
Compositions of
Extended Top-down Tree Transducers

Andreas Maletti

Institute of Theoretical Computer Science, Faculty of Computer Science
Technische Universität Dresden

maletti@tcs.inf.tu-dresden.de

Abstract. Unfortunately the class of transformations computed by non-
deleting and linear extended top-down tree transducers [Graehl, Knight:
Training Tree Transducers. HLT-NAACL 2004] is not closed under com-
position. It is shown that the class of transformations computed by
nondeleting and linear bimorphisms actually coincides with the previ-
ously mentioned class. Moreover, every nondeleting and linear bimor-
phism with an ε-free input-homomorphism can straightforwardly be im-
plemented by a multi bottom-up tree transducer [Fülöp, Kühnemann,
Vogler: A Bottom-up Characterization of Deterministic Top-down Tree
Transducers with Regular Look-ahead. Inf. Proc. Letters 91, 2004]. The
class of transformations realized by the latter devices is shown to be
closed under composition and is included in the composition of the class
of transformations realized by top-down tree transducers with itself.

1 Introduction

Top-down tree transducers (for short: tdtts) were introduced in [1, 2] and
intensively studied thereafter (see [3] for a survey). Those devices were
originally motivated from syntax-directed semantics [4], but were later
successfully applied to problems as diverse as: functional programming [5];
analysis of cryptographic protocols [6]; and decidability of the first-order
theory of ground rewriting [7].

In particular, compositions of tdtts are considered in [8, 9]. In this
paper we study compositions of extended tdtts, which were introduced
in [10] and subsequently led to several improvements [11] in machine
translation (see [12] for a survey). In fact, [12] explicitly mentions the
closure of the class of transformations computed by extended tdtts under
composition as an open problem of paramount importance in natural
language processing. A partial solution is given in [13] where it is shown
that the class of transformations computed by nondeleting and linear
extended tdtts is not closed under composition. The proof shows that
the non-closure is essentially due to the linearity property (i.e., copying

extended tdtts can compute the transformation presented in [13]); thus
the general problem remains open.

An extended tdtt essentially is a tdtt whose left-hand sides of rules
offer not only shallow patterns of the form σ(x1, . . . , xk) for some k-ary
symbol σ, but allow arbitrary patterns (without repeated variables) as
left-hand sides. In this paper we will mostly consider nondeleting and
linear extended tdtts, in which the right-hand side of a rule may not
contain several occurrences of a variable and further must contain every
variable that occurs in the left-hand side of that rule. Two example rules
are shown in Fig. 1. The semantics of extended tdtts is given by a simple
rewrite semantics. An instance of a left-hand side of a rule is replaced by
the appropriately instantiated right-hand side of that rule. We start this
rewriting process with q(t) where q is an initial state and t is the input
tree. An extended tdtt may thus transform an input tree t into an output
tree u if there exists an initial state q such that q(t) can be rewritten to u.

It is shown in [14] that synchronized tree substitution grammars [15]
are as powerful (upto relabeling) as bimorphisms (see survey [16]) of type
(LC,LC) [14]. We first show that nondeleting and linear extended tdtts
are as powerful as bimorphisms of type (LC,LC), which thus shows that
nondeleting and linear extended tdtts are as powerful as synchronized tree
substitution grammars (modulo relabeling). It is already remarked in [10]
that the two previously mentioned devices are similar. The problem of the
closure under composition of the class of transformations computed by
synchronized tree substitution grammars is open since their introduction
in the 90s [15]. The bimorphism characterization [14] was proposed as
a first step towards composition results, however no one seems to have
followed this lead.

In this paper we approach the issue by a bottom-up device: multi
bottom-up tree transducers [17] (for short: mbutts). We show that re-
stricted nondeleting and linear extended tdtts can be simulated by non-
deleting and linear mbutts. Then we show that the class of transfor-
mations computed by linear mbutts is closed under composition. This
is surprising because nondeleting and linear mbutts can reproduce cer-
tain forms of (top-down and bottom-up) copying. Finally, we discuss how
to implement mbutts in a top-down fashion, alas not as extended tdtts
as this would be impossible in general because the class of transforma-
tions computed by nondeleting and linear extended tdtts is not closed
under composition [13]. Thus we do not solve the problem as originally
posed but present a suitable superclass of transformations which enjoys
the much required closure under composition. Furthermore, we illustrate

the power of compositions of extended tdtts and support the validation
of composition algorithms (e.g., the implementation of compositions in
Tiburon [18]).

q

σ

σ

x1 x2

x3

→

δ

q1

x1

q2

x2

q3

x3

q

σ

α x1

→

γ

p

x1

Fig. 1. Illustration of extended top-down tree transducer rules.

2 Preliminaries

We use IN to denote the set of natural numbers including 0, and we use IN+

to denote IN \ {0}. We fix a set X = {x1, x2, . . . } of variables, and for
every k ∈ IN we let Xk = {xi | 1 6 i 6 k}. Since we need the restriction
1 6 i 6 k often, we abbreviate {i | 1 6 i 6 k} by [k]. Alphabets and
ranked alphabets are defined as usual. We use Σ(k) to denote the set of
k-ary symbols of a ranked alphabet Σ and write rkΣ for the rank function
associated to Σ. The set of Σ-trees indexed by V is denoted by TΣ(V).

The set of variables occurring in a tree t ∈ TΣ(V) is denoted by var(t).
We call t nondeleting (respectively, linear) in V if every v ∈ V occurs at
least (respectively, at most) once in t. The sets pos(t) and Sub(t) denote
the set of positions of t and the set of subtrees of t, respectively, and are
defined as usual. For every w ∈ pos(t) we write t(w) for the symbol that
occurs at position w in t. By t|w we denote the subtree of t that is rooted
at w, and by t[t′]w we denote the tree obtained from t by replacing the
subtree rooted at w by t′.

For sets P and T , we write P (T) to denote {p(t) | p ∈ P, t ∈ T}.
Moreover, given a ranked alphabet ∆, we write ∆[T] for the set

{δ(t1, . . . , tk) | δ ∈ ∆(k), t1, . . . , tk ∈ T} .

Finally, we write ; for function composition provided that the types
are compatible; i.e., given f : A → B and g : B → C the expression f ; g
denotes the function from A to C such that (f ; g)(a) = g(f(a)) for
every a ∈ A. A detailed introduction into tree language theory can be
found, e.g., in [3]. There one will also find the definitions of Σ-algebra
homomorphisms and recognizable tree languages.

3 Extended Top-down Tree Transducer and Bimorphism

In this section, we recall the notion of an extended top-down tree trans-
ducer [10]. Essentially extended top-down tree transducers have rules in
which the left-hand side may contain arbitrary, not just shallow, patterns.

Definition 1 (cf. Section 4 in [10]). An extended top-down tree trans-
ducer is a tuple M = (Q,Σ,∆, I,R) such that

– Q is a finite set of states;
– Σ and ∆ are input and output ranked alphabet;
– I ⊆ Q is a set of initial states; and
– R ⊆ Q(TΣ(X))×T∆(Q(X)) is a finite set of rules such that l is linear

in X and var(r) ⊆ var(l) for every (l, r) ∈ R.

We say that M is nondeleting (respectively, linear), if var(l) = var(r)
(respectively, r is linear in X) for every (l, r) ∈ R. Moreover, we say that
M is a top-down tree transducer, if for every (l, r) ∈ R there exist k ∈ IN,
q ∈ Q, and σ ∈ Σk such that l = q(σ(x1, . . . , xk)).

Without loss of generality we commonly assume that for every rule
(l, r) ∈ R there exists n ∈ IN such that var(l) = Xn. Moreover, we
commonly write (l → r) instead of (l, r) when handling rules. Finally,
a top-down tree transducer is deterministic, if for every left-hand side l
there exists at most one right-hand side r such that l→ r.

In the sequel, we abbreviate top-down tree transducer to tdtt. The
semantics of those devices is given by a straightforward rewrite semantics.
We identify an instance of the left-hand side in a sentential form and
replace this instance by a corresponding (according to the rules of the
tree transducer) instantiated right-hand side.

Definition 2 (cf. Section 4 in [10]). Let M = (Q,Σ,∆, I,R) be an
extended tdtt. The relation ⇒M ⊆ T∆(Q(TΣ))2 is defined by ξ ⇒M ξ′ iff

– there exists a position w ∈ pos(ξ);
– there exists a rule (l→ r) ∈ R; and
– there exists a substitution θ : X → TΣ

such that lθ = ξ|w and ξ′ = ξ[rθ]w. The tree transformation computed
by M , denoted by ‖M‖ ⊆ TΣ × T∆, is defined by

‖M‖ = {(t, u) ∈ TΣ × T∆ | ∃q ∈ I : q(t) ⇒∗
M u} .

Our first result will relate nondeleting and linear extended tdtt and
particular bimorphisms. To this end, let us recall the bimorphism ap-
proach to tree transformations. A homomorphism h : TΣ → T∆ is called
nondeleting (respectively, linear), if h(σ) is nondeleting (respectively, lin-
ear) in Xk for every k ∈ IN and σ ∈ Σ(k). A bimorphism just consists of
a recognizable tree language and two homomorphisms.

Definition 3. Let Σ, Γ , and ∆ be ranked alphabets. A bimorphism is a
triple B = (ϕ,L, ψ) such that

– ϕ : TΓ → TΣ is a homomorphism (the input homomorphism);
– L ⊆ TΓ is a recognizable tree language; and
– ψ : TΓ → T∆ is a homomorphism (the output homomorphism).

The tree transformation induced by B, denoted by ‖B‖, is defined by

‖B‖ = {(ϕ(s), ψ(s)) ∈ TΣ × T∆ | s ∈ L} .

We call a bimorphism (ϕ,L, ψ) nondeleting (respectively, linear), if
ϕ and ψ are nondeleting (respectively, linear). The class of tree trans-
formations computable by nondeleting (note that the term “complete” is
used instead of “nondeleting” in [14]) and linear bimorphisms is denoted
by B(LC,LC), and the class of tree transformations computed by non-
deleting and linear extended tdtts is denoted by nl–XTOP. The following
straightforward lemma shows that the power of nondeleting and linear
extended tdtts and nondeleting and linear bimorphisms coincides.

Lemma 4. B(LC,LC) = nl–XTOP.

We already remarked that the class of transformations computed by
nondeleting and linear extended tdtts is not closed under composition.
This immediately yields the following corollary.

Corollary 5 (see [13]). B(LC,LC) is not closed under composition.

4 Multi Bottom-up Tree Transducer

In this section, we recall multi bottom-up tree transducers from [17]. We
slightly adapt the model by omitting a special root symbol. In [17] this
symbol is required so that the bottom-up device may deterministically
identify the root of the input tree. However, in natural language process-
ing deterministic tree transducers have only very limited applications [12],
so we will not deal with deterministic devices.

Definition 6 (cf. Section 3 in [17]). A multi bottom-up tree trans-
ducer is a tuple (Q,Σ,∆, F,R) such that

– Q is a ranked alphabet (the states) with Q(0) = ∅;
– Σ and ∆ are ranked alphabets (the input and output symbols);
– F ⊆ Q(1) (the set of final states); and
– R is a finite set (the rules) in which every element is of the form

σ(q1(x1,1, . . . , x1,n1), . . . , qk(xk,1, . . . , xk,nk
)) → q(t1, . . . , tn)

with k ∈ IN, σ ∈ Σ(k), n, n1, . . . , nk ∈ IN+, q ∈ Q(n), qi ∈ Q(ni) for
every i ∈ [k], and t1, . . . , tn ∈ T∆(Y) with Y = {xi,j | i ∈ [k], j ∈ [ni]}.

We say that M is nondeleting (respectively, linear), if for every rule
(l → r) ∈ R every variable that occurs in l occurs at least (respectively,
at most) once in r.

We abbreviate σ(q1(x1,1, . . . , x1,n1), . . . , qk(xk,1, . . . , xk,nk
)) simply to

σ(q1, . . . , qk). Moreover, we abbreviate multi bottom-up tree transducer
to mbutt. The semantics of mbutts is given by a rewrite semantics (the
set V of variables is only needed for the composition construction).

Definition 7. Let M = (Q,Σ,∆, F,R) be a mbutt and V a set. The
relation ⇒M ⊆ TΣ(Q[T∆(V)])2 is defined for every ξ, ξ′ ∈ TΣ(Q[T∆(V)])
by ξ ⇒M ξ′ iff

– there exists a position w ∈ pos(ξ);
– there exists a rule (l→ r) ∈ R; and
– there exists a substitution θ : X → T∆(V)

such that ξ|w = lθ and ξ′ = ξ[rθ]w. The tree transformation computed
by M , denoted by ‖M‖ ⊆ TΣ × T∆, is defined by

‖M‖ = {(t, u) ∈ TΣ × T∆ | ∃q ∈ F : t⇒∗
M q(u)}.

It might be somewhat surprising that we start our investigation of
mbutts with a composition result (similar to the composition result for
deterministic mbutts in [19]). We will later relate mbutts to extended tdtts
and bimorphisms using the composition result established next. First let
us define the composition of two mbutts. The general idea is the classic
one: take the cross-product of the sets of states and simulate the second
transducer on the right-hand sides of the first transducer. However, a
k-ary state of the first transducer has k prepared (partial) output trees.
Thus we also need to process those k trees with the second transducer,
which gives states of the form (q, p1 · · · pk). This idea was already used in
the composition construction for deterministic mbutts in [19].

Definition 8 (cf. [19]). Let M1 be the mbutt (Q1, Σ, Γ, F1, R1) and M2

be the mbutt (Q2, Γ,∆, F2, R2). The composition of M1 and M2, denoted
by M1 ;M2, is the mbutt M1 ;M2 = (Q,Σ,∆, F1 × F2, R) where

– Q(k) = {(q, q1 · · · qn) ∈ Q1 ×Qn
2 | n = rkQ1(q), k =

∑n
i=1 rkQ2(qi)} for

every k ∈ IN;
– R is given as follows.

Let k ∈ IN, σ ∈ Σ(k), n, n1, . . . , nk ∈ IN+, q ∈ Q(n)
1 , and qi ∈ Q(ni)

1 for ev-
ery i ∈ [k]. Moreover, let wi ∈ Qni

2 for every i ∈ [k] and k1, . . . , kn ∈ IN+,
q′j ∈ Q

(kj)
2 for every j ∈ [n], and t′j,j′ ∈ T∆(X) for every j ∈ [n] and

j′ ∈ [kj]. The set R contains the rule

σ((q1, w1), . . . , (qk, wk)) → (q, q′1 · · · q′n)(t′1,1, . . . , t
′
1,k1

, . . . , t′n,1, . . . , t
′
n,kn

)

if and only if

– there exists a rule (σ(q1, . . . , qk) → q(t1, . . . , tn)) ∈ R1;
– for every j ∈ [k] let wj = pj,1 · · · pj,nj for some mj,1, . . . ,mj,nj ∈ IN+

and pj,j′ ∈ Q
(mj,j′)

2 for every j′ ∈ [nj]; and
– for every i ∈ [n]

ti[pj,j′(x〈jj′〉)]j∈[k],j′∈[nj] ⇒
∗
M2

q′i(t
′
i,1, . . . , t

′
i,ki

)

where x〈jj′〉 = (xj,mj,1+···+mj,j′−1+1, . . . , xj,mj,1+···+mj,j′).

For the next lemma we need a new concept. Let M = (Q,Σ,∆, F,R)
be a mbutt. We call M total, if for every k ∈ IN, σ ∈ Σ(k), and states
q1, . . . , qk ∈ Q there exists r such that (σ(q1, . . . , qk) → r) ∈ R. The clas-
sic construction shows that for every mbutt a (semantically) equivalent
total mbutt can be constructed. The following lemma states the central
property which is required to show the correctness of the construction of
Definition 8 for restricted input mbutts. The restrictions are that the first
transducer is linear and the second total.

Lemma 9. Let M1 = (Q1, Σ, Γ, F1, R1) and M2 = (Q2, Γ,∆, F2, R2) be
mbutts such that M1 is linear and M2 is total, and let M = M1 ;M2.
Let t ∈ TΣ, n ∈ IN+, q ∈ Q

(n)
1 , m1, . . . ,mn ∈ IN+, and qi ∈ Q

(mi)
2 and

ui ∈ Tmi
∆ for every i ∈ [n].

t⇒∗
M (q, q)(u1, . . . ,un)

⇐⇒ ∃v ∈ Tn
Γ ,∀i ∈ [n] :

(
t⇒∗

M1
q(v) ∧ vi ⇒∗

M2
qi(ui)

)

Theorem 10. Let M1 and M2 be mbutts such that M1 is linear and M2

is total, and let M = M1 ;M2. Then ‖M‖ = ‖M1‖ ; ‖M2‖.

The following corollary summarizes the composition results obtained.
It is easy to check that the nondeletion and linearity conditions are pre-
served in the construction of Definition 8. By MBOT we denote the
class of tree transformations computable by mbutts. We use the prefixes
n and l for nondeletion and linearity, respectively; i.e., the class nl–MBOT
comprises all tree transformations computable by nondeleting and linear
mbutts. We write [n] or [l] for an optional nondeletion or linearity re-
striction. In statements such an optional restriction [r] can be replaced
(consistently) by either the empty word ε or r to obtain a valid statement.

Corollary 11 (of Theorem 10).

[n]l–MBOT ; [n][l]–MBOT = [n][l]–MBOT .

5 Bimorphisms and Multi Bottom-up Tree Transducers

As promised we return to the issue of relating mbutts to bimorphisms.
We immediately observe that B(LC,LC) exhibits a strong symmetry be-
cause it is closed under inverses; i.e., with every ρ ∈ B(LC,LC) also
ρ−1 ∈ B(LC,LC). Let B be a bimorphism computing a tree transforma-
tion ‖B‖ ⊆ TΣ × T∆. It is easily verifiable that, in general, it is possible
that there exists a tree t such that ‖B‖∩({t}×T∆) is infinite. However, for
an mbutt M the set ‖M‖∩({t}×T∆) is always finite. This observation re-
mains valid if we restrict ourselves to nondeleting and linear bimorphisms
and mbutts.

Let ϕ : TΓ → TΣ be a homomorphism. We call ϕ nonerasing, if
ϕ(γ) /∈ X for every γ ∈ Γ . Correspondingly, we call an extended tdtt
M = (Q,Σ,∆, I,R) input-consuming, if l /∈ Q(X) for every (l → r) ∈ R.
We use the stem XTOPic (with the usual prefixes) for classes of transfor-
mations computable by input-consuming extended tdtt. Moreover, we use
B(LCne,LC) for the class of transformations computable by nondeleting
and linear bimorphisms whose input homomorphism is nonerasing.

Corollary 12 (of Lemma 4). B(LCne,LC) = nl–XTOPic.

Now we are ready to show that nondeleting and linear bimorphisms
whose input homomorphism is nonerasing can be implemented by non-
deleting and linear mbutts. For this we present the bimorphism as a com-
position of three tree transformations and show that each can be simu-
lated by a mbutt. The composition result in Corollary 11 then yields the
desired result.

Lemma 13. Let Σ and ∆ be ranked alphabets and h : TΣ → T∆ be a
nondeleting and linear homomorphism.

(i) h ∈ nl–MBOT; and
(ii) if h is nonerasing, then h−1 ∈ nl–MBOT.

Proof. The tree transformation h can trivially be realized by a nondelet-
ing and linear tdtt and thus also by a nondeleting and linear mbutt.

The inverse homomorphism is more difficult. We construct a nondelet-
ing and linear mbutt M = (Q′,∆,Σ, F,R) as follows:

– Q(k) = {(σ,w) | σ ∈ Σ,w ∈ pos(h(σ)), k = |var(h(σ)|w)|} for every
k ∈ IN;

– Q′ = Q ∪ {?(1)};
– F = {?}; and
– the set R of rules is given as follows.

Let k ∈ IN and δ ∈ ∆(k). Moreover, let n1, . . . , nk ∈ IN+ and q1, . . . , qk ∈ Q
be such that qi ∈ Q(i) for every i ∈ [k]. Finally, let u ∈ TΣ(Q(X)), and
let xi = (xi,1, . . . , xi,ni) for every i ∈ [k]. We have that(

δ(q1(x1), . . . , qk(xk)) → u
)
∈ R

if and only if there exists n ∈ IN, σ ∈ Σ(n), and w ∈ pos(h(σ)) such that

(i) h(σ)(w) = δ;
(ii) for every i ∈ [k]

qi =

{
(σ,wi) if h(σ)(wi) /∈ X
? otherwise

(iii) and

u =

{
(σ,w)(x1, . . . ,xk) if w 6= ε

?(σ(y)) otherwise

where y contains the variables of x1, . . . ,xk sorted in the order in-
duced by h(σ); i.e., the xi,j that corresponds to x1 in h(σ) comes first,
then the variable corresponding to x2 in h(σ), etc.

Note that by conditions (ii) and (iii) and the nondeletion and linearity
of h we have n1 + · · · + nk = n. It is easily checked that M is indeed
nondeleting and linear. It is intuitively clear that ‖M‖ = h−1. ut

From this lemma we can easily conclude that every input-consuming
nondeleting and linear extended tdtt can be simulated by a nondeleting
and linear mbutt.

Theorem 14. nl–XTOPic ⊆ nl–MBOT.

Proof. By Corollary 12 we have B(LCne,LC) = nl–XTOPic. This yields
that for every input-consuming nondeleting and linear extended tdtt
M = (Q,Σ,∆, I,R) there exists a nondeleting and linear bimorphism
B = (ϕ,L, ψ) with ϕ nonerasing such that ‖B‖ = ‖M‖.

‖B‖ = {(ϕ(t), ψ(t)) | t ∈ L}
= {(t, u) | ∃s ∈ TΓ : (t, s) ∈ ϕ−1, (s, s) ∈ idL, (s, u) ∈ ψ}
= ϕ−1 ; idL ;ψ

By Lemma 13 and Corollary 11 this shows that ‖M‖ ∈ nl–MBOT because
idL can be implemented by a nondeleting and linear mbutt. ut

It follows from [13] that nl–XTOPic is not closed under composi-
tion. Thus we immediately obtain that nl–XTOPic ⊂ nl–MBOT because
nl–MBOT is closed under composition (see Corollary 11). Thus we identi-
fied a suitable superclass which possesses the much required closure under
composition. Nondeleting mbutts are usually quite efficient because they
visit each node of the input tree at most once and each constructed output
tree is used in the final output tree. However, they are also more diffi-
cult to implement than, e.g., tdtts. Let us investigate the input-consuming
restriction for extended tdtts. It might seem like a harsh restriction to dis-
allow rules of the form q(x) → u. Such rules are quite useful in practice
and used, e.g., for spontaneous insertion in machine translation systems.

Lemma 15. Let M = (Q,Σ,∆, I,R) be a nondeleting and linear ex-
tended tdtt such that ‖M‖ ∩ ({t} × T∆) is finite for every t ∈ TΣ. Then
there exists an input-consuming nondeleting and linear extended tdtt M ′

such that ‖M ′‖ = ‖M‖.

We showed that only if the spontaneous insertations are unbounded
then we potentially cannot model it by a input-consuming extended tdtt.

Finally, let us consider how mbutts relate to extended tdtts. An im-
portant result in this respect can be found in [17]. It is shown there that
every linear deterministic mbutt can be simulated by a deterministic tdtt
with regular look-ahead [20]. Here we present a slightly different construc-
tion which however yields the mentioned result of [17] as a corollary. Our

construction is a faithful generalization of the decomposition of bottom-
up tree transducers of [9]. We denote by QREL and d–TOP the classes of
tree transformations computable by stateful relabelings (i.e., tdtts with
rules of the form q(σ(x1, . . . , xk)) → δ(q1(x1), . . . , qk(xk)) where σ and δ
are k-ary) and deterministic tdtts, respectively.

Theorem 16 (cf. Lemma 4.1 of [17]). nl–MBOT ⊆ QREL ; d–TOP

Proof. The stateful relabeling annotates the input tree with the transi-
tions applied by a run of the mbutt. It thus takes care of the nondeter-
minism. The deterministic tdtt then executes the annotated transitions
using a state for each parameter position. ut

It can thus be shown that compositions of input-consuming, nondelet-
ing and linear tdtts can be simulated by a composition of a stateful rela-
beling and a deterministic tdtt. This is our main theorem for compositions
of extended tdtts.

Theorem 17. For every n ∈ IN+

nl-XTOPn
ic ⊆ nl–MBOT ⊆ QREL ; d–TOP .

Proof. We have the inclusions

nl-XTOPn
ic ⊆ nl–MBOTn ⊆ nl–MBOT ⊆ QREL ; d–TOP

by Theorem 14, Corollary 11, and Theorem 16, respectively. ut

6 Conclusions and Open Problems

We have identified a class, namely nl–MBOT, that is closed under compo-
sitions and contains all transformations that can be computed by input-
consuming, nondeleting and linear extended tdtt. We further showed that
compositions of input-consuming, nondeleting and linear extended tdtt
can be implemented by a single composition of a stateful relabeling and
a deterministic tdtt.

It remains an open problem to decide whether the composition of
the transformations computed by two extended tdtts can be computed
by just a single extended tdtt. In the relevant subcase where the two
extended tdtts are input-consuming one can investigate how to implement
(restricted) mbutts using just one extended tdtt.

Acknowledgement. The author is grateful to the anonymous referees for
their insightful remarks on the draft version of the paper.

References

1. Doner, J.: Tree acceptors and some of their applications. J. Comput. System Sci.
4(4) (1970) 406–451

2. Thatcher, J.W.: Generalized2 sequential machine maps. J. Comput. System Sci.
4(4) (1970) 339–367

3. Gécseg, F., Steinby, M.: Tree languages. In Rozenberg, G., Salomaa, A., eds.:
Handbook of Formal Languages. Volume 3. Springer (1997) 1–68

4. Fülöp, Z., Vogler, H.: Syntax-directed Semantics—Formal Models Based on Tree
Transducers. Monographs in Theoret. Computer Sci. Springer (1998)

5. Kühnemann, A.: Benefits of tree transducers for optimizing functional programs.
In Arvind, V., Ramanujam, R., eds.: Proc. 18th Int. Conf. Found. Software Tech.
& Theoret. Computer Sci. Volume 1530 of LNCS., Springer (1998) 146–157

6. Küsters, R., Wilke, T.: Automata-based analysis of recursive cryptographic pro-
tocols. In Diekert, V., Habib, M., eds.: Proc. 21st Annual Symp. Theoret. Aspects
of Comput. Sci. Volume 2996 of LNCS., Springer (2004) 382–393

7. Dauchet, M., Tison, S.: The theory of ground rewrite systems is decidable. In:
Proc. 5th Annual IEEE Symp. Logic in Comput. Sci., IEEE Computer Society
(1990) 242–248

8. Baker, B.S.: Composition of top-down and bottom-up tree transductions. Inform.
and Control 41(2) (1979) 186–213

9. Engelfriet, J.: Bottom-up and top-down tree transformations—a comparison.
Math. Systems Theory 9(3) (1975) 198–231

10. Graehl, J., Knight, K.: Training tree transducers. In: Proc. HLT/NAACL, Asso-
ciation for Computational Linguists (2004) 105–112

11. Huang, B., Knight, K.: Relabeling syntax trees to improve syntax-based machine
translation quality. In: Proc. HLT/NAACL, Association for Computational Lin-
guistics (2006) 240–247

12. Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural
language processing. In Gelbukh, A.F., ed.: Proc. 6th Int. Conf. Comput. Linguis-
tics and Intel. Text Proc. Volume 3406 of LNCS., Springer (2005) 1–24

13. Knight, K., Graehl, J., Hopkins, M.: Extended top-down tree transducers.
Manuscript (2006)

14. Shieber, S.M.: Synchronous grammars as tree transducers. In: Proc. 7th Int.
Workshop Tree Adjoining Grammars and Related Formalisms. (2004) 88–95

15. Schabes, Y.: Mathematical and Computational Aspects of Lexicalized Grammars.
PhD thesis, University of Pennsylvania (1990)

16. Dauchet, M., Tison, S.: Structural complexity of classes of tree languages. In
Nivat, M., Podelski, A., eds.: Tree Automata and Languages. Elsevier Science
(1992) 327–353

17. Fülöp, Z., Kühnemann, A., Vogler, H.: A bottom-up characterization of determin-
istic top-down tree transducers with regular look-ahead. Inform. Proc. Letters 91
(2004) 57–67

18. May, J., Knight, K.: Tiburon: A weighted tree automata toolkit. In Ibarra,
O.H., Yen, H.C., eds.: Proc. 11th Int. Conf. Implementation and Application of
Automata. Volume 4094 of LNCS., Springer (2006) 102–113

19. Kühnemann, A.: Composition of deterministic multi bottom-up tree transducers.
Manuscript (2006)

20. Engelfriet, J.: Top-down tree transducers with regular look-ahead. Math. Systems
Theory 10 (1977) 289–303

