevertheless present the general
statements unless this would be overly cumbersome.

Observation 3.3. The η-substitution ψ←−η (ψi)i∈I is well-de�ned,
if there exists a J ⊆ I such that:

• ψ is nondeleting in ZJ ; and
• ψi is polynomial for every i ∈ I \ J .

Proof. The η-substitution is well-de�ned, if for every u ∈ T∆(Z) there
exist only �nitely many u′ ∈ supp(ψ) and ui ∈ supp(ψi) for every i ∈ I such
that u = u′[ui]i∈I . Clearly, supp(ψi) is �nite for every i ∈ I \ J . Moreover,
since u′ in nondeleting in ZJ we immediately obtain uj ∈ sub(u) for every
j ∈ J as well as size(u′) 6 size(u) and var(u′) ⊆ I ∪var(u). Obviously, there
are only �nitely many such trees u′ and uj , which proves the statement. �

The above observation is most useful in the cases J = ∅ and J = I.
We obtain that ψ←−η (ψi)i∈I is well-de�ned, if ψi is polynomial for
every i ∈ I (see the discussion following [55, De�nition 2.1]), or ψ is
nondeleting in ZI . Next, we recall three properties of paramount impor-
tance from [58, Proposition 3.4]. In the sequel we use these properties
without explicit mention.

Observation 3.4 (see [58, Proposition 3.4]).

(1) ψ←−η () = ψ.

(2) 0̃←−η (ψi)i∈I = 0̃.

(3) If ψi = 0̃ for some i ∈ I, then ψ←−η (ψi)i∈I = 0̃.

In essence it is the third property that ensures that bottom-up
tree series transducers [41] have the �checking followed by deletion�-
property. Note that in all cases η-substitution is well-de�ned. Obser-
vation 3.3 shows this for the �rst two items but not for the third. We
present another example that shows that Observation 3.3 does not char-
acterize well-de�ned η-substitutions in semirings that are not ℵ0-com-
plete. We consider the semiring Z4 and the tree series ψ =

∑
u∈T∆(Z) 2u.

Then ψ←−ε (ψ) is well-de�ned and equal to 0̃ (because
∑

i∈I 0 = 0 by
(D) whenever the left hand side is well-de�ned), whereas ψ←−o (ψ) is
not well-de�ned. The next observation, however, shows that a straight-
forward characterization can be obtained for zero-divisor free semirings.
Clearly, if A is ℵ0-complete with respect to

∑
, then all substitutions

are well-de�ned. Thus we explicitly consider the in�nitary summation
induced by + in the next observation.

Observation 3.5. Let A be zero-divisor free and
∑

be the in�ni-
tary summation induced by +. Then ψ←−η (ψi)i∈I is well-de�ned, if
and only if:

(1) there exists i ∈ I such that ψi = 0̃; or
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(2) there exists J ⊆ I such that ψ is nondeleting in ZJ and ψi is
polynomial for every i ∈ I \ J .

Proof. Observations 3.4(3) and 3.3 show that ψ←−η (ψi)i∈I is well-

de�ned in Cases (1) and (2), respectively. For the converse, assume that
there exists a j ∈ I such that ψj is not polynomial, ψ is not nondeleting

in {zj}, and ψi 6= 0̃ for every i ∈ I. Thus there exist ui ∈ supp(ψi) for all
i ∈ I, and moreover, u′ ∈ supp(ψ) such that j /∈ var(u′). Clearly, uj does
not in�uence u = u′[ui]i∈I and since supp(ψj) is in�nite, there exist in�nitely
many decompositions of u. Moreover, none of the coe�cients is zero, because
(ψ, u′) ·

∏
i∈I(ψi, ui)

sel(u′,i,η) is not zero by zero-divisor freeness of A. Thus
we obtain an in�nite summation of nonzero coe�cients, which is not well-
de�ned (because

∑
is the in�nitary summation induced by +). �

Well-de�nedness of summations plays a major role in the next sec-
tion, but let us now investigate which properties are preserved under
substitution. The next observation shows that substitution of poly-
nomial (respectively, monomial) tree series into a polynomial (respec-
tively, monomial) tree series yields a polynomial (respectively, mono-
mial) tree series. This was already observed in [58, Proposition 3.11].
For our discussion of deterministic tree series transducers, we also need
that the substitution of boolean monomial tree series into a boolean
monomial tree series yields a boolean monomial tree series. A simi-
lar statement for polynomial tree series holds in additively idempotent
semirings [55, Lemma 6.1]. However, in N we have

(1 δ(z1, α) + 1 δ(α, z1))←−η (1 α) = 2 δ(α, α) ,

which is not boolean.

Observation 3.6 (see [58, Proposition 3.11]).

(1) If ψ is polynomial and ψi is polynomial for every i ∈ I, then
ψ←−η (ψi)i∈I is polynomial.

(2) If ψ is monomial and ψi is monomial for every i ∈ I, then
ψ←−η (ψi)i∈I is monomial.

(3) If ψ is boolean and monomial and ψi is boolean and monomial
for every i ∈ I, then ψ←−η (ψi)i∈I is boolean.

Proof. In [58, Proposition 3.11] one �nds the proof of the �rst two
statements. Since ({0, 1}, ·) is a submonoid of (A, ·), it is straightforward to
prove that ψ←−η (ψi)i∈I is boolean whenever the preconditions of the last
statement are met. �

Table 2 presents some more results, which additionally assume that
the substitution is well-de�ned. The conditions stated there are very
restrictive and can easily be relaxed, but the statements shall serve as
examples here. The proofs of the last two statements in Table 2 are
straightforward and omitted. We consider the preservation of recog-
nizability in Section 5.
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Table 2. Preservation of properties under substitution.

ψ←−η (ψi)i∈I is . . . whenever ψ is . . . and every ψi is . . .

polynomial polynomial polynomial

monomial monomial monomial

boolean boolean and monomial boolean and monomial

linear in ZJ linear in ZI and linear in ZJ and
var(ψ) ∩ J = ∅ var(ψi) ∩ var(ψj) ∩ J = ∅

(i 6= j)

nondeleting in ZJ nondeleting in ZJ ∪ ZI nondeleting in ZJ

Finally, Example 3.2(2) hints at some property relating pure and
o-substitution. Whenever the target tree series is nondeleting and lin-
ear in ZI , pure and o-substitution coincide (see [58, Proposition 3.10]).

Observation 3.7 (cf. [58, Proposition 3.10]). We have

ψ←−ε (ψi)i∈I = ψ←−o (ψi)i∈I , (5)

whenever there exists J ⊆ I such that ψ is nondeleting and linear
in ZJ , and ψi is boolean for every i ∈ I \ J .

We obtain [58, Proposition 3.10], which claims (5) provided that
(i) ψ is nondeleting and linear in ZI or (ii) ψi is boolean for every i ∈ I,
as a corollary.

3. Distributivity and linearity

Distributivity and linearity are key properties for the composition
results of Chapter 7 and several other results (e. g., associativity in Sec-
tion 4 and preservation of recognizability in Section 5). In this section
we investigate pure and o-substitution with respect to distributivity
and linearity.

3.1. Pure substitution. The �rst central result, which we recall
from [41], is that pure substitution is distributive and linear. For the
rest of this section, let I ⊆ N+ be a �nite set, J a �nite set, and Ji a
�nite set for every i ∈ I.

Proposition 3.8 (see [41, Proposition 2.9]). Let ψj ∈ A〈〈T∆(Z)〉〉
for every j ∈ J , and for every i ∈ I and ji ∈ Ji let ψji ∈ A〈〈T∆(Z)〉〉.∑

j∈J,
(∀i∈I) : ji∈Ji

ψj←−ε (ψji)i∈I =
(∑
j∈J

ψj

)
←−ε

(∑
ji∈Ji

ψji

)
i∈I

, (6)

provided that the left hand side is well-de�ned.

Proof. This result is stated for continuous semirings and proved for
ℵ0-complete semirings in [41, Proposition 2.9]. The index sets J and Ji
may be countable provided that A is ℵ0-complete with respect to

∑
. A
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similar statement for semirings that are not ℵ0-complete with respect to
∑

is claimed in [55, Proposition 2.3], but unfortunately it is wrong.∑
j∈J,

(∀i∈I) : ji∈Ji

ψj←−ε (ψji)i∈I

= (by de�nition of ←−ε and Observation 3.4(3) )∑
j∈J,

(∀i∈I) : ji∈Ji

( ∑
u∈T∆(Z),

(∀i∈I) : ui∈T∆(Z)

(
(ψj , u) ·

∏
i∈I

(ψji , ui)
)
u[ui]i∈I

)
= (by (1) because J and all Ji are �nite)∑

u∈T∆(Z),
(∀i∈I) : ui∈T∆(Z)

((∑
j∈J

ψj , u
)
·
∏
i∈I

(∑
ji∈Ji

ψji , ui

))
u[ui]i∈I

= (by de�nition of ←−ε and Observation 3.4(3) )(∑
j∈J

ψj

)
←−ε

( ∑
ji∈Ji

ψji

)
i∈I

By assumption the left hand side of (6) is well-de�ned. We conclude that
ψj←−ε (ψji)i∈I is well-de�ned for every j ∈ J , i ∈ I, and ji ∈ Ji. We leave it
to the reader to check that well-de�nedness is preserved. �

Proposition 3.9 (see [41, Proposition 2.8]). Let A be commuta-
tive, a ∈ A, and ψ ∈ A〈〈T∆(Z)〉〉. Moreover, let ψi ∈ A〈〈T∆(Z)〉〉 and
ai ∈ A for every i ∈ I.(

a ·
∏
i∈I

ai

)
·
(
ψ←−ε (ψi)i∈I

)
= a · ψ←−ε (ai · ψi)i∈I , (7)

provided that the left hand side is well-de�ned.

The previous propositions essentially state that pure substitution is
distributive and linear in the target tree series as well as in every source
tree series. Let Ω ⊆ A〈T∆(Z)〉 be a ranked set with Ωk ⊆ A〈T∆(Zk)〉
for every k ∈ N. For every k ∈ N and ω ∈ Ωk we de�ne the operation
ωεk : A〈T∆(Z)〉k −→ A〈T∆(Z)〉 by ωεk(ψ1, . . . , ψk) = ω←−ε (ψ1, . . . , ψk)
for every ψ1, . . . , ψk ∈ A〈T∆(Z)〉. Using linearity and distributivity we
can conclude that (A〈T∆(Z)〉,+, ·, (ωεk)k∈N,ω∈Ω) is an A-Ω-algebra [18,
Section 3].

3.2. The case of o-substitution. Next we study distributivity
and linearity of o-substitution. First we recall the full linearity and
distributivity in the target tree series.

Proposition 3.10 (see [58, Propositions 3.12 and 3.14]). Let A
be commutative, aj ∈ A and ψj ∈ A〈〈T∆(Z)〉〉 for every j ∈ J , and for
every i ∈ I let bi ∈ {0, 1} and ψi ∈ A〈〈T∆(Z)〉〉.∑

j∈J

(
aj ·

∏
i∈I

bi
)
· (ψj←−o (ψi)i∈I) =

(∑
j∈J

aj · ψj
)
←−o (bi · ψi)i∈I , (8)
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provided that the left hand side is well-de�ned.

Clearly, pure and o-substitution coincide on boolean tree series
(see [58, Proposition 3.10] and Observation 3.7), so that we can de-
rive linearity from pure substitution in this setting. If we recall the
de�nition of o-substitution from De�nition 3.1, we see that for the dis-
tributivity of o-substitution in source tree series we obviously need a
law like (

∑
i∈I ai)

n =
∑

i∈I a
n
i for every nonempty and �nite I, family

(ai)i∈I ∈ AI , and n ∈ N.

Definition 3.11. Let A = (A,+, ·) be a semiring and N ⊆ N.
The semiring A is called N -Frobenius, if for every n ∈ N , nonempty
and �nite I, and family (ai)i∈I ∈ AI the equality (

∑
i∈I ai)

n =
∑

i∈I a
n
i

holds. Semirings that are N-Frobenius are also called Frobenius
semirings.

Note that we require I to be nonempty in the previous de�nition
because

∑
i∈∅ a

n
i = 0 for every n ∈ N but (

∑
i∈∅ ai)

n = 1 if n = 0.
Thus only the trivial semiring Z1, where 0 = 1, would be {0, 1}-
Frobenius, if we would omit the nonemptiness condition for I in
De�nition 3.11. Moreover, note that a semiring that is N -Frobenius
is also N ′-Frobenius for every N ′ ⊆ N . Let A be N -Frobenius
for some N ⊆ N. It immediately follows that for every n ∈ N the
n-th power Frobenius mapping fn : A −→ A de�ned for every a ∈ A
by f(a) = an is a semiring homomorphism.

Example 3.12. Let us show examples of N-Frobenius semirings.

• Every semiring is {1}-Frobenius.
• Every additively idempotent semiring is {0, 1}-Frobenius.
• Every additively extremal semiring is Frobenius.
• Every additively idempotent, multiplicatively cancellative, and
commutative semiring is Frobenius [64, Proposition 4.43].

Proof. We proof the third statement. Let A be an additively extremal
semiring, k, n ∈ N with k > 1, and ai ∈ A for every i ∈ [k]. By [64, p. 228]
we have that A is naturally ordered. Clearly, there exists a j ∈ [k] such that∑

i∈[k] ai = aj and hence ai v aj for every i ∈ [k]. Let B = {ai | i ∈ [k]}.
We show that for every element b ∈ B we have bn v anj . Clearly, for every

c, c′, d, d′ ∈ A we have that c v d and c′ v d′ imply that c · c′ v d · d′. With
this, bn v anj for every b ∈ B. Since for every c, d ∈ A we have c + d = d if

and only if c v d, we obtain
∑

i∈[k] a
n
i = anj = (

∑
i∈[k] ai)

n. �

In fact, a semiring is {0, 1}-Frobenius if and only if it is additively
idempotent. Using the notion �N -Frobenius� we can prove distribu-
tivity of o-substitution (cf. [58, Proposition 3.14]), e. g., for linear tree
series over additively idempotent semirings. Note that in this scenario
pure and o-substitution do not coincide (consider, e. g., the tropical
semiring T, the ranked alphabet ∆ = {σ(2), α(0)}, and the tree series
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ψ = 5 σ(α, α), which is linear in Z1. Then ψ←−ε (ψ) = 10 σ(α, α) and
ψ←−o (ψ) = ψ), so the statement is not trivial.

Lemma 3.13. Let A be N-Frobenius for some N ⊆ N. Moreover,
for every j ∈ J let ψj ∈ A〈〈T∆(Z)〉〉, and for every i ∈ I and ji ∈ Ji
let ψji ∈ A〈〈T∆(Z)〉〉. Then∑

j∈J,
(∀i∈I) : ji∈Ji

ψj←−o (ψji)i∈I =
(∑
j∈J

ψj

)
←−o

(∑
ji∈Ji

ψji

)
i∈I

(9)

holds provided that the left hand side is well-de�ned and |u|zi
∈ N for

every i ∈ I, j ∈ J , and u ∈ supp(ψj).

Proof. Clearly, by Observation 3.4(3) the statement holds if Ji = ∅ for
some i ∈ I. Thus we assume that Ji 6= ∅ for every i ∈ I. Moreover, we use
the fact that

supp
(∑
i∈I′

ψi
)
⊆
⋃
i∈I′

supp(ψi)

for all �nite sets I ′ and (ψi)i∈I′ ∈ A〈〈T∆(Z)〉〉I′ .∑
j∈J,

(∀i∈I) : ji∈Ji

ψj←−o (ψji)i∈I

= (by de�nition of ←−o )∑
j∈J,

(∀i∈I) : ji∈Ji

( ∑
u∈supp(ψj),

(∀i∈I) : ui∈supp(ψji
)

(
(ψj , u) ·

∏
i∈I

(ψji , ui)
|u|zi

)
u[ui]i∈I

)

= (because J and Ji are �nite, Ji is nonempty, and |u|zi ∈ N)∑
u∈

S
j∈J supp(ψj),

(∀i∈I) : ui∈
S

ji∈Ji
supp(ψji

)

((∑
j∈J

ψj , u
)
·
∏
i∈I

(∑
ji∈Ji

ψji , ui

)|u|zi

)
u[ui]i∈I

= (see below)∑
u∈supp(

P
j∈J ψj),

(∀i∈I) : ui∈supp(
P

ji∈Ji
ψji

)

((∑
j∈J

ψj , u
)
·
∏
i∈I

(∑
ji∈Ji

ψji , ui

)|u|zi

)
u[ui]i∈I

= (by de�nition of ←−o )(∑
j∈J

ψj

)
←−o

( ∑
ji∈Ji

ψji

)
i∈I

In the second-to-last step we used the property that either (i) |u|zi > 1
for every i ∈ I and u ∈ supp

(∑
j∈J ψj

)
or (ii) 0 ∈ N . In the former case,

validity of this step is immediate. Now consider the latter case. Since 0 ∈ N ,
the semiring A is additively idempotent and thus zero-sum free [64, p. 4].
In zero-sum free semirings the property supp

(∑
i∈I′ ψi

)
=
⋃
i∈I′ supp(ψi)

holds [34, Section VI.3], which proves that the second-to-last step is valid.
�
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As a corollary we obtain the already stated distributivity result for
linear target tree series in additively idempotent semirings.

Corollary 3.14 (of Lemma 3.13). Let A be additively idempotent.
Moreover, for every j ∈ J let ψj ∈ A〈〈T∆(Z)〉〉 be linear in ZI , and for
every i ∈ I and ji ∈ Ji let ψji ∈ A〈〈T∆(Z)〉〉.∑

j∈J,
(∀i∈I) : ji∈Ji

ψj←−o (ψji)i∈I =
(∑
j∈J

ψj

)
←−o

(∑
ji∈Ji

ψji

)
i∈I

, (10)

provided that the left hand side is well-de�ned.

Proof. Additively idempotent semirings are {0, 1}-Frobenius. Thus
the statement follows from Lemma 3.13. �

Let A be an additively idempotent semiring. For every k ∈ N and
ω ∈ A〈T∆(Zk)〉 we de�ne the mapping ωo

k : A〈T∆(Z)〉k −→ A〈T∆(Z)〉
by ωo

k(ψ1, . . . , ψk) = ω←−o (ψ1, . . . , ψk) for all ψ1, . . . , ψk ∈ A〈T∆(Z)〉.
Let Ω ⊆ A〈T∆(Z)〉 be a ranked set of linear (in Z) tree series such
that Ωk ⊆ A〈T∆(Zk)〉 for every k ∈ N. The algebraic structure
(A〈T∆(Z)〉,+, (ωo

k)k∈N,ω∈Ω) is a distributive Ω-algebra [48, p. 222]. We
can derive an analogous result (without the linearity restriction) for
additively extremal semirings.

4. Associativity

This section is devoted to the study of associativity-like laws for
pure and o-substitution. These laws are of paramount importance for
compositions of tree series transformations. The main problem is that
our IO tree series substitutions generalize IO-substitution on tree lan-
guages, which is not associative. Thus we cannot establish associativity
in general (neither for pure nor for o-substitution). However, in [43,
Lemma 2.4.3] it is shown that for every k, n ∈ N with k > 1 and
L ⊆ T∆(Zk), L1, . . . , Lk ⊆ T∆(Zn), and L

′
1, . . . , L

′
n ⊆ T∆(Z)(

L[L1, . . . , Lk]
)
[L′1, . . . , L

′
n] = L

[
L1[L

′
1, . . . , L

′
n], . . . , Lk[L

′
1, . . . , L

′
n]
]

holds, whenever all L′1, . . . , L
′
n are singletons or L1, . . . , Lk are pairwise

variable-disjoint. When we want k = 0 to be eligible, we have to
demand that L′i 6= ∅ for every i ∈ [n]. Now we formalize this condition
(including the case k = 0) on tree series.

Definition 3.15. Let I, J ⊆ N+ be �nite and ψj ∈ A〈〈T∆(Z)〉〉 for
every j ∈ J . Finally, let I = (Ij)j∈J be a partition of I. The parti-
tion I is said to conform to (ψj)j∈J , if for every j ∈ J the condition
var(ψj) ⊆ Ij holds.

Note that for every family Ψ = (ψj)j∈J with J 6= ∅ of pairwise
variable-disjoint tree series a partition of I conforming to Ψ exists.
Further, if J = ∅ then such a partition only exists when I = ∅.
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Before we can prove an associativity result comparable to the one
presented above, we need to generalize a preliminary statement. For
this, let u ∈ T∆(Z) and ui ∈ T∆(Z) for every i ∈ I. We present
a proposition, which generalizes the result that u[ui]i∈I = u[uj]j∈J for
every J ⊆ I such that J∩var(u) = I∩var(u). Intuitively speaking, this
asserts that ui is irrelevant in u[ui]i∈I , if i /∈ var(u). This generalizes
nicely to tree languages L,Li ⊆ T∆(Z); i. e., L[Li]i∈I = L[Lj]j∈J for
every J ⊆ I such that J ∩ var(L) = I ∩ var(L) and Li 6= ∅ for every
i ∈ I \ J . The additional restriction is derived from the fact that
L[Li]i∈I = ∅, whenever Li = ∅ for some i ∈ I. In order to generalize the
statement to tree series we need the notion of a necessary summation
from [64, p. 251].

Definition 3.16. We say that
∑

is necessary [64, p. 251], when-
ever

∑
i∈I ai =

∑
i∈I bi for all countable sets I and (ai)i∈I , (bi)i∈I ∈ AI

such that:

(1)
∑

i∈I ai and
∑

i∈I bi are well-de�ned; and
(2) for each �nite subset I ′ ⊆ I there exists a �nite set I ′′ with

I ′ ⊆ I ′′ ⊆ I and
∑

i∈I′′ ai =
∑

i∈I′′ bi.

Note that the in�nitary summation induced by + is clearly neces-
sary [64], but not every in�nitary summation of an ℵ0-complete semi-
ring is necessary. The in�nitary summations introduced for the semi-
rings B, N∞, T, and A∞ are all necessary. For examples of in�nitary
summations that are not necessary, we refer the reader to [64, Exam-
ple 22.18].

Observation 3.17. Let A = (A,+, ·) be a continuous semiring
with respect to

∑
. Then

∑
is necessary.

Proof. Clearly, A is ℵ0-complete with respect to
∑
, so all sums with

countably many summands are de�ned. Let I be a countable index set and
(ai)i∈I ∈ AI and (bi)i∈I ∈ AI be families. By de�nition of v we have∑

i∈J
ai v

∑
i∈I

ai (11)

for every J ⊆ I. Let F = {F ⊆ I | F �nite,
∑

i∈F ai =
∑

i∈F bi}. Moreover,
suppose that for every �nite J ⊆ I there exists a J ′ ∈ F such that J ⊆ J ′.
With (11) we obtain∑

i∈I
ai = sup{

∑
i∈F

ai | F ⊆ I, F �nite} = sup{
∑
i∈F

ai | F ∈ F}

= sup{
∑
i∈F

bi | F ∈ F} = sup{
∑
i∈F

bi | F ⊆ I, F �nite}

=
∑
i∈I

bi .

Thus
∑

i∈I ai =
∑

i∈I bi and hence
∑

is necessary. �
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Note that every semiring that is ℵ0-complete with respect to a nec-
essary summation is naturally ordered [64, Proposition 22.29]. Finally,
in an additively idempotent semiring with necessary summation we
have

∑
i∈I a = a for every a ∈ A and countable index set I such that∑

i∈I a is well-de�ned.

Proposition 3.18. Let η ∈ {ε, o} be a modi�er, J ⊆ I ⊆ N+ be
�nite, ψ ∈ A〈〈T∆(Z)〉〉 such that J ∩var(ψ) = I ∩var(ψ), and for every

i ∈ I let ψi ∈ A〈〈T∆(Z)〉〉 such that ψi 6= 0̃ for every i ∈ I \ J . Then

ψ←−η (ψi)i∈I = ψ←−η (ψj)j∈J , (12)

provided that:

(1) the left hand side is well-de�ned;
(2) if η = ε, then ψi is boolean for every i ∈ I \ J ; and
(3) A is additively idempotent and

∑
necessary, or ψi is mono-

mial for every i ∈ I \ J .

Proof.

ψ←−η (ψi)i∈I
= (by de�nition of ←−η )∑

u∈supp(ψ),
(∀i∈I) : ui∈supp(ψi)

(
(ψ, u) ·

∏
i∈I

(ψi, ui)sel(u,i,η)
)
u[ui]i∈I

= (because i /∈ var(u) ⊆ var(ψ) for every i ∈ I \ J and:

• if η = ε, then ψi is boolean and hence (ψi, ui)sel(u,i,η) = 1; or

• if η = o, then sel(u, i, η) = 0 and hence (ψi, ui)sel(u,i,η) = 1)∑
u∈supp(ψ),

(∀i∈I) : ui∈supp(ψi)

(
(ψ, u) ·

∏
j∈J

(ψj , uj)sel(u,j,η)
)
u[uj ]j∈J

= (because supp(ψi) 6= ∅ for every i ∈ I \ J and:

• A is additively idempotent and
∑

is necessary; or

• ψi is monomial for every i ∈ I \ J)∑
u∈supp(ψ),

(∀j∈J) : uj∈supp(ψj)

(
(ψ, u) ·

∏
j∈J

(ψj , uj)sel(u,j,η)
)
u[uj ]j∈J

= (by de�nition of ←−η )

ψ←−η (ψj)j∈J �

The condition J ∩ var(ψ) = I ∩ var(ψ) just asserts that J covers all
those variables of ψ which are also covered by I; i. e., (I\J)∩var(ψ) = ∅.
We have already seen that this restriction is necessary even for substi-
tution on trees. Moreover, we have seen that for the corresponding
statement on tree languages the condition Li 6= ∅ is necessary for every
i ∈ I \ J .
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4.1. Pure substitution. In [41, Proposition 2.10] an associativ-
ity law for monomial tree series is proved and [55, Proposition 2.5]
presents a generalized version. We present yet another straightfor-
ward generalization for pairwise variable-distinct polynomial tree se-
ries. The restriction to polynomial tree series avoids the problem
of well-de�nedness. Similar results can usually be obtained for non-
polynomial tree series, if we require that the semiring A is additionally
ℵ0-complete. We often mention the exact requirements after the state-
ment for polynomial tree series.

Proposition 3.19 (cf. [55, Proposition 2.5]). Let A be commu-
tative, I, J ⊆ N+ be �nite, and ψ ∈ A〈T∆(ZJ)〉. Let ψj ∈ A〈T∆(Z)〉
for every j ∈ J and (Ij)j∈J be a partition of I conforming to (ψj)j∈J .
Finally, let τi ∈ A〈T∆(Z)〉 for every i ∈ I.(

ψ←−ε (ψj)j∈J
)
←−ε (τi)i∈I = ψ←−ε

(
ψj←−ε (τi)i∈Ij

)
j∈J (13)

Proof. Note that J = ∅ implies that I = ∅.(
ψ←−ε (ψj)j∈J

)
←−ε (τi)i∈I

= (by Proposition 3.8)∑
u∈supp(ψ),

(∀j∈J) : uj∈supp(ψj)

(
(ψ, u) u←−ε

(
(ψj , uj) uj

)
j∈J

)
←−ε (τi)i∈I

= (by [55, Proposition 2.4] and conformance of (Ij)j∈J to (ψj)j∈J)∑
u∈supp(ψ),

(∀j∈J) : uj∈supp(ψj)

(ψ, u) u←−ε
(
(ψj , uj) uj←−ε (τi)i∈Ij

)
j∈J

= (by Proposition 3.8)

ψ←−ε
(
ψj←−ε (τi)i∈Ij

)
j∈J �

The previous statement also holds for non-polynomial tree series
ψ, ψj, and τi provided that A is ℵ0-complete with respect to

∑
. We

presented an associativity-like law where the inner substitutions are
ψj←−ε (τi)i∈Ij . Proposition 3.18 tells us when we can equivalently re-
place such a substitution by ψj←−ε (τi)i∈I where Ij ⊆ I. Hence we
can easily derive our �rst associativity result from the previous two
statements.

Corollary 3.20 (of Propositions 3.18 and 3.19). Let A be com-
mutative and additively idempotent, I, J ⊆ N+ be �nite sets, and let
ψ ∈ A〈T∆(ZJ)〉. Moreover, let ψj ∈ A〈T∆(Z)〉 for every j ∈ J
and (Ij)j∈J be a partition of I conforming to (ψj)j∈J . Finally, let
τi ∈ A〈T∆(Z)〉 be boolean for every i ∈ I.(

ψ←−ε (ψj)j∈J
)
←−ε (τi)i∈I = ψ←−ε

(
ψj←−ε (τi)i∈I

)
j∈J (14)
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Proof. Note that J = ∅ implies that I = ∅. By Proposition 3.19 we
have (

ψ←−ε (ψj)j∈J
)
←−ε (τi)i∈I = ψ←−ε

(
ψj←−ε (τi)i∈Ij

)
j∈J

and we can furthermore assume that supp(τi) 6= ∅ for every i ∈ I; oth-

erwise both sides of (14) are 0̃ by Observation 3.4(3). Hence we have
ψj←−ε (τi)i∈Ij = ψj←−ε (τi)i∈I for every j ∈ J by Proposition 3.18. Thus
the statement follows. �

This corollary can be generalized to non-polynomial tree series by
adding the restriction that A is ℵ0-complete with respect to a nec-
essary

∑
. A more detailed analysis of the proof shows that we can

actually drop the commutativity condition, because only products of
the form (ψj, uj) · (τi, vi) need to commute. Since the τi are boolean,
those products commute automatically. Next we consider the other
case hinted already in Proposition 3.18, namely that the τi are mono-
mial.

Lemma 3.21. Let A be commutative, I, J ⊆ N+ be �nite sets,
and ψ ∈ A〈T∆(ZJ)〉. Moreover, let (Ij)j∈J be a family of Ij ⊆ I
such that

⋃
j∈J Ij = I, ψj ∈ A〈T∆(Z)〉 such that var(ψj) ⊆ Ij for every

j ∈ J , and τi ∈ A[T∆(Z)] for every i ∈ I. If (τi, vi) is multiplicatively
idempotent for every vi ∈ T∆(Z) and i ∈ I, then(

ψ←−ε (ψj)j∈J
)
←−ε (τi)i∈I = ψ←−ε

(
ψj←−ε (τi)i∈Ij

)
j∈J . (15)

Proof. Firstly, let J = ∅. Then also I = ∅ and both sides of (15) are ψ
by Observation 3.4(1). Secondly, let supp(τi) = ∅ for some i ∈ I. It follows
that J 6= ∅ and hence both sides of (15) are 0̃ again by Observation 3.4(3).
Finally, we assume that J 6= ∅, and for every i ∈ I let vi ∈ T∆(Z) be such
that supp(τi) = {vi}.(

ψ←−ε (ψj)j∈J
)
←−ε (τi)i∈I

= (by de�nition of ←−ε )∑
u∈supp(ψ),

(∀j∈J) : uj∈supp(ψj)

(
(ψ, u) ·

(∏
j∈J

(ψj , uj)
)
·
∏
i∈I

(τi, vi)
)
u[uj ]j∈J [vi]i∈I

= (because A is commutative, J 6= ∅, var(uj) ⊆ var(ψj) ⊆ Ij,
and (τi, vi) is multiplicatively idempotent for every i ∈ I)∑

u∈supp(ψ),
(∀j∈J) : uj∈supp(ψj)

(
(ψ, u) ·

∏
j∈J

(
(ψj , uj) ·

∏
i∈Ij

(τi, vi)
))

u
[
uj [vi]i∈Ij

]
j∈J

= (by de�nition of ←−ε )

ψ←−ε
(
ψj←−ε (τi)i∈Ij

)
j∈J �

Note that if we set Ij = I for every j ∈ J , then we obtain asso-
ciativity. Moreover, if we restrict ourselves to boolean tree series τi,
then every (τi, vi) is automatically multiplicatively idempotent, and we
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can furthermore drop the commutativity restriction. This immediately
yields that B[T∆(Z)] forms an n-polypode [19, 21] under pure substi-
tution for every n ∈ N.

4.2. The case of o-substitution. Surprisingly, [58] does not in-
vestigate associativity of o-substitution, which can be established using
the same approach. In particular, we need that A is N -Frobenius
for some N ⊆ N. Since o-substitution coincides with pure substitu-
tion on boolean tree series (i. e., tree languages), we again distinguish
two cases�there exists a conforming partition or the tree series τi are
monomial.

Lemma 3.22. Let A be commutative and N-Frobenius for some
N ⊆ N, I, J ⊆ N+ be �nite, and ψ ∈ A〈T∆(ZJ)〉. Moreover, let (Ij)j∈J
be a family of Ij ⊆ I such that

⋃
j∈J Ij = I, ψj ∈ A〈T∆(Z)〉 such that

var(ψj) ⊆ Ij for every j ∈ J , and τi ∈ A〈T∆(Z)〉 for every i ∈ I.
Finally, let A be zero-divisor free if 0 ∈ N , and let |u|zj

∈ N for every
u ∈ supp(ψ) and j ∈ J .(

ψ←−o (ψj)j∈J
)
←−o (τi)i∈I = ψ←−o

(
ψj←−o (τi)i∈Ij

)
j∈J , (16)

provided that:

• (Ij)j∈J is a partition of I; or
• τi is monomial for every i ∈ I.

Proof. Firstly, let J = ∅. Then I = ∅ and both sides of (16) are ψ by

Observation 3.4(1). Secondly, let J 6= ∅. Moreover, suppose that τi = 0̃ for

some i ∈ I or ψj = 0̃ for some j ∈ J . Then the both sides of (16) are 0̃ by
Observation 3.4(3) because J 6= ∅.

Finally, let us assume that J 6= ∅ and τi 6= 0̃ 6= ψj for every i ∈ I and
j ∈ J .(

ψ←−o (ψj)j∈J
)
←−o (τi)i∈I

= (by de�nition of ←−o )∑
u∈supp(ψ),

(∀j∈J) : uj∈supp(ψj),
(∀i∈I) : vi∈supp(τi)

(
(ψ, u) ·

(∏
j∈J

(ψj , uj)
|u|zj

)
·
∏
i∈I

(τi, vi)|u[uj ]j∈J |zi

)
u[uj ]j∈J [vi]i∈I

= (by commutativity and |u[uj ]j∈J |zi =
∑

j∈J |u|zj · |uj |zi)∑
u∈supp(ψ),

(∀j∈J) : uj∈supp(ψj),
(∀i∈I) : vi∈supp(τi)

(
(ψ, u) ·

∏
j∈J

(
(ψj , uj) ·

∏
i∈I

(τi, vi)|uj |zi

)|u|zj

)
u[uj [vi]i∈I ]j∈J

= (because τi is monomial or (Ij)j∈J is a partition of I)∑
u∈supp(ψ),

(∀j∈J) : uj∈supp(ψj),
(∀i∈Ij) : vij∈supp(τi)

(
(ψ, u) ·

∏
j∈J

(
(ψj , uj) ·

∏
i∈Ij

(τi, vij)|uj |zi

)|u|zj

)
u[uj [vij ]i∈Ij ]j∈J
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= (since |u|zj ∈ N , A is N -Frobenius,

and A is zero-divisor free if |u|zj = 0)∑
u∈supp(ψ),

(∀j∈J) : u′j∈supp(ψj←−o (τi)i∈Ij
)

(ψ, u) ·

·
∏
j∈J

( ∑
uj∈supp(ψj),

(∀i∈Ij) : vij∈supp(τi)

(
(ψj , uj) ·

∏
i∈Ij

(τi, vij)|uj |zi

)
uj [vij ]i∈Ij , u

′
j

)|u|zj
u[u′j ]j∈J

= (by de�nition of ←−o )∑
u∈supp(ψ),

(∀j∈J): u′j∈supp(ψj←−o (τi)i∈Ij
)

(
(ψ, u) ·

∏
j∈J

(ψj←−o (τi)i∈Ij , u
′
j)
|u|zj

)
u[u′j ]j∈J

= (by de�nition of ←−o )

ψ←−o
(
ψj←−o (τi)i∈Ij

)
j∈J �

Note that compared to Lemma 3.21 the condition that requires
the τi to be boolean vanished, but the additional requirement of zero-
divisor freeness emerged. However, if we again restrict the τi to be
boolean, then we only have to consider products of a nonzero element
with several factors being 1, hence we could drop the zero-divisor free-
ness condition in this case.

Corollary 3.23 (of Lemma 3.22 and Proposition 3.18). Let A
be commutative, additively idempotent, and N-Frobenius for some
N ⊆ N. Let I, J ⊆ N+ be �nite and ψ ∈ A〈T∆(ZJ)〉. Moreover, let
ψj ∈ A〈T∆(Z)〉 for every j ∈ J , and let (Ij)j∈J be a partition of I
conforming to (ψj)j∈J . Let τi ∈ A〈T∆(Z)〉 for every i ∈ I. Finally, let
A be zero-divisor free if 0 ∈ N , and let |u|zj

∈ N for every u ∈ supp(ψ)
and j ∈ J .(

ψ←−o (ψj)j∈J
)
←−o (τi)i∈I = ψ←−o

(
ψj←−o (τi)i∈I

)
j∈J (17)

Proof. The statement follows from Lemma 3.22 and Proposition 3.18.
�

5. Preservation of recognizability

In this section we consider the question whether tree series substitu-
tion preserves recognizability. Let Σ be a ranked alphabet. It is known
that substitution of the same tree t for two occurrences of a variable x,
in general, does not preserve recognizability; i. e., already for n ∈ N+,
recognizable tree languages L1, . . . , Ln ∈ RECOG(Σ) and L = {u}
with u ∈ TΣ(Xn) we have that L[L1, . . . , Ln] is not necessarily recog-
nizable (although L1, . . . , Ln and {u} are recognizable). However, IO-
substitution on tree languages preserves recognizable tree languages, if
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the target tree language is linear (see [36, Theorem 3.65] or [60, The-
orem 4.16]); i. e., for every n ∈ N and L,L1, . . . , Ln ⊆ TΣ(X) such that
L is linear in Xn and L,L1, . . . , Ln are recognizable also L[L1, . . . , Ln]
is recognizable.

First, let us clarify the notion of recognizable tree series [9, 77, 18].
We refer the reader to [16] for a detailed introduction and references
to further models and results. We have chosen the automaton model
called bu-w-fta-f (bottom-up �nite-state weighted tree automaton with
�nal weights) in [16, Section 4.1.3].

Definition 3.24 (see [16, Chapter 4]). A bottom-up weighted tree
automaton (over Σ and A) [16] is a tuple M = (Q,Σ,A, F, µ) where:

• Q is a nonempty, �nite set of states;
• Σ is a ranked alphabet of input symbols;
• A = (A,+, ·) is a semiring;
• F : Q −→ A is a �nal weight distribution; and
• µ = (µk)k∈N with µk : Σk −→ AQ×Q

k
is a tree representation.

The initial algebra semantics of M [16, Section 4.1] is determined by
the Σ-algebra

D = (AQ, (µk(σ))k∈N,σ∈Σk
)

where for every k ∈ N, σ ∈ Σk, q ∈ Q, and V1, . . . , Vk ∈ AQ

µk(σ)(V1, . . . , Vk)q =
∑

q1,...,qk∈Q

µk(σ)q,q1···qk ·
∏
i∈[k]

(Vi)qi .

Let hµ : TΣ −→ AQ be the unique homomorphism from TΣ to D. The
tree series recognized by M , denoted by ‖M‖, is de�ned for every
t ∈ TΣ by

(‖M‖, t) =
∑
q∈Q

Fq · hµ(t)q .

We use the method of [98] and [16, Example 3.1.2] to graphically
represent weighted tree automata. It is similar to the method used in
Chapter 4 to represent tree series transducers.

Note that we write µ0(α)q instead of µ0(α)q,ε for every α ∈ Σ0 and
q ∈ Q. Let Σ be a ranked alphabet and A be a semiring. A tree series
ψ ∈ A〈〈TΣ〉〉 is termed recognizable, if there exists a bottom-up weighted
tree automaton M over Σ and A such that ψ = ‖M‖. The class of
all recognizable tree series over Σ and A is denoted by Arec〈〈TΣ〉〉. For
every �nite I ⊆ N+, we say that a tree series ψ ∈ A〈〈TΣ(XI)〉〉 is
recognizable, if ψ ∈ Arec〈〈T∆〉〉 where ∆k = Σk for every k ∈ N+ and
∆0 = Σ0 ∪ XI ; i. e., the elements of XI are treated as new nullary
symbols. Consequently, Arec〈〈TΣ(XI)〉〉 = Arec〈〈T∆〉〉 denotes the class
of all recognizable tree series over Σ, A, and I.

Let us illustrate the previous de�nition. Let Σ = {δ(2), α(0)}. We
show that ψ = maxu∈TΣ(X1) height(u) u is a recognizable tree series
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(using the arctic semiring A∞) by presenting a bottom-up weighted
tree automaton that recognizes ψ.

Example 3.25. Let M3.25 = (Q,∆,A∞, F, µ) be the bottom-up
weighted tree automaton speci�ed by

• Q = {1, 2};
• ∆ = {δ(2), α(0), x

(0)
1 };

• F1 = 0 and F2 = −∞; and
• µ0(α)1 = µ0(α)2 = µ0(x1)1 = µ0(x1)2 = 0 and

µ2(δ)1,12 = µ2(δ)1,21 = 1 and µ2(δ)2,22 = 0 .

(All remaining entries of µ2(δ) are assumed to be −∞.)

The automaton is illustrated in Figure 2. We claim that

(‖M3.25‖, u) = height(u)

for every u ∈ T∆. This claim can be proved by a straightforward in-
duction. We just demonstrate the previous de�nition on a particular
example. Let u = δ(α, δ(α, x1)).

hµ
(
δ(α, δ(α, x1))

)
1

= max
p,q∈Q
{µ2(δ)1,pq + hµ(α)p + hµ(δ(α, x1))q}

= max
(
1 + hµ(α)1 + hµ(δ(α, x1))2, 1 + hµ(α)2 + hµ(δ(α, x1))1

)
= max

(
1 + µ0(α)1 + hµ(δ(α, x1))2, 1 + µ0(α)2 + hµ(δ(α, x1))1

)
= max

(
1 + max

p,q∈Q
{µ2(δ)2,pq + hµ(α)p + hµ(x1)q},

1 + max
p,q∈Q
{µ2(δ)1,pq + hµ(α)p + hµ(x1)q}

)
= max

(
1 + hµ(α)2 + hµ(x1)2,

1 + max
(
1 + hµ(α)1 + hµ(x1)2, 1 + hµ(α)2 + hµ(x1)1

))
= max

(
1 + µ0(α)2 + µ0(x1)2,

1 + max
(
1 + µ0(α)1 + µ0(x1)2, 1 + µ0(α)2 + µ0(x1)1

))
= max

(
1, 1 + max(1, 1)

)
= max(1, 2)

= 2 = height
(
δ(α, δ(α, x1))

)
So (‖M3.25‖, u) = max(F1 +hµ(u)1, F2 +hµ(u)2) = hµ(u)1 = height(u).

In fact, for every ranked alphabet ∆ we can give a bottom-up
weighted tree automaton (over the arctic semiring A∞) recognizing
maxu∈T∆

height(u) u.
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1 2

0
δ/1

δ/1α/0
α/0

δ/0

x1/0
x1/0

Figure 2. Bottom-up weighted tree automaton M3.25

over A∞ (see Example 3.25).

Now let us return to the question of preservation of recognizabil-
ity. In [79, Corollary 14] it is proved that recognizability is preserved
whenever the target tree series is nondeleting and linear. Since this
statement is proved for OI-substitution in [79], we �rst relate OI-
substitution to pure substitution. Therefore we present the de�nition of
OI-substitution of [79]. Recall that A is a semiring that is (i) ℵ0-com-
plete with respect to

∑
or (ii)

∑
is the in�nitary summation induced

by +. For every k ∈ N, σ ∈ Σk, and ψ1, . . . , ψk ∈ A〈〈TΣ(X)〉〉, we de�ne

σ(ψ1, . . . , ψk) =
∑

t1,...,tk∈TΣ(X)

(
(ψ1, t1) · . . . · (ψk, tk)

)
σ(t1, . . . , tk) .

Note that this sum is always well-de�ned. Let t ∈ TΣ(X), I ⊆ N+ be
�nite, and ψi ∈ A〈〈TΣ(X)〉〉 for every i ∈ I. For every j ∈ I, ` ∈ N+ \ I,
k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(X) let

xj←−OI
(ψi)i∈I = ψj

x`←−OI
(ψi)i∈I = 1 x`

σ(t1, . . . , tk)←−OI
(ψi)i∈I = σ(t1←−OI

(ψi)i∈I , . . . , tk←−OI
(ψi)i∈I) .

Finally, we de�ne ψ←−
OI

(ψi)i∈I for every ψ ∈ A〈〈TΣ(X)〉〉 by

ψ←−
OI

(ψi)i∈I =
∑

t∈TΣ(X)

(ψ, t) ·
(
t←−

OI
(ψi)i∈I

)
.

Note that also this sum is always well-de�ned. With the help of [79,
Theorem 6] we can easily relate pure and OI-substitution.

Observation 3.26. Let I ⊆ N+ be �nite, ψ ∈ A〈〈TΣ(XI)〉〉 be non-
deleting and linear in XI , and ψi ∈ A〈〈TΣ(X)〉〉 for every i ∈ I.

ψ←−ε (ψi)i∈I = ψ←−
OI

(ψi)i∈I

Proof. Clearly, t←−
OI

(1 ti)i∈I = 1 t[ti]i∈I for every t ∈ TΣ(XI) and

(ti)i∈I ∈ TΣ(X)I .

ψ←−ε (ψi)i∈I
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= (by de�nition of ←−ε )∑
t∈TΣ(XI),

(∀i∈I) : ti∈TΣ(X)

(
(ψ, t) ·

∏
i∈I

(ψi, ti)
)
· (1 t[ti]i∈I)

= (by t←−
OI

(1 ti)i∈I = 1 t[ti]i∈I)∑
t∈TΣ(XI),

(∀i∈I) : ti∈TΣ(X)

(
(ψ, t) ·

∏
i∈I

(ψi, ti)
)
·
(
t←−

OI
(1 ti)i∈I

)
= (by [79, Theorem 6])∑

t∈TΣ(XI)

(ψ, t) ·
(
t←−

OI
(ψi)i∈I

)
= (by de�nition of ←−

OI
)

ψ←−
OI

(ψi)i∈I �

Theorem 3.27 (see [79, Corollary 14]). For every η ∈ {ε, o}, �nite
I ⊆ N+, family (ψi)i∈I ∈ Arec〈〈TΣ〉〉I , and ψ ∈ Arec〈〈TΣ(XI)〉〉 such that
ψ is nondeleting and linear in XI , we have ψ←−η (ψi)i∈I ∈ Arec〈〈TΣ〉〉.

Proof. The statement is proved for OI-substitution in [79, Corol-
lary 14]. Since OI-substitution coincides with η-substitution on nondeleting
and linear target tree series (see Observations 3.26 and 3.7), we obtain the
statement. �

5.1. The case of o-substitution. Let us consider the preserva-
tion of recognizability for o-substitution �rst. Since o-substitution is an
IO-type of substitution we immediately restrict the target tree series
to be linear. Let us illustrate the main idea in a simpli�ed setting. Let
ψ ∈ Arec〈〈TΣ(X1)〉〉 be linear in X1 and ψ1 ∈ Arec〈〈TΣ〉〉. We want to
show that ψ←−o (ψ1) is recognizable, thus we need to present a bottom-
up weighted tree automaton M ′ = (Q′,Σ,A, F ′, µ′) that recognizes
ψ←−o (ψ1). Let M = (Q,∆,A, F, µ) be a bottom-up weighted tree
automaton recognizing ψ and M1 = (Q1,Σ,A, F1, µ1) be a bottom-
up weighted tree automaton recognizing ψ1. We employ a standard
idea for the construction of M ′. Roughly speaking, we take the dis-
joint union ofM andM1 and add transitions that nondeterministically
change from M1 to M . More precisely, for every k ∈ N+, σ ∈ Σk,
q ∈ Q, and q1, . . . , qk ∈ Q1 we set

µ′k(σ)q,q1···qk =
∑
p∈Q1

µ0(x1)q · (F1)p · (µ1)k(σ)p,q1···qk .

Informally speaking, for each state p of M1 we take the weight of the
standard transition (µ1)k(σ)p,q1···qk of M1, multiply the corresponding
entry (F1)p in the �nal distribution, and multiply the weight µ0(x1)q
for entering M (via x1) in state q. Nullary symbols σ are treated
similarly. We employ a proof method, which requires us to make the
input alphabets Σ and ∆ disjoint. This simpli�es the proof because
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each tree then admits a unique decomposition into (at most one) part
that needs to be processed byM1 and a part that needs to be processed
by M .

Theorem 3.28. Let A be a commutative and additively idempo-
tent semiring, which is ℵ0-complete with respect to the necessary

∑
.

Moreover, let I ⊆ N+ be �nite, ψ ∈ Arec〈〈TΣ(XI)〉〉 be linear in XI , and
ψi ∈ Arec〈〈TΣ〉〉 for every i ∈ I. Then

ψ←−o (ψi)i∈I ∈ Arec〈〈TΣ〉〉 . (18)

Proof. Let ψi = 0̃ for some i ∈ I. Then ψ←−o (ψi)i∈I = 0̃ by Obser-
vation 3.4(3) which is clearly recognizable. Hence for the remainder of the

proof we assume that ψi 6= 0̃ for all i ∈ I. For every k ∈ N+ let ∆k = Σk

and ∆0 = Σ0 ∪ XI . Since ψ ∈ Arec〈〈TΣ(XI)〉〉 and ψi ∈ Arec〈〈TΣ〉〉 for every
i ∈ I, there exist bottom-up weighted tree automata M = (Q,∆,A, F, µ)
and Mi = (Qi,Σ,A, Fi, µi) such that ‖M‖ = ψ and ‖Mi‖ = ψi for every
i ∈ I.

For every i ∈ I let Σi
be the ranked alphabet given by Σi

k = {σi | σ ∈ Σk}
for every k ∈ N. For every i ∈ I we de�ne the mapping bari : TΣ −→ T

Σ
i by

bari(σ(t1, . . . , tk)) = σi(bari(t1), . . . ,bari(tk))

for every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ. Moreover, we extend bari
to tree series as follows. We de�ne the mapping bari : A〈〈TΣ〉〉 −→ A〈〈TΣ

i〉〉,
which relabels all σ-nodes by their corresponding i-overlined version, for
every ϕ ∈ A〈〈TΣ〉〉 by

bari(ϕ) =
∑
t∈TΣ

(ϕ, t) bari(t) .

Without loss of generality, we assume that for every i ∈ I we have

that (i) Σ and Σi
are disjoint and (ii) Q and Qi are disjoint. We let

Σ′
k = Σk ∪

⋃
i∈I Σi

k for every k ∈ N, and Q′ = Q ∪
⋃
i∈I Qi. We construct

a bottom-up weighted tree automaton M ′ recognizing ψ←−o (bari(ψi))i∈I as
follows. Let M ′ = (Q′,Σ′,A, F ′, µ′) where for every i ∈ I, k ∈ N, σ ∈ Σk:

• F ′
q = Fq for every q ∈ Q and F ′

p = 0 for every p ∈
⋃
i∈I Qi;

• µ′k(σi)p,w = (µi)k(σ)p,w for every p ∈ Qi and w ∈ (Qi)k;
• µ′k(σ)q,w = µk(σ)q,w for every q ∈ Q and w ∈ Qk; and
• µ′k(σi)q,w =

∑
p∈Qi

µ0(xi)q · (Fi)p · (µi)k(σ)p,w for every q ∈ Q and

w ∈ (Qi)k.

All the remaining entries in µ′ are set to 0.
Clearly, hµ′(bari(t))p = hµi(t)p for every i ∈ I, t ∈ TΣ, and p ∈ Qi. Next

we prove that for every q ∈ Q and t ∈ TΣ(XI), which is linear in XI , and

family (ui)i∈var(t) ∈ T
var(t)
Σ we have

hµ′(t[bari(ui)]i∈var(t))q = hµ(t)q ·
∏

i∈var(t)

(
‖Mi‖, ui

)
.
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We prove this statement inductively, so let t = xj for some j ∈ I. Moreover,
let uj = σ(t1, . . . , tk) for some k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ.

hµ′(xj [bari(ui)]i∈var(xj))q
= (by substitution and de�nition of barj)

hµ′
(
σj(barj(t1), . . . ,barj(tk))

)
q

= (by De�nition 3.24)∑
q1,...,qk∈Q′

µ′k(σ
j)q,q1···qk ·

∏
i∈[k]

hµ′(barj(ti))qi

= (by de�nition of µ′ and hµ′(barj(ti))qi = hµj (ti)qi)∑
q1,...,qk∈Qj

∑
p∈Qj

µ0(xj)q · (Fj)p · (µj)k(σ)p,q1···qk ·
∏
i∈[k]

hµj (ti)qi

= (by De�nition 3.24)∑
p∈Qj

µ0(xj)q · (Fj)p · hµj (σ(t1, . . . , tk))p

= (by De�nition 3.24)

µ0(xj)q ·
(
‖Mj‖, σ(t1, . . . , tk)

)
= (by De�nition 3.24)

hµ(xj)q ·
∏

i∈var(xj)

(
‖Mi‖, ui

)
Now, let t = σ(t1, . . . , tk) for some k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(XI).

hµ′(σ(t1, . . . , tk)[bari(ui)]i∈var(t))q
= (by substitution)

hµ′(σ(t1[bari(ui)]i∈var(t1), . . . , tk[bari(ui)]i∈var(tk)))q
= (by De�nition 3.24)∑

q1,...,qk∈Q′

µ′k(σ)q,q1···qk ·
∏
j∈[k]

hµ′(tj [bari(ui)]i∈var(tj))qj

= (by induction hypothesis and de�nition of µ′)∑
q1,...,qk∈Q

µk(σ)q,q1···qk ·
∏
j∈[k]

(
hµ(tj)qj ·

∏
i∈var(tj)

(
‖Mi‖, ui

))
= (by De�nition 3.24)

hµ(σ(t1, . . . , tk))q ·
∏

j∈[k],i∈var(tj)

(
‖Mi‖, ui

)
= (because t is linear in XI)

hµ(σ(t1, . . . , tk))q ·
∏

i∈var(t)

(
‖Mi‖, ui

)
This completes the proof of the auxiliary statement. Consequently,

(‖M ′‖, t[bari(ui)]i∈var(t)) = (‖M‖, t) ·
∏

i∈var(t)

(‖Mi‖, ui)
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= (ψ, t) ·
∏

i∈var(t)

(ψi, ui) . (19)

Using this result, we can show that ψ′ = ψ←−o (bari(ψi))i∈I is recognizable.
In fact, this is the tree series that is recognized by M ′.

ψ←−o (bari(ψi))i∈I
= (by Proposition 3.10)∑

t∈supp(ψ)

(ψ, t) ·
((

1 t
)
←−o

(
bari(ψi)

)
i∈I

)
= (by Proposition 3.18)∑

t∈supp(ψ)

(ψ, t) ·
((

1 t
)
←−o

(
bari(ψi)

)
i∈var(t)

)
= (by de�nition of ←−o because t is linear)∑

t∈supp(ψ),
(∀i∈var(t)) : ui∈supp(bari(ψi))

(
(ψ, t) ·

∏
i∈var(t)

(bari(ψi), ui)
)
t[ui]i∈var(t)

= (by de�nition of bari)∑
t∈TΣ(XI),

(∀i∈var(t)) : ui∈TΣ

(
(ψ, t) ·

∏
i∈var(t)

(ψi, ui)
)
t[bari(ui)]i∈var(t)

= (by (19) )∑
t∈TΣ(XI),

(∀i∈var(t)) : ui∈TΣ

(
‖M ′‖, t[bari(ui)]i∈var(t)

)
t[bari(ui)]i∈var(t)

=
∑
u∈TΣ′

( ∑
t∈TΣ(XI),

(∀i∈var(t)) : ui∈TΣ

(
‖M ′‖, t[bari(ui)]i∈var(t)

)
t[bari(ui)]i∈var(t) , u

)
u

= (because t and ui are uniquely determined by u)∑
u∈TΣ′

(
‖M ′‖, u

)
u = ‖M ′‖

Finally, we need to remove the annotation. To this end we de�ne the
mapping unbar : TΣ′(X) −→ TΣ(X) for every x ∈ X, k ∈ N, i ∈ I, σ ∈ Σk,
and t1, . . . , tk ∈ TΣ′(X) by

unbar(x) = x

unbar(σ(t1, . . . , tk)) = σ(unbar(t1), . . . ,unbar(tk))

unbar(σi(t1, . . . , tk)) = σ(unbar(t1), . . . ,unbar(tk)) .

Note that unbar is a homomorphism. We lift unbar to tree series as follows.
Let unbar : A〈〈TΣ′(X)〉〉 −→ A〈〈TΣ(X)〉〉 be the mapping de�ned for every
ϕ ∈ A〈〈TΣ′(X)〉〉 by

unbar(ϕ) =
∑

t∈TΣ′ (X)

(ϕ, t) unbar(t) .
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Clearly, unbar(ψ′) = ψ←−o (ψi)i∈I . Moreover, unbar can be realized by a
nondeleting, linear tree transducer (with one state and with OI-substitution)
of [79] (because it is a relabeling homomorphism). Since ψ′ is a recognizable
tree series and nondeleting, linear tree transducers of [79] preserve recogniz-
ability [79, Corollary 14], also unbar(ψ′) is recognizable, which proves the
statement. The proof of [79, Corollary 14] additionally assumes a continuous
semiring, but this assumption is not needed for the special case considered
here. Alternatively the last step can be shown by referring to the closure of
the class of recognizable tree series under linear and nondeleting tree homo-
morphisms [15]. �

Let us illustrate the previous proposition on two examples. The
�rst example shows that the linearity restriction is necessary and the
second example demonstrates a successful application of Theorem 3.28.

Example 3.29. Let Σ = {δ(2), α(0)}. Let ψ1 = maxu∈TΣ
height(u)u

and ψ = maxu∈TΣ(X1) height(u)u over the semiring A∞. Note that ψ is
not linear in X1. Nevertheless we apply the construction found in the
proof of Theorem 3.28 (see Example 3.25 for the bottom-up weighted
tree automaton recognizing ψ) and obtain the bottom-up weighted tree
automaton M3.29 = (Q,Γ,A∞, F, µ) with

• Q = {1, 2, 3, 4};
• Γ2 = {δ, δ} and Γ0 = {α, α} (for the sake of readability we
omit the 1 at the overlining);
• F1 = 0 and F2 = F3 = F4 = −∞; and
• µ0(α)1 = µ0(α)2 = µ0(α)1 = µ0(α)2 = µ0(α)3 = µ0(α)4 = 0
and

µ2(δ)1,12 = µ2(δ)1,21 = µ2(δ)3,34 = µ2(δ)3,43 = 1

µ2(δ)2,22 = µ2(δ)4,44 = 0

µ2(δ)1,34 = µ2(δ)1,43 = 1 .

(All remaining entries of µ2(δ) and µ2(δ) are assumed to
be −∞.)

The automaton M3.29 is displayed in Figure 3. However, M3.29 does not
recognize ψ←−o (bar1(ψ1)). To demonstrate, let u = δ(δ(α, α), δ(α, α)).
Clearly, (‖M3.29‖, u) = −∞, but (ψ←−o (bar1(ψ1)), u) = 3. The latter
statement can be seen using the decomposition u = δ(x1, x1)[δ(α, α)].

Example 3.30. Let Σ = {γ(1), α(0)}. Let ψ1 = maxu∈TΣ
height(u)u

and ψ = maxu∈TΣ(X1) height(u) u be tree series over the arctic semi-
ring A∞. Then ψ←−o (ψ1) is recognizable. In fact, ψ←−o (ψ1) = ψ1.
We show the bottom-up weighted tree automata that recognize ψ and
ψ←−o (ψ1) [the automaton that is constructed in Theorem 3.28] in Fig-
ure 4.
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1 2
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Figure 3. Bottom-up weighted tree automaton M3.29

over A∞ (see Example 3.29).

?

0

α/0 x1/0

γ/1
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1

0

α/0

α/0

γ/1

γ/1

γ/1

Figure 4. Bottom-up weighted tree automata recogniz-
ing ψ [left] and ψ←−o (ψ1) [right] over A∞ of Exam-
ple 3.30.

5.2. Pure substitution. Finally, this section is concluded by a
result which shows preservation of recognizability for pure substitution.

Corollary 3.31 (of Theorem 3.28). Let A be commutative, ad-
ditively idempotent, and ℵ0-complete with respect to a necessary

∑
.

Moreover, let I ⊆ N+ be �nite, ψ ∈ Arec〈〈TΣ(XI)〉〉 be linear in XI , and
ψi ∈ Arec〈〈TΣ〉〉 be boolean for every i ∈ I.

ψ←−ε (ψi)i∈I ∈ Arec〈〈TΣ〉〉 (20)

Proof. Actually, under the given conditions

ψ←−ε (ψi)i∈I = ψ←−o (ψi)i∈I

by Observation 3.7 and o-substitution preserves recognizability by Theo-
rem 3.28. �
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6. Open problems and future work

A detailed analysis of [IO] and OI tree series substitution with re-
spect to the properties of distributivity, linearity, and associativity is
still missing. Some results are already present in the literature (e. g.,
[77, 18]), but a systematic study would, e. g., help to unravel more
composition results for tree series transducers using those types of sub-
stitution. Another interesting line of research would be to investigate
preservation of recognizability (as in [79]) for [IO] and OI substitution.
This together with composition results could potentially bene�t the
theory of abstract families of tree series.





CHAPTER 4

Tree Series Transducers

To see distinctly the machinery�the wheels and pinions�
of any work of Art is, unquestionably, of itself, a pleasure,

but one which we are able to enjoy only just in proportion as
we do not enjoy the legitimate e�ect designed by the artist.

Edgar Allan Poe (1809�1849): �Marginalia 266�
Southern Literary Messenger, 1849

1. Bibliographic information

In this chapter we present the de�nition of tree series transducers,
the device which we investigate in the rest of the thesis. The de�nition
we present is taken from [41] with one minor extension. We illus-
trate the de�nition using two examples and study the rami�cations of
our slight extension. The core de�nition is complemented with several
properties of tree series transducers mostly taken from [41] and [83].
Finally, this chapter is concluded by the presentation of some simple
statements about tree series transducers.

2. Core de�nition

In this section we recall from [41] the notion of tree series trans-
ducers, abbreviated to tst henceforth. In particular, we present the
de�nition of bottom-up and top-down tst, which are subsequently ab-
breviated to bu-tst and td-tst, respectively.

2.1. Syntax and graphical representation. We have seen in
Figure 1 of Chapter 1 that tst generalize tree transducers [102, 106,
107]. So let us start from those devices. A bottom-up tree transducer
M = (Q,Σ,∆, F,R) has rules of the form

σ
(
q1(z1), . . . , qk(zk)

)
→ q(u)

where k ∈ N, σ ∈ Σk, q, q1, . . . , qk ∈ Q, and u ∈ T∆(Zk). Several
such rules with di�erent u can be grouped together with the help of a
mapping

νk : Σk ×Qk ×Q −→ P(T∆(Zk)) .

More precisely,(
σ
(
q1(z1), . . . , qk(zk)

)
→ q(u)

)
∈ R ⇐⇒ u ∈ νk(σ, q1, . . . , qk, q) .

57
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We have seen in Observation 2.3 that

(P(T∆(Zk)),∪,∩) ∼= (B〈〈T∆(Zk)〉〉,∨,∧) .

Using a matrix representation we can re�ne the mapping to

µk : Σk −→ B〈〈T∆(Zk)〉〉Q×Q
k

with the correspondence

u ∈ νk(σ, q1, . . . , qk, q) ⇐⇒ (µk(σ)q,q1···qk , u) = 1 .

This representation of the rules can now be easily generalized to arbi-
trary semirings. For this we simply replace the semiring B by an arbi-
trary semiring A. Essentially such a family (µk)k∈N of mappings µk is
called a (bottom-up) tree representation [79].

Next we present the de�nition of tree representations, which encode
the rules, of arbitrary tst from [41]. Let Q be a �nite set, which
represents the state set of a tst. Recall that for every V ⊆ X we
abbreviate {q(v) | q ∈ Q, v ∈ V } simply by Q(V ). Roughly speaking,
a tree representation is a family of mappings, each of which maps an
input symbol to a matrix indexed by sequences of (annotated) states
(more formally, by a state and an element of Q(X)∗). The entries of
those matrices are tree series over ∆, Z, and A, where ∆ is an output
ranked alphabet and A is a semiring. Note that in contrast to [41] we
use elements of X to refer to input trees and elements of Z to refer to
output trees.

Definition 4.1 (see [41, De�nition 3.1]). Given a �nite set Q,
ranked alphabets Σ and ∆, and a semiring A = (A,+, ·), a tree rep-
resentation (over Q, Σ, ∆, and A) is a family (µk)k∈N of mappings
µk : Σk −→ A〈〈T∆(Z)〉〉Q×Q(Xk)∗ such that for every k ∈ N, σ ∈ Σk, and
q ∈ Q:

• there exist only �nitely many w ∈ Q(Xk)
∗ with µk(σ)q,w 6= 0̃;

and
• var(µk(σ)q,w) ⊆ Z|w| for every w ∈ Q(Xk)

∗.

Let us explain this notion in more detail. Let Σ and ∆ be ranked
alphabets, A a semiring, and Q a set of states. Further, let µ be a
tree representation over Q, Σ, ∆, and A. Roughly speaking, for every
k ∈ N, σ ∈ Σk, q ∈ Q, and w = q1(xi1) · · · qn(xin) ∈ Q(Xk)

∗ the tree se-
ries µk(σ)q,w encodes output trees (which may contain variables of Zn)
together with their weight. If for some t1, . . . , tk ∈ TΣ we would like
to process the input tree σ(t1, . . . , tk) in state q, then according to this
entry we have to process the ij-th direct subtree tij in state qj for every
j ∈ [n]. This way we obtain, for every j ∈ [n], the tree series ψj. Those
tree series are combined with µk(σ)q,w by means of tree series substi-
tution, in which µk(σ)q,w is the target and ψ1, . . . , ψn are the sources.
Thus the variables z1, . . . , zn in the output trees of supp(µk(σ)q,w) rep-
resent placeholders for the transformations of the subtrees. With this
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α/0 α

σ/max(1 z1, 1 z2)
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q1

q

q2

σ/1 δ(z1, z3, z2)

1

2

1

Figure 1. Examples of tree representations.

intuition the second item in De�nition 4.1 is a simple sanity condition.
If the considered transition calls for n translations of input trees (i. e.,
|w| = n), then var(µk(σ)q,w) ⊆ Zn. The �rst item in De�nition 4.1
ensures that all matrices in the range of µk are essentially �nite; i. e.,
almost all entries of the matrices are 0̃. Let us present an example.

Example 4.2. Let Q = {?}, Σ = {σ(2), α(0)}, and ∆ = {α(0)}. Let
µ be the tree representation over Q, Σ, ∆, and A∞ with

µ2(σ)?,?(x1)?(x2) = max(1 z1, 1 z2) and µ0(α)?,ε = 0 α .

All remaining entries of µ2(σ) are supposed to be −̃∞. Clearly, the
conditions imposed in the items of De�nition 4.1 are satis�ed.

Let us now show how we illustrate tree representations. In Fig-
ure 1(left) we display the tree representation µ of Example 4.2. Fig-
ure 1(right) attempts to illustrate the relation between the pictorial
display and the formal tree representation entry. The large circles
represent states; the name of the state is inscribed. Smaller circles
(without inscription) denote transitions (entries in the tree represen-
tation). Let us explain how to construct the tree representation entry
from a transition given graphically. First we note that a transition
is connected to a number of states by means of edges. In particular,
there is exactly one edge marked with an arrow (leading away from the
transition toward a state). This edge is called outgoing edge; all the
remaining edges (without arrows) that connect to the given transition
are called incoming edges. In Figure 1(right) the outgoing edge leads to
the state q and the incoming edges connect the states q1 and q2 to the
transition. Let us consider the circumference of the circle representing
the transition. All incoming and outgoing edges intersect the circum-
ference, and we implicitly order the incoming edges by starting at the
intersection of the outgoing edge and the circumference and then going
anti-clockwise along the circumference. Let us number the �rst incom-
ing edge crossed by 1 (do not confuse this number with the annotation;
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2 in the example), the second is numbered 2, and so on. Eventually,
we return to the outgoing edge and have thus numbered all incoming
edges. Now we are ready to construct a word w ∈ Q(X)∗ for the transi-
tion. The length of the word is determined by the number of incoming
edges, thus in our example of Figure 1(right) we have |w| = 3. The
i-th symbol wi in w is determined by the incoming edge numbered i in
the following way. The symbol is supposed to be an element of Q(X);
i. e., for some p ∈ Q and j ∈ N+ we have wi = p(xj). The state p is
the state to which the incoming edge with number i connects, and j is
annotated at the incoming edge with number i (close to the state). In
the running example, we have w = q2(x2)q1(x1)q2(x1).

Finally, at the circle representing the transition there is an anno-
tation of the form σ/ψ where σ ∈ Σ is an input symbol and ψ is a
tree series. Let k be the rank of σ. Such a transition determines the
tree representation entry µk(σ)q,w, namely µk(σ)q,w = ψ. In the exam-
ple, we have µ2(σ)q,q2(x2)q1(x1)q2(x1) = 1 δ(z1, z3, z2), if we suppose that
σ is binary and δ is ternary. We leave it to the reader to check that
Figure 1(left) really corresponds to the tree representation given in
Example 4.2 (only the nonzero entries are represented in the graphical
representation).

Two restricted tree representations are of paramount importance
in the sequel of the thesis. These are top-down and bottom-up tree
representations. We recall the de�nition from [41].

Definition 4.3 (see [41, De�nition 3.1]). We say that a tree rep-
resentation µ over Q, Σ, ∆, and A is:

• top-down, if for every k ∈ N, σ ∈ Σk, q ∈ Q, and w ∈ Q(Xk)
∗

we have supp(µk(σ)q,w) ⊆ C∆(Z|w|); and
• bottom-up, if for every k ∈ N, σ ∈ Σk, q ∈ Q and w ∈ Q(Xk)

∗

with µk(σ)q,w 6= 0̃ there exist states q1, . . . , qk ∈ Q such that
w = q1(x1) · · · qk(xk).

This de�nition re�ects the main di�erence between top-down and
bottom-up devices. The top-down device decides which subtrees to
process in which states (possibly even one subtree with several�not
necessarily di�erent�states), and then inserts the result obtained by
the translation. It may neither delete nor copy the obtained output
and hence each output tree in supp(µk(σ)q,w) should be nondeleting
and linear in Z|w|. A bottom-up device, however, has already pro-
cessed each subtree in a certain state and decides how to arrange the
obtained outputs. It may delete and copy the obtained outputs, but
has only restricted in�uence on how the input trees are processed. In
particular, it may not request that a subtree is not processed at all or
processed twice. Thus every nonzero entry µk(σ)q,w should obey that
w = q1(x1) · · · qk(xk) for some q1, . . . , qk ∈ Q.
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Figure 2. Tree representation µ of Example 4.4.

The tree representation given in Example 4.2 is bottom-up, but
not top-down. We agree on the following conventions that simplify the
presentation of tree representations:

• With any tree representation µ we just write µ0(α)q instead
of µ0(α)q,ε for every α ∈ Σ0 and q ∈ Q.
• For bottom-up tree representations µ we write µk(σ)q,q1···qk
instead of µk(σ)q,q1(x1)···qk(xk) for every k ∈ N, σ ∈ Σk, and
q, q1, . . . , qk ∈ Q.
• When we de�ne a tree representation we usually only spec-
ify values for some entries; the remaining entries are silently
assumed to be 0̃.
• In graphical representations we only illustrate the nonzero en-
tries of a tree representation.
• In graphical representations of bottom-up tree representations
the number annotated to an incoming edge of a transition is
omitted because it always coincides with the number that is
implicitly assigned to that edge.

With the previous conventions in mind we restate Example 4.2.

Example 4.4. Let Q = {?}, Σ = {σ(2), α(0)}, and ∆ = {α(0)}. Let
µ be the bottom-up tree representation over Q, Σ, ∆, and A∞ with

µ2(σ)?,?? = max(1 z1, 1 z2) and µ0(α)? = 0 α .

The tree representation µ is illustrated in Figure 2.

Now we are ready to recall the de�nition of tst from [41]. Note that
we introduce one small extension, which we discuss in Section 4. A tst
is basically a tree representation together with supportive information
about the state set, the input and output ranked alphabets, and the
semiring. Additionally, we adjoin a mapping which associates top-most
output to each state.

Definition 4.5. A tree series transducer, abbreviated to tst, is a
sixtuple

M = (Q,Σ,∆,A, F, µ) ,

where:

• Q is an alphabet of states;
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?

0 z1

α/0 α

σ/max(1 z1, 1 z2)

Figure 3. Bu-tst M4.6 over A∞ of Example 4.6.

• Σ and ∆ are ranked alphabets (both disjoint to Q) of input
and output symbols, respectively;
• A = (A,+, ·) is a semiring;
• F ∈ A〈〈C∆(Z1)〉〉Q assigns top-most output to each state; and
• µ is a tree representation over Q, Σ, ∆, and A.

The tst M inherits the properties bottom-up and top-down from its tree
representation µ; i. e., M is called bottom-up tree series transducer,
abbreviated to bu-tst (respectively, top-down tree series transducer, ab-
breviated to td-tst), if µ is bottom-up (respectively, top-down). More-
over, for every q ∈ Q we also say that Fq is �nal output (respectively,
initial output), if M is bottom-up (respectively, top-down). Accord-

ingly, we call a state q ∈ Q such that Fq 6= 0̃ a �nal state, if M is
bottom-up, and an initial state, if M is top-down.

For the rest of the thesis we mostly consider tst that are bottom-up
or top-down. For an investigation of general tst, we refer the reader to
[41, Section 4]. Now we complete our bottom-up tree representation
from Example 4.4 to a bu-tst.

Example 4.6. Let Q, Σ, ∆, and µ be as in Example 4.4. Moreover,
let F ∈ A〈〈C∆(Z1)〉〉Q be such that F? = 0 z1. Then

M4.6 = (Q,Σ,∆,A∞, F, µ)

is a bu-tst with �nal state ?.

We display a tstM = (Q,Σ,∆,A, F, µ) graphically by depicting its
tree representation µ together with information about F . The top-most
output of a state q ∈ Q is annotated at a special edge leading away
(as indicated by an arrow) from the circle representing q but pointing
nowhere. We again adopt the convention that only nonzero top-most
output will be depicted. The bu-tst M4.6 of Example 4.6 is displayed
in Figure 3.
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2.2. Semantics. Let us show the behavior of a tree series trans-
ducerM = (Q,Σ,∆,A, F, µ). Provided that the behavior ofM is well-
de�ned,M computes a transformation that maps a tree (over the input
ranked alphabet Σ) to a tree series (over the semiring A and the output
ranked alphabet ∆). Depending on the type of tree series substitution
used, the computed transformation is either called ε-tree-to-tree-series
or o-tree-to-tree-series transformation. It can easily be extended to a
transformation that maps tree series to tree series. The such obtained
transformations are called ε-tree-series-to-tree-series and o-tree-series-
to-tree-series transformations. The problem of well-de�nedness occurs
because tree series substitution is not always well-de�ned (see Section 2
in Chapter 3). We discuss several restrictions, which imply that the
behavior is always well-de�ned, of the general model of tst in Section 3.

As in Chapter 3 on tree series substitutions we now �x a semi-
ring A = (A,+, ·) and an in�nitary summation

∑
such that either

(i) A is ℵ0-complete with respect to
∑

or (ii)
∑

is the in�nitary sum-
mation induced by +.

Definition 4.7. Let M = (Q,Σ,∆,A, F, µ) be a tstand η ∈ {ε, o}.
(1) For every k ∈ N, and σ ∈ Σk the tree representation µ induces

a partial function µk(σ)
η
:
(
A〈〈T∆〉〉Q

)k
99K A〈〈T∆〉〉Q de�ned

for every q ∈ Q and V1, . . . , Vk ∈ A〈〈T∆〉〉Q by

µk(σ)
η
(V1, . . . , Vk)q =

∑
w∈Q(Xk)∗,

w=q1(xi1
)···qn(xin )

µk(σ)q,w←−η
(
(Vij)qj

)
j∈[n]

.

Note that

D =
(
A〈〈T∆〉〉Q, (µk(σ)

η
)k∈N,σ∈Σk

)
de�nes a partial Σ-algebra [101]. The partial function

hηµ : TΣ 99K A〈〈T∆〉〉Q

is inductively de�ned for every k ∈ N, symbol σ ∈ Σk, and
t1, . . . , tk ∈ TΣ by

hηµ(σ(t1, . . . , tk)) = µk(σ)
η
(hηµ(t1), . . . , h

η
µ(tk)) .

It is lifted to a partial function hηµ : A〈〈TΣ〉〉 99K A〈〈T∆〉〉Q by

hηµ(ψ)q =
∑
t∈TΣ

(ψ, t) · hηµ(t)q

for every ψ ∈ A〈〈TΣ〉〉 and q ∈ Q.
(2) The η-tree-to-tree-series transformation, abbreviated to η-t-ts

transformation, computed by M , denoted by ‖M‖η, is the par-
tial function

‖M‖η : TΣ 99K A〈〈T∆〉〉
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given, for every t ∈ TΣ, by ‖M‖η(t) =
∑

q∈Q Fq←−η (hηµ(t)q).
(3) The η-tree-series-to-tree-series, abbreviated to η-ts-ts, trans-

formation computed by M , which is denoted by ‖M‖tsη , is the
partial function

‖M‖tsη : A〈〈TΣ〉〉 99K A〈〈T∆〉〉

given, for every ψ ∈ A〈〈TΣ〉〉, by

‖M‖tsη (ψ) =
∑
t∈TΣ

(ψ, t) · ‖M‖η(t) .

Two tstM ′ andM ′′ are called (semantically) η-equivalent, whenever
‖M ′‖η = ‖M ′′‖η. If η is obvious from the context, then we simply say
that M ′ and M ′′ are equivalent.

We discuss well-de�nedness in more detail in Section 3. At this
point we note that whenever the semiring is ℵ0-complete with respect
to
∑
, then the obtained partial Σ-algebra D is indeed a Σ-algebra

and the partial function hηµ is in fact the unique homomorphism [23,
Lemma II.10.6] from the initial term algebra TΣ to D (see [41, Obser-
vation 3.3]). Due to this fact, this type of semantics is usually called
initial algebra semantics [63]. It immediately follows that in this set-
ting both ‖M‖η and ‖M‖

ts
η are de�ned on their whole domain and thus

are in fact mappings. Let us demonstrate the previous de�nitions on
our running example.

Example 4.8. Let M = M4.6 = (Q,Σ,∆,A∞, F, µ) be the bu-tst
from Example 4.6. We claim that ‖M‖o(t) = height(t) α for every
t ∈ TΣ.

Proof. To illustrate De�nition 4.7, we prove this property by structural
induction on t.

Induction base: Let t = α.

‖M‖o(α)

= (by De�nition 4.7(2) )

max
q∈{?}

(
Fq←−o (ho

µ(α)q)
)

= (0 z1)←−o (ho
µ(α)?)

= (by de�nition of ←−o and De�nition 4.7(1) )

ho
µ(α)? = µ0(α)

o
()?

= (by De�nition 4.7(1) and Observation 3.4(1) )

µ0(α)?←−o () = µ0(α)?
= (by de�nition of µ and height)

0 α = height(α) α

Induction step: Let t = σ(t1, t2) for some t1, t2 ∈ TΣ. Note that in the arctic
semiring A∞ we have n0 = 0 for every n ∈ N ∪ {∞,−∞}.
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‖M‖o
(
σ(t1, t2)

)
= (by De�nition 4.7(2) and de�nition of ←−o )

max
q∈{?}

(
Fq←−o

(
ho
µ

(
σ(t1, t2)

)
q

))
= ho

µ

(
σ(t1, t2)

)
?

= (by De�nition 4.7(1) and the fact that M is bottom-up)

µ2(σ)
o(
ho
µ(t1), h

o
µ(t2)

)
?

= max
q1,q2∈{?}

(
µ2(σ)?,q1q2←−o

(
ho
µ(t1)q1 , h

o
µ(t2)q2

))
= µ2(σ)?,??←−o

(
ho
µ(t1)?, h

o
µ(t2)?

)
= (by de�nition of µ and de�nition of ←−o )

max(1 z1, 1 z2)←−o
(

max
q∈{?}

(
Fq←−o (ho

µ(t1)q)
)
, max
q∈{?}

(
Fq←−o (ho

µ(t2)q)
))

= (by De�nition 4.7(2) )

max(1 z1, 1 z2)←−o
(
‖M‖o(t1), ‖M‖o(t2)

)
= (by induction hypothesis)

max(1 z1, 1 z2)←−o
(
height(t1) α, height(t2) α

)
= (by de�nition of ←−o because supp(max(1 z1, 1 z2)) = {z1, z2}

and supp(height(t1) α) = {α} = supp(height(t2) α))

max
(
1 + height(t1), 1 + height(t2)

)
α

= (by de�nition of height)

height
(
σ(t1, t2)

)
α

We have proved that ‖M‖o(t) = height(t) α for every t ∈ TΣ. �

Let t ∈ TΣ. Finally, we verify that bu-tst can implement �checking
followed by deletion� [35, Section 2]. To this end, we show an important
observation that states: if there is a subtree t′ ∈ sub(t) which cannot be

translated successfully by any state (i. e., hηµ(t
′)q = 0̃ for every state q),

then the tree t cannot be translated successfully by any state.

Observation 4.9. Let M = (Q,Σ,∆,A, F, µ) be a bu-tst, and let

t ∈ TΣ. If for some t′ ∈ sub(t) we have hηµ(t
′)q = 0̃ for every q ∈ Q,

then also hηµ(t)q = 0̃ for every q ∈ Q. Moreover, ‖M‖η(t) = 0̃ in this
situation.

Proof. Let k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ be such that for some
i ∈ [k] we have hηµ(ti)q = 0̃ for every q ∈ Q. We prove hηµ(σ(t1, . . . , tk))q = 0̃
for every q ∈ Q.

hηµ(σ(t1, . . . , tk))q
= (by De�nition 4.7(1) and the fact that M is bottom-up)∑

q1,...,qk∈Q
µk(σ)q,q1···qk←−η

(
hηµ(ti)qi

)
i∈[k]
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= (by Observation 3.4(3) )∑
q1,...,qk∈Q

0̃ = 0̃

Note that hηµ(σ(t1, . . . , tk))q is indeed well-de�ned. With the help of the

previous statement we can now prove that hηµ(t)q = 0̃ for every q ∈ Q by a
straightforward induction. Finally, with the help of Observation 3.4(3) we
thus obtain

‖M‖η(t) =
∑
q∈Q

Fq←−η (hηµ(t)q) =
∑
q∈Q

0̃ = 0̃ . �

Note that ‖M‖η(t′) = 0̃ would not be a su�cient precondition for
the above observation. Furthermore, we note that Observation 4.9 does
not hold for td-tst.

3. Syntactic restrictions

In this section we introduce the various syntactic restrictions on
tst that we use and explore in the forthcoming material. Many of
the restrictions already exist in the literature [41, 58], so that we
illustrate only few restrictions by examples. Some properties carry the
pre�x �bu� or �td� to show that they are intended for bu-tst or td-tst,
respectively. First we de�ne the properties only for tree representations.

Definition 4.10 (see [41, De�nitions 3.9 and 3.10]). We say that
a tree representation µ over Q, Σ, ∆, and A is:

• polynomial (respectively, monomial and boolean), if µk(σ)q,w
is polynomial (respectively, monomial and boolean) for every
k ∈ N, σ ∈ Σk, q ∈ Q, and w ∈ Q(Xk)

∗;
• bu-deterministic (respectively, bu-total), if for every k ∈ N,
σ ∈ Σk, and q1, . . . , qk ∈ Q there exists at most (respectively,
at least) one pair (q, u) ∈ Q× T∆(Z) such that

u ∈ supp(µk(σ)q,q1(x1)···qk(xk)) ;

• td-deterministic (respectively, td-total), if for every k ∈ N,
σ ∈ Σk, and q ∈ Q there exists at most (respectively, at least)
one (w, u) ∈ Q(Xk)

∗ × T∆(Z) such that u ∈ supp(µk(σ)q,w);
• input-linear (respectively, input-nondeleting), if for every in-
teger k ∈ N, σ ∈ Σk, q ∈ Q, and w ∈ Q(Xk)

∗ such that

µk(σ)q,w 6= 0̃ the word w contains each x ∈ Xk at most (re-
spectively, at least) once;
• output-linear (respectively, output-nondeleting), if µk(σ)q,w
is linear (respectively, nondeleting) in Z|w| for every k ∈ N,
σ ∈ Σk, q ∈ Q, and w ∈ Q(Xk)

∗; and
• linear (respectively, nondeleting), if µ is input- and output-
linear (respectively, input- and output-nondeleting).
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Note that polynomial tree representations are �nitely representable
due to the �niteness of the input ranked alphabet Σ, the fact that for
every k ∈ N almost all entries in the matrices in the range of µk are 0̃,
and the property that each entry is �nitely representable. The prop-
erties monomial and boolean are straightforward. A classic property
is determinism. Let k ∈ N and σ ∈ Σk. For bottom-up tree repre-
sentations determinism amounts to the restriction that for each given
combination of k states, in which the k subtrees are processed, there is
at most one state and output tree, which allow the input symbol σ to
be processed. Similarly, for totality there should be at least one state
and output tree.

Let us note some trivial relations between the introduced properties.
Bu-deterministic bottom-up as well as td-deterministic tree represen-
tations are monomial, and monomial tree representations are polyno-
mial. Moreover, a bottom-up tree representation is necessarily input-
linear and input-nondeleting, whereas a top-down tree representation
is output-linear and output-nondeleting by de�nition. We agree upon
the following convention. Whenever we explicitly mention the property
�bottom-up� (respectively, �top-down�), then we drop the pre�x �bu�
(respectively, �td�) from the remaining properties. Thus, instead of the
cumbersome �bu-total and bu-deterministic bottom-up tree represen-
tation� we only write �total and deterministic bottom-up tree represen-
tation�. Let us examine our example bottom-up tree representation µ
from Example 4.4 and determine the properties it has.

Example 4.11. Let µ be the bottom-up tree representation of Ex-
ample 4.4. We easily observe that µ is polynomial, bu-total, td-total,
input-nondeleting, and linear. Clearly, µ is not monomial and thereby
also neither bu-deterministic nor td-deterministic. Recall that µ uses
the arctic semiring A∞. With this in mind it turns out that µ is not
boolean, because (µ2(σ)?,??, z1) = 1 /∈ {−∞, 0}.

Now we are ready to de�ne the properties for tst. Most of the
properties are simply lifted from the tree representation but occasion-
ally restrictions are added. So, e. g., for td-determinism we additionally
require that there is at most one initial state. Finally, the homomor-
phism property is a combination of determinism, totality, and single-
state (i. e., card(Q) = 1).

Definition 4.12. Let M = (Q,Σ,∆,A, F, µ) be a tst. We say that
M is:

• linear (respectively, nondeleting, input-linear, input-nondelet-
ing, output-linear, and output-nondeleting), if µ is linear (re-
spectively, nondeleting, input-linear, input-nondeleting, out-
put-linear, and output-nondeleting);
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• polynomial (respectively, monomial and boolean), if µ and Fq
are polynomial (respectively, monomial and boolean) for every
q ∈ Q;
• bu-deterministic (respectively, bu-total), if µ is bu-determin-
istic (respectively, bu-total) and for every q ∈ Q there ex-
ists at most (respectively, at least) one u ∈ C∆(Z1) such that
u ∈ supp(Fq);
• td-deterministic (respectively, td-total), if µ is td-determinis-
tic (respectively, td-total) and there exists at most (respectively,
at least) one pair (q, u) ∈ Q×C∆(Z1) such that u ∈ supp(Fq);
and
• a bu-homomorphism (respectively, td-homomorphism), if M
is bu-total and bu-deterministic (respectively, td-total and td-
deterministic), Q is a singleton, and Fq = 1z1 for every q ∈ Q.

Note that polynomial tst are �nitely representable. The properties
monomial, boolean, nondeleting, and linear are straightforward. Deter-
minism is special, because in addition to a deterministic tree represen-
tation, also their top-most output must be uniquely determined. This
means that Fq is monomial for every q ∈ Q. Moreover, for td-tst there

exists at most one q ∈ Q such that Fq 6= 0̃, thus there is at most one
initial state. We again note that every deterministic bu-tst is monomial
and every td-deterministic tst is monomial (we study deterministic tst
intensively in Chapter 5). Monomial tst are clearly polynomial.

We also observe that bu-tst are necessarily input-linear and input-
nondeleting, whereas td-tst are by de�nition output-linear and output-
nondeleting. We agree upon the following convention. Whenever we
explicitly mention the property �bottom-up� (respectively, �top-down�),
then we drop the pre�x �bu� (respectively, �td�) from the remain-
ing properties. Thus, instead of the cumbersome �bu-total and bu-
deterministic bu-tst� we only write �total and deterministic bu-tst�.
Let us examine our example bu-tst M4.6 from Example 4.6 and deter-
mine the properties it has.

Example 4.13. Let M4.6 be the bu-tst of Example 4.6. It is straight-
forward to show that M4.6 is polynomial, bu-total, td-total, input-non-
deleting, and linear. It is not monomial and thereby also neither bu-
deterministic nor td-deterministic. From this it follows that M4.6 is
not a bu-homomorphism and not a td-homomorphism. Finally, M4.6 is
not boolean because its tree representation is not boolean.

Let us return to the issue of well-de�nedness of the computed η-t-ts
transformation. With the help of Observation 3.3 we can conclude the
following observation.

Observation 4.14. Let M = (Q,Σ,∆,A, F, µ) be a tst, and let
η ∈ {ε, o}. The η-t-ts transformation ‖M‖η is well-de�ned for every
t ∈ TΣ, whenever:
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(1) A is ℵ0-complete with respect to
∑
;

(2) M is a td-tst; or
(3) M is polynomial.

Proof. The �rst two cases are straightforward. For the second case,
we observe that

µk(σ)
η
(V1, . . . , Vk)q =

∑
w∈Q(Xk)∗,

w=q1(xi1
)···qn(xin )

µk(σ)q,w←−η
(
(Vij )qj

)
j∈[n]

(21)

is well-de�ned by Observation 3.3 because µk(σ)q,w is nondeleting and linear
in Z|w| for every w ∈ Q(Xk)∗ and there are only �nitely many w ∈ Q(Xk)∗

such that µk(σ)q,w 6= 0̃ by De�nition 4.1.
In the third case, we have that (21) is well-de�ned by Observation 3.3, if

the tree series V1, . . . , Vk are polynomial. It can easily be shown by structural
induction that hηµ(t)q is well-de�ned and polynomial for every t ∈ TΣ and
q ∈ Q [55, Proposition 3.4]. Thus the statement follows. �

In the sequel we use tables such as Table 2 to present the properties
that are preserved by constructions. The abbreviations used in those
tables are presented in Table 1. A �3�-symbol states that the prop-
erty is preserved by the construction (i. e., given that the input tst
have the considered property, also the constructed tst has this prop-
erty), whereas a �7�-symbol states that the property is not necessarily
preserved.

Since we are mostly interested in bu-tst and td-tst, we introduce
the set

Pref = {p, d, t, l, n, b, h}
where the letters stand for polynomial, deterministic, total, linear, non-
deleting, boolean, and homomorphism, respectively. We introduce the
set Π = P(Pref), and for every x ∈ Π we also set Πx = {π ∈ Π | x ⊆ π}.
Henceforth, we sometimes say that a tstM , which is bottom-up or top-
down, has properties x where x ∈ Π to mean that M has all the prop-
erties whose abbreviation belongs to x. For brevity, we usually omit
set braces and commata for elements of Π and just write ptl instead of
{p, t, l}. So we would say that the bu-tst M4.6 from Example 4.6 has
properties ptl.

In the forthcoming chapters we are interested in the computational
power of certain restricted bu-tst and td-tst. More precisely, to every
class of restricted bu-tst or td-tst (see the properties in De�nition 4.12)
we associate the class of all η-t-ts transformations computed by them.
Then we compare such classes of η-t-ts transformations by means of in-
clusion. The next de�nition establishes shorthands for classes of η-t-ts
transformations.

Definition 4.15. Let η ∈ {ε, o} and x ∈ Π. The class of all
η-t-ts transformations computable by bu-tst with properties x over the
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Table 1. Abbreviations of properties.

bu bottom-up td top-down
p polynomial m monomial
bu-d bu-deterministic bu-t bu-total
td-d td-deterministic td-t td-total
i-l input-linear i-n input-nondeleting
o-l output-linear o-n output-nondeleting
bu-h bu-homomorphism b boolean
td-h td-homomorphism

semiring A is denoted by x�BOTη(A), and the class of all η-t-ts trans-
formations computable by td-tst with properties x over A is denoted by
x�TOPη(A).

We just write BOTη(A) and TOPη(A) instead of ∅�BOTη(A) and
∅�TOPη(A), respectively.

4. Relating top-most output and designated states

In [41, De�nition 3.4] tree series transducers are introduced with
a set D ⊆ Q of so-called designated states instead of the top-most
output F in our De�nition 4.5. Our notion is obviously slightly stronger
because we can simulate designated states. Given a set D ⊆ Q of
designated states we construct F by

Fq =

{
1 z1 if q ∈ D,
0̃ otherwise;

for every q ∈ Q. Consequently, we call a tst M = (Q,Σ,∆,A, F, µ) a

tst with designated states whenever Fq ∈ {0̃, 1z1} for every q ∈ Q. Next
we show that for every tst we can construct a semantically equivalent
tst with designated states. However, the involved construction does not
preserve bu-determinism, and we show in Chapter 5 that deterministic
bu-tst are indeed more powerful than the deterministic bottom-up tree
series transducers of [41].

Lemma 4.16. Let M be a polynomial tst, and let η ∈ {ε, o}. There
exists a tst M ′ with designated states such that ‖M ′‖η = ‖M‖η.

Proof. Let M = (Q,Σ,∆,A, F, µ) and let Q = {q | q ∈ Q} be disjoint
with Q. We construct M ′ = (Q′,Σ,∆,A, F ′, µ′) as follows:

• Q′ = Q ∪Q;
• for every q ∈ Q let F ′

q = 0̃ and

F ′
q =

{
1 z1 if Fq 6= 0̃,
0̃ otherwise;
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• for every k ∈ N, σ ∈ Σk, q ∈ Q, and w ∈ Q(Xk)∗ let

µ′k(σ)q,w = µk(σ)q,w and µ′k(σ)q,w = Fq←−η (µk(σ)q,w) .

It remains to prove that ‖M ′‖η = ‖M‖η. It is obvious that h
η
µ′(t)q = hηµ(t)q

for every t ∈ TΣ and q ∈ Q. Using this auxiliary statement we prove the
main statement. Let k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ.

‖M ′‖η(σ(t1, . . . , tk))

= (by De�nition 4.7(2) )∑
q∈Q′

F ′
q←−η

(
hηµ′(σ(t1, . . . , tk))q

)
= (by de�nition of F ′ and Observation 3.4(2) )∑

q∈Q
F ′
q←−η

(
hηµ′(σ(t1, . . . , tk))q

)
= (by de�nition of F ′ and ←−η )∑

q∈Q,Fq 6=e0
hηµ′(σ(t1, . . . , tk))q

= (by De�nition 4.7(1) )∑
q∈Q,Fq 6=e0

( ∑
w∈Q′(Xk)∗,

w=q1(xi1
)···qn(xin )

µ′k(σ)q,w←−η
(
hηµ′(tij )qj

)
j∈[n]

)

= (by de�nition of µ′, Observation 3.4(2), and hηµ′(t)q = hηµ(t)q)∑
q∈Q,Fq 6=e0

( ∑
w∈Q(Xk)∗,

w=q1(xi1
)···qn(xin )

µ′k(σ)q,w←−η
(
hηµ(tij )qj

)
j∈[n]

)

= (by de�nition of µ′k(σ)q,w)∑
q∈Q,Fq 6=e0

( ∑
w∈Q(Xk)∗,

w=q1(xi1
)···qn(xin )

(
Fq←−η (µk(σ)q,w)

)
←−η

(
hηµ(tij )qj

)
j∈[n]

)

= (by Observation 3.7 and Proposition 3.19;

because of the special shape of Fq, commutativity is not necessary)∑
q∈Q,Fq 6=e0

( ∑
w∈Q(Xk)∗,

w=q1(xi1
)···qn(xin )

Fq←−η
(
µk(σ)q,w←−η (hηµ(tij )qj )j∈[n]

))

= (by Observation 3.7 and Proposition 3.8)∑
q∈Q,Fq 6=e0

Fq←−η
( ∑

w∈Q(Xk)∗,
w=q1(xi1

)···qn(xin )

µk(σ)q,w←−η
(
hηµ(tij )qj

)
j∈[n]

)

= (by Observation 3.4(2) and De�nition 4.7(1) )∑
q∈Q

Fq←−η
(
hηµ(σ(t1, . . . , tk))q

)
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Table 2. Preservation of properties for the construction
of Lemma 4.16.

bu td p m bu-d bu-t td-d td-t i-l i-n o-l o-n b bu-h td-h
3 3 3 3 7 7 3 3 3 3 3 3 7 7 7

= (by De�nition 4.7(2) )

‖M‖η(σ(t1, . . . , tk)) �

The preserved properties are displayed in Table 2. Note that bu-
homomorphism and td-homomorphism are not preserved, but homo-
morphism bu-tst and homomorphism td-tst have designated states by
de�nition.

5. Principal properties

In this section we collect some essential statements about tst, that
(in most cases) are known from the literature. First we show that the
choice of pure or o-substitution is irrelevant for td-tst.

Theorem 4.17 (see [58, Lemma 5.1]). Let M = (Q,Σ,∆,A, F, µ)
be a td-tst.

(1) hεµ = ho
µ and ‖M‖ε = ‖M‖o.

(2) x�TOPε(A) = x�TOPo(A) for every x ∈ Π.

Proof. Essentially, the two statements are proved in [58, Lemma 5.1
and Theorem 5.2]. The main argument required for the proof is delivered by
Observation 3.7. �

Similarly, there is no di�erence in terms of transformational power
between bu-tst using pure and o-substitution in the boolean semiring.
In fact, this is proved for boolean polynomial bu-tst over additively
idempotent semirings in [58, Theorem 5.8] and can easily be extended
to boolean bu-tst over additively idempotent semirings with neces-
sary

∑
[58, Observation 5.10].

Observation 4.18 (see [58, Corollary 5.9]). For every x ∈ Π:

x�BOTε(B) = x�BOTo(B) . (22)

Observation 4.19. LetM = (Q,Σ,∆,A, F, µ) be a tst with boolean
tree representation µ. Then hεµ = ho

µ and ‖M‖ε = ‖M‖o.

The next proposition relates homomorphism bu-tst and homomor-
phism td-tst over the boolean semiring. In fact, over the boolean semi-
ring the transformational power of homomorphism bu-tst and homo-
morphism td-tst coincides [35, Lemma 3.2].

Proposition 4.20 (see [35, Lemma 3.2]). For every x ∈ Πh:

x�BOTε(B) = x�TOPε(B) . (23)
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Next, we restate the equality of the classes of ε-t-ts and o-t-ts trans-
formations computed by bu-tst for all properties that contain both the
nondeletion as well as the linearity property. This equality is shown
in [58, Theorem 5.5], but can also be seen from the de�nition of pure
and o-substitution, because both notions coincide whenever the target
tree series is nondeleting and linear (see Observation 3.7). If A is com-
mutative, then we even have that the classes of ε-t-ts transformations
computed by bu-tst and td-tst coincide [41, Theorem 5.24].

Proposition 4.21 (see [58, Theorem 5.5] and [41, Theorem 5.24]).
For every x ∈ Πnl:

x�BOTε(A) = x�BOTo(A) . (24)

If A is commutative, then for every x ∈ Πnl \ (Πd ∪ Πt):

x�BOTε(A) = x�TOPε(A) . (25)

In Theorem 3.28 we showed that o-substitution preserves recogniz-
ability. We now lift this statement to the level of tst. A tree series
transducer M = (Q,Σ,∆,A, F, µ) is called recognizable, if for every
k ∈ N, σ ∈ Σk, q ∈ Q, and w ∈ Q(Xk)

∗ the tree series µk(σ)q,w and Fq
are recognizable.

Theorem 4.22. Let A be commutative, additively idempotent, and
ℵ0-complete with respect to a necessary

∑
. Let M = (Q,Σ,∆,A, F, µ)

be an output-linear recognizable tst. Then for every t ∈ TΣ the tree
series ‖M‖o(t) is recognizable.

Proof. We prove the auxiliary statement that ho
µ(t)q is recognizable

for every t ∈ TΣ and q ∈ Q by induction on t. So let t = σ(t1, . . . , tk) for
some k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ. By De�nition 4.7(1)

ho
µ(σ(t1, . . . , tk))q =

∑
w∈Q(Xk)∗,

w=q1(xi1
)···qn(xin )

µk(σ)q,w←−o (ho
µ(tij )qj )j∈[n] .

By induction hypothesis ho
µ(tij )qj is recognizable for every j ∈ [n]. Since

M is recognizable, µk(σ)q,w is recognizable. By Theorem 3.28 also

µk(σ)q,w←−o (ho
µ(tij )qj )j∈[n]

is recognizable because µk(σ)q,w is linear in Zn. Since recognizable tree series
are closed under �nite sums [9, Proposition 3.1] (see also [31, Lemma 6.4])
we obtain that ho

µ(t)q is recognizable.
For every t ∈ TΣ we have

‖M‖o(t) =
∑
q∈Q

Fq←−o (ho
µ(t)q)

by De�nition 4.7(2). In the auxiliary statement we showed that ho
µ(t)q is

recognizable. Moreover, Fq←−o (ho
µ(t)q) is recognizable due to Theorem 3.28.

Thus, also ‖M‖o(t) is recognizable. �
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Finally, we present an easy observation that simpli�es some of the
discussions in the sequel.

Observation 4.23. Let M = (Q,Σ,∆,A, F, µ) be a homomor-
phism bu-tst or a homomorphism td-tst. Moreover, let η ∈ {ε, o} and
Q = {?}. Then for every t ∈ TΣ we have ‖M‖η(t) = hηµ(t)?. In
particular, ‖M‖η(α) = µ0(α)? for every α ∈ Σ0.

Proof. We can give a straightforward direct proof.

‖M‖η(t) =
∑
q∈Q

Fq←−η (hηµ(t)q) = (1 z1)←−η (hηµ(t)?) = hηµ(t)?

Note that the restriction to designated states is essential here. �

Several more statements on bu-tst and td-tst can be found in the
next chapters.

6. Two �nal examples

Finally, let us present two examples, which are relevant in Chap-
ter 6. Moreover, we chose to present a deterministic bu-tst and a deter-
ministic td-tst, because deterministic tst play the central role in Chap-
ter 5. We demonstrate how to achieve exponentiation of a coe�cient
using a deterministic bu-tst with just a single state in Example 4.24
and a deterministic td-tst with just a single state in Example 4.26.

Example 4.24. Let Σ = {γ(1), α(0)} and ∆ = {σ(2), α(0)} and
a ∈ A. We consider the bu-tst Ma

4.24 = ({?},Σ,∆,A, F, µ) with top-
most output F? = a z1 and

µ0(α)? = a α and µ1(γ)?,? = a σ(z1, z1) .

Clearly, Ma
4.24 is a nondeleting deterministic bu-tst, which is not a ho-

momorphism. We illustrate Ma
4.24 in Figure 4(left).

Let us state thatMa
4.24 indeed realizes the exponentiation of a, when

we employ o-substitution. Furthermore, it is noteworthy that Ma
4.24

outputs fully balanced trees. Since we have seen several examples of
applications of De�nitions 4.7 and 3.1 and Observation 3.4, we only
occasionally refer to those basic statements in the sequel.

Lemma 4.25. Let a ∈ A and M = Ma
4.24 = ({?},Σ,∆,A, F, µ)

be the bu-tst of Example 4.24. For every t ∈ TΣ we have the equality
‖M‖o(t) = a2n+1

un where n = height(t) and un is the fully balanced
tree over ∆ of height n.

Proof. We �rst prove that ho
µ(t)? = a2n+1−1 un for every t ∈ TΣ.

Induction base: Let t = α and hence n = 0.

ho
µ(α)? = µ0(α)

o
()? = µ0(α)?←−o () = µ0(α)? = a α = a2n+1−1 un
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?

a z1

γ/a σ(z1, z1)

α/a α

?

a z1

1

γ/a σ(z1, z2)

α/a α

1

Figure 4. Bu-tst Ma
4.24 (left) and td-tst Ma

4.26 (right)
over A (see Examples 4.24 and 4.26).

Induction step: Let t = γ(t′) for some t′ ∈ TΣ. Recall that n = height(t).

ho
µ

(
γ(t′)

)
?

= µ1(γ)
o(
ho
µ(t

′)
)
?

=
∑
q∈{?}

µ1(γ)?,q←−o
(
ho
µ(t

′)q
)

= µ1(γ)?,?←−o
(
ho
µ(t

′)?
)

= (by induction hypothesis and de�nition of µ)

a σ(z1, z1)←−o (a2n−1 un−1) =
(
a · (a2n−1)2

)
σ(un−1, un−1)

= a2n+1−1 un

We have

‖M‖o(t) = F?←−o (ho
µ(t)?) = a · ho

µ(t)? = a2n+1
un

for every t ∈ TΣ with height(t) = n, which proves the statement. �

Note that ‖Ma
4.24‖ε(t) = an+2un for every t ∈ TΣ and n = height(t).

Now let us show that the transformation ‖Ma
4.24‖o can also be realized

by a deterministic td-tst. In the next example we present the td-tst,
and in the following lemma we state the equivalence of the computed
transformations.

Example 4.26. Let Σ = {γ(1), α(0)} and ∆ = {σ(2), α(0)} and
a ∈ A. We consider the td-tst Ma

4.26 = ({?},Σ,∆,A, F, µ) with top-
most output F? = a z1 and

µ0(α)? = a α and µ1(γ)?,?(x1)?(x1) = a σ(z1, z2) .

Clearly, Ma
4.26 is a nondeleting deterministic td-tst, which is not a ho-

momorphism. We illustrate Ma
4.26 in Figure 4(right).

Lemma 4.27. Let a ∈ A. Moreover, let

M = Ma
4.26 = ({?},Σ,∆,A, F, µ)

be the td-tst of Example 4.26. For every t ∈ TΣ we have the equality
‖M‖ε(t) = a2n+1

un where n = height(t) and un is the fully balanced
tree over ∆ of height n.

Proof. The proof is analogous to the one of Lemma 4.25. �



76 4. TREE SERIES TRANSDUCERS

7. Open problems and future work

In the literature [79, 41, 58] well-de�nedness is usually enforced
by considering only ℵ0-complete semirings. We presented three simple
conditions in Observation 4.14, each of which implies that the com-
puted η-t-ts transformation is indeed a mapping (and thus de�ned for
every input tree). It would be worthwhile to investigate more elabo-
rate conditions that enforce well-de�nedness for bu-tst. Along this line
of research, the question of well-de�nedness of the computed η-ts-ts
transformation should be investigated for bu-tst as well as td-tst.

Another potential research direction concerns more powerful de-
vices. Bottom-up and top-down tree transducers were generalized
to attributed tree transducers [53], macro tree transducers [37, 26,
45], modular tree transducers [46], tree-to-graph-transducers [47], and
many more devices. If we presuppose that there are strong enough
(practical or theoretical) applications for those devices, then we could
also generalize them to their corresponding weighted versions and ex-
pose the weighted devices to meticulous study.



CHAPTER 5

Deterministic Tree Series Transducers

With Earth's �rst Clay They did the Last Man's knead,
And then of the Last Harvest sow'd the Seed:

Yea, the �rst Morning of Creation wrote
What the Last Dawn of Reckoning shall read.

Omar Khayyam (1048�1123): �Rubaiyee LIII�
Rubaiyat, rendered into English verse by Edward J. Fitzgerald, 1120

1. Bibliographic information

In this chapter, we investigate the inclusion relation between classes
of ε-t-ts and o-t-ts transformations computed by deterministic bottom-
up and top-down tst. We derive several Hasse diagrams displaying the
relationships given certain properties of the underlying semiring.

This chapter is a heavily revised and extended version of [85].
Therein the author studies deterministic bu-tst with designated states;
i. e., deterministic bu-tst whose �nal output is a vector of 1 z1 and 0̃.
Here we consider deterministic bu-tst with �nal outputs. Surprisingly,
the results obtained in this chapter are essentially di�erent from those
of [85], so we only present the results for bu-tst with �nal outputs
and refer the reader to [85] for the results on bu-tst with designated
states. Moreover, we additionally investigate classes of transformations
computed by deterministic td-tst with initial outputs.

2. Properties of deterministic tree series transducers

In this section we present properties of deterministic bu-tst and
deterministic td-tst, which we use in the forthcoming sections. In
the sequel, we often write deterministic bu-tst or td-tst to mean bu-
deterministic bu-tst or td-deterministic td-tst. Most of the material in
this section is known, so that we refrain from giving plenty of examples.
Moreover, we recall that deterministic bu-tst and td-tst are polynomial,
so that their η-t-ts transformation is well-de�ned by Observation 4.14.

First we recall a central property of deterministic bu-tst and td-tst.
Roughly speaking, the additive operation of the underlying semiring is
irrelevant concerning computations of a deterministic bu-tst or td-tst;
i. e., all computations are performed in the multiplicative monoid of
the semiring. If η = ε then the proof of this statement is in [41,
Proposition 3.12]. The proof of the statement with η = o uses exactly
the same argumentation.

77
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Proposition 5.1. Let M = (Q,Σ,∆,A, F, µ) be a deterministic
bu-tst or td-tst, and let η ∈ {ε, o}.

(1) If M is bottom-up then for every t ∈ TΣ there exists at most

one q ∈ Q such that hηµ(t)q 6= 0̃.
(2) For every k ∈ N, σ ∈ Σk, t1, . . . , tk ∈ TΣ, and q ∈ Q there

exists a w = q1(xi1) · · · qn(xin) ∈ Q(Xk)
∗ such that

hηµ(σ(t1, . . . , tk))q = µk(σ)q,w←−η (hηµ(tij)qj)j∈[n] .

(3) There exists at most one q ∈ Q such that Fq←−η (hηµ(t)q) 6= 0̃.
(4) For every t ∈ TΣ there exists a q ∈ Q such that

‖M‖η(t) = Fq←−η (hηµ(t)q) .

(5) For every t ∈ TΣ and q ∈ Q we have that hηµ(t)q and ‖M‖η(t)
are monomial.

Proof. Let us prove the statements individually.

(1) This statement is essentially proved in [58, Proposition 4.11], but
we repeat the proof for clarity. We prove the statement inductively,
so let t = σ(t1, . . . , tk) for some k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ.
Moreover, let q ∈ Q be arbitrary.

hηµ(σ(t1, . . . , tk))q
= (by De�nition 4.7(1) )∑

q1,...,qk∈Q
µk(σ)q,q1···qk←−η (hηµ(ti)qi)i∈[k]

= (for i ∈ [k] there exists at most one pi ∈ Q such that hηµ(ti)pi 6= 0̃
by induction hypothesis, and µk(σ)q,q1···qk←−η (hηµ(ti)qi)i∈[k] = 0̃
if there exists an i ∈ [k] such that qi 6= pi by Observation 3.4(3);

so for every i ∈ [k] let pi ∈ Q be such that hηµ(ti)pi 6= 0̃ and

if no such pi exists then let pi ∈ Q be arbitrary)

µk(σ)q,p1···pk
←−η (hηµ(ti)pi)i∈[k]

There exists at most one p ∈ Q such that µk(σ)p,p1···pk
6= 0̃ because

M is bu-deterministic. So, if q 6= p then hηµ(t)q = 0̃ by Observa-
tion 3.4. This proves the statement and note that we also proved
Statement (2) for deterministic bu-tst.

(2) For deterministic bu-tst, this statement is already proved in the
proof of Statement (1). So let M be a deterministic td-tst.

hηµ(σ(t1, . . . , tk))q
= (by De�nition 4.7(1) )∑

w∈Q(Xk)∗,
w=q1(xi1

)···qn(xin )

µk(σ)q,w←−η (hηµ(tij )qj )j∈[n]
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= (by td-determinism there exists at most one

w′ = p1(xi′1) · · · pl(xi′l) ∈ Q(Xk)∗ such that µk(σ)q,w′ 6= 0̃,
and for every w = q1(xi1) · · · qn(xin) ∈ Q(Xk)∗ with w 6= w′:

µk(σ)q,w←−η (hηµ(tij )qj )j∈[n] = 0̃ by Observation 3.4(2);

so let w′ = p1(xi′1) · · · pl(xi′l) ∈ Q(Xk)∗ be such that µk(σ)q,w′ 6= 0̃
and if no such w′ exists then let w′ = p1(xi′1) · · · pl(xi′l) ∈ Q(Xk)∗

be arbitrary)

µk(σ)q,w′←−η (hηµ(ti′j )pj )j∈[l]

(3) Assume that M is a deterministic bu-tst. Then by Statement (1)

there exists at most one p ∈ Q such that hηµ(t)p 6= 0̃. In particular,

hηµ(t)q = 0̃ for every q ∈ Q with q 6= p. Thus Fq←−η (hηµ(t)q) = 0̃ for

every such q by Observation 3.4(3), which proves the statement.
Now let M be a deterministic td-tst. By de�nition there exists

at most one p ∈ Q such that Fp 6= 0̃. Thus Fq = 0̃ and thereby

Fq←−η (hηµ(t)q) = 0̃ by Observation 3.4(2) for every q ∈ Q with
q 6= p.

(4) We recall that

‖M‖η(t) =
∑
q∈Q

Fq←−η (hηµ(t)q) .

By Statement (3) there exists at most one state p ∈ Q such that

Fp←−η (hηµ(t)p) 6= 0̃. If no such p ∈ Q exists then let p ∈ Q be
arbitrary. It follows that

‖M‖η(t) = Fp←−η (hηµ(t)p) .

(5) This statement is proved in [58, Proposition 4.11] for deterministic
bu-tst and in [58, Proposition 4.12] for deterministic td-tst. Note
that those propositions additionally assume that M is total and
A zero-divisor free, but these properties are only required to show
that hηµ(t)q 6= 0̃ and ‖M‖η(t) 6= 0̃. We resupply the proof. The

statement is proved by induction on t, so let t = σ(t1, . . . , tk) for
some k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ. By Statement (2) we
have

hηµ(σ(t1, . . . , tk))q = µk(σ)q,w←−η (hηµ(tij )qj )j∈[n]

for some w = q1(xi1) · · · qn(xin) ∈ Q(Xk)∗. By induction hypothesis
hηµ(tij )qj is monomial for every j ∈ [n] and further µk(σ)q,w is
monomial by de�nition. It follows from Observation 3.6(2) that
hηµ(σ(t1, . . . , tk))q is monomial. This proves the �rst part of the
statement.

For the second part we observe that

‖M‖η(t) = Fq←−η (hηµ(t)q)

for some q ∈ Q by Statement (4). By the �rst part of the statement,
hηµ(t)q is monomial and Fq is monomial becauseM is deterministic.
It follows from Observation 3.6(2) that ‖M‖η(t) is monomial. �
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Now let us show that boolean deterministic bu-tst and td-tst com-
pute transformations that map each input tree to a boolean tree series.
The determinism restriction is necessary because boolean tree series
are not closed under η-substitution (see Table 2 in Chapter 3). Even
the restriction to monomial tst is too weak because the η-t-ts transfor-
mation computed by a monomial tst not necessarily maps each input
tree to a monomial tree series.

Observation 5.2. Let M = (Q,Σ,∆,A, F, µ) be a boolean and
deterministic bu-tst or td-tst, and let η ∈ {ε, o}. Then hηµ(t)q and
‖M‖η(t) are boolean for every t ∈ TΣ and q ∈ Q.

Proof. We have already remarked that deterministic bu-tst and td-tst
compute using the multiplicative monoid of A only. Thus, if M is boolean,
then all tree series in the range of the tree representation µ are boolean.
Since {0, 1} is closed under · , we obtain the stated. �

In the preliminaries we recalled the notions of homomorphism and
isomorphism for semirings. Here we present the version for monoids.
Let B = (B, ·) and D = (D, ◦) be monoids. A homomorphism (of
monoids) from B to D is a mapping h : B −→ D such that

h(b1 · b2) = h(b1) ◦ h(b2)

for every b1, b2 ∈ B. The homomorphism h : B −→ D is called an
isomorphism, if h−1 : D −→ B. The monoids B and D are said to be
isomorphic, if there exists an isomorphism from B to D. We denote by
B ∼= D the fact that B and D are isomorphic.

Let A = (A,+, ·) and B = (B,⊕,�) be semirings and A′ = (A′, ·)
be a submonoid of (A, ·). In addition, let τ1 : TΣ −→ A〈〈T∆〉〉 and
τ2 : TΣ −→ B〈〈T∆〉〉 be such that (τ1(t), u) ∈ A′ for every t ∈ TΣ and
u ∈ T∆. We write τ1 ∼=D τ2, if there exists an isomorphism h : A′ −→ B
from (A′, ·) to (B,�) such that h((τ1(t), u)) = (τ2(t), u) for every t ∈ TΣ

and u ∈ T∆. The capital �D� at ∼=D reminds us that the isomorphism
only works for deterministic devices because it is only an isomorphism
between the multiplicative monoids of A′ and B. The relation ∼=D is
lifted to classes of transformations in the usual manner.

Since deterministic bu-tst and td-tst compute in the multiplicative
monoid only, we observe that boolean deterministic bu-tst and td-tst
only use the coe�cients 0 and 1. Since the submonoid ({0, 1}, ·) of
(A, ·) is isomorphic to the multiplicative monoid ({0, 1},∧) of B, we
obtain the following statement.

Observation 5.3. Let A be a semiring. For every x ∈ Πdb and
η ∈ {ε, o}

x�BOTη(A) ∼=D x�BOTη(B) and x�TOPη(A) ∼=D x�TOPη(B) .

Proof. The proof is straightforward and omitted. �
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Finally we recall an important observation from [58]. We have seen
in Observation 5.2 that for boolean and deterministic bu-tst and td-tst,
we have that ‖M‖η(t) is boolean for every input tree t. Moreover, by
Proposition 5.1(5) ‖M‖η(t) is monomial. If we add the totality restric-

tion we obtain ‖M‖η(t) 6= 0̃ for every input tree t. This essentially
means that such tst (at the level of hηµ) cannot implement �checking�;
i. e., selective rejection of some input trees. They may still reject input
trees by entering a state whose top-most output is 0̃.

Observation 5.4 (see [58, Propositions 4.11 and 4.12]). Suppose
η ∈ {ε, o}, and let M = (Q,Σ,∆,A, F, µ) be a boolean, total, and
deterministic bu-tst or td-tst. For every t ∈ TΣ we have ‖M‖η(t) = 1 u
for some u ∈ T∆.

3. The boolean semiring

As a starting point, we state the Hasse diagram (see Figure 1) for
deterministic bu-tst and td-tst over the boolean semiring B (i. e., for
deterministic bottom-up and top-down tree transducers with top-most
outputs). Clearly, the classes are ordered by inclusion, so the order
in all our Hasse diagrams is inclusion. The diagram is well-known
for deterministic bottom-up and top-down tree transducers (with des-
ignated states), and the adaption to devices with top-most outputs is
straightforward. In order to present concise diagrams, we shorten the
denotation of the classes from x�BOTη(A) to just x⊥η and x�TOPη(A)

to x>η for every x ∈ Π and η ∈ {ε, o}. Moreover, we use x=
η to express

that x⊥η = x>η and x`= to express that x`ε = x`o for every ` ∈ {⊥,>,=}.
Thus x=

= stands for x⊥ε = x⊥o = x>ε = x>o .

Theorem 5.5. Figure 1 is the Hasse diagram for A = B.

Proof. The equalities are concluded from Observation 4.18 and The-
orem 4.17 and Proposition 4.20, and all the inclusions hold by de�nition.
Finally, the following eight statements are su�cient to prove strictness and
incomparability (this statement was checked by an algorithm, which com-
putes the minimal set of statements given the supposed Hasse diagram).

dnlt�BOTε(B) 6⊆ d�TOPε(B) (26)

dnlt�TOPε(B) 6⊆ d�BOTε(B) (27)

dnl�BOTε(B) 6⊆ dt�BOTε(B) (28)

dnl�TOPε(B) 6⊆ dt�TOPε(B) (29)

hn�BOTε(B) 6⊆ dl�BOTε(B) (30)

hn�TOPε(B) 6⊆ dl�TOPε(B) (31)

hl�BOTε(B) 6⊆ dn�BOTε(B) (32)

hl�TOPε(B) 6⊆ dn�TOPε(B) (33)



82 5. DETERMINISTIC TREE SERIES TRANSDUCERS

d⊥= d>=

dn⊥= dl⊥= dt⊥= dt>= dn>= dl>=

dnl⊥= dnt⊥= dlt⊥= h=
= dnt>= dlt>= dnl>=

dnlt⊥= hn=
= hl== dnlt>=

hnl==

Figure 1. Hasse diagram for the semi�eld B and the �eld Z2.

The inequalities (28) and (29) are trivial. For this let Σ = {σ(2), α(0)} and
∆ = {γ(1), α(0)} and τ : TΣ −→ B〈〈T∆〉〉 be such that τ(t) = 0̃ for every
t ∈ TΣ. In a straightforward manner we can show that

τ ∈ dnl�BOTε(B) ∩ dnl�TOPε(B)

but τ /∈ dt�BOTε(B) ∪ dt�TOPε(B), which follows from [58, Propositions
4.11 and 4.12]. Inequalities (30)�(33) are also easily seen (cf. [54, Theo-
rem 3.3]). So, e. g., let τ : TΣ −→ B〈〈T∆〉〉 be such that for every t ∈ TΣ

we have τ(t) = 1 γn(α) where n = height(t). It can easily be seen that
τ ∈ hl�BOTε(B), but τ /∈ dn�BOTε(B) ∪ dn�TOPε(B). Moreover, let
τ ′ : T∆ −→ B〈〈TΣ〉〉 be such that for every t ∈ T∆ we have τ ′(t) = 1 ut where
ut ∈ TΣ is the fully balanced tree (over Σ) such that height(ut) = height(t).
Again, an easy proof shows that τ ′ ∈ hn�BOTε(B) and

τ ′ /∈ dl�BOTε(B) ∪ dl�TOPε(B) .

Inequality (26) is easily proved using the fact that deterministic top-down
tree automata are less powerful than deterministic bottom-up tree automata
(see, e. g., [60, Example II.2.11]). We construct a nondeleting, linear, total,
and deterministic bu-tst M following the spirit of [60, Example II.2.11].
Since all states of M are �nal (because M is total), we use the output

tree to signal acceptance. So let Σ = {σ(2), α(0), β(0)} and ∆ = Σ ∪ {δ(2)}
and Q = {?, α, β}. Intuitively, a δ-symbol in the output marks acceptance.
Moreover, let µ0(α)α = 1 α and µ0(β)β = 1 β and

µ2(σ)?,αβ = µ2(σ)?,βα = 1 δ(z1, z2)

µ2(σ)?,αα = µ2(σ)?,ββ = µ2(σ)?,?q = µ2(σ)?,q? = 1 σ(z1, z2)

for every q ∈ Q. As usual all remaining entries in the tree representation µ
are assumed to be 0̃. Then M = (Q,Σ,∆,B, F, µ) with Fq = 1 z1 for
every q ∈ Q (see Figure 2) computes the ε-t-ts transformation τ = ‖M‖ε,
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which maps every t ∈ TΣ to 1 u where u is obtained from t by replacing
subtrees σ(α, β) and σ(β, α) in t by δ(α, β) and δ(β, α), respectively. It is
straightforward to show that no deterministic td-tst over B can compute τ .

Informally speaking, Inequality (27) can be shown by exploiting the fact
that a deterministic td-tst can count (modulo some n > 2) the number
of symbols on a path from the root of the input tree to some other node.
According to its current count, it can then perform output. A deterministic
bu-tst cannot emulate this behavior because at each node it is unaware of the
distance (modulo n) of the current node to the root node. Thus it could only
delay the correct output at this step, which is impossible in the example we

present. More formally, let Σ = {γ(1)
1 , γ

(1)
2 , α(0)} and Q = {0, 1}. Moreover,

let µ0(α)q = 1 α for every q ∈ Q and

µ1(γi)0,1(x1) = 1 z1 and µ1(γi)1,0(x1) = 1 γi(z1)

for every i ∈ [2]. The td-tstM = (Q,Σ,Σ,B, F, µ) with F0 = 0̃ and F1 = 1z1

(see Figure 3) is clearly nondeleting, linear, total, and deterministic and
computes the ε-t-ts transformation τ = ‖M‖ε, which maps every t ∈ TΣ

to 1 u where u is obtained from t by deleting every second position in the
input string; i. e., τ(γ1(γ2(γ1(α)))) = 1 γ1(γ1(α)). It is easily seen that no
deterministic bu-tst can compute τ . �

Let A be a commutative semiring with at least three elements.
In Section 4, we derive some statements which hold for every such
semiring A. Moreover, we completely describe the situation for ε-t-ts
transformations computed by deterministic td-tst provided that A is
zero-divisor free. We continue in Section 5 with semirings A that are
not multiplicatively periodic. Section 6 is dedicated to multiplicatively
periodic, but not multiplicatively idempotent semirings A. The �nal
case, which is handled in Section 7, assumes that A is multiplicatively
idempotent.

4. Arbitrary semirings

In this section, we derive some statements that hold for every com-
mutative semiring A that has at least three elements (i. e., 0 6= 1 and
A is not isomorphic to B or Z2). Then we consider ε-t-ts transfor-
mations that are computed by deterministic td-tst. Foremost impor-
tant, we show how to use the results of the Hasse diagram in Fig-
ure 1 in order to obtain incomparability results for classes of ε-t-ts
and o-t-ts transformations over semirings A di�erent from B and Z2.
Roughly speaking, we show that all inequalities present in Figure 1
are preserved in the transition from B to A. This is mainly due to
the fact that ({0, 1}, ·) is a submonoid (with absorbing 0) of (A, ·),
which is isomorphic to ({0, 1},∧). For the rest of this section, let
A = (A,+, ·) be a nontrivial (i. e., 0 6= 1) and commutative semiring
and η, κ ∈ {ε, o}. Moreover, let M = (Q,Σ,∆,A, F, µ) be a tst. Note
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α ? β

1 z1 1 z1 1 z1σ/ . . .

σ/ . . .
α/1 α β/1 β

σ/ . . . σ/ . . .

σ/ . . . σ/ . . .

σ/ . . .

σ/1 δ(z1, z2)

σ/1 δ(z1, z2)

Figure 2. Bu-tst over B that is used to show Inequal-
ity (26) of Theorem 5.5 where σ/ . . . stands for
σ/1 σ(z1, z2).

1 0

1 z1

α/1 α α/1 α

γ1/1 γ1(z1)

γ2/1 γ2(z1)

γ1/1 z1

γ2/1 z1

Figure 3. Td-tst over B that is used to show Inequal-
ity (27) of Theorem 5.5.
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that well-de�nedness of η-t-ts transformations is no issue, because de-
terministic bu-tst and td-tst are polynomial (see Observation 4.14).

The result, that all inequalities are preserved, is achieved by two
preparatory propositions and one lemma. First we present a proposi-
tion that shows that top-most outputs F can equivalently be replaced
by boolean top-most outputs, if F is a vector of monomial tree se-
ries and the nonzero coe�cients in F are (multiplicatively) invert-
ible. Note that the �rst condition is automatically ful�lled, if M is
td-deterministic or bu-deterministic. In [16, Lemma 6.1.4] a similar
construction is stated for weighted tree automata. There it is shown
that given a commutative semi�eld and a weighted tree automaton with
�nal weights, there exists a semantically equivalent weighted tree au-
tomaton with �nal states (i. e., boolean �nal weights). Our statement
generalizes this statement to tst and only assumes that the nonzero
coe�cients in the top-most output tree series are invertible as opposed
to all nonzero semiring elements are invertible. This slight change is
necessitated by a forthcoming proposition (see Proposition 5.9), where
we only show this weaker condition for particular tst.

The main idea (see [16, Lemma 6.1.4]) of the construction (ex-
plained below for bu-tst) is to move the coe�cient from F into the tree
representation µ. Roughly speaking, the top-most output coe�cient
corresponding to a state q (the coe�cient is unique because Fq is mono-
mial) is applied, whenever M changes into state q. Of course, it may
happen that the computation does not terminate in q, but rather pro-
ceeds by changing into another state. Thus, we multiply the inverses
of the top-most output coe�cients corresponding to the states qi of
subcomputations to all tree representation entries µk(σ)q,q1(xi1

)···qn(xin ).
Since these factors are separated from their inverses by other coe�-
cients, we assume that A is commutative. Finally, a technical problem
(division by zero) arises, whenever the top-most output coe�cient cor-
responding to a state is 0. Such a coe�cient may not be moved into
the tree representation µ, but should remain in F .

Proposition 5.6 (cf. [16, Lemma 6.1.4]). If Fq is monomial and
(Fq, u) is invertible for every q ∈ Q and u ∈ supp(Fq), then there exists
a tst M ′ with top-most outputs F ′ such that ‖M ′‖η = ‖M‖η and every
entry in F ′ is boolean and monomial.

Proof. Since Fq is monomial for every q ∈ Q, we let aq ∈ A and
uq ∈ C∆(Z1) be such that Fq = aq uq. Moreover, let a′q = aq if aq 6= 0,
and a′q = 1 otherwise. Note that a′q is invertible for every q ∈ Q. We
construct M ′ = (Q,Σ,∆,A, F ′, µ′) as follows. For every q ∈ Q we let
F ′
q = χ(supp(Fq)), and for every k ∈ N, symbol σ ∈ Σk, state q ∈ Q,
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w = q1(xi1) · · · qn(xin) ∈ Q(Xk)∗, and u ∈ T∆(Zn) let

(µ′k(σ)q,w, u) = a′q · (µk(σ)q,w, u) ·
∏
j∈[n]

(a′qj )
− sel(u,j,η) .

(Recall that (4) de�nes sel.) Clearly, a′q and (a′qj )
− sel(u,j,η) are nonzero and

invertible for every j ∈ [n]. Thus, it follows from Observation 2.2 that
(µ′k(σ)q,w, u) = 0 if and only if (µk(σ)q,w, u) = 0. Hence

supp(µ′k(σ)q,w) = supp(µk(σ)q,w) .

By de�nition, F ′
q is boolean and monomial for every q ∈ Q. It remains

to prove ‖M ′‖η = ‖M‖η. For this we �rst prove

hηµ′(t)q = a′q · hηµ(t)q (34)

for every q ∈ Q and t ∈ TΣ by induction on t, so let t = σ(t1, . . . , tk) for
some k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ.

hηµ′
(
σ(t1, . . . , tk)

)
q

= (by De�nition 4.7(1) )∑
w∈Q(Xk)∗,

w=q1(xi1
)···qn(xin )

µ′k(σ)q,w←−η
(
hηµ′(tij )qj

)
j∈[n]

= (by de�nition of ←−η and induction hypothesis)∑
w∈Q(Xk)∗,

w=q1(xi1
)···qn(xin )

( ∑
u∈supp(µ′k(σ)q,w),

(∀j∈[n]) : uj∈supp(a′qj
·hη

µ(tij )qj )(
(µ′k(σ)q,w, u) ·

∏
j∈[n]

(a′qj · h
η
µ(tij )qj , uj)

sel(u,j,η)
)
u[uj ]j∈[n]

)
= (by de�nition of µ′k(σ)q,w and supp(µ′k(σ)q,w) = supp(µk(σ)q,w)

and supp(a′qj · h
η
µ(tij )qj ) = supp(hηµ(tij )qj ) since a

′
qj is invertible)∑

w∈Q(Xk)∗,
w=q1(xi1

)···qn(xin )

( ∑
u∈supp(µk(σ)q,w),

(∀j∈[n]) : uj∈supp(hη
µ(tij )qj )

(
a′q ·

(
µk(σ)q,w, u

)
·

·
(∏
j∈[n]

(a′qj )
− sel(u,j,η)

)
·
(∏
j∈[n]

(a′qj )
sel(u,j,η)

)
·

·
∏
j∈[n]

(hηµ(tij )qj , uj)
sel(u,j,η)

)
u[uj ]j∈[n]

)
= a′q ·

∑
w∈Q(Xk)∗,

w=q1(xi1
)···qn(xin )

( ∑
u∈supp(µk(σ)q,w),

(∀j∈[n]) : uj∈supp(hη
µ(tij )qj )

((
µk(σ)q,w, u

)
·

·
∏
j∈[n]

(hηµ(tij )qj , uj)
sel(u,j,η)

)
u[uj ]j∈[n]

)
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Table 1. Preservation of properties for the construction
of Proposition 5.6.

bu td p m bu-d bu-t td-d td-t i-l i-n o-l o-n b bu-h td-h
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3

1 2

−4 z1

σ/2 σ(z1, z2)

α/4 α

σ/0 γ(z1)

α/5 α

σ/0 γ(z1)

α/− 3 α

1 2
1 2

Figure 4. Td-tst M5.7 over Tsf (see Example 5.7).

= (by de�nition of ←−η )

a′q ·
∑

w∈Q(Xk)∗,
w=q1(xi1

)···qn(xin )

µk(σ)q,w←−η
(
hηµ(tij )qj

)
j∈[n]

= (by De�nition 4.7(1) )

a′q · hηµ
(
σ(t1, . . . , tk)

)
q

Now we can prove ‖M ′‖η = ‖M‖η as follows. For every q ∈ Q, let bq = 0 if
aq = 0, and bq = 1 otherwise. We observe that according to these de�nitions
we have F ′

q = bq uq and aq = a′q · bq.

‖M ′‖η(t)
= (by De�nition 4.7(2), Equation (34), and de�nition of F ′

q)∑
q∈Q

F ′
q←−η

(
hηµ′(t)q

)
=
∑
q∈Q

bq uq←−η
(
a′q · hηµ(t)q

)
= (by Proposition 3.9 and De�nition 4.7(2) )∑

q∈Q
(a′q · bq) uq←−η

(
hηµ(t)q

)
=
∑
q∈Q

Fq←−η
(
hηµ(t)q

)
= ‖M‖η(t) �

Note that the previous construction preserves all introduced prop-
erties (see Table 1); i. e., ifM has a property x ∈ Pref, then alsoM ′ has
property x. Let us �rst illustrate the construction on a deterministic
td-tst.

Example 5.7. Let M5.7 = (Q,Σ,∆,Tsf , F, µ) be the deterministic
td-tst with:

• Q = {1, 2, 3};
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t =

σ

σ

σ

α α

α

σ

σ

α α

α
ut =

σ

γ

γ

α

γ

α

Figure 5. Illustrating the relation between t and ut (see
Example 5.7).

• Σ = {σ(2), α(0)} and ∆ = Σ ∪ {γ(1)};
• F1 = F2 = ∞̃ and F3 = −4 z1; and
• all entries in µ are ∞̃ except

µ2(σ)1,1(x1) = 0 γ(z1) µ2(σ)3,1(x1)2(x2) = 2 σ(z1, z2) µ0(α)2 = −3 α

µ2(σ)2,2(x2) = 0 γ(z1) µ0(α)1 = 5 α µ0(α)3 = 4 α .

The td-tst M5.7 is displayed in Figure 4. Clearly, M5.7 computes the
ε-t-ts transformation ‖M5.7‖ε(t) = 0 ut for every t ∈ TΣ, where ut = α
if t = α, and ut = σ(γn1(α), γn2(α)) if t = σ(t1, t2) and n1 (respec-
tively, n2) is the number of σ-symbols on the left (respectively, right)
spine of t1 (respectively, t2). Thus, for

t = σ(σ(σ(α, α), α), σ(σ(α, α), α))

we have ut = σ(γ2(α), γ(α)) [see Figure 5]. Moreover, F is a vector of
monomial tree series and −4 is invertible in Tsf . Thus we can apply
Proposition 5.6 and obtain the deterministic td-tst

M ′
5.7 = (Q,Σ,∆,Tsf , F

′, µ′)

with:

• F ′
1 = F ′

2 = ∞̃ and F ′
3 = 0 z1; and

• all entries in µ′ are ∞̃ except

µ′2(σ)1,1(x1) = 0 γ(z1) µ′2(σ)3,1(x1)2(x2) = −2 σ(z1, z2) µ′0(α)2 = −3 α

µ′2(σ)2,2(x2) = 0 γ(z1) µ′0(α)1 = 5 α µ′0(α)3 = 0 α .

We display M ′
5.7 in Figure 6. It is easily seen that ‖M ′

5.7‖ε = ‖M5.7‖ε.

If η = ε then Proposition 5.6 is a straightforward adaption of [16,
Lemma 6.1.4]. To illustrate Proposition 5.6 in case η = o, let us con-
sider a nonlinear bu-tst using o-substitution.

Example 5.8 (cf. [58, Example 4.8]). Let

M5.8 = ({?},Σ,∆,R+, F, µ)

be the deterministic bu-tst with:

• Σ = {γ(1), α(0)} and ∆ = {σ(2), α(0)};
• F? = 2 z1; and
• µ0(α)? = 2 α and µ1(γ)?,? = 2 σ(z1, z1).
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3

1 2

0 z1

σ/− 2 σ(z1, z2)

α/0 α

σ/0 γ(z1)

α/5 α

σ/0 γ(z1)

α/− 3 α

1 2
1 2

Figure 6. Td-tst M ′
5.7 over Tsf (see Example 5.7).

?

2 z1

γ/2 σ(z1, z1)

α/2 α

?

1 z1

γ/1 σ(z1, z1)

α/4 α

Figure 7. Bu-tst M5.8 (left) and M ′
5.8 (right) over R+

(see Example 5.8).

Figure 7(left) illustrates M5.8. Note that M5.8 = M2
4.24 for the semi-

ring R+ (see Example 4.24). Thus, we know from Lemma 4.25 that for
every t ∈ TΣ we have ‖M5.8‖o(t) = 22n+1

b(n) where n = height(t) and
b(n) is the fully balanced tree (over ∆) of height n.

Clearly, 2 is invertible in R+, so that we can apply Proposition 5.6
to obtain the homomorphism bu-tst M ′

5.8 = ({?},Σ,∆,R+, F
′, µ′) with:

• F ′
? = 1 z1; and

• µ′0(α)? = 4 α and µ′1(γ)?,? = 1 σ(z1, z1).

The bu-tst M ′
5.8 is displayed in Figure 7(right). It is easily observed

that ‖M ′
5.8‖o = ‖M5.8‖o.

As a second step we show that every η-t-ts transformation com-
putable by a deterministic bu-tst or td-tst can also be computed by
some boolean deterministic bu-tst or td-tst provided that the η-t-ts
transformation ful�lls certain conditions. More precisely, those condi-
tions are that the η-t-ts transformation should be nonzero and boolean
everywhere.

The main idea of this construction is a simple one. Let

M = (Q,Σ,∆,A, F, µ)

be a deterministic bu-tst or td-tst. Roughly speaking, we construct a
boolean deterministic bu-tst or td-tst by replacing all nonzero coe�-
cients in µ by 1. However, some preparatory steps are required before-
hand. Essentially, the construction requires three steps (see Figure 8).
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M M1

M ′ M2

purge unnecessary states

booleanize top-most outputs

booleanize tree representation

Figure 8. Illustrating the steps of the construction of
Proposition 5.9.

Table 2. Preservation of properties for the construction
of Proposition 5.9.

bu td p m bu-d bu-t td-d td-t i-l i-n o-l o-n b bu-h td-h
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Firstly we purge unnecessary states; i. e., if there is a state q such that
Fq 6= 0̃ but there is no input tree t such that Fq←−η (hηµ(t)q) 6= 0̃, then
clearly this state q need not be �nal or initial. Secondly we show that
the remaining states have invertible nonzero coe�cients in F and then
apply Proposition 5.6 to obtain a semantically equivalent deterministic
bu-tst or td-tst with boolean top-most outputs. Finally in the last step
we replace the nonzero coe�cients in the obtained tree representation
by 1 and show that the such obtained tst computes the same η-t-ts
transformation as M .

Proposition 5.9. Let M be a deterministic bu-tst or td-tst. If
‖M‖η(t) is nonzero and boolean for every t ∈ TΣ, then there exists a
boolean tst M ′ such that ‖M ′‖η = ‖M‖η.

Proof. Let t ∈ TΣ. Since ‖M‖η(t) is nonzero and M is deterministic,

we have that Fqt←−η (hηµ(t)qt) is nonzero for some unique qt ∈ Q [see Propo-

sition 5.1(3)]. Let Q′ = {qt ∈ Q | t ∈ TΣ}; note that Q′ is a singleton, if
M is top-down. We now prove that (Fq′ , u) is invertible for every q′ ∈ Q′

and u ∈ supp(Fq′).
Let q′ ∈ Q′ and t ∈ TΣ be such that qt = q′. Clearly, such a tree exists

because q′ ∈ Q′. Moreover, since ‖M‖η(t) and hηµ(t)q′ are monomial by

Proposition 5.1(5), let a′, a′′ ∈ A, u′ ∈ C∆(Z1), and u, u′′ ∈ T∆ be such that
‖M‖η(t) = 1 u and Fq′ = a′ u′ and hηµ(t)q′ = a′′ u′′.

1 u = ‖M‖η(t) =
∑
q∈Q

Fq←−η
(
hηµ(t)q

)
= Fq′←−η

(
hηµ(t)q′

)
= (a′ · a′′) u′[u′′]

Thus a′ is invertible with (a′)−1 = a′′.
We obtain the deterministic bu-tst or td-tst M1 = (Q,Σ,∆,A, F1, µ) by

discarding elements of Q \ Q′ as �nal or initial states; i. e., (F1)q = Fq for

every q ∈ Q′, and (F1)q = 0̃ for every q ∈ Q \ Q′. We note that F1 = F , if
M is top-down. Clearly, ‖M1‖η = ‖M‖η. Now we can apply Proposition 5.6



4. ARBITRARY SEMIRINGS 91

toM1 and obtain the deterministic bu-tst or td-tstM2 = (Q,Σ,∆,A, F ′, µ2),
which obeys ‖M2‖η = ‖M1‖η, such that F ′

q is boolean for every q ∈ Q.
We construct the deterministic bu-tst or td-tst M ′ = (Q,Σ,∆,A, F ′, µ′)

as follows. Let µ′k(σ)q,w = χ(supp((µ2)k(σ)q,w)) for every k ∈ N, σ ∈ Σk,
q ∈ Q, and w ∈ Q(Xk)∗. Clearly, M ′ is boolean, so it remains to prove that
‖M ′‖η = ‖M2‖η.

(i) We �rst consider the bottom-up case, so let M be a deterministic
bu-tst. It follows that also M2 and M ′ are deterministic bu-tst. Since
M2 and M ′ have the same set of states and the same �nal outputs, it ob-
viously is su�cient to prove that hηµ2(t)q = hηµ′(t)q for every t ∈ TΣ and

q ∈ Q. We prove this by induction, so let t = σ(t1, . . . , tk) for some k ∈ N,
σ ∈ Σk, and t1, . . . , tk ∈ TΣ. Moreover, for every q ∈ Q let aq ∈ {0, 1} and
uq ∈ C∆(Z1) be such that F ′

q = aq uq.

hηµ2

(
σ(t1, . . . , tk)

)
q

= (by De�nition 4.7(1) and induction hypothesis)∑
q1,...,qk∈Q

(µ2)k(σ)q,q1···qk←−η
(
hηµ′(tj)qj

)
j∈[k]

= (for some p1, . . . , pk ∈ Q by Proposition 5.1(2);

note that hηµ′(tj)p = 0̃ for all p 6= pj by Proposition 5.1(1) )

(µ2)k(σ)q,p1···pk
←−η

(
hηµ′(tj)pj

)
j∈[k]

= (hηµ′(tj)pj and (µ2)k(σ)q,p1···pk
are monomial by Proposition 5.1(5),

so for every j ∈ [k] let a, aj ∈ A and u ∈ T∆(Zk) and uj ∈ T∆

be such that (µ2)k(σ)q,p1···pk
= a u and hηµ′(tj)pj = aj uj)

a u←−η (aj uj)j∈[k]

= (let b = 0 if a = 0 and b = 1 otherwise;

since M ′ is boolean, aj ∈ {0, 1} by Observation 5.2, and

(1) if aj = 0 for some j ∈ [k], then c u←−η (aj uj)j∈[k] = 0̃
for every c ∈ A

(2) if a = 0, then b = 0
(3) if aj = 1 for every j ∈ [k] and a 6= 0, then

a u←−η (1 uj)j∈[k] = a u[uj ]j∈[k] and hηµ2
(t)q 6= 0̃ and hence

by Proposition 5.1(1) we have aq 6= 0 because ‖M2‖η(t) 6= 0̃;
thus aq = 1 and aq · a = 1 by ‖M2‖η(t) = aq uq←−η (hηµ2

(t)q);
consequently a = 1 = b)

b u←−η (aj uj)j∈[k]

= (by de�nition of µ′k(σ)q,p1···pk
)

µ′k(σ)q,p1···pk
←−η

(
hηµ′(tj)pj

)
j∈[k]

= (because hηµ′(tj)p = 0̃ for every p 6= pj)∑
q1,...,qk∈Q

µ′k(σ)q,q1···qk←−η
(
hηµ′(tj)qj

)
j∈[k]
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3

1 2

0 z1

σ/0 σ(z1, z2)

α/0 α

σ/0 γ(z1)

α/0 α

σ/0 γ(z1)

α/0 α

1 2
1 2

Figure 9. Td-tst M ′
5.10 over Tsf (see Example 5.10).

= (by De�nition 4.7(1) )

hηµ′
(
σ(t1, . . . , tk)

)
q

This proves the statement for deterministic bu-tst M .

(ii) Now letM be top-down. Clearly, F ′
q 6= 0̃ for some q ∈ Q, so let q ∈ Q

be the unique state such that F ′
q 6= 0̃. Again M2 and M ′ have the same set

of states and the same initial outputs, so that it is su�cient to prove that
hηµ2(t)q = hηµ′(t)q for every t ∈ TΣ (note that q is �xed). However, we �rst

prove that u ∈ supp(hηµ2(t)p) implies that hηµ′(t)p = 1 u for every t ∈ TΣ,

p ∈ Q, and u ∈ T∆. Let t = σ(t1, . . . , tk) for some k ∈ N, σ ∈ Σk, and
t1, . . . , tk ∈ TΣ.

u ∈ supp
(
hηµ2

(σ(t1, . . . , tk))p
)

=⇒ (for some w = q1(xi1) · · · qn(xin) by Proposition 5.1(2) )

u ∈ supp
(
(µ2)k(σ)p,w←−η (hηµ2

(tij )qj )j∈[n]

)
=⇒ (there exist u′ ∈ supp((µ2)k(σ)p,w) and uj ∈ supp(hηµ2

(tij )qj )
such that u = u′[uj ]j∈[n]; thus µ

′
k(σ)p,w = 1 u′ and

by induction hypothesis also hηµ′(tij )qj = 1 uj)

µ′k(σ)p,w←−η (hηµ′(tij )qj )j∈[n] = 1 u

=⇒ (by De�nition 4.7(1) and td-determinism of M ′)

hηµ′(σ(t1, . . . , tk))p = 1 u

Now we turn to the proof of hηµ2(t)q = hηµ′(t)q for every t ∈ TΣ. Let a
′′ ∈ A,

u, u′′ ∈ T∆, and u
′ ∈ C∆(Z1) be such that ‖M2‖η(t) = 1u and F ′

q = 1u′ and
hηµ2(t)q = a′′ u′′. Since

1 u = ‖M2‖η(t) = F ′
q←−η

(
hηµ2

(t)q
)

= a′′ u′[u′′] ,

we obtain a′′ = 1. Hence u′′ ∈ supp(hηµ2(t)q) and also hηµ′(t)q = 1 u′′ by the
previous property, which proves the statement. �

Let us illustrate the construction of Proposition 5.9 by applying it
to the deterministic td-tst M5.7 of Example 5.7.
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τ ∈ x-BOTη(A) ?
∧ τ /∈ y-BOTκ(A)

=
⇒

⇐
⇒

τ ∈ x-BOTη(B) ∧ τ /∈ y-BOTκ(B)

Figure 10. Schematics for the proof of Lemma 5.11.

Example 5.10. Let M5.10 = M5.7 = (Q,Σ,∆,Tsf , F, µ) be the
td-tst of Example 5.7. Applying the construction of Proposition 5.9
stepwise to M5.10 we obtain M5.10 after purging unnecessary states,
M ′

5.7 of Example 5.7 after booleanizing top-most outputs, and �nally
M ′

5.10 = (Q,Σ,∆,Tsf , F
′, µ′) after booleanizing the tree representation,

where:

• F ′
1 = F ′

2 = ∞̃ and F ′
3 = 0 z1; and

• all entries in µ′ are ∞̃ except

µ′2(σ)1,1(x1) = 0 γ(z1) µ′2(σ)3,1(x1)2(x2) = 0 σ(z1, z2) µ′0(α)2 = 0 α

µ′2(σ)2,2(x2) = 0 γ(z1) µ′0(α)1 = 0 α µ′0(α)3 = 0 α .

The td-tst M ′
5.10 is illustrated in Figure 9. Again, we easily see that

‖M ′
5.10‖ε = ‖M5.10‖ε.
Let us return to the original problem: to lift

x�BOTη(B) 6⊆ y�BOTκ(B)

x�TOPη(B) 6⊆ y�BOTκ(B)

x�BOTη(B) 6⊆ y�TOPκ(B)

from the semiring B to the semiring A. We explain only the lift of
the �rst inequality. There we take a counterexample for the inclu-
sion in the boolean semiring; i. e., an η-t-ts transformation τ that is
in the class x�BOTη(B), but not in the class y�BOTκ(B) for some
x, y ∈ Πd. Then we prove that τ is also a counterexample for the in-
clusion x�BOTη(A) ⊆ y�BOTκ(A); i. e., τ is trivially in x�BOTη(A)
because ({0, 1}, ·) is a submonoid, that is isomorphic to ({0, 1},∧),
of (A, ·), but still not in y�BOTκ(A).

For the purpose of the next lemma, we restrict the counterexam-
ple τ to be computed by a total deterministic bu-tst M . Now assume
that τ ∈ y�BOTκ(A); i. e., there exists a deterministic bu-tst M ′ such
that ‖M ′‖κ = τ . It follows from the totality of M that for every
t ∈ TΣ there exists a unique u ∈ T∆ such that τ(t) = 1 u (see [58,
Proposition 4.11] and Observation 5.4). Using Proposition 5.9 (applied
to M ′) we obtain a boolean deterministic bu-tst M ′′ with ‖M ′′‖κ = τ .
However, boolean deterministic bu-tst compute solely in {0, 1} (see
Observation 5.2), and therefore, M ′′ can equivalently be speci�ed as
deterministic bu-tst over B, which is a contradiction to the assumption
that τ /∈ y�BOTκ(B). This approach is illustrated in Figure 10.
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Lemma 5.11. Let x ∈ Πdt and y ∈ Πd.

(1) x�BOTη(A) 6⊆ y�BOTκ(A), if x�BOTη(B) 6⊆ y�BOTκ(B).
(2) x�TOPη(A) 6⊆ y�BOTκ(A), if x�TOPη(B) 6⊆ y�BOTκ(B).
(3) x�BOTη(A) 6⊆ y�TOPκ(A), if x�BOTη(B) 6⊆ y�TOPκ(B).

Proof. We only prove the �rst item. The other items are proved analo-
gously by replacing �bottom-up� by �top-down� and �BOT� by �TOP� where
appropriate.

Let τ ∈ x�BOTη(B) \ y�BOTκ(B) be an η-t-ts transformation, hence
there exists a total deterministic bu-tst M = (Q,Σ,∆,B, F, µ) with the
properties x such that ‖M‖η = τ . We note that ({0, 1},∧) is isomorphic to

({0, 1}, ·), which is a submonoid of (A, ·). We freely use this isomorphism
in the sequel. In this sense, x�BOTη(B) ⊆ x�BOTη(A) by Observation 5.3
and hence τ ∈ x�BOTη(A).

Now we prove by contradiction that τ /∈ y�BOTκ(A). Therefore, as-
sume the contrary; i. e., τ ∈ y�BOTκ(A). Hence there exists a deterministic
bu-tst M ′ with the properties y such that ‖M ′‖κ = τ . By Observation 5.4
we have that ‖M‖η(t) is nonzero and boolean for every t ∈ TΣ. Thus, Propo-

sition 5.9 is applicable to M ′. We obtain a boolean deterministic bu-tst M ′′

with the properties y such that ‖M ′′‖κ = τ . Consequently, τ ∈ yb�BOTκ(A)
and by Observation 5.3 also τ ∈ y�BOTκ(B). However, this is a contradic-
tion to the assumption, because τ was chosen such that τ /∈ y�BOTκ(B).
This proves the lemma. �

Thus we can derive inequality for classes of ε-t-ts and o-t-ts trans-
formations over the semiring A simply by observing inequality for the
respective classes of ε-t-ts and o-t-ts transformations over the boolean
semiring B. Roughly speaking, these latter inequalities are based solely
on a de�ciency in the tree output component of one class. For example,
the η-t-ts transformation that maps each input tree to a fully balanced
binary tree of the same height with whatever nonzero cost cannot be
computed by a linear deterministic bu-tst. In order to generate the
fully balanced binary trees, one de�nitely needs the copying of output
trees. Another example is the homomorphism property. The η-t-ts
transformation that maps every input tree to 0̃ obviously cannot be
computed by a homomorphism bu-tst (see [58, Proposition 4.11] and
Observation 4.23).

The following lemma presents the conclusions drawn from Figure 1
and Lemma 5.11. We also consider the missing case, where the trans-
formation is computed by a deterministic bu-tst that is not necessarily
total. Moreover, we are not interested in the boolean property any-
more, because boolean deterministic bu-tst and td-tst are essentially
deterministic bottom-up and top-down tree transducers (see [41, Sec-
tion 4]). Let

P = {x ∈ Π \ Πb | h ∈ x⇒ (t ∈ x ∧ d ∈ x), d ∈ x⇒ p ∈ x}
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1 2

α/1 α

γ/1 γ(z1)1 z1

1 z1

1

1

Figure 11. Tst M over A [see Lemma 5.12(ii)].

be the set of reasonable combinations (because a homomorphism bu-tst
or td-tst is always deterministic and total). Further, let

Pw = {x ∈ P | w ⊆ x}
for every w ∈ P.

Lemma 5.12. For every x, y ∈ Pd such that there exists r ∈ Pref
which occurs in y but not in x (i. e., r ∈ y \ x), we have:

(1) x�BOTη(A) 6⊆ y�BOTκ(A);
(2) x�TOPη(A) 6⊆ y�BOTκ(A); and
(3) x�BOTη(A) 6⊆ y�TOPκ(A).

Proof. We distinguish two cases.

(i) Let r 6= t. We only prove the �rst item; the other items can be
proved analogously. Obviously, r /∈ x ∪ {t}, so let x′ = x ∪ {t}. From
Figure 1, we can check that x′�BOTη(B) 6⊆ y�BOTκ(B) and we conclude
x′�BOTη(A) 6⊆ y�BOTκ(A) with the help of Lemma 5.11. Trivially,

x′�BOTη(A) ⊆ x�BOTη(A) ,

which proves the statement.

(ii) Let r = t. Clearly, h /∈ x. Further, let Σ = {γ(1), α(0)} and
M = (Q,Σ,Σ,A, F, µ) be the boolean, linear, and nondeleting determin-
istic bu-tst and td-tst with:

• Q = {1, 2};
• F1 = 1 z1 and F2 = 0̃; and
• µ0(α)1 = 1 α and µ1(γ)2,1(x1) = 1 γ(z1) and µ1(γ)1,2(x1) = 1 z1.

In Figure 11 we display M . Let τ = ‖M‖η. Apparently,
τ ∈ x�BOTη(A) ∩ x�TOPη(A)

and for every n ∈ N

τ(γn(α)) =

{
1 γ(n/2)(α) if n is even,

0̃ otherwise.

Now we prove that τ /∈ y�BOTκ(A) and τ /∈ y�TOPκ(A). Assume the
contrary; i. e., there is a total deterministic bu-tst or td-tst

M ′ = (Q′,Σ,Σ,A, F ′, µ′)
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such that ‖M ′‖κ = τ .

(1) First we assume thatM ′ is a total deterministic bu-tst. Since τ(t) = 0̃
for in�nitely many t ∈ TΣ and also τ(t′) 6= 0̃ for in�nitely many t′ ∈ TΣ,

there exists a state q ∈ Q′ such that F ′
q←−κ (hκµ′(t)q) = 0̃ and hκµ′(t)q 6= 0̃

for in�nitely many t ∈ TΣ because ‖M ′‖κ(t) = F ′
q←−κ (hκµ′(t)q) by Propo-

sition 5.1(4) [see Observation 4.9]. Let t1, t2 ∈ TΣ with t1 6= t2 be two

input trees satisfying the previous conditions (note that τ(t1) = τ(t2) = 0̃).
Clearly, there exists a unique p ∈ Q′ such that µ′1(γ)p,q 6= 0̃. For every i ∈ [2]
let a, ap, aq, ai ∈ A+, ui ∈ TΣ, u ∈ TΣ(Z1), and up, uq ∈ CΣ(Z1) be such that

F ′
p = ap up , F ′

q = aq uq , µ′1(γ)p,q = a u , hκµ′(ti)q = ai ui .

This part of M ′ is displayed in Figure 12(left). Clearly,

‖M ′‖κ(γ(ti)) = F ′
p←−κ

(
µ′1(γ)p,q←−κ (hκµ′(ti)q)

)
= (ap ·a ·asel(u,1,κ)

i )up[u[ui]] .

If u ∈ TΣ then supp(‖M ′‖κ(γ(ti))) ⊆ {up[u]} for every i ∈ [2]. However,

∅ 6= supp(τ(γ(t1))) 6= supp(τ(γ(t2))) 6= ∅ ,
hence u ∈ CΣ(Z1) because TΣ(Z1) = CΣ(Z1)∪TΣ. Recall that τ(γ(t1)) = 1u′

for some u′ ∈ TΣ. This allows us to conclude that 1 = ap ·a ·a1, which shows

that a1 is invertible. Moreover, we also have F ′
q←−κ (hκµ′(t1)q) = 0̃ hence

aq · a1 = 0, which shows that a1 is a zero-divisor. This is a contradiction by
Observation 2.2.

(2) Now assume that M ′ is a total deterministic td-tst. Clearly, there

exists a unique p ∈ Q′ such that F ′
p 6= 0̃. Assume further that µ′1(γ)p,ε 6= 0̃.

It follows that for every t ∈ TΣ

hκµ′(γ(t))p = µ′1(γ)p,ε←−κ () .

This yields that ‖M ′‖κ(γ2(α)) = ‖M ′‖κ(γ(α)) which is contradictory. Thus,

by totality there exists a unique q ∈ Q′ such that µ′1(γ)p,q(x1) 6= 0̃. Moreover,
let ap, a, a

′, a′′ ∈ A+, and u
′, u′′ ∈ TΣ, u, up ∈ CΣ(Z1) be such that

F ′
p = ap up , µ′0(α)p = a′ u′ , µ′0(α)q = a′′ u′′ , µ′1(γ)p,q(x1) = a u .

This part of M ′ is displayed in Figure 12(right).

1 α = ‖M ′‖κ(α) = F ′
p←−κ (hκµ′(α)p) = ap up←−κ (a′ u′) = (ap · a′) up[u′]

Hence ap · a′ = 1 because τ(α) = 1 α. It follows that ap is invertible.

0̃ = ‖M ′‖κ(γ(α)) = F ′
p←−κ (hκµ′(γ(α))p)

= ap up←−κ
(
µ′1(γ)p,q(x1)←−κ (hκµ′(α)q)

)
= ap up←−κ

(
a u←−κ (a′′ u′′)

)
= (ap · a · a′′) up[u[u′′]]

Thus we showed that ap · a · a′′ = 0 because τ(γ(α)) = 0̃. Since ap, a,
and a′′ are all nonzero, it follows that ap or a is a zero-divisor. By Ob-
servation 2.2, ap is no zero-divisor, hence a is a zero-divisor. Finally, since
τ(γ2(α)) = 1 γ(α) and

‖M ′‖κ(γ
2(α)) = F ′

p←−κ (hκµ′(γ
2(α))p)

= ap up←−κ
(
µ′1(γ)p,q(x1)←−κ (hκµ′(γ(α))q)

)
,
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. . .

p

q

. . .

aq uq

ap up

γ/a u

. . .

p

q

. . .

α/a′′ u′′

α/a′ u′ap up

1

γ/a u

Figure 12. Relevant parts of the bu-tst M ′ (left) and
td-tst M ′ (right) over A [see Lemma 5.12(ii)].

?

1 z1γ/a z1

α/1 α β/b β

σ/1 z1

?

1 z1γ1/a γ1(z1)

1

α/1 α β/b β

γ2/1 α

Figure 13. Bu-tstM (left) and td-tstM (right) over A
used to prove Proposition 5.13.

we have hκµ′(γ(α))q 6= 0̃. Finally, let aq ∈ A+ and uq ∈ TΣ be such that

hκµ′(γ(α))q = aq uq.

‖M ′‖κ(γ
2(α)) = ap up←−κ

(
a u←−κ (aq uq)

)
= (ap · a · aq) up[u[uq]] = 1 γ(α)

Clearly, ap ·a·aq = 1. This shows that a is invertible, which is a contradiction
(see Observation 2.2). �

Due to the previous lemma, we can restrict our attention to the
comparison of classes of transformations, which are related by inclu-
sion in Figure 1. As a �rst comparison recall the equality of the
classes of ε-t-ts and o-t-ts transformations computed by bu-tst for
all properties that contain both the nondeletion as well as the lin-
earity property (see Proposition 4.21). Now let us turn to the com-
parison of classes computed by deterministic bu-tst and td-tst. Pro-
vided that A is zero-divisor free, it is shown in [58, Theorem 5.12]
that x�BOTo(A) = x�TOPε(A) for every x ∈ Ph. Next we show
that zero-divisor freeness is necessary and su�cient for the statement
h�BOTo(A) = h�TOPε(A).
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Proposition 5.13 (cf. [58, Theorem 5.12]). Let x ∈ Ph \ Pn. We
have x�BOTo(A) = x�TOPε(A) if and only if A is zero-divisor free.
In fact, x�BOTo(A) 6⊆ d�TOPε(A) and x�TOPε(A) 6⊆ h�BOTo(A),
if A is not zero-divisor free.

Proof. Su�ciency is shown in [58, Theorem 5.12], so it remains to
show necessity. We show the contraposition; i. e., the existence of a zero-
divisor implies that

x�BOTo(A) 6= x�TOPε(A) .

In fact, we even show that

x�BOTo(A) 6⊆ d�TOPε(A) and x�TOPε(A) 6⊆ h�BOTo(A) .

Since A is not zero-divisor free, there exist a, b ∈ A+ such that a · b = 0.

(i) We �rst show that hl�BOTo(A) 6⊆ d�TOPε(A). To this end, let
M = ({?},Σ,∆,A, F, µ) be the linear homomorphism bu-tst with

• Σ = {σ(2), γ(1), α(0), β(0)};
• ∆ = {α(0), β(0)};
• F? = 1 z1; and

µ0(α)? = 1 α , µ0(β)? = b β , µ1(γ)?,? = a z1 , µ2(σ)?,?? = 1 z1 .

The bu-tst M is illustrated in Figure 13(left). Let τ = ‖M‖o. It is easily

observed that τ(σ(α, β)) = 1 α and τ(σ(β, β)) = b β and τ(σ(α, γ(β))) = 0̃.
Suppose that there exists a deterministic td-tst M ′ = (Q′,Σ,∆,A, F ′, µ′)
such that ‖M ′‖ε = τ . Clearly, there exists a unique p ∈ Q′ such that F ′

p 6= 0̃.
Let c ∈ A+ be such that F ′

p = c z1. With the help of Proposition 5.1(4) we
obtain ‖M ′‖ε(t) = c · hεµ′(t)p for every t ∈ TΣ, because F

′
p = c z1. For every

t1, t2 ∈ TΣ we have

‖M ′‖ε(σ(t1, t2)) = c · hεµ′(σ(t1, t2))p

= c ·
∑

w∈Q′(X2)∗,
w=q1(xi1

)···qn(xin )

µ′2(σ)p,w←−ε (hεµ′(tij )qj )j∈[n] .

Let w ∈ Q′(X2)∗ be such that µ′2(σ)p,w 6= 0̃. Such a w exists because

τ(σ(α, β)) 6= 0̃, and it is unique by determinism. Obviously the choice of
the output ranked alphabet ∆ limits the number of possibilities for w. In
fact, either w = ε or w = q(x1) or w = q(x2) for some q ∈ Q′. Now consider
w = ε. Then

‖M ′‖ε(σ(t1, t2)) = c ·
(
µ′2(σ)p,ε←−ε ()

)
= c · µ′2(σ)p,ε ,

which is contradictory, because τ(σ(α, β)) 6= τ(σ(β, β)). Similarly, assume
that w = q(x2) for some q ∈ Q′. Then

‖M ′‖ε(σ(t1, t2)) = c ·
(
µ′2(σ)p,q(x2)←−ε (hεµ′(t2)q)

)
,

which is also contradictory because τ(σ(α, β)) 6= τ(σ(β, β)). Thus, �nally
let w = q(x1) for some q ∈ Q′. In this case

‖M ′‖ε(σ(t1, t2)) = c ·
(
µ′2(σ)p,q(x1)←−ε (hεµ′(t1)q)

)
.
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However, even this is contradictory because τ(σ(α, β)) 6= τ(σ(α, γ(β))).
Thus there does not exist a deterministic td-tst M ′ such that ‖M ′‖ε = τ
and hence τ /∈ d�TOPε(A).

(ii) Now we show that hl�TOPε(A) 6⊆ h�BOTo(A). To this end, let
M = ({?},Σ,Σ,A, F, µ) be the linear homomorphism td-tst with

• Σ = {γ(1)
1 , γ

(1)
2 , α(0), β(0)};

• F? = 1 z1; and

µ0(α)? = 1 α µ0(β)? = b β

µ1(γ1)?,?(x1) = a γ1(z1) µ1(γ2)?,ε = 1 α .

The td-tst M is illustrated in Figure 13(right). Let τ = ‖M‖ε. Assume that
there exists a homomorphism bu-tst M ′ = ({?},Σ,Σ,A, F, µ′) such that
‖M ′‖o = τ . We observe that ‖M ′‖o(t) = ho

µ′(t)? for every t ∈ TΣ by Obser-

vation 4.23. It follows that ho
µ′(γ1(β))? = 0̃ because τ(γ1(β)) = 0̃. Conse-

quently, ‖M ′‖o(γ2(γ1(β))) = 0̃ by Observation 4.9. However, a straightfor-
ward calculation yields τ(γ2(γ1(β))) = 1 α, which is a contradiction. Thus
there does not exist a homomorphism bu-tst M ′ such that ‖M ′‖o = τ and
hence τ /∈ h�BOTo(A). �

We note the asymmetry

x�BOTo(A) 6⊆ d�TOPε(A) and x�TOPε(A) 6⊆ h�BOTo(A)

of the previous proposition in the case that A is not zero-divisor free.
It is this asymmetry that yields a problem in Section 5. Moreover,
the previous proposition does not handle nondeletion. We remedy this
fact with the next observation, which is independent of zero-divisor
freeness.

Observation 5.14 (see [58, Theorem 5.12]). Let A be commuta-
tive. For every x ∈ Πhn:

x�BOTo(A) = x�TOPε(A) and x�BOTε(A) ⊆ dnt�TOPε(A) .

Proof. Suppose that M = ({?},Σ,∆,A, F, µ) is a nondeleting homo-
morphism bu-tst. For every k ∈ N and σ ∈ Σk, let aσ ∈ A+ and uσ ∈ T∆(Zk)
be such that µk(σ)?,?···? = aσ uσ. Moreover, let nσ(i) = |uσ|zi for every
i ∈ [k]. Note that nσ(i) > 1 for every k ∈ N+, σ ∈ Σk, and i ∈ [k]. Fi-
nally, let lin(uσ) denote the tree obtained from uσ by replacing the di�erent
occurrences of z1 in uσ by z1, . . . , znσ(1); the di�erent occurrences of z2 by
znσ(1)+1, . . . , znσ(1)+nσ(2); etc.

(i) We construct a nondeleting homomorphism td-tst

M ′ = ({?},Σ,∆,A, F, µ′) .
For every k ∈ N and σ ∈ Σk let µ′k(σ)?,w = aσ lin(uσ) where

w = ?(x1) · · · ? (x1)︸ ︷︷ ︸
nσ(1) times

· · · ?(xk) · · · ? (xk)︸ ︷︷ ︸
nσ(k) times

.

Recall that we assume that all remaining entries in µ′ are 0̃.
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We prove ‖M ′‖ε = ‖M‖o by proving inductively that hεµ′(t)? = ho
µ(t)?

for every t ∈ TΣ. Let t = σ(t1, . . . , tk) for some k ∈ N, σ ∈ Σk, and
t1, . . . , tk ∈ TΣ. By Proposition 5.1(5), ho

µ(t)? is monomial for every t ∈ TΣ,
so for every i ∈ [k] let ai ∈ A and ui ∈ T∆ be such that ho

µ(ti)? = ai ui.
Clearly, by induction hypothesis we also have hεµ′(ti)? = ai ui.

ho
µ(σ(t1, . . . , tk))?

= (by De�nition 4.7(1) )

µk(σ)?,?···?←−o (ho
µ(t1)?, . . . , h

o
µ(tk)?)

= (by de�nition of ←−o and nσ(i) > 1)(
aσ ·

∏
i∈[k]

a
nσ(i)
i

)
uσ[u1, . . . , uk]

= (by de�nition of lin)(
aσ ·

( ∏
j∈[nσ(1)]

a1

)
· . . . ·

∏
j∈[nσ(k)]

ak

)
lin(uσ)[u1, . . . , u1︸ ︷︷ ︸

nσ(1)

, . . . , uk, . . . , uk︸ ︷︷ ︸
nσ(k)

]

= (by de�nition of ←−ε )

µ′k(σ)?,?(x1)···?(x1)···?(xk)···?(xk)←−ε
←−ε (hεµ′(t1)?, . . . , h

ε
µ′(t1)?︸ ︷︷ ︸

nσ(1) times

, . . . , hεµ′(tk)?, . . . , h
ε
µ′(tk)?︸ ︷︷ ︸

nσ(k) times

)

= (by De�nition 4.7(1) )

hεµ′(σ(t1, . . . , tk))?

The proof of the converse inclusion is similar and omitted. We note, however,
that only for the converse inclusion we need commutativity.

(ii) We construct a nondeleting, total, and deterministic td-tst

M ′ = (Q′,Σ,∆,A, F ′, µ′)

as follows. Let Q′ = {?, †} and F ′
? = 1 z1 and F ′

† = 0̃. Moreover, for every
k ∈ N and σ ∈ Σk let

µ′k(σ)?,w = aσ lin(uσ) and µ′k(σ)†,w′ = 1 lin(uσ)

where

w = ?(x1) †(x1) · · · † (x1)︸ ︷︷ ︸
nσ(1)−1 times

· · · ? (xk) †(xk) · · · † (xk)︸ ︷︷ ︸
nσ(k)−1 times

w′ = †(x1) · · · † (x1)︸ ︷︷ ︸
nσ(1) times

· · · †(xk) · · · † (xk)︸ ︷︷ ︸
nσ(k) times

.

For every t ∈ TΣ and u ∈ T∆, it is easily proved that u ∈ supp(hεµ(t)?) implies
that (hεµ′(t)†, u) = 1 [cf. the proof of the corresponding statement in (i) with

all weights replaced by 1]. Using this fact the proof of hεµ(t)? = hεµ′(t)? is

easily achieved by induction on t. To this end, let t = σ(t1, . . . , tk) for some
k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ. By Proposition 5.1(5) we have that
for every i ∈ [k] there exist ai ∈ A and ui ∈ T∆ such that hεµ(ti)? = ai ui.
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Table 3. Preservation of properties for the construction
of Observation 5.14(i).

bu td p m bu-d bu-t td-d td-t i-l i-n o-l o-n b bu-h td-h
7 3 3 3 3 7 3 3 7 3 3 3 3 7 3

Table 4. Preservation of properties for the construction
of Observation 5.14(ii).

bu td p m bu-d bu-t td-d td-t i-l i-n o-l o-n b bu-h td-h
7 3 3 3 7 7 3 3 7 3 3 3 3 7 7

Moreover, by induction hypothesis hεµ′(t)? = ai ui.

hεµ(σ(t1, . . . , tk))?
= (by De�nition 4.7(1) )

µk(σ)?,?···?←−ε (hεµ(t1)?, . . . , h
ε
µ(tk)?)

= (by de�nition of ←−ε )(
aσ ·

∏
i∈[k]

ai
)
uσ[u1, . . . , uk]

= (by de�nition of lin)(
aσ ·

(∏
i∈[k]

ai
)
·
( ∏
j∈[nσ(1)−1]

1
)
· . . . ·

∏
j∈[nσ(k)−1]

1
)

lin(uσ)[u1, . . . , u1︸ ︷︷ ︸
nσ(1)

, . . . , uk, . . . , uk︸ ︷︷ ︸
nσ(k)

]

= (by de�nition of ←−ε )

µ′k(σ)?,?(x1)†(x1)···†(x1)···?(xk)†(xk)···†(xk)←−ε
←−ε (hεµ′(t1)?, h

ε
µ′(t1)†, . . . , h

ε
µ′(t1)†︸ ︷︷ ︸

nσ(1)−1 times

, . . . , hεµ′(tk)?, h
ε
µ′(tk)†, . . . , h

ε
µ′(tk)†︸ ︷︷ ︸

nσ(k)−1 times

)

= (by De�nition 4.7(1) )

hεµ′(σ(t1, . . . , tk))? �

Preservation of properties for the above constructions is displayed
in Tables 3 and 4. Since there is no example for [58, Theorem 5.12],
we present a small one illustrating the above constructions.

Example 5.15. Let Σ = {γ(1), α(0)} and ∆ = {σ(2), α(0)}. We
de�ne the bu-tst M5.15 = ({?},Σ,∆,N, F, µ) with F? = 1 z1 and

µ1(γ)?,? = 3 σ(z1, z1) and µ0(α)? = 3 α .

The bu-tst M5.15, which is displayed in Figure 14(left), is a nondeleting
homomorphism bu-tst. Thus we can apply the construction found in
the proof of Observation 5.14(i) to M5.15 and obtain the td-tst

M ′
5.15 = ({?},Σ,∆,N, F, µ′)
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?

1 z1

α/3 α

γ/3 σ(z1, z1) ?

1 z1

α/3 α

γ/3 σ(z1, z2)
1

1

Figure 14. Bu-tst M5.15 (left) and td-tst M ′
5.15 (right)

over N of Example 5.15.

? †

1 z1

α/3 α α/1 α

. . .

1
1

γ/1 σ(z1, z2)

11

Figure 15. Bu-tst M ′′
5.15 over N of Example 5.15 where

. . . stands for γ/3 σ(z1, z2).

with

µ′1(γ)?,?(x1)?(x1) = 3 σ(z1, z2) and µ′0(α)? = 3 α .

Clearly, M ′
5.15, illustrated in Figure 14(right), is a nondeleting homo-

morphism td-tst and ‖M ′
5.15‖ε = ‖M5.15‖o. Finally, we can also apply

the construction of Observation 5.14(ii) to M5.15 and obtain the td-tst

M ′′
5.15 = ({?, †},Σ,∆,N, F ′′, µ′′) with F ′′

? = 1 z1 and F ′′
† = 0̃ and

µ′′1(γ)?,?(x1)†(x1) = 3 σ(z1, z2) µ′′0(α)? = 3 α

µ′′1(γ)†,†(x1)†(x1) = 1 σ(z1, z2) µ′′0(α)† = 1 α .

We depict M ′′
5.15, which is a nondeleting, total, and deterministic td-tst

with the property that ‖M ′′
5.15‖ε = ‖M5.15‖ε, in Figure 15.

The �nal result of this section shows two inequality results. Es-
sentially, we prove that the classes of ε-t-ts and o-t-ts transformations
computed by linear homomorphism bu-tst are incomparable. Due to
the Hasse diagram presented in Figure 1, we cannot prove this result
for every semiring, but rather we require that the semiring has at least
three elements (i. e., 0 6= 1 and it is not isomorphic to B or Z2).
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?

1 z1

α/a α β/1 β

σ/1 z1

?

1 z1

α/a α β/1 β

1

σ/1 z1

Figure 16. Bu-tst M (left) and td-tst M ′′ (right)
overA used to show Lemma 5.16(1) and (2), respectively.

The result hl�BOTε(A) 6⊆ h�BOTo(A) is proved essentially by an
exploit of the property that pure substitution can distinguish two out-
put trees with di�erent weights, although it deletes them. On the
other hand, this distinction vanishes in o-substitution, and we cannot
use the state to signal the di�erence, because we consider homomor-
phism bu-tst. The same properties are used to prove the statement
hl�BOTo(A) 6⊆ h�BOTε(A).

Using the same idea we also prove that the class of ε-t-ts trans-
formations computed by linear homomorphism bu-tst is incomparable
with the class of ε-t-ts transformations computed by linear homomor-
phism td-tst. In fact, part of this is proved by showing that the class
of ε-t-ts transformations computed by linear homomorphism bu-tst is
not contained in the class of ε-t-ts transformations computed by deter-
ministic td-tst.

Lemma 5.16. Let A 6= {0, 1}.
(1) hl�BOTε(A) 6⊆ h�BOTo(A) and hl�BOTε(A) 6⊆ d�TOPε(A).
(2) hl�BOTo(A) 6⊆ h�BOTε(A) and hl�TOPε(A) 6⊆ h�BOTε(A).

Proof. Let a ∈ A\{0, 1} be arbitrary. LetM = ({?},Σ,∆,A, F, µ) be
the linear homomorphism bu-tst with ranked alphabets Σ = {σ(2), α(0), β(0)}
and ∆ = {α(0), β(0)} and F? = 1 z1 and

µ2(σ)?,?? = 1 z1 , µ0(α)? = a α , µ0(β)? = 1 β .

The bu-tst M is illustrated in Figure 16(left).

(1) Let τ = ‖M‖ε. Clearly, τ ∈ hl�BOTε(A) and τ(σ(α, β)) = a α and
τ(σ(β, α)) = a β and τ(σ(β, β)) = 1 β. Let us prove that τ /∈ h�BOTo(A).
We prove this statement by contradiction, so assume that there exists a
homomorphism bu-tst

M ′ = ({?},Σ,∆,A, F, µ′)

such that ‖M ′‖o = τ . By de�nition we have F? = 1z1 and thus µ′0(α)? = aα
and µ′0(β)? = 1 β by Observation 4.23. Let c ∈ A+ and u ∈ T∆(Z2) be such
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that µ′2(σ)?,?? = c u. We can readily exclude u = α and u = z2 (respec-
tively, u = β) because otherwise β /∈ supp(‖M ′‖o(σ(β, α))) (respectively,
α /∈ supp(‖M ′‖o(σ(α, β)))). Hence, u = z1 and for every t ∈ TΣ such that

ho
µ′(t)? 6= 0̃ we have

‖M ′‖o(σ(β, t)) = ho
µ′(σ(β, t))? = µ′2(σ)?,??←−o (ho

µ′(β)?, ho
µ′(t)?)

= (c · 1) z1[β] = c β .

Clearly, ho
µ′(α)? 6= 0̃ 6= ho

µ′(β)? and thus ‖M ′‖o(σ(β, α)) = ‖M ′‖o(σ(β, β)),
which is a contradiction. It follows that there does not exist a homomorphism
bu-tst M ′ such that ‖M ′‖o = τ and hence τ /∈ h�BOTo(A).

Let us now show that τ /∈ d�TOPε(A). Suppose the contrary; i. e.,
τ ∈ d�TOPε(A). Consequently, there exists a deterministic td-tst

M ′′ = (Q′′,Σ,∆,A, F ′′, µ′′)

such that ‖M ′′‖ε = τ . Obviously, there exists a unique state p ∈ Q′′ such

that F ′′
p 6= 0̃ (such a state exists because ‖M ′′‖ε(α) 6= 0̃). Moreover, let

c ∈ A+ be such that F ′′
p = c z1, and let w ∈ Q′′(X2)∗ be the unique word

such that µ′′k(σ)p,w 6= 0̃ (such a word exists because ‖M ′′‖ε(σ(β, β)) 6= 0̃).
Now assume that w = ε. For every t1, t2 ∈ TΣ we then have

‖M ′′‖ε(σ(t1, t2)) = F ′′
p ←−ε (hεµ′′(σ(t1, t2))p)

= c ·
(
µ′′2(σ)p,ε←−ε ()

)
= c · µ′′2(σ)p,ε ,

which is contradictory because τ(σ(α, β)) 6= τ(σ(β, β)). Similarly, we obtain
a contradiction, if w = q(x2) for some q ∈ Q′′. Thus, w = q(x1) for some
q ∈ Q′′. Let c′ ∈ A+ and u′ ∈ C∆(Z1) be such that µ′′2(σ)p,q(x1) = c′ u′. It is
immediate that u′ = z1 and hence

‖M ′′‖ε(σ(β, t2)) = c ·
(
c′ z1←−ε (hεµ′′(β)q)

)
= c · c′ · µ′′0(β)q .

This yields that ‖M ′′‖ε(σ(β, α)) = ‖M ′′‖ε(σ(β, β)), which is again a contra-
diction. We conclude that τ /∈ d�TOPε(A).

(2) Let τ ′ = ‖M‖o. Obviously, τ ′ ∈ hl�BOTo(A) and

τ ′(σ(β, β)) = τ ′(σ(β, α)) = 1 β and τ ′(σ(α, β)) = a α .

Let us prove that τ ′ /∈ h�BOTε(A). We prove this statement by contradic-
tion, so suppose that there exists a homomorphism bu-tst

M ′ = ({?},Σ,∆,A, F, µ′)

such that ‖M ′‖ε = τ ′. Trivially, we see that µ′0(α)? = aα and µ′0(β)? = 1β by
Observation 4.23. Let c ∈ A+ and u ∈ T∆(Z2) be such that µ′2(σ)?,?? = c u.
Moreover, we again readily observe u = z1, else β /∈ supp(‖M ′‖ε(σ(β, α)))
or α /∈ supp(‖M ′‖ε(σ(α, β))). Due to τ ′(σ(β, β)) = τ ′(σ(β, α)) = 1 β we
obtain

1 β = ‖M ′‖ε(σ(β, α)) = µ′2(σ)?,??←−ε (hεµ′(β)?, hεµ′(α)?) = (c · a) β
1 β = ‖M ′‖ε(σ(β, β)) = µ′2(σ)?,??←−ε (hεµ′(β)?, hεµ′(β)?) = c β .

This yields that c = 1 and hence a = 1. This is contrary to the assumption
that a ∈ A \ {0, 1}. Thus we conclude that τ ′ /∈ h�BOTε(A).
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Finally it remains to prove that τ ′ ∈ hl�TOPε(A). In fact, the linear
homomorphism td-tst M ′′ = ({?},Σ,∆,A, F, µ′′) with

µ′′2(σ)?,?(x1) = 1 z1 , µ′′0(α)? = a α , µ′′0(β)? = 1 β

(illustrated in Figure 16[right]) computes τ ′ as ε-t-ts transformation (i. e.,
‖M ′′‖ε = τ ′). The proof of this fact is standard and omitted. �

Note the asymmetry of the statements

hl�BOTε(A) 6⊆ d�TOPε(A) and hl�TOPε(A) 6⊆ h�BOTε(A)

of the previous lemma. In particular, the lemma also proves that the
classes of ε-t-ts and o-t-ts transformations computed by homomor-
phism bu-tst are incomparable for all (nontrivial) semirings di�erent
from B and Z2. In fact, it can be seen from the proof of the previous
lemma that there exists a single homomorphism bu-tst M such that
‖M‖ε /∈ h�BOTo(A) and ‖M‖o /∈ h�BOTε(A). For the next corollary,
recall that A is supposed to be nontrivial and commutative.

Corollary 5.17. We have A = Z2 or A = B, if and only if for
every x ∈ Π the equality x�BOTε(A) = x�BOTo(A) holds.

Proof. The equality in B and Z2 is shown in Observation 4.18 (because
the multiplicative monoids of B and Z2 are isomorphic and deterministic de-
vices compute solely in the multiplicative monoid; see Proposition 5.1), and
Lemma 5.16 proves the incomparability of hl�BOTε(A) and hl�BOTo(A) in
all other (nontrivial) semirings. �

Note that at this point, we can already completely classify the re-
lation between all classes of ε-t-ts transformations computed by de-
terministic td-tst and all classes of o-t-ts transformations computed
by deterministic bu-tst provided that the semiring is zero-divisor free
and commutative. However, without additional information about the
semiring (more precisely, its multiplicative monoid) we are unable to
prove further comparability or incomparability results. Hence we con-
sider semirings with certain properties in subsequent sections. The
properties are chosen such that we obtain a Hasse diagram for every
commutative and zero-divisor free semiring.

5. Multiplicatively nonperiodic semirings

In this section, we show that for multiplicatively nonperiodic (i. e.,
not multiplicatively periodic) semirings almost all classes of ε-t-ts and
o-t-ts transformations (except the ones computed by nondeleting and
linear bu-tst) computed by restricted deterministic bu-tst are incompa-
rable with respect to inclusion. The semiring of the natural numbers N
is an example of a multiplicatively nonperiodic semiring. To be precise,
we even show that

x�BOTε(A) 6⊆ d�BOTo(A) and x�BOTo(A) 6⊆ d�BOTε(A)
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for every x ∈ {hn, hl} and multiplicatively nonperiodic and commuta-
tive semiring A.

The general idea of the proof is the following. Let a ∈ A be such
that ai 6= aj, whenever i 6= j where i, j ∈ N. Such an a exists be-
cause A is multiplicatively nonperiodic. We construct a homomor-
phism bu-tst M , which computes an ε-t-ts transformation τ in which
arbitrarily large powers of a occur as weights in the range. Let us
�rst consider the result hl�BOTη(A) 6⊆ d�BOTκ(A) where η and κ are
di�erent. Our input ranked alphabet will have two unary symbols; en-
countering γ1 in the input we stack another a to the weight computed so
far and output a prolonged output tree, and encountering γ2 we delete
the computed output tree at no cost [see Figure 17(left)]. Since every
deterministic bu-tst M ′ = (Q′,Σ,∆,A, F ′, µ′), which also computes τ
but as a κ-t-ts transformation, has only �nitely many states, it must
permit at least one �nal state q, which accepts in�nitely many input
trees. In particular, the transition from q to some state p reading γ2

is interesting. In the case of κ = o, the weight of the outputted tree
is reset to the weight present in the monomial µ′1(γ2)p,q, which is to
be de�ned. On the other hand, pure substitution stacks another a to
the weight of the output tree computed. It can be shown that among
those in�nitely many input trees which q accepts, there are two for
which the weights an1 and an2 of their corresponding output trees are
di�erent (this is mainly due to the fact that arbitrarily large powers
of a can occur). Since all the powers of a are di�erent, there is no con-
sistent way to de�ne µ′1(γ2)p,q. Similarly, when κ = ε one encounters
the problem that o-substitution resets the weight to 1, whenever a γ2

is read in the input. The above remarks about the weights an1 and an2

apply as well, and in order to de�ne µ′1(γ2)p,q in this case, there should
be an element b ∈ A such that an1 ·b = 1 = an2 ·b which is contradictory
by Observation 2.1.

Summing up, with pure substitution one can remember the number
of occurrences of γ2 encountered in the whole input tree even if a part
of the transformation of the input tree is deleted. On the other hand,
using o-substitution when deleting a computed output tree, we can
easily reset the weight to a determined value irrespective of the weight
of the output tree computed so far.

The arguments required for the result on nondeleting homomor-
phism bu-tst are similar, but use copying instead of deletion. In prin-
ciple, pure substitution has the problem that it is supposed to square
the weight of the computed output tree. However, those output trees
may have in�nitely many di�erent weights, so that this information
cannot be stored in the states, and there is no element b ∈ A which
squares an1 and an2 (i. e., a2n1 = an1 · b and a2n2 = an2 · b) for suit-
able n1, n2 ∈ N. Conversely, o-substitution squares the weight of the
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?

1 z1γ1/a γ(z1)

α/1 α

γ2/1 α

?

1 z1

α/a α

γ/a σ(z1, z1)

Figure 17. Bu-tst M (left) and M (right) over A used
in Lemma 5.18(i) and Lemma 5.18(ii), respectively.

computed output tree and therefore needs an element which when mul-
tiplied to a2n1 and a2n2 computes their square roots. It is shown that
for selected n1, n2 ∈ N such an element cannot exist.

Lemma 5.18. Let A be multiplicatively nonperiodic and commuta-
tive. For every x ∈ {hn, hl} and {η, κ} = {ε, o} we have

x�BOTη(A) 6⊆ d�BOTκ(A) . (35)

Proof. Since A is multiplicatively nonperiodic, there exists an a ∈ A
such that for every i, j ∈ N we have ai = aj , if and only if i = j. Let us
prove the statement by case analysis on x. Case (i) considers the case where
x = hl and Case (ii) supposes that x = hn.

(i) Let Σ = {γ(1)
1 , γ

(1)
2 , α(0)} and ∆ = {γ(1), α(0)}. We construct the

linear homomorphism bu-tst M = ({?},Σ,∆,A, F, µ) with F? = 1 z1 and

µ1(γ1)?,? = a γ(z1) , µ1(γ2)?,? = µ0(α)? = 1 α .

We displayM in Figure 17(left). Moreover, we de�ne l : TΣ −→ N recursively
for every t ∈ TΣ as follows.

l
(
γ1(t)

)
= l(t) + 1 and l

(
γ2(t)

)
= l(α) = 0 .

Roughly speaking, l counts the number of consecutive γ1-symbols in its ar-
gument starting at the root. If the root of t is not labeled γ1, then l(t) = 0.
Note thatM computes the ε-t-ts transformation ‖M‖ε mapping every t ∈ TΣ

to the monomial tree series a|t|γ1 γl(t)(α) where |t|γ1 denotes the number of γ1-
symbols in t, and the o-t-ts transformation ‖M‖o mapping t to the monomial

tree series al(t) γl(t)(α). Note that ‖M‖η is nonzero everywhere, because if

an = 0 for some n ∈ N, then an = an+1 which contradicts to our assumption.
We prove ‖M‖η /∈ d�BOTκ(A) and thus hl�BOTη(A) 6⊆ d�BOTκ(A).

Suppose that there exists a deterministic bu-tst M ′ with ‖M ′‖κ = ‖M‖η.
Let M ′ = (Q′,Σ,∆,A, F ′, µ′). We observe that ‖M ′‖κ(t) 6= 0̃ for every
t ∈ TΣ. First, we prove that there are q ∈ Q′ and t1, t2 ∈ TΣ such that
hκµ′(t1)q 6= 0̃ 6= hκµ′(t2)q and |t1|γ1 6= |t2|γ1 and l(t1) 6= l(t2). For this, let

Γ = {γ(1)
1 , α(0)} ⊂ Σ, hence TΓ ⊆ TΣ. We show that t1 and t2 can actually

be chosen from TΓ. Since ‖M ′‖κ(t) = F ′
q←−κ (hκµ′(t)q) for some q ∈ Q′ [see
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Proposition 5.1(4)], we conclude that there exist q ∈ Q′ and an in�nite set

T ⊆ TΓ such that hκµ′(t)q 6= 0̃ for every t ∈ T (because Q′ is �nite whereas

TΓ is in�nite). For every t ∈ T we have size(t) = |t|γ1 + 1 = l(t) + 1 because
T ⊆ TΓ. Moreover, size(t1) 6= size(t2) for every t1, t2 ∈ T with t1 6= t2.
Thereby also |t1|γ1 6= |t2|γ1 and l(t1) 6= l(t2).

We can safely assume that there exist q ∈ Q′ and t1, t2 ∈ TΣ such
that hκµ′(t1)q 6= 0̃ and hκµ′(t2)q 6= 0̃ and |t1|γ1 6= |t2|γ1 and l(t1) 6= l(t2).
For every i ∈ [2] we have that hκµ′(ti)q is monomial by Proposition 5.1(5),

so let ai ∈ A+ and ui ∈ T∆ be such that hκµ′(ti)q = ai ui. Further let

p ∈ Q′ be the unique state such that µ′1(γ2)p,q 6= 0̃ (such a state exists

because ‖M ′‖κ(γ2(t1)) 6= 0̃), and let ap, aq, a
′ ∈ A and up, uq ∈ C∆(Z1) and

u′ ∈ T∆(Z1) such that F ′
p = ap up, F

′
q = aq uq, and µ

′
1(γ2)p,q = a′ u′. Part of

the bu-tst M ′ is displayed in Figure 18(left). Since α ∈ supp(‖M ′‖κ(γ2(ti)))
and

‖M ′‖κ
(
γ2(ti)

)
= F ′

p←−κ
(
hκµ′(γ2(ti))p

)
=
∑
u∈T∆

(
ap ·

(
hκµ′(γ2(ti))p, u

))
up[u]

for every i ∈ [2], we have ap 6= 0 and up = z1. Now we prove that z1 /∈ var(u′).
Therefore, we �rst observe that

hκµ′(γ2(ti))p = µ′1(γ2)p,q←−κ
(
hκµ′(ti)q

)
=
(
a′ · asel(u′,1,κ)

i

)
u′[ui]

and that t1 6= t2 implies that there exists a j ∈ [2] such that tj 6= α. Now
assume that z1 ∈ var(u′). Then u′[uj ] 6= α, which is a contradiction. Hence
z1 /∈ var(u′), and moreover, u′ = α. We obtain for every i ∈ [2]

‖M ′‖κ(γ2(ti)) = (ap · a′ · asel(u′,1,κ)
i ) α =

{
(ap · a′ · ai) α if κ = ε,

(ap · a′) α if κ = o.

Recall that η 6= κ and

‖M‖ε(γ2(ti)) = a|ti|γ1 α and ‖M‖o(γ2(ti)) = al(γ2(ti)) α = 1 α .

Hence for every i ∈ [2] we derive the equation

ap · a′ · ai = 1 =
(
‖M‖o(γ2(ti)), α

)
if κ = ε,

ap · a′ = a|ti|γ1 =
(
‖M‖ε(γ2(ti)), α

)
if κ = o.

In case κ = o we have ap ·a′ = a|t1|γ1 = a|t2|γ1 , which is contradictory due

to a|t1|γ1 6= a|t2|γ1 by |t1|γ1 6= |t2|γ1 . Finally, in the other case (i. e., κ = ε)
we have that ap · a′ acts as the inverse of a1 and a2. So it remains to prove
that a1 6= a2 in order to derive a contradiction (see Observation 2.1). To
prove a1 6= a2, we consider

‖M ′‖ε(ti) = F ′
q←−ε (hεµ′(ti)q) = F ′

q←−ε (ai ui) = (aq · ai) uq[ui] .

By ‖M‖o(ti) = al(ti) γl(ti)(α) and ‖M ′‖ε = ‖M‖o, we obtain aq · ai = al(ti).

Moreover, since l(t1) 6= l(t2) we have al(t1) 6= al(t2). Consequently, a1 = a2

would be contradictory. Irrespective of κ, we have thus proved that there
is no deterministic bu-tst M ′ such that ‖M ′‖κ = ‖M‖η. This proves that

‖M‖η /∈ d�BOTκ(A).
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(ii) Let Σ = {γ(1), α(0)} and ∆ = {σ(2), α(0)}. We de�ne the nondeleting
homomorphism bu-tst M = ({?},Σ,∆,A, F, µ) with F? = 1 z1 and

µ1(γ)?,? = a σ(z1, z1) and µ0(α)? = a α .

Note that M is displayed in Figure 17(right). For every t ∈ TΣ let ut ∈ T∆

be the fully balanced tree such that height(ut) = height(t). The ε-t-ts trans-
formation ‖M‖ε maps t to asize(t)ut, whereas the o-t-ts transformation ‖M‖o
maps t to asize(ut) ut (cf. Lemma 4.25). Note that size(ut) = 2size(t) − 1.

Let us prove ‖M‖η /∈ d�BOTκ(A) and so hn�BOTη(A) 6⊆ d�BOTκ(A).
Suppose that there exists a deterministic bu-tst M ′′ = (Q′′,Σ,∆,A, F ′′, µ′′)
such that ‖M ′′‖κ = ‖M‖η and show that this is contradictory.

By Proposition 5.1(4) we have that for every t ∈ TΣ there exists q ∈ Q′′

such that ‖M ′′‖κ(t) = F ′′
q ←−κ (hκµ′′(t)q), and moreover, we observe that

‖M ′′‖κ(t) 6= 0̃ for every t ∈ TΣ. Clearly, TΣ is in�nite, whereas M ′′ has
only a �nite set Q′′ of states. Hence there must exist q ∈ Q′′ and t1, t2 ∈ TΣ

such that hκµ′′(t1)q 6= 0̃ and hκµ′′(t2)q 6= 0̃ and t1 6= t2. Note that t1 6= t2
implies that size(t1) 6= size(t2) and ut1 6= ut2 . By Proposition 5.1(5) we have
that hκµ′′(ti)q is monomial for every i ∈ [2], so let ai ∈ A and ui ∈ T∆ be

such that hκµ′′(ti)q = ai ui. Moreover, let p ∈ Q′′ be the unique state such

that µ′′1(γ)p,q 6= 0̃ (such a state exists because ‖M ′′‖κ(γ(t1)) 6= 0̃), and let
ap, aq, a

′ ∈ A and up, uq ∈ C∆(Z1) and u′ ∈ T∆(Z1) be such that F ′′
p = ap up,

F ′′
q = aq uq, and µ′′1(γ)p,q = a′ u′. Part of the bu-tst M ′′ is displayed in

Figure 18(right). Since

‖M ′′‖κ
(
γ(ti)

)
= F ′′

p ←−κ
(
hκµ′′(γ(ti))p

)
=
∑
u∈T∆

(
ap ·

(
hκµ′′(γ(ti))p, u

))
up[u] ,

we obtain uγ(ti) = up[u′i] for some u′i ∈ T∆. From t1 6= t2 follows that
uγ(t1) 6= uγ(t2) and hence up = z1 because up ∈ C∆(Z1). Moreover, ap 6= 0.
In a similar manner, we can show that uq = z1. For this we consider

‖M ′′‖κ(ti) = F ′′
q ←−κ (hκµ′′(ti)q) = (aq · ai) uq[ui] .

Thus we obtain uti = uq[ui]. From t1 6= t2 follows ut1 6= ut2 and hence
uq = z1 because uq ∈ C∆(Z1). Further, it is evident that aq 6= 0. Since
uq = z1 we obtain ui = uti . Now we prove that u′ = σ(z1, z1). First we
observe that

hκµ′′(γ(ti))p = µ′′1(γ)p,q←−κ
(
hκµ′′(ti)q

)
=
(
a′ · asel(u′,1,κ)

i

)
u′[uti ] ,

thus uγ(ti) = u′[uti ] because up = z1. Since ut1 6= ut2 this directly yields
u′ = σ(z1, z1). We obtain for every i ∈ [2]

‖M ′′‖κ(γ(ti)) =
(
ap · a′ · asel(u′,1,κ)

i

)
u′[uti ] =

{
(ap · a′ · ai) uγ(ti) if κ = ε,

(ap · a′ · a2
i ) uγ(ti) if κ = o.

Recall that

‖M‖ε(γ(ti)) = asize(ti)+1 uγ(ti) and ‖M‖o(γ(ti)) = a2·size(uti )+1 uγ(ti) .

Hence for every i ∈ [2] we derive the equation

ap · a′ · ai = a2·size(uti )+1 = (‖M‖o(γ(ti)), uγ(ti)) if κ = ε,
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. . .

p

q

. . .

aq uq

ap up

γ2/a
′ u′

. . .

p

q

. . .

aq uq

ap up

γ/a′ u′

Figure 18. Relevant parts of bu-tst M ′ (left) and
M ′′ (right) over A of Lemma 5.18.

ap · a′ · a2
i = asize(ti)+1 = (‖M‖ε(γ(ti)), uγ(ti)) if κ = o.

For every i ∈ [2] we let yi = size(uti) if κ = ε, whereas we let yi = size(ti)
in case κ = o. Note that in both cases y1 6= y2. Also in both cases we have
aq · ai = ayi = (‖M‖η(ti), uti). We continue with the equations

if κ = ε : a2y1+y2+1 = (ap · a′ · a1) · (aq · a2)

= (ap · a′ · a2) · (aq · a1) = ay1+2y2+1

if κ = o : ay1+2y2+1 = (ap · a′ · a2
1) · (a2

q · a2
2)

= (ap · a′ · a2
2) · (a2

q · a2
1) = a2y1+y2+1 .

Thus in any case ay1+2y2+1 = a2y1+y2+1. Since ai 6= aj whenever i 6= j for
all i, j ∈ N, we conclude y1 + 2y2 + 1 = 2y1 + y2 + 1 and thereby y1 = y2

which contradicts to y1 6= y2. Consequently, irrespective of κ, we have proved
that there is no deterministic bu-tst M ′′ such that ‖M ′′‖κ = ‖M‖η. Thus

‖M‖η /∈ d�BOTκ(A). �

Together with the results of Section 4, we can already derive the
Hasse diagram (see Figure 19) for multiplicatively nonperiodic, zero-
divisor free, and commutative semirings. We observe that the classes
of ε-t-ts and o-t-ts transformations computed by bu-tst are incompara-
ble, whenever inclusion is not trivial by de�nition or given as a result of
Proposition 4.21. However, we note that we cannot present a diagram
for multiplicatively nonperiodic and commutative semirings that pos-
sess zero-divisors. This is due to the fact that we, e. g., cannot relate
the classes hl�TOPε(A) and d�BOTo(A).

Theorem 5.19. Figure 19 is the Hasse diagram for multiplica-
tively nonperiodic, zero-divisor free, and commutative semirings A.

Proof. All the inclusions are trivial or hold by virtue of Observa-
tion 5.14. The equalities are due to Propositions 4.21 and 5.13 and Theo-
rem 4.17 and Observation 5.14. Then for every {η, κ} = {ε, o} the following
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13 statements are su�cient to prove strictness and incomparability.

dnlt�BOTε(A) 6⊆ d�TOPε(A) (36)

dnlt�TOPε(A) 6⊆ d�BOTη(A) (37)

dnlt�BOTε(A) 6⊆ h�BOTε(A) (38)

dnl�BOTε(A) 6⊆ dt�BOTη(A) (39)

dnl�TOPε(A) 6⊆ dt�TOPε(A) (40)

hn�BOTη(A) 6⊆ dl�BOTη(A) (41)

hn�BOTε(A) 6⊆ dl�TOPε(A) (42)

hn�TOPε(A) 6⊆ dl�TOPε(A) (43)

hl�BOTη(A) 6⊆ dn�BOTη(A) (44)

hl�TOPε(A) 6⊆ dn�TOPε(A) (45)

hl�BOTη(A) 6⊆ d�BOTκ(A) (46)

hn�BOTη(A) 6⊆ d�BOTκ(A) (47)

hl�BOTε(A) 6⊆ d�TOPε(A) (48)

The Inequalities (36) and (37) are shown in Lemma 5.11. The Inequalities
(38)�(45) are proved in Lemma 5.12, whereas Inequalities (46) and (47)
follow from Lemma 5.18. Finally, Inequality (48) is due to Lemma 5.16. �

6. Multiplicatively periodic semirings

In this section, we consider semirings that are multiplicatively peri-
odic and commutative. For example, the semiring Z4 is multiplicatively
periodic and commutative (without being multiplicatively idempotent).
It is easily seen that in multiplicatively periodic, commutative semirings
A = (A,+, ·) the carrier set 〈A′〉 of the least multiplicative submonoid
generated from a �nite set A′ ⊆ A is again �nite. This property is
essential in the core construction of this section, because it allows us
to keep track of the current weight in the states.

Proposition 5.20. Let A = (A,+, ·) be a multiplicatively periodic
and commutative semiring. For every �nite A′ ⊆ A we have that 〈A′〉
is �nite.

Proof. We �rst observe that 〈∅〉 = {1}. Let A′ = {a1, . . . , ak} ⊆ A for
some k ∈ N+. Then

〈A′〉 = {ai11 · . . . · a
ik
k | i1, . . . , ik ∈ N}

= {ai11 · . . . · a
ik
k | i1 ∈ [0, n1], . . . , ik ∈ [0, nk]} ,

where for every j ∈ [k] the integer nj ∈ N is the smallest nonnegative integer

such that there exists mj ∈ N with mj < nj and a
nj

j = a
mj

j . Hence 〈A′〉 is
�nite. �
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d⊥ε d⊥o

dt⊥ε dl⊥ε dn⊥ε dn⊥o dl⊥o dt⊥o

h⊥ε dlt⊥ε dnt⊥ε dnl⊥= dnt⊥o dlt⊥o h=
o

hl⊥ε hn⊥ε dnlt⊥= hn=
o hl=o

hnl==

dnlt>=

dnl>= dnt>= dlt>=

dn>= dl>= dt>=

d>=

Figure 19. Hasse diagram for multiplicatively nonpe-
riodic and commutative semirings A that are zero-divisor
free.

Given a deterministic bu-tst computing an ε-t-ts transformation τ ,
we construct another deterministic bu-tst computing τ as o-t-ts trans-
formation. Moreover, most of the properties de�ned for determinis-
tic bu-tst (namely nondeletion, linearity, and totality) are preserved
by this construction. However, a homomorphism bu-tst might yield
a non-homomorphism bu-tst, because the construction increases the
state-space compared to the given bu-tst.

The central idea is the opposite of the one of Proposition 5.6. There
we moved the �nal weight to the transitions, whereas here we move the
weight of the transitions to the �nal weight. This is possible because the
semiring is multiplicatively periodic and commutative. Essentially, this
means that there is a �nite set of possible weights by Proposition 5.20,
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and we can use the �nite set of states to keep track of the current
weight. Thus it su�ces to use boolean transition weights and apply
the weight, which we remember in the states, at the �nal output.

Lemma 5.21. Let A be multiplicatively periodic and commutative,
and let M be a deterministic bu-tst. There exists a deterministic
bu-tst M ′ with a boolean tree representation such that ‖M ′‖η = ‖M‖η.

Proof. Let M = (Q,Σ,∆,A, F, µ) and let C be

{(µk(σ)q,q1···qk , u) | k ∈ N, σ ∈ Σk, q, q1, . . . , qk ∈ Q, u ∈ supp(µk(σ)q,q1···qk)}

be the �nite set of semiring elements that occur in the monomial tree se-
ries in the range of µ. Since A is multiplicatively periodic and commu-
tative, we conclude that 〈C〉 is �nite by Proposition 5.20. We construct
M ′ = (Q′,Σ,∆,A, F ′, µ′) as follows:

• Q′ = Q× 〈C〉;
• F ′

(q,c) = c · Fq for every q ∈ Q and c ∈ 〈C〉; and
• for every k ∈ N, σ ∈ Σk, q, q1, . . . , qk ∈ Q, and c1, . . . , ck ∈ 〈C〉 let
c′ ∈ C and u′ ∈ T∆(Zk) be such that µk(σ)q,q1···qk = c′ u′, and let

c =

{
0 if (∃i ∈ [k]) : ci = 0,
c′ ·
∏
i∈[k] c

sel(u′,i,η)
i otherwise.

Finally, we set µ′k(σ)(q,c),(q1,c1)···(qk,ck) = χ(supp(µk(σ)q,q1···qk)). Re-
call that we suppose that all remaining entries in µ′ are 0̃.

Obviously, µ′ is boolean. It remains to prove that ‖M ′‖η = ‖M‖η. For
this we �rst prove that for every t ∈ TΣ, u ∈ T∆, q ∈ Q, and c ∈ 〈C〉 \ {0}
we have

hηµ′(t)(q,c) = 1 u ⇐⇒ hηµ(t)q = c u . (49)

We prove the statement by induction on t, so let t = σ(t1, . . . , tk) for some
k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ.

hηµ′(σ(t1, . . . , tk))(q,c) = 1 u

⇐⇒ (by De�nition 4.7(1) and Proposition 5.1(2) )

(∀i ∈ [k]) (∃qi ∈ Q) (∃ci ∈ 〈C〉) :

µ′k(σ)(q,c),(q1,c1)···(qk,ck)←−η
(
hηµ′(ti)(qi,ci)

)
i∈[k]

= 1 u

⇐⇒ (by de�nition of ←−η and Proposition 5.1(5) and

Observation 5.2; note that c 6= 0 implies that ci 6= 0)

(∀i ∈ [k]) (∃qi ∈ Q) (∃ci ∈ 〈C〉 \ {0}) (∃u′ ∈ T∆(Zk) ) (∃ui ∈ T∆) :

µ′k(σ)(q,c),(q1,c1)···(qk,ck) = 1 u′ ∧ hηµ′(ti)(qi,ci) = 1 ui ∧ u = u′[ui]i∈[k]

⇐⇒ (by de�nition of µ′ and induction hypothesis)

(∀i ∈ [k]) (∃qi ∈ Q) (∃c′, ci ∈ 〈C〉 \ {0}) (∃u′ ∈ T∆(Zk) ) (∃ui ∈ T∆) :

µk(σ)q,q1···qk = c′ u′ ∧ hηµ(ti)qi = ci ui ∧ u = u′[ui]i∈[k] ∧

∧ c = c′ ·
∏
i∈[k]

c
sel(u′,i,η)
i
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Table 5. Preservation of properties for the construction
of Lemma 5.21

bu td p m bu-d bu-t td-d td-t i-l i-n o-l o-n b bu-h td-h
3 3 3 3 3 7 7 7 3 3 3 3 3 7 7

⇐⇒ (by de�nition of ←−η )

(∀i ∈ [k]) (∃qi ∈ Q) : µk(σ)q,q1···qk←−η
(
hηµ(ti)qi

)
i∈[k]

= c u

⇐⇒ (by De�nition 4.7(1) and Proposition 5.1(2)

because hηµ(ti)qi 6= 0̃)

hηµ(σ(t1, . . . , tk))q = c u

Now we also prove for every t ∈ TΣ, u ∈ T∆, and q ∈ Q that

hηµ′(t)(q,0) = 1 u =⇒ hηµ(t)q = 0̃ . (50)

Suppose that hηµ′(t)(q,0) = 1 u and hηµ(t)q = c u′ for some c ∈ 〈C〉 \ {0} and
u′ ∈ T∆ (by Proposition 5.1(5), hηµ(t)q is monomial). By (49) we then have
hηµ′(t)(q,c) = 1 u′, which is a contradiction due to Proposition 5.1(1). Now

we prove ‖M ′‖η = ‖M‖η as follows. Let t ∈ TΣ. Suppose that there exists

exactly one q ∈ Q and c ∈ 〈C〉 such that hηµ′(t)(q,c) 6= 0̃ [there is at most one

such pair (q, c) by Proposition 5.1(1)].

‖M ′‖η(t) = F ′
(q,c)←−η (hηµ′(t)(q,c)) = (c · Fq)←−η (hηµ′(t)(q,c))

= Fq←−η (c · hηµ′(t)(q,c)) = Fq←−η (hηµ(t)q) = ‖M‖η(t)

Finally, let hηµ′(t)(q,c) = 0̃ for every q ∈ Q and c ∈ 〈C〉. Thus ‖M ′‖η(t) = 0̃.
Clearly, also hηµ(t)q = 0̃ for every q ∈ Q by (49). Hence ‖M‖η(t) = 0̃. �

Obviously,M ′ is nondeleting (respectively, linear), ifM is nondelet-
ing (respectively, linear). For zero-divisor free semirings also preserva-
tion of totality is obvious; an overview of the properties preserved by
the construction can be found in Table 5. Let us illustrate the lemma
by an example.

Example 5.22. Let Σ = {γ(1), α(0)}, ∆ = {σ(2), α(0)}, and

µ0(α)? = 1 α and µ1(γ)?,? = 2 σ(z1, z1) .

The bu-tst M5.22 = ({?},Σ,∆,Z5, F, µ) with F? = 1 z1 is a nondeleting
homomorphism, and we display M5.22 in Figure 20(left). If we apply
the construction of Lemma 5.21, we obtain the bu-tst

M ′
5.22 = (Q′,Σ,∆,Z5, F

′, µ′)

with

• Q′ = [4] (note that we renamed the states from (?, i) to just i
for convenience);
• F ′

1 = 1 z1, F
′
2 = 2 z1, F

′
3 = 3 z1, and F

′
4 = 4 z1; and
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?

1 z1

α/1 α

γ/2 σ(z1, z1)

3 4

1 2

3 z1 4 z1

2 z11 z1

α/1 α

γ/1 σ(z1, z1)

γ/1 σ(z1, z1)

γ/1 σ(z1, z1)

γ/1 σ(z1, z1)

Figure 20. Bu-tstM5.22 (left) andM
′
5.22 (right) over Z5

(see Example 5.22).

• µ′0(α)1 = 1 α and

µ′1(γ)2,1 = µ′1(γ)4,2 = µ′1(γ)3,4 = µ′1(γ)1,3 = 1 σ(z1, z1) .

We also display M ′
5.22 in Figure 20(right).

With the help of Observation 4.19 we immediately obtain the fol-
lowing corollary of Lemma 5.21.

Corollary 5.23. For every multiplicatively periodic and commu-
tative semiring A and x ∈ Pd \ Pt:

x�BOTε(A) = x�BOTo(A) .

If A is additionally zero-divisor free, then for every x ∈ Πd \ Πh:

x�BOTε(A) = x�BOTo(A) .

Proof. Let τ ∈ x�BOTε(A). It follows that there exists a determin-
istic bu-tst M with properties x such that ‖M‖ε = τ . By Lemma 5.21
there also exists a deterministic bu-tst M ′ with properties x and boolean
tree representation such that ‖M ′‖ε = τ . Finally, ‖M ′‖o = ‖M ′‖ε due to
Observation 4.19; hence τ ∈ x�BOTo(A). The converse can be proved in
exactly the same manner. �

In order to make Lemma 5.21 also preserve totality, we can exploit
the presence of zero-divisors a, b ∈ A+ with a · b = 0 as follows. All
transitions µ′k(σ)(q,0),(q1,c1)···(qk,ck) with k ∈ N, σ ∈ Σk, q, q1, . . . , qk ∈ Q,
and c1, . . . , ck ∈ 〈C〉 are multiplied with the semiring element a. All
other transitions are treated as in the construction of Lemma 5.21.
Finally, the �nal output of state (q, 0) is set to b · Fq. Thus all states
are �nal, which remedies the problem with totality. The construction
works because we can only enter state (q, 0) with weight a. Thus the
weight in state (q, 0) is always a multiple of a. By commutativity the
multiplication with b yields 0.
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Table 6. Preservation of properties for the construction
of Lemma 5.24

bu td p m bu-d bu-t td-d td-t i-l i-n o-l o-n b bu-h td-h
3 3 3 3 3 3 7 7 3 3 3 3 3 7 7

Lemma 5.24. Let A be a multiplicatively periodic and commutative
semiring, which is not zero-divisor free, and let M be a deterministic
bu-tst. There exists a deterministic bu-tstM ′ such that ‖M ′‖κ = ‖M‖η.

Proof. Let a, b ∈ A+ be such that a · b = 0. The existence of a and b is
given by the fact that A is not zero-divisor free. Let M = (Q,Σ,∆,A, F, µ)
and

C = {a, b}∪{(µk(σ)q,q1···qk , u) | k ∈ N, σ ∈ Σk, q, q1, . . . , qk ∈ Q, u ∈ T∆(Zk)}

be the �nite set of semiring elements that occur in the monomial tree series
in the range of µ. Since A is multiplicatively periodic and commutative,
we conclude that 〈C〉 is �nite by Proposition 5.20. Note that 0 ∈ 〈C〉. We
construct M ′ = (Q′,Σ,∆,A, F ′, µ′) as follows:

• Q′ = Q× 〈C〉;
• F ′

(q,0) = b · Fq and F ′
(q,c) = c · Fq for every q ∈ Q and c ∈ 〈C〉 \ {0};

and
• for every k ∈ N, σ ∈ Σk, q, q1, . . . , qk ∈ Q, and c1, . . . , ck ∈ 〈C〉 let
c′ ∈ C and u′ ∈ T∆(Zk) be such that µk(σ)q,q1···qk = c′ u′, and let

c =

{
0 if (∃i ∈ [k]) : ci = 0,
c′ ·
∏
i∈[k] c

sel(u′,i,η)
i otherwise.

Finally, we set

µ′k(σ)(q,c),(q1,c1)···(qk,ck) =

{
a · χ(supp(µk(σ)q,q1···qk)) if c = 0,
χ(supp(µk(σ)q,q1···qk)) otherwise.

The proof of the correctness of the construction is similar to the proof of
Lemma 5.21. The only major di�erence is that (50) becomes

u ∈ supp(hηµ′(t)(q,0)) =⇒ hηµ(t)q = 0̃ . (51)

We additionally need to show that (hηµ′(t)(q,0), u) · b = 0 for every tree

u ∈ supp(hηµ′(t)(q,0)). This property, however, is clear because a will be a

factor in (hηµ′(t)(q,0), u). With this knowledge the remaining proof is straight-
forward. �

This construction preserves all properties except for the homomor-
phism, td-determinism, and td-totality properties (see Table 6). Let
us also illustrate this construction on an example.

Example 5.25. Clearly, 2 is a zero-divisor in Z4. Suppose that
Σ = {γ(1), α(0)}, ∆ = {σ(2), α(0)}, and

µ0(α)? = 1 α and µ1(γ)?,? = 2 σ(z1, z1) .
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?

1 z1

α/1 α

γ/2 σ(z1, z1)

0

1 2

2 z1

2 z1

1 z1

α/1 α

γ/1 σ(z1, z1)

γ/2 σ(z1, z1)

γ/2 σ(z1, z1)

Figure 21. Bu-tstM5.25 (left) andM
′
5.25 (right) over Z4

(see Example 5.25).

The bu-tst M5.25 = ({?},Σ,∆,Z4, F, µ) with F? = 1 z1, illustrated in
Figure 21(left), is a nondeleting homomorphism. If we apply the con-
struction of Lemma 5.24 to M5.25, we obtain the bu-tst

M ′
5.25 = (Q′,Σ,∆,Z4, F

′, µ′)

with

• Q′ = {0, 1, 2} (note that we renamed the states from (?, i) to
just i for convenience);
• F ′

1 = 1 z1, F
′
2 = 2 z1, and F

′
0 = 2 z1; and

• µ′0(α)1 = 1 α and µ′1(γ)2,1 = 1 σ(z1, z1) and

µ′1(γ)0,2 = µ′1(γ)0,0 = 2 σ(z1, z1) .

The bu-tst M ′
5.25 is illustrated in Figure 21(right).

Next we present a construction that, given a homomorphism td-tst,
constructs a semantically equivalent total deterministic bu-tst that
uses pure substitution. We thus prove h�TOPε(A) ⊆ dt�BOTε(A).
We have already seen in Proposition 5.13 that zero-divisors are prob-
lematic. In zero-divisor free semirings the statement is immediate by
Proposition 5.13. However, if the semiring is multiplicatively periodic
and commutative, then we can keep track of the current weight and
avoid that the current weight becomes 0 due to a zero-divisor. The
approach closely resembles the one of the construction in Lemma 5.24.

Lemma 5.26. Let A be a multiplicatively periodic and commutative
semiring, which is not zero-divisor free.

hl�TOPε(A) ⊆ dlt�BOTε(A) and h�TOPε(A) ⊆ dt�BOTε(A)

Proof. Since A is not zero-divisor free, there exist a, b ∈ A+ such that
a·b = 0. LetM = ({?},Σ,∆,A, F, µ) be a homomorphism td-tst. Moreover,
let

C = {0} ∪ {
(
µk(σ)?,w, u

)
| k ∈ N, σ ∈ Σk, w ∈ {?}(Xk)∗, u ∈ T∆(Z|w|)}
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be the �nite set of semiring elements that occur in the monomial tree se-
ries in the range of µ. Since A is multiplicatively periodic and commuta-
tive, we conclude that 〈C〉 is �nite due to Proposition 5.20. We construct
M ′ = (Q′,Σ,∆,A, F ′, µ′) as follows:

• Q′ = 〈C〉;
• F ′

0 = b z1 and F ′
c = c z1 for every c ∈ 〈C〉 \ {0}; and

• for every k ∈ N, σ ∈ Σk, w = ?(xi1) · · · ? (xin) ∈ {?}(Xk)∗

and c1, . . . , ck ∈ 〈C〉 let c′ ∈ C and u′ ∈ C∆(Zn) be such that
µk(σ)?,w = c′ u′, and let

c =

{
0 if (∃i ∈ [k]) : ci = 0,

c′ ·
∏
i∈[k] c

|w|?(xi)

i otherwise.

Let c′′ = 1 if c′ 6= 0 and c′′ = 0 otherwise. Finally, we set

µ′k(σ)c,c1···ck =

{
(a · c′′) u′[zij ]j∈[n] if c = 0,
c′′ u′[zij ]j∈[n] otherwise.

Note that hεµ′(t)c is boolean for every t ∈ TΣ and c ∈ 〈C〉 \ {0}. It remains

to prove that ‖M ′‖ε = ‖M‖ε. For this we �rst prove that for every t ∈ TΣ,
u ∈ T∆, and c ∈ 〈C〉 \ {0} we have

hεµ′(t)c = 1 u ⇐⇒ hεµ(t)? = c u . (52)

We prove the statement by induction on t, so let t = σ(t1, . . . , tk) for some
k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ. Moreover, let w ∈ {?}(Xk)∗ be such

that µk(σ)?,w′ = 0̃ for every w′ ∈ {?}(Xk)∗ with w′ 6= w (such a w exists
by determinism). Finally, let c′ ∈ 〈C〉 and u′ ∈ C∆(Z|w|) be such that
µk(σ)?,w = c′ u′.

hεµ′(σ(t1, . . . , tk))c = 1 u

⇐⇒ (by De�nition 4.7(1) and Proposition 5.1(2) )

(∀i ∈ [k]) (∃ci ∈ 〈C〉) : µ′k(σ)c,c1···ck←−ε
(
hεµ′(ti)ci

)
i∈[k]

= 1 u

⇐⇒ (by de�nition of ←−ε ; note that c 6= 0 implies that ci 6= 0)

(∀i ∈ [k]) (∃ci ∈ 〈C〉 \ {0}) (∃u′′ ∈ T∆(Zk) ) (∃ui ∈ T∆) :

µ′k(σ)c,c1···ck = 1 u′′ ∧ hεµ′(ti)ci = 1 ui ∧ u = u′′[ui]i∈[k]

⇐⇒ (by de�nition of µ′ and induction hypothesis)

(∀i ∈ [k]) (∃c′, ci ∈ 〈C〉 \ {0}) (∃u′ ∈ C∆(Zn) ) (∃ui ∈ T∆)

(∃w = ?(xi1) · · · ? (xin) ∈ {?}(Xk)∗) :

µk(σ)?,w = c′ u′ ∧ hεµ(ti)? = ci ui ∧ u = (u′[zij ]j∈[n])[ui]i∈[k] ∧

∧ c = c′ ·
∏
i∈[k]

c
|w|?(xi)

i

⇐⇒ (by de�nition of ←−ε and (u′[zij ]j∈[n])[ui]i∈[k] = u′[uij ]i∈[n])

(∀i ∈ [k]) (∃w = ?(xi1) · · · ? (xin) ∈ {?}(Xk)∗) :

µk(σ)?,w←−ε
(
hεµ(tij )?

)
j∈[n]

= c u
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Table 7. Preservation of properties for the construction
of Lemma 5.26

bu td p m bu-d bu-t td-d td-t i-l i-n o-l o-n b bu-h td-h
3 7 3 3 3 3 7 7 3 3 3 7 7 7 7

⇐⇒ (by De�nition 4.7(1) and Proposition 5.1(2) since hεµ(tij )? 6= 0̃)

hεµ(σ(t1, . . . , tk))? = c u

Now we also prove for every t ∈ TΣ and u ∈ T∆ that

u ∈ supp(hεµ′(t)0) =⇒ hεµ(t)? = 0̃ . (53)

Suppose that u ∈ supp(hεµ′(t)0) and h
ε
µ(t)? = c u′ for some c ∈ 〈C〉 \ {0} and

u′ ∈ T∆ (by Proposition 5.1(5), hεµ(t)? is monomial). By (52) we then have
hεµ′(t)c = 1 u′, which is a contradiction due to of Proposition 5.1(1). It is

easily seen that b · (hεµ′(t)0, u) = 0 because a · b = 0.
Now we prove ‖M ′‖ε = ‖M‖ε as follows. Let t ∈ TΣ. Suppose that there

exists exactly one c ∈ 〈C〉 \ {0} such that hεµ′(t)c 6= 0̃ [there is at most one

such c by Proposition 5.1(1)].

‖M ′‖ε(t) = F ′
c←−ε (hεµ′(t)c) = c · hεµ′(t)c

= F?←−ε (c · hεµ′(t)c) = F?←−ε (hεµ(t)?) = ‖M‖ε(t)

Now, let hεµ′(t)0 6= 0̃. Then by (53) we have hεµ(t)? = 0̃ and thereby

‖M‖ε(t) = 0̃.

‖M ′‖ε(t) = F ′
0←−ε (hεµ′(t)0) = b · hεµ′(t)0 = 0̃ = ‖M‖ε(t)

Finally, let hεµ′(t)c = 0̃ for every c ∈ 〈C〉. Thus ‖M ′‖ε(t) = 0̃. Clearly, also
hεµ(t)? = 0̃ by (52). Hence ‖M‖ε(t) = 0̃. �

We show that the class of all ε-t-ts transformations computed by
nondeleting homomorphism bu-tst is not contained in the class of all
o-t-ts transformations computed by homomorphism bu-tst, i. e.,

hn�BOTε(A) 6⊆ h�BOTo(A) ,

as long as the semiring A is not multiplicatively idempotent. More-
over, we show that the class of o-t-ts transformations computed by
nondeleting homomorphism bu-tst is not contained in the class of ε-t-ts
transformations computed by homomorphism bu-tst. It is clear that
both classes of transformations computed by nondeleting homomor-
phism bu-tst are properly contained in the class of all ε-t-ts trans-
formations computed by deterministic bu-tst due to Lemma 5.21 and
Observation 4.19 (on multiplicatively periodic and commutative semi-
rings); i. e., hn�BOTη(A) ⊆ d�BOTε(A).

Lemma 5.27. Let A be multiplicatively non-idempotent, and let
{η, κ} = {ε, o}.

hn�BOTη(A) 6⊆ h�BOTκ(A) and hn�BOTε(A) 6⊆ h�TOPε(A)
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Proof. Since A is not multiplicatively idempotent, there exists a ∈ A
such that a 6= a2. We construct the bu-tst M = ({?},Σ,∆,A, F, µ) with

• Σ = {γ(1), α(0), β(0)} and ∆ = {σ(2), α(0), β(0)};
• F? = 1 z1; and
• µ0(α)? = a α and µ0(β)? = 1 β and µ1(γ)?,? = 1 σ(z1, z1).

The bu-tst is depicted in Figure 22(left). Clearly, M is a nondeleting homo-
morphism. Let τ = ‖M‖η. We observe that

τ(α) = a α τ(β) = 1 β τ(γ(α)) = an σ(α, α) τ(γ(β)) = 1 σ(β, β) ,

where n = 1 if η = ε and n = 2 otherwise.

(i) Suppose that there exists a homomorphism bu-tst

M ′ = ({?},Σ,∆,A, F, µ′)

such that ‖M ′‖κ = τ . Since M ′ is a homomorphism, we have τ(t) = hκµ′(t)?
for every t ∈ TΣ by Observation 4.23. It follows that µ′0(α)? = a α and
µ′0(β)? = 1 β. Let c ∈ A and u ∈ T∆(Z1) be such that µ′1(γ)?,? = c u [see
Figure 22(right) for a graphical representation of M ′].

τ(γ(t)) = hκµ′(γ(t))? = µ′1(γ)?,?←−κ (hκµ′(t)?) = (c u)←−κ (hκµ′(t)?)

Hence u = σ(z1, z1) because otherwise either σ(α, α) /∈ supp(‖M ′‖κ(γ(α)))
or σ(β, β) /∈ supp(‖M ′‖κ(γ(β))). With this knowledge we obtain

hκµ′(γ(α))? = (c · a3−n) σ(α, α) and hκµ′(γ(β))? = c σ(β, β) .

The latter equality allows us to conclude that c = 1. However, this yields a
contradiction because τ(γ(α)) = anσ(α, α) and ‖M ′‖κ(γ(α)) = a3−nσ(α, α)
with an 6= a3−n. Thus there exists no homomorphism bu-tst M ′ such that
‖M ′‖κ = τ , which proves that τ /∈ h�BOTκ(A).

(ii) Suppose that there exists a homomorphism td-tst

M ′′ = ({?},Σ,∆,A, F, µ′′)

such that ‖M ′′‖ε = ‖M‖ε. Let τ = ‖M‖ε. Because M ′′ is a homomorphism
td-tst, we have τ(t) = hεµ′′(t)? for every t ∈ TΣ by Observation 4.23. It follows

that µ′′0(α)? = aα and µ′′0(β)? = 1β. It is easily seen that µ′′1(γ)?,?(x1)?(x1) 6= 0̃.
Let c ∈ A+ and u ∈ C∆(Z2) be such that µ′′1(γ)?,?(x1)?(x1) = c u.

τ(γ(t)) = hεµ′′(γ(t))? = µ′′1(γ)?,?(x1)?(x1)←−ε (hεµ′′(t)?, h
ε
µ′′(t)?)

= (c u)←−ε (hεµ′′(t)?, h
ε
µ′′(t)?)

Hence u = σ(z1, z2) because otherwise either σ(α, α) /∈ supp(‖M ′′‖ε(γ(α)))
or σ(β, β) /∈ supp(‖M ′′‖ε(γ(β))). With this knowledge we obtain

hεµ′′(γ(α))? = (c · a2) σ(α, α) and hεµ′′(γ(β))? = c σ(β, β) .

The latter equality allows us to conclude that c = 1. However, this yields
a contradiction because τ(γ(α)) = a σ(α, α) and ‖M ′′‖ε(γ(α)) = a2 σ(α, α)
with a 6= a2. Thus there exists no homomorphism td-tst M ′′ such that
‖M ′′‖ε = τ , which proves that τ /∈ h�TOPε(A). �
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?

1 z1

α/a α β/1 β

γ/1 σ(z1, z1) ?

1 z1

α/a α β/1 β

γ/c σ(z1, z1)

Figure 22. Bu-tst M (left) and M ′ (right) over A used
in the proof of Lemma 5.27.

d⊥= d>=

dn⊥= dl⊥= dt⊥= dt>= dn>= dl>=

dnl⊥= dnt⊥= dlt⊥=

h=
o

h⊥ε
dnt>= dlt>= dnl>=

dnlt⊥=

hn=
o

hn⊥ε

hl=o

hl⊥ε
dnlt>=

hnl==

Figure 23. Hasse diagram for multiplicatively peri-
odic and commutative semirings A that are zero-divisor
free but not multiplicatively idempotent.

Finally, we are able to present the Hasse diagram for multiplica-
tively periodic and commutative semirings A that are not multiplica-
tively idempotent.

Theorem 5.28. Let A be a multiplicatively periodic and commuta-
tive semiring that is not multiplicatively idempotent. Figure 23 is the
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d⊥= d>=

dn⊥= dl⊥= dt⊥= dt>= dn>= dl>=

dnl⊥= dnt⊥= dlt⊥=

h>=
h⊥o
h⊥ε

dnt>= dlt>= dnl>=

dnlt⊥=

hn=
o

hn⊥ε

hl>=
hl⊥o
hl⊥ε

dnlt>=

hnl==

Figure 24. Hasse diagram for multiplicatively peri-
odic and commutative semirings A that are neither zero-
divisor free nor multiplicatively idempotent.

Hasse diagram in case A is zero-divisor free, and Figure 24 is the
Hasse diagram in case A is not zero-divisor free.

Proof. (i) Let us �rst prove that Figure 23 is a Hasse diagram. All the
inclusions are trivial or hold by virtue of Observation 5.14. The equalities are
due to Propositions 4.21 and 5.13 and Theorem 4.17 and Observation 5.14
and Corollary 5.23. Then for every {η, κ} = {ε, o} the following 13 state-
ments are su�cient to prove strictness and incomparability.

dnlt�BOTε(A) 6⊆ d�TOPε(A) (54)

dnlt�TOPε(A) 6⊆ d�BOTε(A) (55)

dnlt�BOTε(A) 6⊆ h�BOTε(A) (56)

dnl�BOTε(A) 6⊆ dt�BOTε(A) (57)

dnl�TOPε(A) 6⊆ dt�TOPε(A) (58)

hn�BOTη(A) 6⊆ dl�BOTε(A) (59)

hn�BOTε(A) 6⊆ dl�TOPε(A) (60)
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hn�TOPε(A) 6⊆ dl�TOPε(A) (61)

hl�BOTη(A) 6⊆ dn�BOTε(A) (62)

hl�TOPε(A) 6⊆ dn�TOPε(A) (63)

hl�BOTε(A) 6⊆ d�TOPε(A) (64)

hl�BOTo(A) 6⊆ h�BOTε(A) (65)

hn�BOTη(A) 6⊆ h�BOTκ(A) (66)

The Inequalities (54) and (55) are proved in Lemma 5.11. The Inequalities
(56)�(63) are proved in Lemma 5.12, whereas Inequalities (64) and (65) are
due to Lemma 5.16. Finally, Inequality (66) holds because of Lemma 5.27.

(ii) Let us now prove that Figure 24 is a Hasse diagram. All the inclusions
are trivial or hold by virtue of Observation 5.14 or Lemma 5.26. The equal-
ities are due to Proposition 4.21 and Theorem 4.17 and Observation 5.14
and Lemma 5.24. The above Inequalities (54)�(66) and the following �ve
inequalities are su�cient to prove strictness and incomparability.

dnlt�BOTε(A) 6⊆ h�BOTo(A) (67)

hl�TOPε(A) 6⊆ dn�BOTε(A) (68)

hl�BOTo(A) 6⊆ d�TOPε(A) (69)

hl�TOPε(A) 6⊆ h�BOTo(A) (70)

hl�BOTε(A) 6⊆ h�BOTo(A) (71)

hl�TOPε(A) 6⊆ h�BOTε(A) (72)

hn�BOTε(A) 6⊆ h�TOPε(A) (73)

The Inequalities (67) and (68) are due to Lemma 5.12 and Inequalities
(69) and (70) are proved in Proposition 5.13. Finally, we have proved In-
equalities (71) and (72) in Lemma 5.16 and Inequality (73) in Lemma 5.27.

�

7. Multiplicatively idempotent semirings

This section is devoted to the study of multiplicatively idempotent
and commutative semirings. The semiring

Rmin,max = (R ∪ {∞,−∞},min,max)

is an example of such a semiring. Clearly, an = a for every n ∈ N+

and a ∈ A of a multiplicatively idempotent semiring (A,+, ·). Hence
we easily derive the following proposition.

Proposition 5.29. Let A be multiplicatively idempotent, k ∈ N,
and ∆ be a ranked alphabet. For every ψ ∈ A〈〈T∆(Zk)〉〉, which is
nondeleting in Zk and ψ1, . . . , ψk ∈ A〈〈T∆〉〉 we have

ψ←−ε (ψ1, . . . , ψk) = ψ←−o (ψ1, . . . , ψk) .

This proposition immediately yields the corollary that the class of
ε-t-ts transformations computed by nondeleting bu-tst coincides with
the class of o-t-ts transformations computed by nondeleting bu-tst.
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d⊥= d>=

dn⊥= dl⊥= dt⊥= dt>= dn>= dl>=

dnl⊥= dnt⊥= dlt⊥=

h=
o

h⊥ε
dnt>= dlt>= dnl>=

dnlt⊥= hn=
=

hl=o

hl⊥ε
dnlt>=

hnl==

Figure 25. Hasse diagram for multiplicatively idem-
potent and commutative semirings, which are zero-
divisor free and have at least three elements.

Moreover this equality is in fact characteristic for multiplicatively idem-
potent semirings. These two statements are formalized in the next two
corollaries.

Corollary 5.30. Let A be multiplicatively idempotent. For every
x ∈ Πn we have x�BOTε(A) = x�BOTo(A).

Corollary 5.31. For every semiring A, we have that A is mul-
tiplicatively idempotent, if and only if hn�BOTε(A) = hn�BOTo(A).

Proof. The equality in multiplicatively idempotent semirings is proved
in Corollary 5.30 and Lemma 5.27 proves the inequality in all multiplicatively
non-idempotent semirings. �

These are indeed all the new results necessary to prove the Hasse
diagram for multiplicatively idempotent and commutative semirings.
Note that multiplicatively idempotent semirings are trivially multi-
plicatively periodic, so we apply some of the results derived in Section 6.
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d⊥= d>=

dn⊥= dl⊥= dt⊥= dt>= dn>= dl>=

dnl⊥= dnt⊥= dlt⊥=

h>=
h⊥o
h⊥ε

dnt>= dlt>= dnl>=

dnlt⊥= hn=
=

hl>=
hl⊥o
hl⊥ε

dnlt>=

hnl==

Figure 26. Hasse diagram for multiplicatively idem-
potent and commutative semirings, which are not zero-
divisor free and have at least three elements.

Theorem 5.32. Let A be multiplicatively idempotent and commu-
tative with A 6= {0, 1}. Figure 25 is the Hasse diagram in case A is
zero-divisor free, and Figure 26 is the Hasse diagram in case A is not
zero-divisor free.

Proof. (i) Let us �rst prove that Figure 25 is a Hasse diagram. All the
inclusions are trivial or hold by virtue of Observation 5.14. The equalities are
due to Propositions 4.21 and 5.13 and Theorem 4.17 and Observation 5.14
and Corollaries 5.23 and 5.30. Then for every {η, κ} = {ε, o} the following
eleven statements are su�cient to prove strictness and incomparability.

dnlt�BOTε(A) 6⊆ d�TOPε(A) (74)

dnlt�TOPε(A) 6⊆ d�BOTε(A) (75)

dnlt�BOTε(A) 6⊆ h�BOTε(A) (76)

dnl�BOTε(A) 6⊆ dt�BOTε(A) (77)

dnl�TOPε(A) 6⊆ dt�TOPε(A) (78)
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hn�BOTε(A) 6⊆ dl�BOTε(A) (79)

hn�TOPε(A) 6⊆ dl�TOPε(A) (80)

hl�BOTη(A) 6⊆ dn�BOTε(A) (81)

hl�TOPε(A) 6⊆ dn�TOPε(A) (82)

hl�BOTε(A) 6⊆ d�TOPε(A) (83)

hl�BOTo(A) 6⊆ h�BOTε(A) (84)

The Inequalities (74) and (75) are proved in Lemma 5.11. The Inequalities
(76)�(82) are proved in Lemma 5.12, whereas Inequalities (83) and (84) are
due to Lemma 5.16.

(ii) Let us now prove that Figure 26 is a Hasse diagram. All the in-
clusions are trivial or hold by virtue of Observation 5.14 or Lemma 5.26.
The equalities are due to Proposition 4.21 and Theorem 4.17 and Obser-
vation 5.14 and Lemma 5.24 and Corollary 5.30. The above Inequalities
(74)�(84) and the following �ve inequalities are su�cient to prove strictness
and incomparability.

dnlt�BOTε(A) 6⊆ h�BOTo(A) (85)

hl�TOPε(A) 6⊆ dn�BOTε(A) (86)

hl�BOTo(A) 6⊆ d�TOPε(A) (87)

hl�TOPε(A) 6⊆ h�BOTo(A) (88)

hl�BOTε(A) 6⊆ h�BOTo(A) (89)

hl�TOPε(A) 6⊆ h�BOTε(A) (90)

The Inequalities (85) and (86) are due to Lemma 5.12 and Inequalities
(87) and (88) are proved in Proposition 5.13. Finally, we have proved In-
equalities (89) and (90) in Lemma 5.16. �

8. Open problems and future work

The most prominent open problem is the missing diagram for com-
mutative and multiplicatively nonperiodic semirings that have zero-
divisors. Most of the results needed to prove a Hasse diagram are al-
ready available in this thesis. Moreover, the transformational power of
deterministic bu-tst and td-tst can also be studied in non-commutative
semirings, however most of the semirings that are relevant in applica-
tions are commutative.

In addition, more re�ned restrictions for deterministic tree trans-
ducers (like superlinearity [57, 54] or relabeling) were studied. Those
conditions could be suitably generalized to bu-tst and td-tst and stud-
ied on these grounds. Finally, the transformational power of non-
deterministic bu-tst and td-tst should be studied. We present some
results that contribute to this line of research in Chapter 6.



CHAPTER 6

Polynomial Tree Series Transducers

Man is a masterpiece of creation
if for no other reason than that,

all the weight of evidence for determinism notwithstanding,
he believes he has free will.

Georg Christoph Lichtenberg (1742�1799): Aphorism 249 of �Notebook J�
Aphorisms, translated by R.J. Hollingdale, 1765�1799

1. Bibliographic information

In this chapter we continue the investigations of the previous chap-
ter by examining polynomial tst. In particular, we show that for im-
portant semirings like N, A, and T the choice of pure or o-substitution
is relevant for bu-tst. To this end, we prove that there exist ε-t-ts
transformations computable by deterministic bu-tst, which cannot be
computed as the o-t-ts transformation of any polynomial bu-tst. This
line of investigation was started in [58], where the mentioned incom-
parability was shown for the speci�c semirings N∞ and T and bu-tst
with designated states.

This chapter is a revised and extended version of [89], where the re-
sults for bu-tst and td-tst with designated states appeared. We extend
these results to polynomial bu-tst and tst with top-most outputs.

2. Coe�cient majorization

Throughout this chapter we only consider polynomial tst and their
computed η-t-ts transformations, which are well-de�ned by Observa-
tion 4.14(3). In this section we derive mappings, called coe�cient ma-
jorizations, which allow us to give an upper bound for all nonzero
coe�cients present in a particular tree series in the range of the η-t-ts
transformation computed by a tst. Later we use this bound to show
that certain η-t-ts transformations may not belong to a given class of
transformations.

At this point we explicitly exclude certain non-interesting tst. We
call a tst M = (Q,Σ,∆,A, F, µ) nontrivial, if Σ0 6= ∅ and there exist

k ∈ N, σ ∈ Σk, and q ∈ Q such that µk(σ)q,ε 6= 0̃. Hence, in particular,
for bu-tst non-triviality implies that there exists a σ ∈ Σ0 satisfying
the condition above. Moreover, non-triviality implies that ∆0 6= ∅. Let
M be trivial (i. e., not nontrivial). Then ‖M‖η(t) = 0̃ for every t ∈ TΣ

127
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and η ∈ {ε, o}. Since this particular case is not interesting, we assume
that all tst that are considered in the rest of this chapter are nontrivial.

Moreover, we henceforth assume that mxΣ > 1 for all considered
ranked alphabets Σ of input symbols. This is justi�ed because if we
restrict ourselves to input alphabets with only nullary symbols then

x�BOTε(A) = x�BOTo(A) = x�TOPε(A) = x�TOPo(A)

for every x ∈ Π.
Our coe�cient majorization approach uses a partial order on the

semiring carrier and derives an upper bound for the nonzero coe�cients
present in any tree series in the range of the η-t-ts transformation
computed by a polynomial bu-tst or td-tst. Next we introduce the
notion of a partially ordered semiring. Let A = (A,+, ·) be a semiring
and 6 be a partial order on A. We say that 6 partially orders A (or
alternatively: A is partially ordered by 6), if for every a, a′, b, b′ ∈ A
such that a 6 a′ and b 6 b′:

(PO+) a+ b 6 a′ + b′; and
(PO ·) a · b 6 a′ · b′.

Note that every naturally ordered semiring is partially ordered by the
natural order v. Thus, e. g., the semirings N, A, T, and B are partially
ordered by their respective natural order. Moreover, the following three
semirings are also partially ordered by their respective natural order:

• the min-max-semiring of the reals

Rmin,max = (R ∪ {∞,−∞},min,max)

with the usual operations of minimum and maximum extended
to −∞ and ∞ such that −∞ is the smallest element and ∞
is the greatest element;
• for every alphabet S the formal language semiring

LS = (P(S∗),∪, ◦)
where V ◦ W = {vw | v ∈ V,w ∈ W} for every V,W ⊆ S∗;
and
• the least common multiple semiring Lcm = (N, lcm, ·) with the
usual operations of least common multiple and multiplication.

The next observation is central in this chapter. It lifts the conditions
(PO+) and (PO ·) from sums and products of just two elements to
arbitrary (�nite) sums and products.

Observation 6.1. Let A be a semiring that is partially ordered
by 6.

(1) Let n ∈ N, and let ai, bi ∈ A for every i ∈ [n]. If ai 6 bi for
every i ∈ [n], then∑

i∈[n]

ai 6
∑
i∈[n]

bi and
∏
i∈[n]

ai 6
∏
i∈[n]

bi .
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(2) Let a ∈ A and m,n ∈ N+ such that m 6 n. If 1 6 1 + 1,
then

∑
i∈[m] a 6

∑
i∈[n] a. Note that m = 0 is excluded because

there may exist an a ∈ A with 0 66 a.
(3) Let b ∈ A with b > 1, and let m,n ∈ N such that m 6 n. We

then have bm 6 bn.

Proof. All three statements are easy consequences of the fact that
6 partially orders A. �

For the rest of this chapter, we letM = (Q,Σ,∆,A, F, µ) be a non-
trivial polynomial tst with mxΣ > 1 and η ∈ {ε, o}. More speci�cally,
M is bottom-up in Section 2.2. The general case including td-tst is
considered in Section 2.3.

2.1. The general approach. Our goal is to approximate the co-
e�cient of an output tree that is in the support of a tree series in
the range of ‖M‖η. More precisely, we de�ne coe�cient majorizations

f : N −→ A, which ful�ll f(n) ∈ ↑ CηM(n) for every n ∈ N, where
CηM(n) ⊆ A, the set of coe�cients generated by M on input trees of
height at most n, is

CηM(n) = {(hηµ(t)q, u) | q ∈ Q, t ∈ TΣ, height(t) 6 n, u ∈ supp(hηµ(t)q)} .

The existence of such mappings gives rise to a property of polynomial
tst. We exploit this property in Section 3 to reprove some recent results
and to provide some insight into the relation between the two modes of
traversing the input tree (i. e., bottom-up and top-down) and the two
types of substitution (i. e., pure and o-substitution).

We start with the de�nition of some constants that are associated
with the polynomial tst M . They provide the abstraction from the
concrete tst used in our majorizations.

Definition 6.2. The following constants represent facts of M :

• the number dM ∈ N+ of follow-up states (or successor states):

dM =

{
card(Q) if M is bottom-up,

max(2, card(Q) ·mxΣ) otherwise;

• the maximal support cardinality eM ∈ N+ of the tree represen-
tation µ:

eM = max{card
(
supp(µk(σ)q,w)

)
| k ∈ N, σ ∈ Σk, q ∈ Q,w ∈ Q(Xk)

∗} ;

• the maximal support cardinality e′M ∈ N of the top-most out-
put F :

e′M = max{card(supp(Fq)) | q ∈ Q} ;
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• and the maximal variable degree uM,η ∈ N:

uM,η =


max

k∈N,σ∈Σk,q∈Q,
w∈Q(Xk)∗,µk(σ)q,w 6=e0

|w| if η = ε,

max
k∈N,σ∈Σk,q∈Q,

w∈Q(Xk)∗,u∈supp(µk(σ)q,w)

( ∑
z∈Z|w|

|u|z
)

if η = o.

Let us discuss those constants in more detail. The constant mxΣ

represents the maximal number of direct subtrees of any node in any
given input tree. Clearly, this number coincides with the maximal
rank of the input ranked alphabet. Next we consider a state q ∈ Q
and a word w ∈ Q(Xk)

∗ such that µk(σ)q,w 6= 0̃. The constant dM
represents the number of possible combinations for a single symbol of
the word w. Given thatM is bottom-up, we have only card(Q) choices
for the symbol because the variable of Xk is uniquely determined by the
position in the word w. Finally, for polynomial tst we have card(Q) · k
choices and thus at most card(Q) · mxΣ choices independently of the
input symbol, but for technical reasons we take max(2, card(Q) ·mxΣ).

The intention of the constants eM and e′M , which are well-de�ned
because M is polynomial, is obvious. Lastly, the constant uM,η limits
the number of factors representing subtree coe�cients in any multipli-
cation (see the de�nition of pure and o-substitution in De�nition 3.1).
If M is bottom-up, then there are at most mxΣ factors (if η = ε) or at
most as many factors as there are variables in the tree selected from
the tree representation (if η = o). In the general case, there are at
most as many factors as the length of the longest word w ∈ Q(Xk)

∗

with µk(σ)q,w 6= 0̃ (if η = ε) or at most as many factors as there are
variables in the tree selected from the tree representation (if η = o).
Note that if M is top-down, then uM,ε = uM,o, so there is no di�erence
between pure and o-substitution (see Theorem 4.17). Further note that
uM,η is well-de�ned because M is polynomial.

For our coe�cient majorizations we need a semiring element which
is larger (with respect to some order on A) than any coe�cient in the
tree representation µ and any coe�cient in the top-most outputs F .
The next de�nition introduces the required notions.

Definition 6.3. Let A = (A,+, ·) be a semiring and 6 a partial
order on A.

(1) An element c ∈ A is called an upper bound of the coe�cients
of µ (with respect to 6), if c is an upper bound of

{(µk(σ)q,w, u) | k ∈ N, σ ∈ Σk, q ∈ Q,w ∈ Q(Xk)
∗, u ∈ supp(µk(σ)q,w)}.

(2) An element c ∈ A is called an upper bound of the coe�cients
of F (with respect to 6), if

c ∈ ↑{(Fq, u) | q ∈ Q, u ∈ supp(Fq)} .
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(3) Finally, an element c ∈ A is called an upper bound of the co-
e�cients ofM (with respect to 6), if c is both an upper bound
of the coe�cients of µ and an upper bound of the coe�cients
of F .

Note that such elements need not exist in general. However, the ex-
istence can be guaranteed, e. g., by demanding that A is directed (with
respect to 6); i. e., ↑{a, b} 6= ∅ for every a, b ∈ A. In the following, we
often assume an upper bound c of the coe�cients ofM with c > 1, and
apparently, to obtain the best results, it should be chosen as small as
possible; hence it should be the supremum of the nonzero coe�cients
occurring in M and 1, if this supremum exists.

Next we introduce particular mappings, namely cardinality and co-
e�cient majorizations. Given n ∈ N, a cardinality majorization is sup-
posed to limit the cardinality of the support of hηµ(t)q for every q ∈ Q
and t ∈ TΣ of height at most n. Finally, given n ∈ N, a coe�cient ma-
jorization f is supposed to limit all nonzero coe�cients generated byM
on input trees of height at most n; i. e., it must ful�ll f(n) ∈ ↑ CηM(n).

Definition 6.4. Let A = (A,+, ·) be a semiring and 6 a partial
order on A.

• A mapping l : N −→ N+ such that card(supp(hηµ(t)q)) 6 l(n)
for every n ∈ N, t ∈ TΣ of height at most n, and q ∈ Q is
called a cardinality majorization (with respect to M and η).
• Moreover, a mapping f : N −→ A such that f(n) ∈ ↑ CηM(n) for
every n ∈ N is called a coe�cient majorization (with respect
to M , 6, and η).

Next we provide an example for each of the above de�ned majoriza-
tions. We use the bu-tst M4.6 of Example 4.6 (see Chapter 4).

Example 6.5. Let M = M4.6 = (Q,Σ,∆,A∞, F, µ) be the bu-tst of
Example 4.6. Recall that A∞ is naturally ordered.

• The mapping l : N −→ N+ de�ned by l(n) = 1 for every n ∈ N
is a cardinality majorization (with respect to M and o) because
card(T∆) = 1.
• The mapping f : N −→ N ∪ {∞,−∞} de�ned by f(n) = n for
every n ∈ N is a coe�cient majorization (with respect to M ,
v, and o), which can be seen in Example 4.8.

Next we discuss the general approach used to derive a coe�cient
majorization. Let A be partially ordered by 6. Moreover, let t ∈ TΣ

and let c be an upper bound (with respect to 6) of the coe�cients ofM
with c > 1 (see De�nition 6.3). Using a cardinality majorization l, we
can introduce a so-called ample coe�cient majorization associated with
l and c (see De�nitions 6.6 and 6.13). The di�erent modi�ers (i. e.,
η = ε or η = o) are taken care of by the maximal variable degree uM,η

(see De�nition 6.2). This di�erence vanishes for polynomial td-tst,
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because the classes of η-t-ts transformations computed by td-tst using
on the one hand η = ε and on the other hand η = o coincide (see
Theorem 4.17).

Roughly speaking, if t has height 0, then every support element of
hηµ(t)q has a coe�cient that is at most c. Given t of height n+1, we �rst
compute an upper bound of the coe�cients of all subtrees of height at
most n. Since those weights are multiplied in the de�nition of substi-
tution, we take the result of the recursive call to the uM,η-th power.
Recall that uM,η is de�ned such that it holds the maximal number of
multiplications in any product generated by one η-substitution. The
other factor is provided by the tree representation, and thus c provides
a suitable upper bound of this factor.

Finally, by substitution, equal trees might arise such that the coef-
�cients of those are going to be summed up. The cardinality majoriza-
tion l is going to provide an upper bound of this sum as we will see in
Theorems 6.8 and 6.15.

In the sections to follow we distinguish the two modes of traversing
the input tree, namely bottom-up and top-down. In particular, in the
section on polynomial tst, which also handles td-tst, we casually refer to
the bottom-up section because the derived majorizations generally have
the same structure and so properties only depending on the structure
carry over to the general case.

2.2. The bottom-up case. Recall that in this section M is al-
ways a (nontrivial) polynomial bu-tst with mxΣ > 1. Moreover, let
η ∈ {ε, o}. According to the outline just presented, we de�ne the fol-
lowing coe�cient majorization. Recall the constants dM , eM , and uM,η

from De�nition 6.2.

Definition 6.6. Let l : N −→ N+ and c ∈ A. The ample coe�-
cient majorization f⊥M,η,l,c : N −→ A (associated with l and c) is de�ned
recursively by

f⊥M,η,l,c(0) = c

f⊥M,η,l,c(n) =
∑

i∈[(dM )mxΣ ·eM ·l(n−1)mxΣ ]

c · f⊥M,η,l,c(n− 1)uM,η

for every n > 1.

Thus the ample coe�cient majorization depends on the polynomial
bu-tst M (or more speci�cally: a few characteristics of M), the type η
of substitution employed, the cardinality majorization l, and the upper
bound c. Next we prove that the ample coe�cient majorization is
indeed a coe�cient majorization whenever A is partially ordered by 6,
l is a cardinality majorization, and c is an upper bound (with respect
to 6) of the coe�cients of M with c > 1.

For this result we need one additional assumption. Speci�cally, we
assume that A satis�es 1 6 1+1. This condition is trivially satis�ed in
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any additively idempotent semiring. Moreover, also naturally ordered
semirings ful�ll this restriction with respect to their natural order. First
we present an intermediate result that is required in the main theorem.

Observation 6.7. Let A be partially ordered by 6 with 1 6 1+1.
Moreover, let l : N −→ N+ and c ∈ A be such that c > 1. We have
f⊥M,η,l,c(n) > 1 for every n ∈ N.

Proof. The proof is by induction on n. The induction base is imme-
diate, so we proceed with the induction step. Clearly, a = c · f⊥M,η,l,c(n)uM,η

obeys a > 1 by induction hypothesis, Observation 6.1(3), and (PO ·). We
have a 6 f⊥M,η,l,c(n+1) by Observation 6.1(2). Thus 1 6 a 6 f⊥M,η,l,c(n+1).

�

Now we are ready to state the �rst theorem. It shows that given
a cardinality majorization l and an upper bound of the coe�cients
of M , the ample coe�cient majorization f⊥M,η,l,c is indeed a coe�cient
majorization.

Theorem 6.8. Let A be partially ordered by 6 such that 1 6 1+1.
Moreover, let l be a cardinality majorization, and let c be an upper
bound (with respect to 6) of the coe�cients of M such that c > 1.
The ample coe�cient majorization f⊥M,η,l,c is a coe�cient majorization;

i. e., f⊥M,η,l,c(n) ∈ ↑ CηM(n) for every n ∈ N. Moreover,

(‖M‖η(t), u) 6
∑

i∈[dM ·e′M ·l(n)]

c · f⊥M,η,l,c(n) (91)

for every n ∈ N, t ∈ TΣ, and u ∈ supp(‖M‖η(t)) with height(t) 6 n.

Proof. Obviously we have to prove (hηµ(t)q, u) 6 f⊥M,η,l,c(n) for every

n ∈ N, q ∈ Q, t ∈ TΣ, and u ∈ supp(hηµ(t)q) such that height(t) 6 n. We
proceed by structural induction on t.

Induction base: Suppose that t = α for some α ∈ Σ(0). Recall that we have
u ∈ supp(hηµ(α)q).

(hηµ(α)q, u)

= (by De�nition 4.7(1) )

(µ0(α)q, u)

6 (since c is an upper bound of the coe�cients of µ)

c

= (by De�nition 6.6)

f⊥M,η,l,c(0)

Induction step: Let k ∈ N+, σ ∈ Σk, and t1, . . . , tk ∈ TΣ be such that
t = σ(t1, . . . , tk). Recall that height(t) 6 n.

(hηµ(σ(t1, . . . , tk))q, u)
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= (by De�nition 4.7(1) and the fact that M is bottom-up)( ∑
q1,...,qk∈Q

µk(σ)q,q1···qk←−η (hηµ(ti)qi)i∈[k], u
)

= (by de�nition of ←−η )∑
w=q1···qk∈Qk,

u=u′[u1,...,uk],u′∈supp(µk(σ)q,w),
(∀i∈[k]) : ui∈supp(hη

µ(ti)qi )

(µk(σ)q,w, u′) ·
∏
i∈[k]

(hηµ(ti)qi , ui)
sel(u′,i,η)

6 (by induction hypothesis because height(ti) 6 n− 1,
(µk(σ)q,w, u′) 6 c, and (PO ·);
in the sequel we use . . . to abbreviate the index of sum)∑

...

c ·
∏
i∈[k]

f⊥M,η,l,c(n− 1)sel(u
′,i,η)

=
∑
...

c · f⊥M,η,l,c(n− 1)sel(u
′,1,η)+···+sel(u′,k,η)

6 (by Observations 6.1(3) and 6.7)∑
...

c · f⊥M,η,l,c(n− 1)uM,η

6 (by Observation 6.1(2) because there exists at least one nonzero

summand of the sum by u ∈ supp(hηµ(t)q);
let a = c · f⊥M,η,l,c(n− 1)uM,η)∑
w=q1···qk∈Qk,

u′∈supp(µk(σ)q,w),
(∀i∈[k]) : ui∈supp(hη

µ(ti)qi )

a

6 (by Observation 6.1(2) because dM = card(Q),
eM > card(supp(µk(σ)q,w)), and l(n− 1) > card(supp(hηµ(ti)qi))
because height(ti) 6 n− 1 for every i ∈ [k])∑

j∈[(dM )k·eM ·l(n−1)k]

a

6 (by Observation 6.1(2) )∑
j∈[(dM )mxΣ ·eM ·l(n−1)mxΣ ]

a

= (by De�nition 6.6)

f⊥M,η,l,c(n)

Thus we have proved the �rst statement of the theorem. This statement
allows us to derive the latter statement of the theorem as follows. Note that
e′M 6= 0 because u ∈ supp(‖M‖η(t)).
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(‖M‖η(t), u)
= (by De�nition 4.7(2) )∑

q∈Q

(
Fq←−η (hηµ(t)q), u

)
= (by de�nition of ←−η )∑

q∈Q

( ∑
u=u′[u′′], u′∈supp(Fq),

u′′∈supp(hη
µ(t)q)

(Fq, u′) · (hηµ(t)q, u′′)
)

6 (by (PO ·), c > (Fq, u′), and the �rst statement)∑
q∈Q

( ∑
u=u′[u′′], u′∈supp(Fq),

u′′∈supp(hη
µ(t)q)

c · f⊥M,η,l,c(n)
)

6 (by Observation 6.1(2) because there exists at least one nonzero

summand of the second sum by u ∈ supp(‖M‖η(t)) )∑
q∈Q, u′∈supp(Fq),
u′′∈supp(hη

µ(t)q)

c · f⊥M,η,l,c(n)

6 (by Observation 6.1(2) because dM = card(Q),
e′M > card(supp(Fq)), and l(n) > card(supp(hηµ(t)q))
due to height(t) 6 n)∑

i∈[dM ·e′M ·l(n)]

c · f⊥M,η,l,c(n) �

This theorem admits a trivial corollary for polynomial bu-tst with
designated states.

Corollary 6.9. Let A be partially ordered by 6 with 1 6 1 + 1,
and let M be a nontrivial polynomial bu-tst with designated states.
Moreover, let l be a cardinality majorization, and let c be an upper
bound (with respect to 6) of the coe�cients of µ such that c > 1.

Finally, let Qd = {q ∈ Q | Fq 6= 0̃}. For every n ∈ N, t ∈ TΣ, and
u ∈ supp(‖M‖η(t)) such that height(t) 6 n

(‖M‖η(t), u) 6
∑

i∈[card(Qd)]

f⊥M,η,l,c(n) . (92)

Proof.

(‖M‖η(t), u)
= (by De�nition 4.7(2) )∑

q∈Q
Fq←−η (hηµ(t)q)
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= (by Observation 3.4(2) )∑
q∈Q,Fq 6=e0

Fq←−η (hηµ(t)q)

= (because M has designated states)∑
q∈Q,Fq 6=e0

hηµ(t)q

6 (by Theorem 6.8 and Observation 6.1(1) )∑
q∈Q,Fq 6=e0

f⊥M,η,l,c(n)

= (by de�nition of Qd)∑
i∈[card(Qd)]

f⊥M,η,l,c(n) �

Continuing with the running example, we present the ample coe�-
cient majorization for the bu-tst M4.6 of Example 4.6.

Example 6.10. Let M = M4.6 = (Q,Σ,∆,A∞, F, µ) be the bu-tst
of Example 4.6. The constants of De�nition 6.2 are mxΣ = 2, dM = 1,
eM = 2, e′M = 1 and uM,o = 1. We let l be the cardinality majorization
presented in Example 6.5 (i. e., l(n) = 1 for every n ∈ N).

Finally, 1 is an upper bound of the coe�cients of M (see De�ni-
tion 6.3). We obtain the ample coe�cient majorization f⊥M,o,l,1 with

f⊥M,o,l,1(0) = 1 and for every n > 1

f⊥M,o,l,1(n) = 1 + f⊥M,o,l,1(n− 1) = n+ 1 .

Theorem 6.8 applied to this example yields that (‖M‖o(t), u) 6 n + 1
for every n ∈ N, t ∈ TΣ of height at most n, and u ∈ supp(‖M‖o(t)).
Note that f⊥M,o,l,1 does not coincide with the coe�cient majorization
presented in Example 6.5.

We have derived a mapping f⊥M,η,l,c that limits the coe�cients of

output subtrees generated by M . By de�nition, f⊥M,η,l,c depends on
a cardinality majorization l : N −→ N+. The cardinality majoriza-
tion l limits the support cardinality of the computed tree series. This
mapping was supplied from the outside, but now we derive an easy
cardinality majorization l⊥M .

Given n ∈ N, we have to limit the cardinality of the support
of hηµ(t)q for every t ∈ TΣ of height at most n and q ∈ Q. The idea
is to pessimistically assume that given k ∈ N, pairs of di�erent trees
(u, u′) ∈ T∆(Zk)

2, and (ui, u
′
i) ∈ (T∆)2 for every i ∈ [k], the trees

u[u1, . . . , uk] and u′[u′1, . . . , u
′
k] are di�erent. This is�of course�not

true in general, but it is appropriate for our cardinality majorization
because the number of di�erent trees in the support might only be
overestimated.
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Definition 6.11. The ample cardinality majorization associated
with M is the mapping l⊥M : N −→ N+ de�ned for every n ∈ N by

l⊥M(n) = (dM)
P

i∈[1,n] mxi
Σ · (eM)

P
i∈[0,n] mxi

Σ

=

{
eM if n = 0,

(dM)mxΣ · eM · l⊥M(n− 1)mxΣ if n > 0.

Now let us show that the ample cardinality majorization associated
with M is a cardinality majorization. Once this is achieved, we obtain
an ample coe�cient majorization f⊥

M,η,l⊥M ,c
that only depends on the

constants and c.

Lemma 6.12. The ample cardinality majorization associated with
the bu-tst M is a cardinality majorization; i. e.,

card(supp(hηµ(t)q)) 6 l⊥M(n)

for every n ∈ N, q ∈ Q, and t ∈ TΣ of height at most n.

Proof. We prove the statement by structural induction on t.

Induction base: Suppose that t = α for some α ∈ Σ0.

card
(
supp(hηµ(α)q)

)
= (by De�nition 4.7(1) )

card
(
supp(µ0(α)q)

)
6 (by de�nition of eM in De�nition 6.2)

eM

= (by De�nition 6.11)

l⊥M (0)

Induction step: Let k ∈ N+, σ ∈ Σk, and t1, . . . , tk ∈ TΣ be such that
t = σ(t1, . . . , tk). Recall that height(t) 6 n.

card
(
supp(hηµ(σ(t1, . . . , tk))q)

)
= (by De�nition 4.7(1) and the fact that M is bottom-up)

card
(
supp

( ∑
w=q1···qk∈Qk

µk(σ)q,w←−η (hηµ(ti)qi)i∈[k]

))
= (by de�nition of ←−η )

card
(
supp

( ∑
w=(q1,...,qk)∈Qk,
u′∈supp(µk(σ)q,w),

(∀i∈[k]) : ui∈supp(hη
µ(ti)qi )

(
(µk(σ)q,w, u′) ·

∏
i∈[k]

(hηµ(ti)qi , ui)
sel(u′,i,η)

)
u′[u1, . . . , uk]

))
6 (by eM > card(supp(µk(σ)q,w)) and induction hypothesis)

(dM )k · eM · l⊥M (n− 1)k

6 (because mxΣ > k)

(dM )mxΣ · eM · l⊥M (n− 1)mxΣ
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= (by De�nition 6.11)

l⊥M (n) �

Now we can combine the ample coe�cient majorization and the
ample cardinality majorization. If we instantiate f⊥M,η,l,c with l = l⊥M ,

then we obtain f⊥
M,η,l⊥M ,c

, which is de�ned by

f⊥M,η,l⊥M ,c(0) = c

f⊥M,η,l⊥M ,c(n) =
∑

i∈[l⊥M (n)]

c · f⊥M,η,l⊥M ,c(n− 1)uM,η

for every n > 1.

2.3. The general case. The main result of this section is also
proved under the assumption that 1 6 1 + 1. However, in this section
we consider polynomial tst and derive similar majorizations for them.
Thus, M always denotes a (nontrivial) polynomial tst with mxΣ > 1
in this section. Moreover, let η ∈ {ε, o}. Recall the constants dM , eM ,
and uM,η of De�nition 6.2.

Definition 6.13. Let l : N −→ N+ and c ∈ A. The ample coe�-
cient majorization f>M,η,l,c : N −→ A (associated with l and c) is de�ned
recursively by

f>M,η,l,c(0) = c

f>M,η,l,c(n) =
∑

i∈[(dM )
1+uM,ε ·eM ·l(n−1)

uM,ε ]

c · f>M,η,l,c(n− 1)uM,η

for every n ∈ N+.

Note the structural similarity of f>M,η,l,c and the ample coe�cient

majorization of a polynomial bu-tst. Also note that f>M,η,l,c does not
depend on η, if M is top-down. Theorem 6.8, which states that the
ample coe�cient majorization of a polynomial bu-tst is indeed a coe�-
cient majorization, and its proof can be translated in a straightforward
manner to the general (and thus also the top-down) case. The general
approach remains the same, though there are some notational changes,
so we resupply the proof.

Observation 6.14. Let A be partially ordered by 6 such that
1 6 1 + 1. Moreover, let l : N −→ N+ and c ∈ A be such that c > 1.
We have f>M,η,l,c(n) > 1 for every n ∈ N.

Proof. The proof is literally the same as the proof of Observation 6.7
except that f⊥M,η,l,c has to be replaced by f>M,η,l,c. �

Now we are ready to state the theorem for polynomial tst. It shows
that given a cardinality majorization l and an upper bound of the
coe�cients of M , the ample coe�cient majorization f>M,η,l,c is indeed a
coe�cient majorization.



2. COEFFICIENT MAJORIZATION 139

Theorem 6.15. Let A be partially ordered by 6 such that 1 6 1+1.
Moreover, let l be a cardinality majorization, and let c be an upper
bound (with respect to 6) of the coe�cients of M such that c > 1.
The ample coe�cient majorization f>M,η,l,c is a coe�cient majorization;

i. e., f>M,η,l,c(n) ∈ ↑ CηM(n) for every n ∈ N. Moreover,

(‖M‖η(t), u) 6
∑

i∈[card(Q)·e′M ·l(n)]

c · f>M,η,l,c(n)

for every n ∈ N, t ∈ TΣ, and u ∈ supp(‖M‖η(t)) with height(t) 6 n.

Proof. The proof of the latter statement is identical to the proof
of the corresponding statement of Theorem 6.8. So it remains to prove
(hηµ(t)q, u) 6 f>M,η,l,c(n) for every n ∈ N, q ∈ Q, t ∈ TΣ, and u ∈ supp(hηµ(t)q)
such that height(t) 6 n. We prove this statement by structural induction
on t.

Induction base: Suppose that t = α with α ∈ Σ0. Recall that we have
u ∈ supp(hηµ(α)q).

(hηµ(α)q, u)

= (by De�nition 4.7(1) )

(µ0(α)q, u)

6 (since c is an upper bound of the coe�cients of µ)

c

= (by De�nition 6.13)

f>M,η,l,c(0)

Induction step: Let k ∈ N+, σ ∈ Σk, and t1, . . . , tk ∈ TΣ be such that
t = σ(t1, . . . , tk). Recall that height(t) 6 n.(

hηµ
(
σ(t1, . . . , tk)

)
q
, u
)

= (by De�nition 4.7(1) )( ∑
w∈Q(Xk)∗,

w=q1(xi1
)···ql(xil

)

µk(σ)q,w←−η (hηµ(tij )qj )j∈[l], u
)

= (by de�nition of ←−η )∑
w=q1(xi1

)···ql(xil
)∈Q(Xk)∗,

u=u′[u1,...,ul],u
′∈supp(µk(σ)q,w),

(∀j∈[l]) : uj∈supp(hη
µ(tij )qj )

(µk(σ)q,w, u′) ·
∏
j∈[l]

(hηµ(tij )qj , uj)
sel(u′,j,η)

6 (by c > (µk(σ)q,w, u′), induction hypothesis

because height(tij ) 6 n− 1, and (PO ·);
we use . . . to abbreviate the index set of the previous sum)∑

...

c · f>M,η,l,c(n− 1)sel(u
′,1,η)+···+sel(u′,l,η)
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6 (by Observations 6.1(3) and 6.14 because

sel(u′, 1, η) + · · ·+ sel(u′, l, η) 6 uM,η)∑
...

c · f>M,η,l,c(n− 1)uM,η

6 (by Observation 6.1(2) because there exists at least one nonzero

summand of the sum by u ∈ supp(hηµ(t)q);
let a = c · f>M,η,l,c(n− 1)uM,η)∑

w=(q1(xi1
),...,ql(xil

))∈Q(Xk)∗,

u′∈supp(µk(σ)q,w),
(∀j∈[l]) : uj∈supp(hη

µ(tij )qj )

a

6 (by Observation 6.1(2) by dlM > card(Q(Xk)l),
eM > card(supp(µk(σ)q,w)), and l(n− 1) > card(supp(hηµ(tij )qj ))
for every j ∈ [n]; rationale see below)∑

j′∈[(dM )
1+uM,ε ·eM ·l(n−1)

uM,ε ]

a

= (by De�nition 6.13)

f>M,η,l,c(n)

Let us consider how many w ∈ Q(Xk)∗ there are such that µk(σ)q,w 6= 0̃.
Clearly, there are at most

∑
j∈[0,uM,ε]

djM such w, but ifM is bottom-up then

there are at most dkM because w = q1(x1) · · · qk(xk) for some q1, . . . , qk ∈ Q.
Note that dM > 1 by De�nition 6.2 except when M is bottom-up. If

dM > 1, then
∑

j∈[0,uM,ε]
djM 6 (dM )1+uM,ε . However, if M is bottom-up

then dkM 6 (dM )1+uM,ε because k 6 uM,ε. This concludes the induction
step. �

Also this theorem admits a trivial corollary for polynomial tst with
designated states.

Corollary 6.16. Let A be partially ordered by 6 with 1 6 1 + 1,
and let M be a nontrivial polynomial tst with designated states. More-
over, let l be a cardinality majorization, and let c be an upper bound
(with respect to 6) of the coe�cients of µ such that c > 1. More-

over, let Qd = {q ∈ Q | Fq 6= 0̃}. For every n ∈ N, t ∈ TΣ, and
u ∈ supp(‖M‖η(t)) such that height(t) 6 n we have

(‖M‖η(t), u) 6
∑

i∈[card(Qd)]

f>M,η,l,c(n) .

Proof. The proof is analogous to the proof of Corollary 6.9. �

Let us present an example that illustrates the ample coe�cient ma-
jorization. We demonstrate it on the td-tstM2

4.26 on N of Example 4.26.

Example 6.17. Let M = M2
4.26 = (Q,Σ,∆,N, F, µ) be the td-tst of

Example 4.26. The constants of De�nition 6.2 are mxΣ = 1, dM = 2,
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eM = 1, e′M = 1 and uM,ε = 2. We let l : N −→ N+ be the cardinality
majorization with l(n) = 1 for every n ∈ N. This is a cardinality
majorization because M is td-deterministic [see Proposition 5.1(5)].

Finally, 2 is an upper bound of the coe�cients of M (see De�ni-
tion 6.3). We obtain the ample coe�cient majorization f>M,ε,l,2 with

f>M,ε,l,2(0) = 2 and for every n ∈ N+

f>M,ε,l,2(n) =
∑
i∈[8]

2 · f>M,ε,l,2(n− 1)2 = 16 · f>M,ε,l,2(n− 1)2 .

Theorem 6.15 applied to this example yields that

(‖M‖ε(t), u) 6 2 · f>M,ε,l,2(n)

for every n ∈ N, t ∈ TΣ of height at most n, and u ∈ supp(‖M‖ε(t)).
If we compare this with Lemma 4.27, then we see that the statement is
true.

Finally, we also derive an ample cardinality majorization for poly-
nomial tst. With the help of this majorization we can then present
a coe�cient majorization that relies only on the constants associated
with M , the modi�er η, and the upper bound c.

Definition 6.18. The ample cardinality majorization associated
with M is the mapping l>M : N −→ N+ recursively de�ned by

l>M(0) = eM

l>M(n) = (dM)1+uM,ε · eM · l>M(n− 1)uM,ε

for every n ∈ N+.

Lemma 6.19. The ample cardinality majorization associated with
the tst M is a cardinality majorization; i. e.,

card(supp(hηµ(t)q)) 6 l>M(n)

for every n ∈ N, q ∈ Q, and t ∈ TΣ of height at most n.

Proof. The proof proceeds along the lines of the proof of Lemma 6.12
with just minor changes, most of which were already outlined in the proof
of Theorem 6.15. We prove the statement by structural induction on t.

Induction base: Suppose that t = α for some α ∈ Σ0.

card
(
supp(hηµ(α)q)

)
= (by De�nition 4.7(1) )

card
(
supp(µ0(α)q)

)
6 (by de�nition of eM in De�nition 6.2)

eM

= (by De�nition 6.11)

l>M (0)
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Induction step: Let k ∈ N+, σ ∈ Σk, and t1, . . . , tk ∈ TΣ be such that
t = σ(t1, . . . , tk). Recall that height(t) 6 n.

card
(
supp(hηµ(σ(t1, . . . , tk))q)

)
= (by De�nition 4.7(1) )

card
(
supp

( ∑
w∈Q(Xk)∗,

w=q1(xi1
)···ql(xil

)

µk(σ)q,w←−η (hηµ(tij )qj )j∈[l]

))

= (by de�nition of ←−η )

card
(
supp

( ∑
w∈Q(Xk)∗,

w=q1(xi1
)···ql(xil

),

u′∈supp(µk(σ)q,w),
(∀j∈[l]) : uj∈supp(hη

µ(tij )qj )

(
(µk(σ)q,w, u′) ·

∏
j∈[l]

(hηµ(tij )qj , uj)
sel(u′,j,η)

)

u′[u1, . . . , ul]
))

6 (by eM > card(supp(µk(σ)q,w)) and induction hypothesis;

rationale below)

(dM )1+uM,ε · eM · l>M (n− 1)uM,ε

= (by De�nition 6.11)

l>M (n)

Let us consider how many w ∈ Q(Xk)∗ there are such that µk(σ)q,w 6= 0̃.
Clearly, there are at most

∑
j∈[0,uM,ε]

djM such w, but ifM is bottom-up then

there are at most dkM because w = q1(x1) · · · qk(xk) for some q1, . . . , qk ∈ Q.
Note that dM > 1 by De�nition 6.2 except when M is bottom-up. If

dM > 1, then
∑

j∈[0,uM,ε]
djM 6 (dM )1+uM,ε . However, if M is bottom-up

then dkM 6 (dM )1+uM,ε because k 6 uM,ε. This concludes the induction
step. �

Let us also present an example for the ample cardinality majoriza-
tion. We again use the deterministic td-tstM2

4.26 on N of Example 4.26.

Example 6.20. Let M = M2
4.26 = (Q,Σ,∆,N, F, µ) be the deter-

ministic td-tst of Example 4.26. We obtain the ample cardinality ma-
jorization l>M : N −→ N+, which is recursively de�ned for every n ∈ N+

by

l>M(0) = 1

l>M(n) = 8 · l>M(n− 1)2 .

Clearly, this is a cardinality majorization because M is td-deterministic
[see Proposition 5.1(5)].

Now we can combine the ample coe�cient majorization and the
ample cardinality majorization. If we instantiate f>M,η,l,c with l = l>M ,

then we obtain f>
M,η,l>M ,c

, which is de�ned by

f>M,η,l>M ,c(0) = c
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f>M,η,l>M ,c(n) =
∑

i∈[l>M (n)]

c · f>M,η,l>M ,c(n− 1)uM,η

for every n > 1. Note the structural similarity of f⊥
M,η,l⊥M ,c

and f>
M,η,l>M ,c

.

3. Incomparability results

In the �rst part of this section we reprove two recent results of [58]
concerning growth properties of polynomial bu-tst with designated
states using our coe�cient majorization approach (i. e., using Corol-
lary 6.9). The second part then focuses on some simpli�ed coe�cient
majorization that allows us to derive incomparability results for classes
of η-t-ts transformations computed by polynomial bu-tst as well as
td-tst.

3.1. Polynomial tst with designated states. In this section let
M = (Q,Σ,∆,N∞, F, µ) be a polynomial bu-tst with designated states.
First we reprove a slightly less general version of [58, Lemma 5.14].
In [58], ∞ may not occur as coe�cient in ‖M‖η(t) for every t ∈ TΣ.
However, if ∞ occurs in µ but not in ‖M‖η(t), then ∞ can be elim-
inated from µ. Furthermore, note that height is de�ned di�erently
in [58].

Lemma 6.21. Let M = (Q,Σ,∆,N∞, F, µ) be a polynomial bu-tst
with designated states and Σ = {σ(2), α(0)} and ∆ = {α(0)} such that
∞ does not occur as coe�cient in any tree series of µ. There exists
a b ∈ N such that (‖M‖o(t), α) 6 bheight(t)+1 for every t ∈ TΣ.

Proof. We can instantiate Corollary 6.9, because N∞ is partially or-
dered by the total order 6. Moreover, we trivially have 1 6 1 + 1. The
constants of De�nition 6.2 are: mxΣ = 2, eM 6 card(T∆(Z2)) = 3, and
uM,o 6 1. Finally, an upper bound c ∈ N of the coe�cients of µ with c > 1
clearly exists.

We choose the cardinality majorization l : N −→ N+ with l(n) = 1 for
every n ∈ N, which is a cardinality majorization due to card(T∆) = 1. Hence

f⊥M,o,l,c(0) = c

f⊥M,o,l,c(n) = d2
M · eM · c · f⊥M,o,l,c(n− 1)uM,o

for every n ∈ N+ and thus f⊥M,o,l,c(n) 6 (3 · d2
M · c)n · c. Because c 6= ∞,

we have b = 3 · d3
M · c 6= ∞, and we obtain (‖M‖o(t), α) 6 bheight(t)+1 by

Corollary 6.9. �

Similarly we can prove a variant of [58, Lemma 5.16].

Lemma 6.22. Let M = (Q,Σ,∆,N∞, F, µ) be a polynomial bu-tst
with designated states such that mxΣ = 1 and ∞ does not occur as
coe�cient in any tree series of µ. Then there exists a b ∈ N such that
(‖M‖ε(t), u) 6 b(height(t)+1)2 for every t ∈ TΣ and u ∈ T∆.
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Proof. Corollary 6.9 is applicable, because N∞ ful�lls the general re-
strictions imposed on the semiring. Obviously, the constants of De�nition 6.2
are: mxΣ = 1 and uM,ε = 1. Clearly, there exists an upper bound c ∈ N
of the coe�cients of µ with the property that c > 1. The ample cardinality
majorization l = l⊥M associated with M of De�nition 6.11 is a cardinality
majorization due to Lemma 6.12. We have

l(n) = dnM · en+1
M

for every n ∈ N. We obtain

f⊥M,ε,l,c(0) = c

f⊥M,ε,l,c(n) = dnM · en+1
M · c · f⊥M,ε,l,c(n− 1)

for every n ∈ N+ and thus

f⊥M,ε,l,c(n) = (dM )
P

i∈[1,n] i · (eM )
P

i∈[2,n+1] i · cn+1 6 (dM · eM · c)
(n+1)·(n+2)

2 ,

which implies the required bound by setting b = d2
M · eM · cM as follows.

Since

dM · (dM · eM · c)
(n+1)·(n+2)

2 ≤ b(n+1)2 ,

we obtain (‖M‖ε(t), u) 6 b(height(t)+1)2 by Corollary 6.9. �

The result in [58, Corollary 5.18] is proved using essentially Lem-
mata 6.21 and 6.22 together with some examples required to show
incomparability.

Corollary 6.23 (see [58, Corollary 5.18]).

p�BOTε(N∞) on p�BOTo(N∞)

Using the same approach we can also reprove [58, Lemmata 5.19
and 5.21]. They are used to prove [58, Corollary 5.23], which essentially
states the above for the tropical semiring T.

3.2. Additively idempotent semirings. Next let us consider
additively idempotent semirings. Certainly, such semirings ful�ll the
inequality 1 6 1 + 1 irrespective of the partial order 6. Moreover,
additively idempotent semirings are partially ordered by their natural
order v.

Let M = (Q,Σ,∆,A, F, µ) be a (nontrivial) polynomial tst. The
following theorem shows that, provided that A is additively idempo-
tent, a very simple mapping, called coe�cient approximation, is a co-
e�cient majorization. Let us �rst de�ne the coe�cient approximation.

Definition 6.24. For every a ∈ A and y ∈ N we de�ne the coef-

�cient approximation fa,y : N −→ A by fa,y(n) = a
P

i∈[0,n] y
i

for every
n ∈ N.

Theorem 6.25. Let η ∈ {ε, o}, and let A be an additively idem-
potent semiring partially ordered by 6. Let M = (Q,Σ,∆,A, F, µ) be
a polynomial tst, and let c be an upper bound of the coe�cients of M
such that c > 1.
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(1) The coe�cient approximation fc,y : N −→ A with y = uM,η is
a coe�cient majorization.

(2) Moreover (‖M‖η(t), u) 6 c · fc,y(n) for every n ∈ N, t ∈ TΣ of
height at most n, and u ∈ supp(‖M‖η(t)).

(3) If M has designated states, then (‖M‖η(t), u) 6 fc,y(n) for ev-
ery n ∈ N, t ∈ TΣ of height at most n, and u ∈ supp(‖M‖η(t)).

Proof. To show that fc,y is a coe�cient majorization, we show that

fc,y is equal to the ample coe�cient majorization f⊥M,η,l,c or f
>
M,η,l,c (depend-

ing on whether M is bottom-up or not) for any cardinality majorization l;
e. g., we could set l = l⊥M if M is bottom-up, and l = l>M otherwise.

We continue to show that fc,y = h, where h = f⊥M,η,l,c ifM is bottom-up,

and h = f>M,η,l,c otherwise. Obviously, h(0) = c = fc,y(0) and otherwise

h(n)

= (by de�nition of h; let i = j = mxΣ if M is bottom-up

otherwise i = 1 + uM,ε and j = uM,ε)∑
m∈[di

M ·eM ·l(n−1)j ]

c · h(n− 1)y

= (because A is additively idempotent)

c · h(n− 1)y

= c
P

i∈[0,n] y
i

= fc,y(n)

for every n ∈ N+. Thus h = fc,y and by Theorems 6.8 and 6.15 it follows
that fc,y is a coe�cient majorization. Next we show the second statement
of the theorem.

(‖M‖η(t), u)
6 (by Theorems 6.8 and 6.15)∑

i∈[card(Q)·e′M ·l(n)]

c · fc,y(n)

= (because A is additively idempotent and

e′M 6= 0 by u ∈ supp(‖M‖η(t)))
c · fc,y(n)

It remains to show the third statement of the theorem.

(‖M‖η(t), u)
6 (by Corollaries 6.9 and 6.16)∑

i∈[card(Q)]

fc,y(n)

= (because A is additively idempotent)

fc,y(n) �
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The following observation shows that fa,y(n) 6 fa,y′(n) whenever
y 6 y′. This allows us to use an upper bound of the parameter y in
order to obtain an upper bound of the coe�cient of an output tree.

Observation 6.26. Let a ∈ A with a > 1 and y, y′ ∈ N+ and
n ∈ N with y 6 y′. Then fa,y(n) 6 fa,y′(n).

Proof. This statement is immediate from Observation 6.1(3). �

Next we establish that the coe�cient approximation for polynomial
tst over additively idempotent semirings (i. e., in the case when it is
a coe�cient majorization according to Theorem 6.25) gives an upper
bound that can be reached by a homomorphism bu-tst or td-tst. We
use this result in our main incomparability result (see Lemma 6.29).

Lemma 6.27. Let η ∈ {ε, o} and Σ′ = {γ(1), α(0)}, ∆′ = {δ(2), α(0)},
and ∆′′ = {α(0)}. Moreover, let y ∈ N+, c ∈ A with c > 1, and
Σ′′ = {σ(y), α(0)}. There exists a homomorphism bu-tst or td-tst

M ′ = ({?},Σ,∆,A, F ′, µ′)

with properties x such that c is an upper bound of the coe�cients of M ′,
uM ′,η = y, and for every n ∈ N there exist t ∈ TΣ of height n and
u ∈ supp(‖M ′‖η(t)) such that (‖M ′‖η(t), u) = fc,y(n), where:

(1) η = ε, Σ = Σ′′, ∆ = ∆′′, and x = bottom-up;
(2) η = o, Σ = Σ′, ∆ = ∆′, and x = bottom-up; or
(3) η = ε, Σ = Σ′, ∆ = ∆′, and x = top-down.

Proof. We prove the statements individually. We depict the tst in
Figure 1.

(1) Let µ′0(α)? = c α and µ′y(σ)?,?···? = c α and F ′
? = 1 z1. Note

that uM ′,ε = y. Moreover, let t ∈ TΣ′′ be the fully balanced tree
of height n ∈ N. A straightforward structural induction shows
that (‖M ′‖ε(t), α) = fc,y(n) as follows. The induction base is
(‖M ′‖ε(α), α) = c = fc,y(0). In the induction step we have, for
every n ∈ N+ and t = σ(t′, . . . , t′) with t′ ∈ TΣ′′ being a fully
balanced tree of height n− 1,

(‖M ′‖ε
(
σ(t′, . . . , t′)

)
, α)

= (by Observation 4.23)

(hεµ′(σ(t′, . . . , t′))?, α)

= (by De�nition 4.7(1) )

(µ′y(σ)?,?···?, α) ·
∏
i∈[y]

(hµ′(t′)?, α)

= (by Observation 4.23)

c · (‖M ′‖ε(t
′), α)y

= (by induction hypothesis)

c · fc,y(n− 1)y
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?

1 z1

α/c α

σ/c α

...

?

1 z1

α/c α

γ/ϕ ?

1 z1

α/c α

γ/ψ

1...y

Figure 1. Tst over A of Lemma 6.27 [left:
Item (1), middle: Item (2), right: Item(3)], where
ϕ = c δ(z1, δ(. . . , δ(z1, α) . . . )) and
ψ = c δ(z1, δ(. . . , δ(zy, α) . . . )).

= (by De�nition 6.24)

fc,y(n) .

(2) Let µ′0(α)? = c α and µ′1(γ)?,? = c δ(z1, δ(. . . , δ(z1, α) . . . )) such
that z1 occurs y times in the latter tree. Moreover, let F ′

? = 1 z1.
Clearly, uM ′,o = y. Moreover, one can easily show by a similar
induction as in Item (1) that for every t ∈ TΣ′ of height n ∈ N
there exists u ∈ T∆′ such that (‖M ′‖o(t), u) = fc,y(n).

(3) Let µ′0(α)? = cα and µ′1(γ)?,?(x1)···?(x1) = cδ(z1, δ(. . . , δ(zy, α) . . . )).
Moreover, let F ′

? = 1 z1. Clearly uM ′,ε = y and the proof of (3) is
analogous to the previous ones and omitted. �

The main theorem states the incomparability of the classes of η-t-ts
transformations computed by polynomial bu-tst for η = ε and η = o
over an additively idempotent semiring A with an additional property,
which we introduce next. Roughly speaking, we require that A is
partially ordered by a partial order 6 such that for some a ∈ A we
have ai < aj whenever i < j. Moreover, we require that every element
that occurs in a decomposition of an can be bounded from above by a
power of a.

Definition 6.28. A semiring A = (A,+, ·) that is partially ordered
by the partial order 6 is called weakly growing, if:

(1) there exists an a ∈ A such that ai < aj for all i, j ∈ N with
i < j; and

(2) for every a1, a2, b ∈ A+, d ∈ A, and n ∈ N, if an = a1 ·b ·a2+d,
then there exists an m ∈ N such that b 6 am.

The �rst condition ensures that a0 < a1 < a2 < · · · . The second
condition intuitively requires that the growth is not too slow; i. e., we
should at least be able to bound (from above) elements that occur
in decompositions. Stronger conditions than (2) can be obtained, for
example, by requiring that whenever b 6= 0, then b 6 am for some
m ∈ N, which is an Archimedian type property for the element a.
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This would essentially state that the growth of a is unbounded; i. e.,
↑{an | n ∈ N} = ∅. Certainly, the natural numbers (without in�nity)
N = (N,+, ·) ful�ll this property for a = 2 as well as A does for a = 1.
However, already N∞ does not satisfy it.

Another strong notion of growth can be obtained by requiring that
(i) A is naturally ordered, (ii) ai @ aj whenever i < j, and (iii) a v a ·b
and a v b · a for every a, b ∈ A with b 6= 0. The semirings N, N∞,
and A ful�ll this property, but T does not. For our incomparability
results we only need the weakly growing property.

The following semirings are weakly growing:

• N∞ with the partial order 6, a = 2, and m = n;
• T with the partial order 6, a = 1, and m = max(n, d);
• A with the partial order 6, a = 1, and m = n;
• LS (S an alphabet) with the partial order ⊆, a = {ε, s} for
some s ∈ S, and m = n.

The above statements are easily checked. On the other hand, the semi-
rings B and Rmin,max are not weakly growing because they are multi-
plicatively periodic.

Next we show that given an additively idempotent and weakly grow-
ing semiring, the classes of ε-t-ts and o-t-ts transformations computed
by polynomial bu-tst are incomparable. Moreover, we also obtain the
incomparability of the class of ε-t-ts transformations computed by poly-
nomial bu-tst and the class of ε-t-ts transformations computed by poly-
nomial td-tst.

Before stating the incomparability theorem, we provide a sketch
of the proof. Informally speaking, we show both directions by con-
structing a speci�c homomorphism tst M ′ using the particular coef-
�cient a ∈ A that ful�lls the conditions of De�nition 6.28. The ap-
proximation mapping can be applied to every polynomial tst M that
is supposed to compute the same η-t-ts transformation. By a careful
choice of the input and output ranked alphabets we limit the con-
stant uM,η. We then proceed to show that M ′ has a higher growth rate
than M . This growth argument yields the desired contradiction.

Lemma 6.29. Let A be a weakly growing and additively idempotent
semiring.

(1) h�BOTε(A) 6⊆ p�BOTo(A) and h�BOTo(A) 6⊆ p�BOTε(A).
(2) h�BOTε(A) 6⊆ p�TOPε(A) and h�TOPε(A) 6⊆ p�BOTε(A).

Proof. Let A be weakly growing with respect to the partial order 6
and the element a ∈ A (see De�nition 6.28).

(i) First we prove

h�BOTε(A) 6⊆ p�BOTo(A) and h�BOTε(A) 6⊆ p�TOPε(A) .

We consider the ranked alphabets Σ′′ = {σ(2), α(0)} and ∆′′ = {α(0)} as
input and output ranked alphabet, respectively. Then by Lemma 6.27(1)
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[with y = 2] there is a homomorphism bu-tst M ′ = ({?},Σ′′,∆′′,A, F ′, µ′)
such that a is an upper bound of the coe�cients of M ′, uM ′,ε = mxΣ′′ = 2,
and for every n ∈ N there exist t ∈ TΣ′′ of height n and u ∈ supp(‖M ′‖ε(t))
such that

(‖M ′‖ε(t), u) = fa,2(n) = a2n+1−1 .

Assume that there exists a polynomial bu-tst or td-tst

M = (Q,Σ′′,∆′′,A, F, µ)

with ‖M‖o = ‖M ′‖ε. Since M is polynomial, there are only �nitely many
nonzero coe�cients c1, . . . , ck ∈ A for some k ∈ N that occur in the tree se-
ries in the range of µ. Obviously, we can assume that for every cj with j ∈ [k]
there exist aj , āj ∈ A+, bj ∈ A, and mj ∈ N such that amj = aj ·cj · āj+bj . If
there is a cj that does not obey this property, then it cannot in�uence ‖M‖o
(see De�nition 4.7), because ‖M‖o = ‖M ′‖ε and every coe�cient that ap-
pears in a tree series in the range of ‖M ′‖ε is a power of a. Thus, such
coe�cients cj can be changed in µ to 1 without e�ect on ‖M‖o.

Since A is weakly growing with respect to a, there is an ej ∈ N such
that cj 6 aej . Consequently, maxi∈[k] a

ei = amaxi∈[k] ei is an upper bound of
the coe�cients of µ. Let e = maxi∈[k] ei and c

′ = ae. By Theorem 6.25 and
Observation 6.26, for every t ∈ TΣ′′ and every u ∈ supp(‖M‖o(t)),

(‖M‖o(t), u) 6 c′ · fc′,1(height(t)) = (c′)height(t)+2 = (ae)height(t)+2 ,

because uM,o 6 1 due to the speci�c form of ∆′′. However, there exists an

n′ ∈ N such that e · (n′ + 2) < 2n
′+1− 1. With this height n′ there also exist

t′ ∈ TΣ′′ and u′ ∈ supp(‖M ′‖ε(t′)) such that

(‖M ′‖ε(t
′), u′) = fa,2(n′) = a2n′+1−1 ,

whereas (‖M‖o(t′), u′) 6 ae·(n
′+2) and ae·(n

′+2) < a2n′+1−1 (because A is
weakly growing with respect to a), which yields a contradiction to the as-
sumption that ‖M‖o = ‖M ′‖ε. Hence, ‖M ′‖ε is neither in p�BOTo(A) nor
in p�TOPε(A).

(ii) The statements

h�BOTo(A) 6⊆ p�BOTε(A) and h�TOPε(A) 6⊆ p�BOTε(A)

are established using the input ranked alphabet Σ′ = {γ(1), α(0)} and output

ranked alphabet ∆′ = {δ(2), α(0)}. By Lemma 6.27(2) there is a homomor-
phism bu-tst M ′ such that a is an upper bound of the coe�cients of M ′ and
uM ′,o = 2 and by Lemma 6.27(3) there is a homomorphism td-tst M ′′ such
that a is an upper bound of the coe�cients ofM ′′ and uM ′′,ε = 2. Moreover,
for every n ∈ N there exist t, t′ ∈ TΣ′ of height n and u ∈ supp(‖M ′‖o(t))
and u′ ∈ supp(‖M ′′‖ε(t′)) such that

(‖M ′‖o(t), u) = fa,2(n) = a2n+1−1

(‖M ′′‖ε(t
′), u′) = fa,2(n) = a2n+1−1 .

Let M = (Q,Σ′,∆′,A, F, µ) be a polynomial bu-tst with ‖M‖ε = ‖M ′‖o.
An argumentation analogous to the one in the �rst part of the proof (using

uM,ε = mxΣ′ = 1) shows that (‖M‖ε(t), u) 6 (c′)height(t)+2 for every t ∈ TΣ′
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and u ∈ supp(‖M‖ε(t)), where c′ = ae for some e ∈ N. This again yields the
desired contradiction. �

Theorem 6.30. Let A be a weakly growing and additively idempo-
tent semiring.

p�BOTε(A) on p�BOTo(A) and p�BOTε(A) on p�TOPε(A) .

Proof. The theorem is an immediate consequence of Lemma 6.29. �

Consider the additively idempotent semirings T, A, and LS. For
those we derive the following statements.

Corollary 6.31. Let S be an alphabet. For every A ∈ {T,A,LS}
p�BOTε(A) on p�BOTo(A) and p�BOTε(A) on p�TOPε(A) .

Proof. Both results are immediate consequences of Theorem 6.30. �

Note that for A = T the �rst part of Corollary 6.31 restates [58,
Corollary 5.23].

4. Open problems and future work

We derived our incomparability results for additively idempotent
semirings. Such semirings are naturally ordered and in fact we use the
order to prove incomparability. It remains an open problem to prove
a general incomparability result for semirings that are not additively
idempotent (and not even partially ordered). For example, all rings are
not naturally ordered. A potential start could be the use of �niteness
and closure instead of the use of a partial order. If we consider the
speci�c tst, which are used in Lemma 6.29, then the following property
could be a suitable starting point.

Definition 6.32. A semiring A = (A,+, ·) has Property (P), if
there exists an a ∈ A such that for every m ∈ N+ and �nite B ⊆ A
there exists an n ∈ N+ such that a2n−1 /∈ 〈B(n)〉mn where for every
C ⊆ A and k ∈ N

C(k) = {c1 · . . . · ck | c1, . . . , ck ∈ C}
〈C〉k = {c1 + · · ·+ cr | r ∈ [0, k], c1, . . . , cr ∈ C} .

For example, the natural number semiring N has Property (P). To
show this let a = 2 and m ∈ N+ be arbitrary. Moreover, let B ⊆ N
be �nite with greatest element b ∈ B. Clearly, the greatest element in
〈B(n)〉mn is (mb)n. It is well-known that there exists an n ∈ N+ such
that a2n−1 > (mb)n.

Finally, we should also consider equality or inclusion results, espe-
cially in important classes of semirings like additively idempotent semi-
rings. A general study was already started in [58], but for restricted
classes of semirings results are still missing.



CHAPTER 7

Composition of Tree Series Transducers

It's not what you look at that matters,
it's what you see.

Henry David Thoreau (1817-1862)

1. Bibliographic information

We consider compositions of ε-ts-ts transformations. Given two tst
M ′ and M ′′, we ask whether there exists a tst M such that

‖M‖tsε = ‖M ′‖tsε ; ‖M ′′‖tsε
where ; denotes functional composition. In particular, we would ex-
pect M to have properties similar to those shared by M ′ and M ′′. The
�rst section introduces some common terminology and notations. In
Section 3 we consider compositions whereM , M ′, andM ′′ are bottom-
up, whereas Section 4 is devoted to top-down devices.

Section 3 is a revised and extended version of [84]. In Section 4 we
present the results of [84] concerning td-tst.

2. General de�nitions and remarks

In this chapter we study compositions of ε-ts-ts transformations
computed by tst. Let f : A −→ B and g : B −→ C for some sets A,
B, and C. The composition of f with g, denoted f ; g, is the mapping
(f ; g) : A −→ C such that (f ; g)(a) = g(f(a)) for every a ∈ A. Note
that ; is associative.

For the rest of the chapter, letA = (A,+, ·) be a semiring. Provided
with tst

M ′ = (Q′,Σ,Γ,A, F ′, µ′) and M ′′ = (Q′′,Γ,∆,A, F ′′, µ′′) ,

we investigate whether there exists a tst M = (Q,Σ,∆,A, F, µ) such
that ‖M‖tsε = ‖M ′‖tsε ; ‖M ′′‖tsε . Note that in the last equation we refer
to the η-ts-ts transformation computed by the tst [see De�nition 4.7(3)]
and ; denotes functional composition; i. e., rephrased the equation is
‖M‖tsε (ψ) = ‖M ′′‖tsε (‖M ′‖tsε (ψ)) for every ψ ∈ A〈〈TΣ〉〉.

Since our introduced notation focusses on the ε-t-ts transformation
computed by tst, we de�ne the following composition of ε-t-ts trans-
formations. Let Σ, Γ, and ∆ be ranked alphabets and A be a semiring.

151
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Moreover, let τ1 : TΣ −→ A〈〈TΓ〉〉 and τ2 : TΓ −→ A〈〈T∆〉〉. We de�ne
the composition of τ1 and τ2, denoted by τ1 ; τ2, for every t ∈ TΣ by

(τ1 ; τ2)(t) =
∑
u∈TΓ

(τ1(t), u) · τ2(u) .

Essentially, this means that ‖M ′‖ε ; ‖M ′′‖ε = ‖M ′‖ε ; ‖M ′′‖tsε where in
the left hand side ; is the newly introduced composition and in the
right hand side ; is ordinary function composition. This newly de�ned
composition is extended to classes of ε-t-ts transformations in the obvi-
ous manner. Thus we may henceforth write nl�BOTε(A) ; nl�BOTε(A)
and thereby avoid the introduction of a special denotation for classes of
ε-ts-ts transformations. By this we also avoid a well-de�nedness prob-
lem. LetM ′ be polynomial. In fact, ‖M ′‖tsε (ψ) need not be well-de�ned

for every ψ ∈ A〈〈TΣ〉〉, but ‖M ′‖tsε (ψ) is well-de�ned if ψ is polynomial.
From [55, Proposition 3.4] (in conjunction with [55, Proposition 3.7])
we can easily conclude that ‖M ′‖ε(t) is polynomial for every t ∈ TΣ

(the proof essentially uses the �rst statement of Observation 3.6). Thus
the composition ‖M ′‖ε ; ‖M ′′‖ε is well-de�ned, whenever M ′ and M ′′

are polynomial.
Actually, there are ε-t-ts transformations that behave neutral with

respect to our composition of ε-t-ts transformations. Suppose that
τ : TΣ −→ A〈〈T∆〉〉. For every ranked alphabet Γ let τΓ : TΓ −→ A〈〈TΓ〉〉
be such that τΓ(t) = 1 t for every t ∈ TΓ. We easily check that
τΣ ; τ = τ = τ ; τ∆. The following observation shows that every in-
troduced class of η-t-ts transformations contains at least τΓ for every
ranked alphabet Γ. This fact deserves mention, but in the sequel we
apply the observation freely without explicit mention.

Observation 7.1. Let Γ be a ranked alphabet and x ∈ Π:

τΓ ∈ x�BOTε(A) ∩ x�TOPε(A) . (93)

Proof. The construction of a tst with those properties is straightfor-
ward and hence omitted. �

Finally, ‖M‖ε = ‖M ′‖ε ; ‖M ′′‖ε trivially implies that

‖M‖tsε = ‖M ′‖tsε ; ‖M ′′‖tsε
(see [41, Lemma 2.14]). Thus all the results of this chapter (which
are for classes of ε-t-ts transformations) automatically yield the corre-
sponding results for ε-ts-ts transformations.

Moreover, we mostly prove our results for classes of transformations
computed by polynomial tst. In the theorems we also state the corre-
sponding results for non-polynomial tst with the additional condition
that the underlying semiring is ℵ0-complete with respect to

∑
. This

condition implies that the semantics of bu-tst is well-de�ned in general
(see Observation 4.14). However, the proofs for those statements are
absolutely analogous to the polynomial case and hence we generally
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omit them. Note that some proofs are no longer constructive once we
consider non-polynomial tst.

3. Bottom-up tree series transducers

First let us review what is known about compositions of classes of
ε-t-ts transformations computed by bu-tst. The class of ε-t-ts trans-
formations computed by polynomial bu-tst over the boolean semiring
(i. e., bottom-up tree transducers [41, Section 4]) is closed under left-
composition with the class of ε-t-ts transformations computed by linear
polynomial bu-tst over B (see [5, Theorem 6] and [35, Theorem 4.5]);
i. e.

lp�BOTε(B) ; p�BOTε(B) = p�BOTε(B) .

This composition result was generalized to bu-tst over commutative and
ℵ0-complete semirings in [78, 41]. More precisely, [78, Theorem 2.4]
yields that

nlp�BOTε(A) ; nlp�BOTε(A) = nlp�BOTε(A) .

In fact it is shown for nondeleting, linear td-tst [41], but nondeleting,
linear td-tst and nondeleting, linear bu-tst are equally powerful (see
[41, Theorem 5.24] and Proposition 4.21). Moreover, the statement
is shown for continuous semirings in [78], but can easily be shown for
ℵ0-complete semirings. Finally, the construction of [78] preserves the
polynomial property, and when only polynomial bu-tst are considered,
then the semiring need not be ℵ0-complete.

In [41, Corollary 5.5] it is shown that

nlp�BOTε(A) ; h�BOTε(A) ⊆ p�BOTε(A) .

So taking those results together and the decomposition [41, Lemma 5.6]

p�BOTε(A) ⊆ nlp�BOTε(A) ; h�BOTε(A) ,

we obtain the following result.

Theorem 7.2. For every commutative semiring A

nlp�BOTε(A) ; p�BOTε(A) = p�BOTε(A) . (94)

Proof. The part p�BOTε(A) ⊆ nlp�BOTε(A) ; p�BOTε(A) is trivial
(by Observation 7.1), so it remains to prove

nlp�BOTε(A) ; p�BOTε(A) ⊆ p�BOTε(A) .

nlp�BOTε(A) ; p�BOTε(A)

⊆ nlp�BOTε(A) ; nlp�BOTε(A) ; h�BOTε(A) [41, Lemma 5.6]

⊆ nlp�BOTε(A) ; h�BOTε(A) [78, Theorem 2.4]

⊆ p�BOTε(A) [41, Corollary 5.5] �
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Our aim is a result like lp�BOTε(A) ; p�BOTε(A) = p�BOTε(A)
for all commutative semirings A. We try to follow the classical (un-
weighted) construction, so we �rst extend hεµ such that it can treat vari-
ables (of Z). We extend hεµ to TΣ(Z) by supplying, for some J ⊆ N+, a

mapping q ∈ QJ , which associates a state q(j), usually written as qj,
to the variable zj for j ∈ J . Intuitively speaking, the state qj repre-
sents the initial state, with which the computation should be started
at the leaves labeled zj in the input tree. For all states q ∈ Q di�erent
from qj it should not be possible to start a (meaningful) computation

at zj (i. e., h
ε
µ,q(zj)q = 0̃). This mapping is then extended to TΣ(Z) in

a manner analogous to hεµ.

Definition 7.3. Let (Q,Σ,∆,A, F, µ) be a polynomial bu-tst. For
every �nite J ⊆ N+ and q ∈ QJ we de�ne the mapping

hεµ,q : TΣ(Z) −→ A〈〈T∆(Z)〉〉Q

inductively for every q ∈ Q as follows.

• For every n ∈ N+

hεµ,q(zn)q =

{
1 zn if n /∈ J or (n ∈ J and q = qn),

0̃ otherwise.

• For every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(Z)

hεµ,q(σ(t1, . . . , tk))q =
∑

q1,...,qk∈Q

µk(σ)q,q1···qk←−ε (hεµ,q(ti)qi)i∈[k] .

The mapping hεµ,q : A〈TΣ(Z)〉 −→ A〈T∆(Z)〉Q is given for every tree
series ψ ∈ A〈TΣ(Z)〉 by

hεµ,q(ψ)q =
∑

t∈TΣ(Z)

(ψ, t) · hεµ,q(t)q .

Let us illustrate the previous de�nition on an example.

Example 7.4. Assume the ranked alphabets Σ = {σ(3), α(0), β(0)}
and Γ = Σ ∪ {l(1),m(1), r(1)}. Moreover, let M7.4 = (Q,Γ,Σ,R+, F, µ)
with:

• Q = {>, l,m, r};
• F> = 1 z1 and Fγ = 0̃ for every γ ∈ Γ1; and
• tree representation µ given by:

µ0(α)γ = µ0(α)> = 1 α µ3(σ)l,>>> = 0.4 z2 + 0.6 z3

µ0(β)γ = µ0(β)> = 1 β µ3(σ)m,>>> = 0.5 z1 + 0.5 z3

µ1(γ)>,γ = 1 z1 µ3(σ)r,>>> = 0.7 z1 + 0.3 z2

for every γ ∈ Γ1.
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>

l m r

α/1 α β/1 β α/1 α β/1 β α/1 α β/1 β

σ/ψ1 σ/ψ2 σ/ψ3l/1 z1 m/1 z1 r/1 z1

1 z1α/1 α β/1 β

Figure 1. Bu-tst M7.4 over the semiring R+ of Exam-
ple 7.4 where ψ1 = 0.4 z2 + 0.6 z3, ψ2 = 0.5 z1 + 0.5 z3,
and ψ3 = 0.7 z1 + 0.3 z2.

The bu-tst M7.4 is illustrated in Figure 1. Let

ψ = 0.1 l(z1) + 0.3 m(z2) + 0.6 r(z3) ,

and let us compute hεµ,lml(ψ)>.

hεµ,lml(ψ)> = 0.1 ·hεµ,lml(l(z1))>+0.3 ·hεµ,lml(m(z2))>+0.6 ·hεµ,lml(r(z3))>

We present only the calculation of the �rst summand. The other two
summands can be calculated similarly.

0.1 · hεµ,lml(l(z1))> = 0.1 ·
∑
p∈Q

µ1(l)>,p←−ε (hεµ,lml(z1)p)

= 0.1 · hεµ,lml(z1)l = 0.1 z1

Altogether we obtain that hεµ,lml(ψ)> = 0.1 z1 + 0.3 z2.

Let M ′ = (Q′,Σ,Γ,A, F ′, µ′) and M ′′ = (Q′′,Γ,∆,A, F ′′, µ′′) be
polynomial bu-tst. Then, similar to the (unweighted) product con-
struction of bottom-up tree transducers [5, p. 199], we translate the
entries of µ′ with the help of µ′′. Let k ∈ N, σ ∈ Σk, p, p1, . . . , pk ∈ Q′,
and q, q1, . . . , qk ∈ Q′′. Roughly speaking, we obtain the entry

µk(σ)(p,q),(p1,q1)···(pk,qk)
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On subtree:
t′

a′

=⇒M ′
u′

b′

=⇒M ′′
v′

Deletion:

t t′

a′a′′

=⇒M ′

u u′

b′′

=⇒M ′′

v

Figure 2. Computation ofM ′ followed byM ′′ (for pure
substitution).

in the tree representation µ of the composition ofM ′ andM ′′ by taking
the q-component of the result of the application of the extended map-
ping hηµ′′,q1···qk to the entry µ

′
k(σ)p,p1···pk

. Thereby, we process the output
trees of supp(µ′k(σ)p,p1···pk

) with the help of µ′′ starting the computa-
tion at the variables z1, . . . , zk in states q1, . . . , qk, respectively. The
transition µ′k(σ)p,p1···pk

changes into the state p of M ′ and we consider
the q-component of the translation. Consequently, the new transition
should change into the state (p, q).

This approach reveals a small problem which does not arise in the
unweighted case. We depict the problem in Figures 2 and 3. Let us sup-
pose thatM ′ translates an input tree t ∈ TΣ into an output tree u ∈ TΓ

with weight a ∈ A. During the translation, M ′ decides to delete the
translation u′ ∈ TΓ with weight a′ ∈ A of an input subtree t′ ∈ TΣ.
Then due to the de�nition of pure substitution the weight a′ of u′ con-
tributes to the weight a of u, whereas u′ does not contribute to u.
Furthermore, let us suppose that M ′′ would transform u into v ∈ T∆

at weight b ∈ A and u′ into v′ ∈ T∆ at weight b′ ∈ A. Since M ′′

does not process u′, the weight b′ does not contribute to b. However,
the composition of M ′ and M ′′, when processing the input subtree t′,
transforms t′ into u′ at weight a′ using the rules of M ′ and immedi-
ately also transforms u′ into v′ at weight b′ using the rules ofM ′′. If the
composition tst now deletes the translation v′ of t′, then a′ and b′ still
contribute to the weight of the overall transformation. This contrasts
the situation encountered when M ′ and M ′′ run separately, because
there only a′ contributed to the weight of the overall transformation.

In the classical case of tree transducers, b′ could only be 0 or 1, so
that we just have to avoid that b′ = 0. In principle, this is achieved by
requiring M ′′ to be total (however, by adjoining a dummy state, each
bottom-up tree transducer can be turned into a total one computing the
same tree transformation). The construction we propose here is similar,
but has the major disadvantage that, for example, determinism is not
preserved.
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On subtree:
t′

a′b′

=⇒M ′;M ′′
v′

Deletion:

t t′

a′a′′b′b′′

=⇒M ′;M ′′

v v′

Figure 3. Computation of M ′ ;M ′′.

Speci�cally, we address the aforementioned problem by manipulat-
ing the second transducer M ′′ such that it has a state ⊥ which trans-
forms each input tree into some output tree α ∈ ∆0 at weight 1. Note
that ⊥ is no �nal state; i. e., its top-most output is 0̃. Then in the
composition of M ′ and M ′′ we process those subtrees, which M ′ de-
cided to delete, in the state ⊥. Let us �rst de�ne a type of state that
is suited for this purpose. These states are called blind, because they
do not distinguish between di�erent input trees.

Definition 7.5. Let M = (Q,Σ,∆,A, F, µ) be a polynomial bu-tst.
A state ⊥ ∈ Q is called blind, if there exists an α ∈ ∆0 such that:

• F⊥ = 0̃;
• for every k ∈ N and σ ∈ Σk we have µk(σ)⊥,⊥···⊥ = 1 α; and
• for every k ∈ N, σ ∈ Σk, and q1, . . . , qk ∈ Q whenever
µk(σ)⊥,q1···qk 6= 0̃ then qi = ⊥ for every i ∈ [k].

We already noted that a blind state should transform every input
tree into 1 α for some α ∈ ∆0. Let us formally prove this property.

Observation 7.6. Let M = (Q,Σ,∆,A, F, µ) be a polynomial
bu-tst with the blind state ⊥. There exists an α ∈ ∆0 such that for
every t ∈ TΣ we have hεµ(t)⊥ = 1 α.

Proof. Let α ∈ ∆0 be such that µ0(β)⊥ = 1 α for every β ∈ Σ0. We
prove the statement inductively, so let t = σ(t1, . . . , tk) for some k ∈ N,
σ ∈ Σk, and t1, . . . , tk ∈ TΣ.

hεµ(σ(t1, . . . , tk))⊥
= (by De�nition 4.7(1) )∑

q1,...,qk∈Q
µk(σ)⊥,q1,...,qk←−ε (hεµ(ti)qi)i∈[k]

= (by de�nition of µ because ⊥ is blind)

µk(σ)⊥,⊥···⊥←−ε (hεµ(ti)⊥)i∈[k]

= (by induction hypothesis and de�nition of µ)

1 α←−ε (1 α)i∈[k]
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Table 1. Preservation of properties for the construction
of Observation 7.7.

bu td p m bu-d bu-t td-d td-t i-l i-n o-l o-n b bu-h td-h
3 7 3 3 7 7 3 3 3 3 3 7 3 7 7

= (by de�nition of ←−ε )

1 α �

Note that in M7.4 of Example 7.4 no state is blind. To every poly-
nomial bu-tst M we can adjoin a blind state ⊥ and thereby obtain a
polynomial bu-tst M ′ such that ‖M ′‖η = ‖M‖η.

Observation 7.7. For every polynomial bu-tst M , there exists a
polynomial bu-tst M ′ that possesses a blind state with ‖M ′‖ε = ‖M‖ε.

Proof. Let M = (Q,Σ,∆,A, F, µ), ⊥ /∈ Q be a fresh state, and
α ∈ ∆0. We construct M ′ = (Q′,Σ,∆,A, F ′, µ′) with Q′ = Q ∪ {⊥},
F ′
q = Fq for every q ∈ Q and F ′

⊥ = 0̃. The tree representation µ′ is de�ned
for every k ∈ N, σ ∈ Σk, and q, q1, . . . , qk ∈ Q by

µ′k(σ)q,q1···qk = µk(σ)q,q1···qk
µ′k(σ)⊥,⊥...⊥ = 1 α .

Clearly, ⊥ is a blind state of M ′ and also ‖M ′‖ε = ‖M‖ε. �

Note that the construction does not preserve determinism. In sum-
mary the preservation of properties is displayed in Table 1. The fol-
lowing example adjoins a blind state to the bu-tstM7.4 of Example 7.4.

Example 7.8. Let M7.4 = (Q,Γ,Σ,R+, F, µ) be the polynomial
bu-tst of Example 7.4. Adjoining a blind state ⊥ to M7.4 yields the
polynomial bu-tst

M7.8 = (Q′,Γ,Σ,R+, F
′, µ′)

with

• Q′ = {⊥,>, l,m, r};
• F ′

> = 1 z1 and F ′
⊥ = F ′

γ = 0̃ for every γ ∈ Γ1; and
• tree representation µ′ given by:

µ′0(α)γ = µ′0(α)> = 1 α µ′3(σ)l,>>> = 0.4 z2 + 0.6 z3

µ′0(β)γ = µ′0(β)> = 1 β µ′3(σ)m,>>> = 0.5 z1 + 0.5 z3

µ′0(α)⊥ = µ′0(β)⊥ = 1 α µ′3(σ)r,>>> = 0.7 z1 + 0.3 z2

µ′1(γ)>,γ = 1 z1 µ′3(σ)⊥,⊥⊥⊥ = 1 α

µ′1(γ)⊥,⊥ = 1 α

for every γ ∈ Γ1.

We display M7.8 in Figure 4.
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⊥ >

l m r

α/1 α β/1 β α/1 α β/1 β α/1 α β/1 β

σ/ψ1 σ/ψ2 σ/ψ3l/1 z1 m/1 z1 r/1 z1

1 z1α/1 α β/1 βα/1 α β/1 α

l,m, r/1 α

σ/1 α

Figure 4. Bu-tst M7.8 over the semiring R+ of Exam-
ple 7.8 where ψ1 = 0.4 z2 + 0.6 z3, ψ2 = 0.5 z1 + 0.5 z3,
and ψ3 = 0.7 z1 + 0.3 z2.

With the help of a blind state we can now present our �rst compo-
sition result. Instead of composing two arbitrary polynomial bu-tst, we
compose a polynomial bu-tst with designated states with a polynomial
bu-tst that possesses a blind state. Lemma 4.16 tell us that for every
polynomial bu-tst there exists an equivalent one with designated states
and the previous observation essentially states that for any polynomial
bu-tst an equivalent polynomial bu-tst with a blind state can be con-
structed. Altogether these restrictions do not limit the generality of
the composition construction.

Definition 7.9. Let

M ′ = (Q′,Σ,Γ,A, F ′, µ′) and M ′′ = (Q′′,Γ,∆,A, F ′′, µ′′)

be two polynomial bu-tst such that M ′ has designated states and ⊥ is a
blind state of M ′′. The composition ofM ′ andM ′′, denoted by M ′ ;M ′′,
is de�ned to be the bu-tst

M ′ ;M ′′ = (Q′ ×Q′′,Σ,∆,A, F, µ)

with

• F(p,q) =
∑

q′∈Q′′ F ′′
q′←−ε (hεµ′′,q(F

′
p)q′) for every (p, q) ∈ Q′×Q′′;

and
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Table 2. Preservation of properties for the construction
of De�nition 7.9.

bu td p m bu-d bu-t td-d td-t i-l i-n o-l o-n b bu-h td-h
3 3 3 7 3 7 3 7 3 3 3 3 7 7 7

0 1

α/1 α β/1 β α/1 α β/1 β

1 z1σ/ψ1

σ/ψ2

Figure 5. Bu-tst M ′
7.10 over the semiring R+ of Exam-

ple 7.10 where ψ1 = 0.1 l(z1) + 0.3 m(z2) + 0.6 r(z3) and
ψ2 = 1 σ(z1, z2, z3).

• tree representation µ given for every k ∈ N, symbol σ ∈ Σk,
p, p1, . . . , pk ∈ Q′, q ∈ Q′′ \ {⊥}, and q1, . . . , qk ∈ Q′′ by:

µk(σ)(p,q),(p1,q1)···(pk,qk) = hεµ′′,q1···qk

( ∑
u∈TΓ(Zk),

(∀i∈[k]): i/∈var(u) ⇐⇒ qi=⊥

(
µ′k(σ)p,p1···pk

, u
)
u
)
q

µk(σ)(p,⊥),(p1,⊥)···(pk,⊥) = hεµ′′,⊥···⊥(µ′k(σ)p,p1···pk
)⊥ .

All the remaining entries in µ are 0̃.

Note that F(p,⊥) = 0̃ for every p ∈ Q′ because ⊥ is blind. Preser-
vation of properties is displayed in Table 2; note that here we say that
a property is preserved, if it holds that the composition bu-tst has
the property whenever both input bu-tst have the property. Let us
now show the composition on our running example bu-tst M7.8 of Ex-
ample 7.8. For this, we compose another polynomial bu-tst M ′

7.10 of
Example 7.10 (see Figure 5) with M7.8 (see Figure 4).

Example 7.10. Let M7.8 = (Q′′,Γ,Σ,R+, F
′′, µ′′) be the polynomial

bu-tst of Example 7.8. Moreover, let M ′
7.10 = (Q′,Σ,Γ,R+, F

′, µ′) be
the polynomial bu-tst with:

• Q′ = {0, 1};
• F ′

1 = 1 z1 and F ′
0 = 0̃; and

• tree representation µ′ given by:

µ′0(α)0 = µ′0(α)1 = 1 α µ′3(σ)1,000 = 0.1 l(z1) + 0.3 m(z2) + 0.6 r(z3)

µ′0(β)0 = µ′0(β)1 = 1 β µ′3(σ)0,111 = 1 σ(z1, z2, z3) .
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The bu-tst M ′
7.10 is illustrated in Figure 5. Now let us compose M ′

7.10

and M7.8. The composition

M7.10 = M ′
7.10 ;M7.8 = (Q′ ×Q′′,Σ,Σ,R+, F, µ)

is given by:

• F(1,>) = 1 z1 and Fq = 0̃ for all q ∈ (Q′ ×Q′′) \ {(1,>)}; and
• for every p ∈ Q′, q ∈ Q′′ \ {⊥}, and γ ∈ Γ1

µ0(α)(p,q) = µ0(α)(p,⊥) = µ0(β)(p,⊥) = 1 α

µ0(β)(p,q) = 1 β

µ3(σ)(1,>),(0,l)(0,⊥)(0,⊥) = 0.1 z1

µ3(σ)(1,>),(0,⊥)(0,m)(0,⊥) = 0.3 z2

µ3(σ)(1,>),(0,⊥)(0,⊥)(0,r) = 0.6 z3

µ3(σ)(0,γ),(1,>)(1,>)(1,>) =


0.4 z2 + 0.6 z3 if γ = l,

0.5 z1 + 0.5 z3 if γ = m,

0.7 z1 + 0.3 z2 if γ = r;

µ3(σ)(0,⊥),(1,⊥)(1,⊥)(1,⊥) = 1 α .

It is quite clear that in general the compositionM = M ′ ;M ′′ might
be such that ‖M‖ε 6= ‖M ′‖ε ; ‖M ′′‖ε. This is true because already for
bottom-up tree transducers (i. e., polynomial bu-tst over B) it can be
shown that the computed transformations are not closed under com-
position [35, Theorem 2.5]. However, we have already mentioned that
p�BOTε(B) is closed under left-composition with lp�BOTε(B) and un-
der right-composition with d�BOTε(B). The next proposition shows
the central property needed for the correctness of the composition con-
struction in De�nition 7.9 and a forthcoming composition construc-
tion in De�nition 7.15. Roughly speaking, it presents su�cient condi-
tions that imply that hεµ distributes over substitutions t[u1, . . . , uk] for
t ∈ TΣ(Zk) and u1, . . . , uk ∈ TΣ.

Proposition 7.11. Let V ⊆ Z, and let M = (Q,Σ,∆,A, F, µ) be a
polynomial bu-tst, q ∈ Q, t ∈ TΣ(V ), and ui ∈ TΣ for every i ∈ var(t).

hεµ(t[ui]i∈var(t))q =
∑

q∈Qvar(t)

hεµ,q(t)q←−ε (hεµ(ui)qi
)i∈var(t) ,

provided that:

(a) M is boolean and deterministic; or
(b) t is linear.

Proof. We prove the statement by induction on t.

(i) First, let t = zj for some j ∈ N+. Clearly, var(t) = {j}.

hεµ(zj [ui]i∈var(t))q
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0,m

0, l 1,> 0, r

0,⊥

1,⊥

α/1 α

α/1 α

α/1 α α/1 α

α/1 α

α/1 α

β/1 β

β/1 β

β/1 β

β/1 β

β/1 α

β/1 α

σ/1 α

σ/0.1 z1 σ/0.6 z3

σ/ψ1 σ/ψ3

σ/ψ2

σ/0.3 z2

1 z1

Figure 6. Relevant part of bu-tst M7.10 over R+ of Ex-
ample 7.10 where ψ1 = 0.4z2 +0.6z3, ψ2 = 0.5z1 +0.5z3,
and ψ3 = 0.7 z1 +0.3 z2 (note that we omitted the paren-
theses).

= (by tree substitution)

hεµ(uj)q
= (by de�nition of ←−ε )

1 zj←−ε (hεµ(ui)q)i∈var(t)
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= (because hεµ,q(zj)q = 0̃ for every q such that qj 6= q)∑
q∈Qvar(t)

hεµ,q(zj)q←−ε (hεµ(ui)qi
)i∈var(t)

(ii) Let t = σ(t1, . . . , tk) for some k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(V ).

hεµ(σ(t1, . . . , tk)[ui]i∈var(t))q
= (by tree substitution)

hεµ(σ(t1[ui]i∈var(t1), . . . , tk[ui]i∈var(tk)))q
= (by De�nition 4.7(1) )∑

q1,...,qk∈Q
µk(σ)q,q1···qk←−ε

(
hεµ(tj [ui]i∈var(tj))qj

)
j∈[k]

= (by induction hypothesis)∑
q1,...,qk∈Q

µk(σ)q,q1···qk←−ε
(∑
qj∈Qvar(tj)

hεµ,qj (tj)qj←−ε
(
hεµ(ui)qj(i)

)
i∈var(tj)

)
j∈[k]

= (by Proposition 3.8)∑
q1,...,qk∈Q,

(∀j∈[k]) : qj∈Qvar(tj)

µk(σ)q,q1···qk←−ε
(
hεµ,qj (tj)qj←−ε (hεµ(ui)qj(i))i∈var(tj)

)
j∈[k]

= (because
⋃
j∈[k] var(tj) = var(t) and by:

(a) determinism because hεµ(ui)p 6= 0̃ for at most one p ∈ Q
by Proposition 5.1; or

(b) linearity of t because var(tj1) ∩ var(tj2) = ∅ for j1 6= j2)∑
q1,...,qk∈Q,
q∈Qvar(t)

µk(σ)q,q1···qk←−ε
(
hεµ,q(tj)qj←−ε (hεµ(ui)qi

)i∈var(tj)

)
j∈[k]

= (by

(a) Lemma 3.21 because hεµ(ui)qi
is boolean and monomial

by Observation 5.2; or

(b) Proposition 3.19 because (var(tj))j∈[k] is the partition)∑
q∈Qvar(t)

∑
q1,...,qk∈Q

(
µk(σ)q,q1···qk←−ε (hεµ,q(tj)qj )j∈[k]

)
←−ε (hεµ(ui)qi

)i∈var(t)

= (by De�nition 7.3 and Proposition 3.8)∑
q∈Qvar(t)

hεµ,q(σ(t1, . . . , tk))q←−ε (hεµ(ui)qi
)i∈var(t) �

With the help of this proposition we can show the correctness of
the construction in De�nition 7.9 for linear M ′; i. e., we show that
‖M ′ ;M ′′‖ε = ‖M ′‖ε ; ‖M ′′‖ε for linear polynomial bu-tstM ′ and poly-
nomial bu-tst M ′′.

Lemma 7.12. Let A be commutative,

M ′ = (Q′,Σ,Γ,A, F ′, µ′) and M ′′ = (Q′′,Γ,∆,A, F ′′, µ′′)
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be polynomial bu-tst, of which M ′ is linear and has designated states
and M ′′ has a blind state ⊥. Moreover, let M = M ′ ;M ′′ (see De�ni-
tion 7.9). Then for every t ∈ TΣ, p ∈ Q′, and q ∈ Q′′

hεµ′′(h
ε
µ′(t)p)q = hεµ(t)(p,q) (95)

and ‖M‖ε = ‖M ′‖ε ; ‖M ′′‖ε.

Proof. We claim that there exists an α ∈ ∆0 such that hεµ′′(u)⊥ = 1α
for every u ∈ TΓ. The proof of this claim is in Observation 7.6. The remain-
ing proof is done by induction on t and case analysis. Let t = σ(t1, . . . , tk)
for some k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ.

(i) Let q = ⊥.

hεµ′′(h
ε
µ′(σ(t1, . . . , tk))p)⊥

= (by De�nition 4.7(1) and de�nition of ←−ε )∑
p1,...,pk∈Q′

∑
u∈TΓ(Zk),

(∀i∈[k]) : ui∈TΓ

(
(µ′k(σ)p,p1···pk

, u) ·
∏
i∈[k]

(hεµ′(ti)pi , ui)
)
· hεµ′′(u[ui]i∈[k])⊥

= (by hεµ′′(u[ui]i∈[k])⊥ = 1 α; see Observation 7.6)∑
p1,...,pk∈Q′

∑
u∈TΓ(Zk),

(∀i∈[k]) : ui∈TΓ

(
(µ′k(σ)p,p1···pk

, u) ·
∏
i∈[k]

(hεµ′(ti)pi , ui)
)
α

= (by Observation 7.6 and de�nition of ←−ε )∑
p1,...,pk∈Q′

∑
u∈TΓ(Zk),

(∀i∈[k]) : ui∈TΓ

(
(µ′k(σ)p,p1···pk

, u) ·
∏
i∈[k]

(hεµ′(ti)pi , ui)
)
·

·
(
hεµ′′,⊥···⊥(u)⊥←−ε (hεµ′′(ui)⊥)i∈[k]

)
= (by De�nition 7.3 and Propositions 3.8 and 3.9)∑

p1,...,pk∈Q′

hεµ′′,⊥···⊥(µ′k(σ)p,p1···pk
)⊥←−ε

(
hεµ′′(h

ε
µ′(ti)pi)⊥

)
i∈[k]

= (by de�nition of µ and induction hypothesis)∑
p1,...,pk∈Q′

µk(σ)(p,⊥),(p1,⊥)···(pk,⊥)←−ε
(
hεµ(ti)(pi,⊥)

)
i∈[k]

= (since µk(σ)(p,⊥),(p1,q1)...(pk,qk) 6= 0̃, only if q1 = · · · = qk = ⊥)∑
p1,...,pk∈Q′,
q1,...,qk∈Q′′

µk(σ)(p,⊥),(p1,q1)···(pk,qk)←−ε
(
hεµ(ti)(pi,qi)

)
i∈[k]

= (by De�nition 4.7(1) )

hεµ(σ(t1, . . . , tk))p,⊥
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(ii) Now let q 6= ⊥.

hεµ′′(h
ε
µ′(σ(t1, . . . , tk))p)q

= (by De�nition 4.7(1) )∑
p1,...,pk∈Q′

hεµ′′
(
µ′k(σ)p,p1···pk

←−ε (hεµ′(ti)pi)i∈[k]

)
q

= (by de�nition of ←−ε and De�nition 4.7(1) )∑
p1,...,pk∈Q′

∑
u∈TΓ(Zk),

(∀i∈[k]) : ui∈TΓ

(
(µ′k(σ)p,p1···pk

, u) ·
∏
i∈[k]

(hεµ′(ti)pi , ui)
)
· hεµ′′(u[ui]i∈[k])q

= (by Proposition 7.11)∑
p1,...,pk∈Q′

∑
u∈TΓ(Zk),

(∀i∈[k]) : ui∈TΓ

(
(µ′k(σ)p,p1···pk

, u) ·
∏
i∈[k]

(hεµ′(ti)pi , ui)
)
·

·
( ∑
q∈(Q′′)var(u)

hεµ′′,q(u)q←−ε
(
hεµ′′(ui)qi

)
i∈var(u)

)
= (by Proposition 3.18 because hεµ′′(ui)⊥ = 1 α by Observation 7.6)∑

p1,...,pk∈Q′,
q1,...,qk∈Q′′

∑
u∈TΓ(Zk),

(∀i∈[k]) : ui∈TΓ,
i/∈var(u) ⇐⇒ qi=⊥

(
(µ′k(σ)p,p1···pk

, u) ·
∏
i∈[k]

(hεµ′(ti)pi , ui)
)
·

·
(
hεµ′′,q1···qk(u)q←−ε

(
hεµ′′(ui)qi

)
i∈[k]

)
= (by Propositions 3.8 and 3.9)∑

p1,...,pk∈Q′,
q1,...,qk∈Q′′

hεµ′′,q1···qk

( ∑
u∈TΓ(Zk),

i/∈var(u) ⇐⇒ qi=⊥

(µ′k(σ)p,p1···pk
, u) u

)
q

←−ε
(
hεµ′′(h

ε
µ′(ti)pi)qi

)
i∈[k]

= (by de�nition of µ)∑
p1,...,pk∈Q′,
q1,...,qk∈Q′′

µk(σ)(p,q),(p1,q1)...(pk,qk)←−ε
(
hεµ′′(h

ε
µ′(ti)pi)qi

)
i∈[k]

= (by induction hypothesis)∑
p1,...,pk∈Q′,
q1,...,qk∈Q′′

µk(σ)(p,q),(p1,q1)...(pk,qk)←−ε
(
hεµ(ti)(pi,qi)

)
i∈[k]

= (by De�nition 4.7(1) )

hεµ(σ(t1, . . . , tk))(p,q)

Now we can prove the main statement. Let t ∈ TΣ be arbitrary.

(‖M ′‖ε ; ‖M ′′‖ε)(t)



166 7. COMPOSITION OF TREE SERIES TRANSDUCERS

= (by De�nition 4.7(2) and Proposition 3.8)∑
p∈Q′,q′∈Q′′

F ′′
q′←−ε

(
hεµ′′
(
F ′
p←−ε (hεµ′(t)p)

)
q′

)
= (by De�nition 4.7(1) and de�nition of ←−ε )∑

p∈Q′,q′∈Q′′

∑
u∈TΓ(Z1),
u′∈TΓ

(
(F ′

p, u) · (hεµ′(t)p, u′)
)
·
(
F ′′
q′←−ε (hεµ′′(u[u

′])q′)
)

= (by Proposition 7.11)∑
p∈Q′,q′∈Q′′

∑
u∈TΓ(Z1),
u′∈TΓ

(
(F ′

p, u) · (hεµ′(t)p, u′)
)

·
(
F ′′
q′←−ε

(∑
q∈Q′′

hεµ′′,q(u)q′←−ε (hεµ′′(u
′)q)
))

= (by De�nition 4.7(1) and Propositions 3.8 and 3.9)∑
p∈Q′,q′∈Q′′

F ′′
q′←−ε

(∑
q∈Q′′

hεµ′′,q(F
′
p)q′←−ε (hεµ′′(h

ε
µ′(t)p)q)

)
= (by (95) )∑

p∈Q′,q,q′∈Q′′

F ′′
q′←−ε

(
hεµ′′,q(F

′
p)q′←−ε (hεµ(t)p,q)

)
= (by Proposition 3.19)∑

p∈Q′,q,q′∈Q′′

(
F ′′
q′←−ε (hεµ′′,q(F

′
p)q′)

)
←−ε (hεµ(t)p,q)

= (by de�nition of F(p,q); see De�nition 7.9)∑
p∈Q′,q∈Q′′

F(p,q)←−ε (hεµ(t)p,q)

= (by De�nition 4.7(2) )

‖M‖ε(t) �

It is easy to see that whenever M ′ is nondeleting, then the blind
state ⊥ is not required. If M ′ and M ′′ are nondeleting, we can thus
drop the states (p,⊥) from M ′ ;M ′′ (and their transitions) and obtain
a nondeleting polynomial bu-tst M such that ‖M‖ε = ‖M ′ ;M ′′‖ε (see
De�nition 7.15). Moreover, if M ′ and M ′′ are linear, then also M ′ ;M ′′

is linear. Together with Lemma 7.12 this yields the �rst main theorem.

Theorem 7.13. Let A be commutative.

lp�BOTε(A) ; p�BOTε(A) = p�BOTε(A) (96)

lp�BOTε(A) ; lp�BOTε(A) = lp�BOTε(A) (97)

nlp�BOTε(A) ; nlp�BOTε(A) = nlp�BOTε(A) (98)

Moreover, if A is commutative and ℵ0-complete, then the above equa-
tions even hold without the polynomial restriction.
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?

α/1 α β/1 β

1 z1

σ/1 z1 ?

α/a α β/1 β

1 z1

Figure 7. Bu-tst M ′ (left) and M ′′ (right) over A used
to prove Lemma 7.14.

Proof. The statements follow directly from Lemma 4.16, Observa-
tion 7.7, and Lemma 7.12. �

Note that our construction does not preserve determinism [41,
Corollary 5.5]. Thus, the statement

hl�BOTε(A) ; h�BOTε(A) = h�BOTε(A)

cannot be shown with the help of our construction due to the introduc-
tion of the blind state ⊥. In the next lemma we prove that for almost
all semirings except for the trivial semiring (in which 0 = 1) and for
B and Z2 we have that the above equality does not hold.

Lemma 7.14. For every semiring A with at least 3 elements we
have

hlb�BOTε(A) ; hl�BOTε(A) 6⊆ h�BOTε(A) .

Proof. Since A has at least 3 elements, let a ∈ A \ {0, 1}. Suppose

that Σ = {σ(2), α(0), β(0)} and ∆ = {α(0), β(0)}. Moreover, let

M ′ = ({?},Σ,∆,A, F, µ′) and M ′′ = ({?},∆,∆,A, F, µ′′)
be the homomorphism bu-tst with:

• F? = 1 z1; and
• the tree representations µ′ and µ′′ are speci�ed by:

µ′0(α)? = 1 α µ′′0(α)? = a α

µ′0(β)? = 1 β µ′′0(β)? = 1 β

µ′2(σ)?,?? = 1 z1 .

Clearly, M ′ and M ′′ are both linear homomorphism bu-tst, which are illus-
trated in Figure 7. Let τ = ‖M ′‖ε ; ‖M ′′‖ε. It is easily observed that

τ(α) = a α τ(β) = 1 β τ(σ(β, α)) = 1 β τ(σ(β, β)) = 1 β .

Now suppose that there exists a homomorphism bu-tst

M = ({?},Σ,∆,A, F, µ)

such that ‖M‖ε = τ . We can immediately conclude that µ0(α)? = a α and
µ0(β)? = 1 β by Observation 4.23. Moreover, let c ∈ A+ and u ∈ T∆(Z2)
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be such that µ2(σ)?,?? = c u. Now let us calculate ‖M‖ε(σ(β, α)) and
‖M‖ε(σ(β, β)).

‖M‖ε(σ(β, β)) = hεµ(σ(β, β))? = c u←−ε (hεµ(β)?, hεµ(β)?) = c u[β, β]

‖M‖ε(σ(β, α)) = hεµ(σ(β, α))? = c u←−ε (hεµ(β)?, hεµ(α)?) = (c · a) u[β, α]

Thus it follows that c = 1 because τ(σ(β, β)) = 1 β. With this knowledge
we obtain that au[β, α] = 1β. However, we chose a ∈ A\{0, 1}, hence there
is no homomorphism bu-tst M such that ‖M‖ε = τ . �

Finally, let us consider the second result, which states that the
class of ε-t-ts transformations computed by polynomial bu-tst over B
is closed under composition (from the right) with the class of ε-t-ts
transformations computed by deterministic bu-tst over B (see [35, The-
orem 4.6] and [5, Theorem 6]). This result was also generalized to
BOTε(A) ; bh�BOTε(A) = BOTε(A) [41, Corollary 5.5] for commuta-
tive and ℵ0-complete semirings. Since we have already seen that our
previous construction destroys determinism due to the introduction of
the blind state, we simplify the construction to obtain a construction
which is the analogue of the construction for the unweighted case and
avoids the blind state. Moreover, this construction will also preserve
nondeletion and thereby remedy the second main problem with the
construction of De�nition 7.9. Note that without loss of generality we
may assume a polynomial bu-tst to have a total tree representation,
because there is a standard construction which shows that for each
polynomial bu-tst M there exists a polynomial bu-tst M ′ with total
tree representation such that ‖M ′‖η = ‖M‖η. The construction re-
quired to show this is well-known: add a transition into a trap state, if
no transition is present.

Definition 7.15. Let M ′ = (Q′,Σ,Γ,A, F ′, µ′) be a polynomial tst
with designated states, and let M ′′ = (Q′′,Γ,∆,A, F ′′, µ′′) be polyno-
mial bu-tst. The (simple) composition ofM ′ andM ′′, which is denoted
by M ′ ;SM

′′, is de�ned to be the polynomial tst

M ′ ;SM
′′ = (Q′ ×Q′′,Σ,∆,A, F, µ)

with

• F(p,q) =
∑

q′∈Q′′ F ′′
q′←−ε (hεµ′′,q(F

′
p)q′) for every (p, q) ∈ Q′×Q′′;

and
• for every k, n ∈ N, symbol σ ∈ Σk, states p, p1, . . . , pn ∈ Q′,
q, q1, . . . , qn ∈ Q′′, and i1, . . . , in ∈ [k]:

µk(σ)(p,q),(p1,q1)(xi1
)···(pn,qn)(xin ) = hεµ′′,q1···qn

(
µ′k(σ)p,p1(xi1

)···pn(xin )

)
q
.

(99)

Note that M ′ need not be bottom-up. The freedom of having also
polynomial td-tst as M ′ is used in Theorem 7.19. It is easily seen
that M ′ ;SM

′′ is a deterministic bu-tst, whenever M ′ and M ′′ are de-
terministic bu-tst. Moreover, M ′ ;SM

′′ is a homomorphism bu-tst, if
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Table 3. Preservation of properties for the construction
of De�nition 7.15.

bu td p m bu-d bu-t td-d td-t i-l i-n o-l o-n b bu-h td-h
3 3 3 7 3 7 3 7 3 3 3 3 7 7 7

M ′ and M ′′ are homomorphism bu-tst and M ′′ is boolean. Note that,
in general, the restriction that M ′′ is boolean is necessary in the last
statement, because otherwise the composition M ′ ;SM

′′ might not be
total. Let us illustrate the de�nition on an example.

Example 7.16. Using the construction of De�nition 7.15 let us
compose the polynomial bu-tstM ′

7.10 and M7.4 of Examples 7.10 and 7.4,
respectively. We obtain

M7.16 = M ′
7.10 ;SM7.4 = (Q,Σ,Σ,R+, F, µ)

with:

• Q = {(0,>), (0, l), (0,m), (0, r), (1,>), (1, l), (1,m), (1, r)};
• Σ = {σ(3), α(0), β(0)};
• F(1,>) = 1z1 and F(p,q) = 0̃ for every (p, q) ∈ Q\{(1,>)}; and
• for every p ∈ {0, 1}, q, q1, q2, q3 ∈ {>, l,m, r}, and γ ∈ {l,m, r}

µ0(α)(p,q) = 1 α

µ0(β)(p,q) = 1 β

µ2(σ)(1,>),(0,q1)(0,q2)(0,q3)

=

{
0.1 z1 if q1 = l,

0̃ otherwise;
+

{
0.3 z2 if q2 = m,

0̃ otherwise;
+

{
0.6 z3 if q3 = r,

0̃ otherwise;

µ2(σ)(0,γ),(1,>)(1,>)(1,>)

=


0.4 z2 + 0.6 z3 if γ = l,

0.5 z1 + 0.5 z3 if γ = m,

0.7 z1 + 0.3 z2 if γ = r.

However, ‖M7.16‖ε 6= ‖M7.10‖ε because
‖M7.16‖ε(σ(α, β, α)) = 0.4 α+ 1.2 β + 2.4 α = 2.8 α+ 1.2 β

‖M7.10‖ε(σ(α, β, α)) = 0.1 α+ 0.3 β + 0.6 α = 0.7 α+ 0.3 β .

Now we show the correctness of the simple composition M ′ ;SM
′′

provided thatM ′ andM ′′ are bu-tst, of whichM ′′ is boolean, total, and
deterministic. Moreover, we prove the correctness also for particular
td-tst.

Lemma 7.17. Let

M ′ = (Q′,Σ,Γ,A, F ′, µ′) and M ′′ = (Q′′,Γ,∆,A, F ′′, µ′′)
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be tst, of which M ′ has designated states and M ′′ is bottom-up. More-
over, let M = (Q,Σ,∆,A, F, µ) be the simple composition of M ′ and
M ′′. Then for every t ∈ TΣ, p ∈ Q′, and q ∈ Q′′

hεµ′′(h
ε
µ′(t)p)q = hεµ(t)(p,q)

and ‖M ′‖ε ; ‖M ′′‖ε = ‖M‖ε provided that:

(a) M ′ is bottom-up and M ′′ is boolean, total, and deterministic;
or

(b) M ′ is top-down.

Proof. We prove the statement inductively, so let t = σ(t1, . . . , tk) for
some k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ.

hεµ′′(h
ε
µ′(σ(t1, . . . , tk))p)q

= (by De�nition 4.7(1) )∑
w′∈Q′(Xk)∗,

w′=p1(xi1
)···pn(xin )

hεµ′′
(
µ′k(σ)p,w′←−ε (hεµ′(tij )pj )j∈[n]

)
q

= (by de�nition of ←−ε and De�nition 4.7(1) )∑
w′∈Q′(Xk)∗,

w′=p1(xi1
)···pn(xin )

∑
u∈TΓ(Zn),

(∀j∈[n]) : uj∈TΓ

(
(µ′k(σ)p,w′ , u) ·

∏
j∈[n]

(hεµ′(tij )pj , uj)
)

· hεµ′′(u[uj ]j∈[n])q
= (by Proposition 7.11(a) in Case (a) and Proposition 7.11(b))∑

w′∈Q′(Xk)∗,
w′=p1(xi1

)···pn(xin )

∑
u∈TΓ(Zn),

(∀j∈[n]) : uj∈TΓ

(
(µ′k(σ)p,w′ , u) ·

∏
j∈[n]

(hεµ′(tij )pj , uj)
)
·

·
( ∑
q∈(Q′′)var(u)

hεµ′′,q(u)q←−ε
(
hεµ′′(uj)qj

)
j∈var(u)

)
= (because

(a) Proposition 3.18 is applicable due to Observation 5.4

(b) M ′ is top-down; i. e., var(u) = [n] for u ∈ supp(µ′k(σ)p,w′) )∑
w′∈Q′(Xk)∗,

w′=p1(xi1
)···pn(xin )

∑
u∈TΓ(Zn),

(∀j∈[n]) : uj∈TΓ

(
(µ′k(σ)p,w′ , u) ·

∏
j∈[n]

(hεµ′(tij )pj , uj)
)
·

·
( ∑
q1,...,qn∈Q′′

hεµ′′,q1···qn(u)q←−ε
(
hεµ′′(uj)qj

)
j∈[n]

)
= (by Propositions 3.8 and 3.9)∑

w∈Q(Xk)∗,
w=(p1,q1)(xi1

)···(pn,qn)(xin )

hεµ′′,q1···qn(µ′k(σ)p,p1(xi1
)···pn(xin ))q

←−ε
(
hεµ′′(h

ε
µ′(tij )pj )qj

)
j∈[n]



4. TOP-DOWN TREE SERIES TRANSDUCERS 171

= (by de�nition of µk(σ)(p,q),w and induction hypothesis)∑
w∈Q(Xk)∗,

w=(p1,q1)(xi1
)···(pn,qn)(xin )

µk(σ)(p,q),w←−ε
(
hεµ(tij )(pj ,qj)

)
j∈[n]

= (by De�nition 4.7(1) )

hεµ(σ(t1, . . . , tk))(p,q)
The proof of the second statement is literally the same as the proof of the
second statement of Lemma 7.12. �

Thus we obtain the following theorem for bu-tst [41, Corollary 5.5].
It remains open to prove stronger statements for restricted semirings;
e. g., for additively idempotent semirings [66].

Theorem 7.18. Let A be commutative, and let x ⊆ {n, l, h}.
xp�BOTε(A) ; xbd�BOTε(A) = xp�BOTε(A) (100)

If A is also ℵ0-complete, then even

x�BOTε(A) ; xbd�BOTε(A) = x�BOTε(A) . (101)

Proof. The statement follows from Lemma 7.17. �

4. Top-down tree series transducers

Let us �rst review the known results about compositions of classes
of transformations computed by td-tst. Note that top-down tree trans-
ducers are essentially polynomial td-tst over B (see [41, Section 4.3]).
In [5, Theorem 1] it is shown that

p�TOPε(B) ; pnl�TOPε(B) ⊆ p�TOPε(B)

pt�TOPε(B) ; pl�TOPε(B) ⊆ p�TOPε(B)

d�TOPε(B) ; pn�TOPε(B) ⊆ p�TOPε(B)

dt�TOPε(B) ; p�TOPε(B) ⊆ p�TOPε(B) .

Some results were extended to arbitrary commutative and ℵ0-complete
semirings A in [78, Theorem 2.4], which shows that

nl�TOPε(A) ; nl�TOPε(A) = nl�TOPε(A) ,

and in [41, Theorem 5.18] that shows for every x ∈ {d, dn, dl, dnl}
x�TOPε(A) ; dnl�TOPε(A) = x�TOPε(A)

xbt�TOPε(A) ; x�TOPε(A) = x�TOPε(A) .

Without any additional construction we can already generalize the
�rst statement of [41, Theorem 5.18]. We basically exploit the fact
that nondeleting, linear td-tst are as powerful as nondeleting, linear
bu-tst (see [41, Theorem 5.24] and Proposition 4.21). We note that
td-determinism is preserved in the construction of [41, Lemma 5.22].
Thus given two td-tst M ′ and M ′′, of which M ′′ is nondeleting and
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linear, we �rst construct a nondeleting, linear bu-tst M2 such that
‖M2‖ε = ‖M ′′‖ε. Note that M2 is td-deterministic (but not necessar-
ily bu-deterministic) whenever M ′′ is td-deterministic. Next we apply
Lemma 4.16 to M ′ to obtain an equivalent td-tst M1 with designated
states (note that td-determinism is preserved). Then we can apply
the simple composition to M1 and M2 (see De�nition 7.15) and obtain
a tst M . It is easily seen that M is top-down, because M2 is non-
deleting and linear. Moreover, M is td-deterministic if M1 and M2 are
td-deterministic.

Theorem 7.19. Let A be commutative, and let x ⊆ {d, n, l}.

xp�TOPε(A) ; xnlp�TOPε(A) = xp�TOPε(A) (102)

If A is ℵ0-complete, then the above equation even holds without the
restriction to polynomial td-tst.

Proof. The decomposition is trivial, so it remains to show the
composition. Let M ′ and M ′′ be polynomial td-tst such that M ′′ is
nondeleting and linear. By Proposition 4.21 there exists a nondeleting,
linear bu-tst M2 such that ‖M2‖ε = ‖M ′′‖ε. Moreover, M2 is td-
deterministic whenever M ′′ is td-deterministic. By Lemma 4.16 there
exists a td-tst M1 with designated states such that ‖M1‖ε = ‖M ′‖ε.
Again the td-determinism property is preserved by this construction.
Let M = M1 ;SM2. By Lemma 7.17 we have ‖M‖ε = ‖M1‖ε ; ‖M2‖ε.
Moreover, it is easily observed thatM is in fact top-down, becauseM2 is
nondeleting and linear. Moreover, M is td-deterministic (respectively,
nondeleting, linear), if M1 and M2 are td-deterministic (respectively,
nondeleting, linear). �

Using the same apparatus, we should also like to generalize the sec-
ond statement of [41, Theorem 5.18]; i. e., for every x ∈ {d, dn, dl, dnl}

xbt�TOPε(A) ; x�TOPε(A) = x�TOPε(A) .

So let M ′ and M ′′ be td-tst. The �rst step is to construct a bu-tst M2,
which is semantically equivalent to M ′′. However, if M ′′ is not lin-
ear, then, in general, such a tst need not exist [because we also have
p�TOPε(B) 6⊆ p�BOTε(B)]. Thus we restrict ourselves to linear M ′′.
Consequently, let M ′ be boolean, deterministic, and total, and let M ′′

be linear. We �rst construct a linear bu-tstM2 that computes the same
ε-t-ts transformation as M ′′ (we follow the construction found in [58,
Theorem 5.26]). Secondly, we apply the construction of Lemma 4.16
to M ′ and obtain the td-tst M1. The advantage of M2 is that Propo-
sition 7.11 is applicable to it. We apply the simple composition to
M1 and M2 and obtain a tst M3 that computes the ε-t-ts transfor-
mation ‖M3‖ε = ‖M1‖ε ; ‖M2‖ε. Finally, we observe an important
property (namely, that �checking followed by deletion� is not possible)
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Table 4. Preservation of properties for the construction
of Proposition 7.20.

bu td p m bu-d bu-t td-d td-t i-l i-n o-l o-n b bu-h td-h
3 7 3 3 7 7 3 3 3 3 3 7 3 7 7

and manipulate M3 such that we obtain a td-tst M that computes
‖M‖ε = ‖M3‖ε.

We restate [58, De�nition 5.24 and Lemma 5.25], because the con-
struction is essential in the forthcoming theorem.

Proposition 7.20 (see [58, De�nition 5.24 and Lemma 5.25]). Let
A be commutative.

lp�TOPε(A) ⊆ lp�BOTε(A)

Proof. Let M = (Q,Σ,∆,A, F, µ) be a linear polynomial td-tst and
⊥ /∈ Q be a new state. For every k ∈ N and w = p1(xi1) · · · pn(xin) ∈ Q(Xk)∗

such that every x ∈ Xk occurs at most once in w, let w = q1(x1) · · · qk(xk)
where for every j ∈ [k]

qj =

{
pl if xil = xj ,
⊥ otherwise.

Note that w is well-de�ned. Let α ∈ ∆0. We construct the linear polynomial
bu-tst M ′ = (Q′,Σ,∆,A, F ′, µ′) with

• Q′ = Q ∪ {⊥};
• F ′

q = Fq for every q ∈ Q and F ′
⊥ = 0̃;

• for every k ∈ N, σ ∈ Σk, q ∈ Q, and q1, . . . , qk ∈ Q′:

µ′k(σ)q,q1···qk =
∑

w=p1(xi1
)···pn(xin )∈Q(Xk)∗,

w=q1(x1)···qk(xk)

( ∑
u∈T∆(Zn)

(µk(σ)q,w, u) u[zij ]j∈[n]

)
• µ′k(σ)⊥,⊥···⊥ = 1 α for every k ∈ N and σ ∈ Σk.

The proof of ‖M ′‖ε = ‖M‖ε can be found in [58, Lemma 5.25]. �

Note that ⊥, which is introduced as an additional state in the pre-
vious construction, is a blind state. The properties that are preserved
by this construction are shown in Table 4. Now we are ready to state
the second composition theorem for td-tst.

Theorem 7.21. Let A be commutative.

bdt�TOPε(A) ; lp�TOPε(A) ⊆ p�TOPε(A)

If A is ℵ0-complete, then the above result also holds without the poly-
nomial restriction.

Proof. Let M ′ = (Q′,Σ,Γ,A, F ′, µ′) be a boolean, deterministic, and
total td-tst, and let M ′′ = (Q′′,Γ,∆,A, F ′′, µ′′) be a linear polynomial
td-tst. First we construct the td-tst M1 = (Q1,Σ,Γ,A, F1, µ1) from M ′
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using the construction of Lemma 4.16. It is proved in Lemma 4.16 that
‖M1‖ε = ‖M ′‖ε. Second we construct from M ′′ the linear polynomial
bu-tst M2 = (Q2,Γ,∆,A, F2, µ2) as presented in Proposition 7.20. Clearly,
‖M2‖ε = ‖M ′′‖ε. Moreover, it is noteworthy that we have the following two
properties. There is a blind state ⊥ ∈ Q2 and an α ∈ ∆0 such that:

(a) hεµ2
(t)⊥ = 1 α for every t ∈ TΓ (see Observation 7.6); and

(b) for every k ∈ N, symbol γ ∈ Γk, states q, q1, . . . , qk ∈ Q2, output
tree u ∈ supp((µ2)k(γ)q,q1···qk), and i ∈ [k]

i /∈ var(u) ⇐⇒ qi = ⊥ .

Now we may compose M1 with M2 using the simple composition (see
De�nition 7.15). We obtain the tst M3 = M1 ;SM2 (actually M3 is a tst of
type II [86]). Let

M3 = (Q3,Σ,∆,A, F3, µ3) .

We show that M3 has the following properties (cf. [86, Lemma 2]):

(i) hεµ3
(t)(p,⊥) = 1 α for every t ∈ TΣ and p ∈ Q′;

(ii) supp((µ3)k(σ)q,w) is linear for every k ∈ N, σ ∈ Σk, q ∈ Q3, and
w ∈ Q3(Xk)∗; and

(iii) for every k ∈ N, w = (p1, q1)(xi1) · · · (pn, qn)(xin) ∈ Q3(Xk)∗,
i ∈ [n], σ ∈ Σk, (p, q) ∈ Q3, and u ∈ supp((µ3)k(σ)(p,q),w)

i /∈ var(u) ⇐⇒ qi = ⊥ .

(i) By the proof of Lemma 7.17 we know that hεµ3
(t)(p,⊥) = hεµ2

(hεµ1
(t)p)⊥.

By Observation 5.4 we know that hεµ1
(t)p = 1 u for some u ∈ TΓ. Moreover,

by Property (a) we have that hεµ2
(1 u)⊥ = 1 α; thus hεµ3

(t)(p,⊥) = 1 α.
(ii�iii) These properties are easily observed because M1 is output-linear

and output-nondeleting and M2 is linear. For Property (iii) one also needs
Statement (b).

Let n ∈ N. We de�ne normn : T∆(Zn) −→ T∆(Zn) by

normn(u) = normn(u, 1)

for every u ∈ T∆(Zn) where

normn(u, n) = u

normn(u, i) =

{
normn(u, i+ 1) if i ∈ var(u),
normn−1(u[zj−1]j∈[n]\[i], i) otherwise;

for every i ∈ [n − 1]. Intuitively speaking, normn normalizes a tree u, in
which at most the variables z1, . . . , zn may occur, by renaming the vari-
ables such that only the variables z1, . . . , zk occur, where k = card(var(u)).
Essentially, this normalizes scattered blocks of variables into one block of
variables. Thus, e. g., norm3(z3) = z1. Further, we de�ne the mapping
del : Q3(X)∗ −→ Q3(X)∗ for every (p, q) ∈ Q3, i ∈ N+, and w ∈ Q3(X)∗ by

del(ε) = ε

del((p, q)(xi)w) =

{
del(w) if q = ⊥,
(p, q)(xi) del(w) if q 6= ⊥.
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Given an input word w, the del-mapping applied to w deletes all those sym-
bols of w whose state has ⊥ in the second component.

We obtain M = (Q3,Σ,∆,A, F3, µ) as follows. For every k ∈ N, σ ∈ Σk,
q ∈ Q3, and w = q1(xi1) · · · qn(xin) ∈ Q3(Xk)∗ let

µk(σ)q,w =
∑

w′∈Q3(Xk)∗,
del(w′)=w

( ∑
u′∈T∆(Z)

((µ3)k(σ)q,w′ , u′) norm|w′|(u
′)
)
.

Clearly, M is a td-tst. We prove hεµ(t)(p,q) = hεµ3
(t)(p,q) for every t ∈ TΣ and

(p, q) ∈ Q3 such that q 6= ⊥. Let t = σ(t1, . . . , tk) for some k ∈ N, σ ∈ Σk,
and t1, . . . , tk ∈ TΣ.

hεµ(σ(t1, . . . , tk))(p,q)
= (by De�nition 4.7(1) )∑

w∈Q3(Xk)∗,
w=(p1,q1)(xi1

)···(pn,qn)(xin )

µk(σ)(p,q),w←−ε (hεµ(tij )(pj ,qj))j∈[n]

= (by induction hypothesis because qj 6= ⊥)∑
w∈Q3(Xk)∗,

w=(p1,q1)(xi1
)···(pn,qn)(xin )

µk(σ)(p,q),w←−ε (hεµ3
(tij )(pj ,qj))j∈[n]

= (by de�nition of µk(σ)(p,q),w)∑
w∈Q3(Xk)∗,

w=(p1,q1)(xi1
)···(pn,qn)(xin )

( ∑
w′∈Q3(Xk)∗,
del(w′)=w( ∑

u′∈T∆(Z)

((µ3)k(σ)(p,q),w′ , u′) norm|w′|(u
′)
))
←−ε (hεµ3

(tij )(pj ,qj))j∈[n]

= (by Proposition 3.8)∑
w′∈Q3(Xk)∗,

del(w′)=(p1,q1)(xi1
)···(pn,qn)(xin )

( ∑
u′∈T∆(Z)

((µ3)k(σ)(p,q),w′ , u′) norm|w′|(u
′)
)

←−ε (hεµ3
(tij )(pj ,qj))j∈[n]

= (by Proposition 3.18 because hεµ3
(tij )(pj ,⊥) = 1 α)∑

w′∈Q3(Xk)∗,
w′=(p1,q1)(xi1

)···(pn,qn)(xin )

(µ3)k(σ)(p,q),w′←−ε (hεµ3
(tij )(pj ,qj))j∈[n]

= (by De�nition 4.7(1) )

hεµ3
(σ(t1, . . . , tk))(p,q)

It follows that ‖M‖ε = ‖M3‖ε and thus the main statement is proved.
�
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5. Open problems and future work

In this chapter we concentrated on pure substitution, but composi-
tion results for devices that use o-substitution are equally interesting.
Moreover, we can also study compositions of devices that are not nec-
essarily bottom-up or top-down. A few results on such compositions
can be found in [86]. In particular the results presented there are again
only for devices that use pure substitution.

Another direction of future research are composition results for par-
ticular classes of semirings. Here we considered commutative semirings,
but another very interesting class of semirings is given by all commu-
tative and additively idempotent semirings. For them less restrictive
composition results are highly likely. Finally, we can consider mixed
compositions, where one device is top-down and the other is bottom-
up. Lemma 7.17 shows that results in this direction are possible and
such results could provide valuable insight into the power of tree series
transducers.
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