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Abstract. In this contribution theMyhill-Nerode congruence relation on tree series is reviewed
and a more detailed analysis of its properties is presented. It is shown that, if a tree series is de-
terministically recognizable over a zero-divisor free and commutative semiring, then the Myhill-

Nerode congruence relation has �nite index. By [Borchardt: Myhill-Nerode Theorem for Recog-

nizable Tree Series. LNCS 2710. Springer 2003] the converse holds for commutative semi�elds, but
not in general. In the second part, a slightly adapted version of the Myhill-Nerode congruence
relation is de�ned and a characterization is obtained for all-accepting weighted tree automata over
multiplicatively cancellative and commutative semirings.

1 Introduction

By theMyhill-Nerode theorem, we know that for every regular string language L, there exists
a unique (up to isomorphism) minimal deterministic �nite string automaton that recognizes L.
This result was extended to several devices including �nite tree automata (see the discussion
in [1]), to weighted string automata [2] over (multiplicatively) cancellative semirings, and to
weighted tree automata [3] over semi�elds (see [4, 5] for an introduction to semirings). For the
weighted devices, the minimal deterministic automaton is no longer unique up to isomorphism.
The structure of it is still unique but the distribution of the weights on the transitions may vary.
In [2] this is called unique up to pushing. Weighted tree automata and transducers recently found
promising applications (see [6] for a survey) in natural language processing, where the size of
the automata is crucial and thus minimization essential.

Let us recall the Myhill-Nerode congruence of [7]. Two trees t and u are equal in the
Myhill-Nerode congruence � for a given tree series  over the semi�eld (A;+; �; 0; 1), if
there exist nonzero coe�cients a; b 2 A such that for all contexts C we observe the equality
a�1 � ( ;C[t]) = b�1 � ( ;C[u]). In this expression, the coe�cients a and b can be understood
as the weights of t and u, respectively. Both sides of the previous equation can be understood
as futures; the futures  t and  u are given for every context C by ( t; C) = a�1 � ( ;C[t]) and
( u; C) = b�1 � ( ;C[u]). Roughly speaking, in  t a context is assigned the weight of C[t] in  
with the weight of t cancelled out. In other words, trees t and u are equal if and only if their
futures  t and  u coincide.

TheMyhill-Nerode congruence � has two major applications: (i) it exactly characterizes
whether  is deterministically recognizable; i.e.,  is deterministically recognizable if and only
if � has �nite index; and (ii) it presents a minimal deterministic wta that recognizes the tree
series  . In this contribution, we consider the Myhill-Nerode relation for semirings which
are not necessarily semi�elds. We will show that, for all commutative and zero-divisor free (i.e.,
a � b = 0 implies that 0 2 fa; bg) semirings, a deterministically recognizable tree series  yields a
Myhill-Nerode congruence � with �nite index. Thus whenever � has in�nite index, then  
is not deterministically recognizable. This extends a result of [7] from commutative semi�elds to
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commutative and zero-divisor free semirings. Secondly, we also consider the opposite direction
with a particular focus on the minimal deterministic wta. We show how all-accepting [8] wta
over cancellative semirings are related to unweighted tree automata. This connection can be
used to minimize deterministic all-accepting wta over commutative and cancellative semirings.
AMyhill-Nerode theorem for all-accepting wta over semi�elds is already presented in [8]. We
contribute an explicit minimization and an extension of the result to cancellative semirings. Note
that every cancellative semiring can be embedded into a semi�eld, but solving the problem in
the semi�eld might yield a wta using coe�cients that do not exist in the cancellative semiring
(e.g., for the natural numbers the resulting wta might use fractions). It then remains open
whether a wta using only coe�cients of the cancellative semiring exists.

Finally, we also investigate the construction of a minimal wta in the general case (again over
a cancellative semiring). To this end, we present a slightly adapted Myhill-Nerode relation.
However, one main point remains open: In cancellative semirings (as opposed to semi�elds)
the Myhill-Nerode congruence relation is not always implementable. It remains an open
problem to de�ne suitable properties on  and the underlying semiring A such that the re�ned
Myhill-Nerode congruence is implementable. We demonstrate the applicability of the general
approach by deriving such properties and thus a Myhill-Nerode theorem for deterministic
all-accepting weighted tree automata.

2 Preliminaries

We use N to represent the nonnegative integers. Further we denote fn 2 N j 1 6 n 6 kg
by [1; k]. A set � that is nonempty and �nite is also called an alphabet. A ranked alphabet is
an alphabet � with a mapping rk� : � ! N. We write �k for f� 2 � j rk�(�) = kg. Given a
ranked alphabet �, the set of �-trees, denoted by T� , is inductively de�ned to be the smallest
set T such that for every k 2 N, � 2 �k, and t1; : : : ; tk 2 T also �(t1; : : : ; tk) 2 T . We generally
write � instead of �() whenever � 2 �0. Let � be a distinguished nullary symbol. A context C
is a tree from T�[f�g such that the nullary symbol � occurs exactly once in C. The set of all
contexts over � is denoted by C� . Finally, we write C[t] for the tree of T� that is obtained by
replacing in the context C 2 C� the unique occurrence of � with the tree t 2 T� .

Let � and �= be equivalence relations on a set S. We write [s]� for the equivalence class
of s 2 S and (S=�) = f[s]� j s 2 Sg for the set of equivalence classes. We drop the subscript
from [s]� whenever it is clear from the context. We say that � is coarser than �= if �= � �.
Now suppose that S = T� . We say that �= is a congruence (on the term algebra T�) if for every
k 2 N, � 2 �k, and s1; : : : ; sk; t1; : : : ; tk 2 T� with si �= ti also �(s1; : : : ; sk) �= �(t1; : : : ; tk).

A (commutative) semiring is an algebraic structure (A;+; �; 0; 1) consisting of two commuta-
tive monoids (A;+; 0) and (A; �; 1) such that � distributes over + and 0 is absorbing with respect
to � . As usual we use

P
i2I ai for sums of families (ai)i2I of ai 2 A where for only �nitely many

i 2 I we have ai 6= 0. The semiring (A;+; �; 0; 1) is called zero-sum free if for every a; b 2 A
the condition a + b = 0 implies that a = 0 = b. We call a semiring (A;+; �; 0; 1) zero-divisor

free if a � b = 0 implies that a = 0 or b = 0. Moreover, A is called cancellative if a � b = a � c
implies b = c for every a; b; c 2 A with a 6= 0. Generally, we write ajb whenever there exists an
element c 2 A such that a � c = b. Note that in a cancellative semiring such an element c, if any
exists, is uniquely determined unless a = 0 = b. In cancellative semirings, we thus write b=a
for that uniquely determined element c provided that (i) ajb and (ii) a 6= 0 or b 6= 0. Finally, a
semi�eld A = (A;+; �; 0; 1) is a semiring such that for every a 2 A n f0g there exists an element
a�1 2 A such that a � a�1 = 1.

Let S be a set and (A;+; �; 0; 1) be a semiring. A (formal) power series  is a mapping
 : S ! A; the set of all such mappings is denoted by AhhSii. Given s 2 S, we denote  (s) also
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by ( ; s) and write the series as
P

s2S( ; s)s. The support of  is supp( ) = fs 2 S j ( ; s) 6= 0g.

The series with empty support is denoted by e0. Power series  ; 0 2 AhhSii are added componen-
twise and multiplied componentwise with a semiring element; i.e., ( +  0; s) = ( ; s) + ( 0; s)
and (a � ; s) = a � ( ; s) for every s 2 S and a 2 A. In this paper, we only consider power series
in which the set S is a set of trees. Such power series are also called tree series.

There exists an abundance of (conceptionally) equivalent de�nitions of weighted tree au-
tomata [9{11] for various restricted semirings. Here we will only consider the general notion
of [11, 7]. A weighted tree automaton [7] (for short: wta) is a tuple (Q;�;A; F; �) where Q is a
nonempty, �nite set of states; � is a ranked alphabet of input symbols; A = (A;+; �; 0; 1) is a

semiring; F : Q ! A is a �nal weight assignment ; and � = (�k)k2N with �k : �k ! AQ
k�Q is

a tree representation. The wta M is called (bottom-up) deterministic (respectively, (bottom-up)

complete), if for every k 2 N, � 2 �k, and q1; : : : ; qk 2 Q there exists at most (respectively, at
least) one q 2 Q such that �k(�)q1���qk;q 6= 0. The wta induces a mapping h� : T� ! AQ that is
de�ned for every k 2 N, � 2 �k, q 2 Q, and t1; : : : ; tk 2 T� by

h�(�(t1; : : : ; tk))q =
X

q1;:::;qk2Q

�k(�)q1���qk;q � h�(t1)q1 � : : : � h�(tk)qk :

The wta M recognizes the tree series S(M) 2 AhhT�ii given by

(S(M); t) =
X
q2Q

F (q) � h�(t)q

for every tree t 2 T� . A tree series  2 AhhT�ii is called recognizable (respectively, deter-
ministically recognizable), if there exists a wta M (respectively, deterministic wta M) such that
S(M) =  . The sets of all recognizable and deterministically recognizable tree series are denoted
by ArechhT�ii and A

rec
dethhT�ii, respectively.

3 Recognizable yields �nite index

In this section, we show that the Myhill-Nerode congruence given by [3, Section 5] is nec-
essarily of �nite index for every deterministically recognizable series over a zero-divisor free
semiring. Thus we derive a necessary criterion for a series  2 AhhT�ii to be recognizable by
some deterministic wta. Moreover, we also obtain a lower bound on the number of states of
any deterministic wta that recognizes  . The development in this section closely follows [7,
Chapter 7] where the same statements are proved for semi�elds.

Let us start with the de�nition of theMyhill-Nerode relation for a tree series  2 AhhT�ii.
Intuitively, two trees t; u 2 T� are related if they behave equal in all contexts C 2 C� (up to
�xed factors). The factors can be imagined to be the weights of the trees t and u.

De�nition 1 (see [7, Chapter 7]). Let  2 AhhT�ii. The relation � � T� � T� is de�ned

for every t; u 2 T� by t � u if and only if there exist a; b 2 A n f0g such that for every C 2 C�
we observe

a � ( ;C[t]) = b � ( ;C[u]) :

The relation � is equivalent to the Myhill-Nerode relation presented in [3, Section 5]
provided that the semiring is a semi�eld. Our �rst lemma states that � is indeed an equivalence
relation, and moreover, a congruence whenever the underlying semiring is zero-divisor free.

Lemma 2 (cf. [7, Lemma 7.1.2(ii)]). Let A be a zero-divisor free semiring and  2 AhhT�ii.
Then � is a congruence.
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Proof. The proof follows the proof of [7, Lemma 7.1.2(ii)], where it is proved for semi�elds. ut

We presented a congruence which is uniquely determined by  . First we show that every
deterministic and complete wta M = (Q;�;A; F; �) also induces a congruence relation. For the
development of this we need some additional notions. The fta underlying M (see [12, 13] for a
detailed introduction to �nite tree automata; for short: fta) is de�ned as B(M) = (Q;�; �; F 0)
where

{ q 2 ��(q1; : : : ; qk) i� �k(�)q1���qk;q 6= 0 for every k 2 N, � 2 �k, and q; q1; : : : ; qk 2 Q; and
{ q 2 F 0 i� Fq 6= 0 for every q 2 Q.

We note that the fta underlying a deterministic and complete wta is deterministic and complete.
Now let M be a deterministic and complete wta and B(M) = (Q;�; �; F 0) be the fta underly-
ing M . We de�ne the mapping RM : T� ! Q for every t 2 T� by RM (t) = q where q 2 Q is the
unique state such that q 2 �(t). Existence and uniqueness are guaranteed by completeness and
determinism of B(M), respectively. We denote ker(RM ) by �M . The following lemma follows
the traditional unweighted approach.

Lemma 3. Let M be a deterministic and complete wta over �. Then �M is a congruence with

�nite index.

Having two congruences, namely �M and �S(M), let us try to relate them. In fact, it turns
out that �S(M) is coarser than �M for every deterministic and complete wta M over a zero-
divisor free semiring. This shows that we need at least as many states as there are equivalence
classes in � to recognize  with some deterministic and complete wta.

Theorem 4. Let A be a zero-divisor free semiring, and let M be deterministic and complete

wta over A. Then �S(M) is coarser than �M .

Proof. LetM = (Q;�;A; F; �), and let t; u 2 T� be such that t �M u; that is RM (t) = RM (u).
Let p = RM (t). Thus, also RM (C[t]) = RM (C[u]). Let a = h�(u)RM (u) and b = h�(t)RM (t). We
claim that for every context C 2 C�

a � (S(M); C[t]) = b � (S(M); C[u]) :

Let us distinguish two cases for q = RM (C[t]). First, let us suppose that Fq = 0. Then the
displayed equation holds because (S(M); C[t]) = 0 = (S(M); C[u]). In the remainder suppose
that Fq 6= 0. Clearly, since t �M u also C[t] �M C[u] because �M is a congruence by Lemma 3.
Thus

a � (S(M); C[t]) = h�(u)p � Fq � h�(C[t])q = h�(u)p � Fq � h�(C)
p
q � h�(t)p

= h�(t)p � Fq � h�(C[u])q = b � (S(M); C[u])

where h�(C[t])q = h�(C)
p
q � h�(t)p can be proved in a straightforward manner. Consequently,

�S(M) is coarser than �M . ut

As already argued this theorem admits an important corollary, which shows a lower bound
on the number of states of any deterministic and complete wta that recognizes a certain series.

Corollary 5. Let A be a zero-divisor free semiring and  2 AhhT�ii. Every deterministic and

complete wta M over A with S(M) =  has at least index(� ) states.

Proof. Let M = (Q;�;A; F; �). By Theorem 4, we have that � is coarser than �M . Thus
card(Q) � index(�M ) � index(� ). ut
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Let us show that the statement does not hold, if we consider arbitrary semirings. Essentially,
if the semiring admits zero-divisors, then it can store information in the weight.

Example 6. Let Z4 = (f0; 1; 2; 3g;+; �; 0; 1) where + and � are the usual addition and multi-
plication, respectively, modulo 4. Clearly, 2 � 2 = 0 and thus Z4 is not zero-divisor free. Let
� = f�(2); �(0); �(0)g. We consider the series  2 Z4hhT�ii which is de�ned for every t 2 T� by

( ; t) =

8><>:
1 if jtj� = 0

2 if jtj� = 1

0 otherwise.

Let M = (f?g; �;Z4; F; �) with F? = 1 and

�0(�)? = 2 �0(�)? = 1 �2(�)??;? = 1 :

It can easily be checked that S(M) =  . Let us suppose that still � is coarser than �M . Since
card(Q) = 1 this means that t � u for all t; u 2 T� . We consider the trees �(�; �) and �. By
de�nition, we should have that there exist a; b 2 [1; 3] such that for every C 2 C�

a � ( ;C[�(�; �)]) = b � ( ;C[�]) :

Now consider the context C = �. Thus a � 0 = b � 1 and thus b = 0. However, b 2 [1; 3] which is
the desired contradiction. Thus �(�; �) 6� � and � is not coarser than �M .

Finally, let us conclude this section with an application of Corollary 5. We can envision
at least two uses of Corollary 5. It can be used to show that some wta is minimal (or almost
so), and it can be used to show that some tree series  is not recognizable. The standard
examples for the latter use concerns the tree series size and height over the natural numbers
and the arctic semiring (N[f�1g;max;+;�1; 0), respectively (see discussion at [7, Examples
7.3.2 and 8.1.8]). We demonstrate the application of Corollary 5 on another example.

Example 7. Let � be a ranked alphabet such that � = �2 [�0. We use the tropical semiring
T = (N [ f1g;min;+;1; 0). It is easily checked that T is zero-divisor free (and cancellative),
but not a semi�eld. We de�ne the mapping zigzag : T� ! N for every � 2 �0 and �; � 2 �2

and t1; t2; t3 2 T� by

zigzag(�) = 1

zigzag(�(�; t1)) = 2

zigzag(�(�(t1; t2); t3)) = 2 + zigzag(t2) :

It is straightforward to show that zigzag 2 T rechhT�ii. In fact, zigzag can be recognized by a
top-down deterministic wta [7, Section 4.2] with only 2 states. But can zigzag be recognized by a
(bottom-up) deterministic wta over � and T ? We use Corollary 5 to show that no deterministic
wta recognizes zigzag. Clearly, this is achieved by proving that �zigzag has in�nite index. Let
t; u 2 T� . Suppose that t �zigzag u. Then there exist a; b 2 N such that for every context C 2 C�

a+ (zigzag; C[t]) = b+ (zigzag; C[u]) :

Now consider the contexts C1 = � and C2 = �(�;�). We obtain the equations

a+ zigzag(t) = b+ zigzag(u)

a+ 2 = b+ 2

From the second equality we can conclude that a = b and zigzag(t) = zigzag(u). Hence
ker(zigzag) is coarser than �zigzag. However, ker(zigzag) has in�nite index, which shows that also
�zigzag has in�nite index, and thus, by Corollary 5, no deterministic wta can recognize zigzag.
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4 Finite index yields recognizable

In this section we investigate whether the lower bound established in the previous section can be
achieved. Certainly, [7, Theorem 7.4.1] shows that for every  2 Arec

dethhT�ii (with A a semi�eld)
there exists a deterministic and complete wta over A with exactly index(� ) states so that
S(M) =  . In this section we investigate this issue for deterministic all-accepting wta over
cancellative semirings. The principal approach can also be extended to deterministic wta over
certain cancellative semirings. Let us illustrate the problem in the semiring (N;+; �; 0; 1) that is
not a semi�eld but cancellative.

Consider the series  : T� ! N with � = f(1); �(0)g and

( ; n(�)) =

8><>:
2 if n = 0

3 if n = 1

4 otherwise.

It is easily checked that � 6� (�) 6� 
n(�) 6� � for every n > 1 as well as m(�) � 

n(�)
for every m > 1 and n > 1. Thus, index(� ) = 3. However, it can be shown that there exists no
deterministic all-accepting [8] wtaM such that S(M) =  . On the other hand, it is surprisingly
easy to construct a deterministic wta M such that S(M) =  . In fact, M can be constructed
such that it has 3 states.

4.1 Minimization of deterministic all-accepting wta

Let us discuss the problem for deterministic all-accepting wta [8, Section 3.2]. It is known
that for every deterministic all-accepting wta M over a semi�eld there exists a unique (up to
isomorphism) minimal deterministic and complete all-accepting wta that recognises S(M) [8,
Lemma 3.8]. We plan to extend this result to cancellative semirings. Now let us formally intro-
duce the all-accepting property. We say that the wta M = (Q;�;A; F; �) is all-accepting [8] if
F (q) = 1 for all q 2 Q. We abbreviate all-accepting wta simply to aa-wta.

Let M be a deterministic aa-wta M . The tree series S(M) recognised by M is subtree-

closed [8, Section 3.1]; that is, for every tree t with (S(M); t) 6= 0 also (S(M); u) 6= 0 for every
subtree u of t. We repeat [8, Observation 3.1] for ease of reference.

Proposition 8 (see [8, Observation 3.1]). Let M be a deterministic aa-wta. Then S(M) is
subtree-closed.

In order to avoid several cases, we assume that 0=0 = 0 (i.e., we allow to cancel 0 from 0)
for the rest of the paper. First we begin with two conditions which are necessary for a se-
ries  2 AhhT�ii to be recognizable by a deterministic aa-wta. The �rst condition checks whether
the weight of a tree can be obtained from the weights of the subtrees and the second condition
checks whether �nitely many coe�cients are su�cient. We say that  is implementable if

{ (( ; t1) � : : : � ( ; tk))j( ; �(t1; : : : ; tk)) for every k 2 N, � 2 �k, and t1; : : : ; tk 2 T� ; and
{ for every k 2 N the following set Ck( ) is �nite.

Ck( ) =
n ( ; �(t1; : : : ; tk))

( ; t1) � : : : � ( ; tk)

��� � 2 �k; t1; : : : ; tk 2 T�o
Proposition 9. Let M be a deterministic aa-wta over a cancellative semiring. Then S(M) is
implementable.

Proof. The proof is standard and hence omitted. ut
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This shows that a series that is not implementable cannot be recognized by any deterministic
aa-wta. In fact, this is the reason why the series  given at the beginning of Section 4 cannot
be recognized by any deterministic aa-wta. Now we will show that the notion of recognizability
by deterministic aa-wta over cancellative semirings is closely related to classical unweighted
recognizability (as induced by fta). In fact, the weights of the deterministic aa-wta are uniquely
determined so that they can also be included in the input ranked alphabet.

De�nition 10. Let  2 AhhT�ii be implementable over the cancellative semiring A. We de�ne

the ranked alphabet � by �k = �k �Ck( ) for every k 2 N. Moreover, let �j1 : T� ! T� be the

mapping that replaces every node label of the form h�; ci in the input tree simply by a node with

label �. Finally, we de�ne the tree language L( ) � T� as the smallest language L such that

for every k 2 N, � 2 �k, and u1; : : : ; uk 2 L with ti = uij1 for every i 2 [1; k]D
�;

( ; �(t1; : : : ; tk))

( ; t1) � : : : � ( ; tk)

E
(u1; : : : ; uk) 2 L () �(t1; : : : ; tk) 2 supp( ) :

Theorem 11. Let  2 AhhT�ii with A a cancellative semiring. Then  is recognizable by some

deterministic aa-wta if and only if  is implementable and L( ) is recognizable.

Proof. Let M = (Q;�;A; F; �) be a deterministic aa-wta and M 0 = (Q;�; �;Q) be a determin-
istic fta. We call M and M 0 related if

�k(�)q1���qk;q = c ()
�
h�; ci(q1; : : : ; qk)! q

�
2 �

�k(�)q1���qk;q = 0 () 8c 2 A :
�
h�; ci(q1; : : : ; qk)! q

�
=2 �

for every k 2 N, � 2 �k, c 2 Ck( ) n f0g, and q; q1; : : : ; qk 2 Q.
Now suppose thatM andM 0 are related. We claim that L(M 0) = L(S(M)); the proof of this

statement is omitted. Finally, let us now turn to the main statement. First let us suppose that
there exists a deterministic aa-wta M = (Q;�;A; F; �) such that S(M) =  . By Proposition 9
it follows that  is implementable. Clearly, we can construct a deterministic fta M 0 such that
M and M 0 are related. By the claimed property, we then have L(M 0) = L(S(M)) = L( ),
which proves that L( ) is recognizable.

For the remaining direction, let  be implementable and, without loss of generality, let
M 0 = (Q;�; �; F 0) be a deterministic fta such that L(M 0) = L( ) and every state is reachable
and co-reachable. It follows from the implementability condition that  is subtree-closed. With
this in mind, we necessarily have F 0 = Q because any reachable state in Q n F 0 would not be
co-reachable. Moreover, for every k 2 N, � 2 �k, and q; q1; : : : ; qk 2 Q there exists at most
one c 2 C such that h�; ci(q1; : : : ; qk) ! q 2 � because every state is �nal and L(M 0) = L( ).
Finally, no tree in L( ) can contain a node h�; 0i for some � 2 �. This is due to the fact that
0 = ( ; �(t1; : : : ; tk))=(( ; t1) � : : : � ( ; tk)) only if ( ; �(t1; : : : ; tk)) = 0 by zero-divisor freeness
ofA and subtree-closedness of  . Thus, any reachable state that can recognize a tree of which one
node is h�; 0i is not co-reachable. Consequently, there exists no such state and hence no transition
which processes h�; 0i. For the given fta M we can easily construct a related deterministic aa-
wta and the previously proved statements guarantee that L(S(M)) = L(M 0) = L( ). One
�nal observation yields that L : AhhT�ii ! T� is injective. Thus L(S(M)) = L( ) yields that
S(M) =  . ut

The theorem admits a very important corollary. Namely, it can be observed that every
minimal deterministic aa-wtaM recognizing a given tree series  yields a minimal deterministic
fta recognizing L( ). In the opposite direction, every minimal deterministic fta recognizing L( )
where  is implementable, yields a minimal deterministic aa-wta recognizing  .
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Corollary 12 (of Theorem 11). Let A be a cancellative semiring. For every deterministic

aa-wta M there exists a unique (up to isomorphism) minimal deterministic aa-wta recogniz-

ing S(M).

Let us shortly describe a minimization procedure. Let M be a deterministic aa-wta. Then
S(M) is implementable and by the proof of Theorem 11 we can obtain a deterministic fta N
recognizing L(S(M)). Then we minimize N to obtain the unique minimal deterministic fta N 0

recognizing L(S(M)). Finally, we can construct a deterministic aa-wta M 0 recognizing S(M)
again using the notion of relatedness from the proof of Theorem 11.

We can imagine that the established relation between aa-wta and fta can also be exploited
in the learning task of [8]. There the underlying semiring is a semi�eld (and hence cancellative).

4.2 A Myhill-Nerode congruence for cancellative semirings

In this section we consider general deterministic wta over certain cancellative semirings. The
main problem is the implementability condition; it is crucial to the condition given in the pre-
vious section that the series is subtree-closed. In the general setting, subtree-closedness cannot
be assumed.

A more careful analysis shows that the implementation of � [3, 7] uses inverses in an
essential manner. Here we present a more re�ned version of the Myhill-Nerode congruence.
Let  2 AhhT�ii. Let �= � T��T� be de�ned for every t; u 2 T� by t �= u if and only if there
exist a; b 2 A n f0g such that for every C 2 C� there exists a d 2 A with

( ;C[t]) = d � a and ( ;C[u]) = d � b :

This relation has several drawbacks as we will see next (it is, in general, no equivalence
relation), however, we can already see that � is coarser than �= .

Lemma 13. Let  2 AhhT�ii. In general, � is coarser than �= . If A is a semi�eld, then

� and �= coincide.

Proof. Let A = (A;+; �; 0; 1). Moreover, let t; u 2 T� such that t �= u. Thus there exist
a; b 2 A n f0g such that for every context C 2 C� there exists a d 2 A with

( ;C[t]) = d � a and ( ;C[u]) = d � b :

Thus we also have that b � ( ;C[t]) = a � ( ;C[u]), and consequently, t � u. For the second
statement, suppose that A is a semi�eld and t � u. Thus there exist a; b 2 A n f0g such that
for every C 2 C�

a � ( ;C[t]) = b � ( ;C[u]) :

Hence ( ;C[t]) = ( ;C[u]) �(a�1 �b) and ( ;C[u]) = ( ;C[t]) �(b�1 �a). Clearly, a�1 �b and b�1 �a
are both nonzero, and consequently, t �= u. ut

Now let us investigate when �= is actually a congruence. A similar analysis was already
done in [2] for weighted automata over strings. However, we slightly adapted the notions of
greedy factorization and minimal residue (cf. [2, Section 4]).

Lemma 14. The relation �= is reexive for every  2 AhhT�ii.

Proof. Let t 2 T� . We need to prove that there exists an a 2 Anf0g such that for every C 2 C�
there exists d 2 A with ( ;C[t]) = d � a. To this end, we let a = 1 and d = ( ;C[t]). ut
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Clearly, �= is symmetric, so it remains to investigate transitivity. For this, we need an
additional property. The semiring A allows greedy factorization if for every a; b 2 A there exist
a0; b0 2 A such that for every c; d 2 A there exists an e 2 A such that a � c = b � d 6= 0 implies
c = a0 � e and d = b0 � e. A similar property was already de�ned in [2].

Intuitively, the property demands that when a and b are divisors of a common element h,
then there should be elements a0 and b0, that depend only on a and b and not on h, such that
when cancelling a and a0 from h we obtain the same element as we would obtain by cancelling
b and b0. In this sense it represents a conuency property. It does not matter whether we �rst
cancel a or b; we can later �nd elements a0 and b0, which depend solely on the cancelled elements
a and b, that we can cancel to obtain a common element.

In semi�elds the property is trivially ful�lled because if we set a0 = b and b0 = a and
e = c � b�1 then a � c = b � d 6= 0 implies c = b � c � b�1 and d = a � c � b�1. The �rst part of the
conclusion is trivial and the second part is given by the hypothesis.

Let us try to give another example in order to explain the property. Suppose that A is a
cancellative semiring with the additional property that a least common multiple (lcm) is de�ned
for every two elements (e.g., the semiring of natural numbers ful�ls these restrictions). We can
then set a0 = lcm(a; b)=a and b0 = lcm(a; b)=b and e = (a � c)= lcm(a; b) provided that a � c = b � d
otherwise set e = 1. Since the semiring is cancellative and aj lcm(a; b) and bj lcm(a; b) and
lcm(a; b)ja � c (because aja � c and bja � c), the elements a0, b0, and e are uniquely determined.
We thus obtain that a � c = b � d 6= 0 implies that c = (lcm(a; b)=a) � ((a � c)= lcm(a; b)) and
d = (lcm(a; b)=b) � ((a � c)= lcm(a; b)). The �rst part of the conclusion is again trivial and the
second part yields b � d = a � c, which holds by the hypothesis.

Lemma 15. Let A be a zero-divisor free semiring that allows greedy factorization. Then �= is

transitive for every  2 AhhT�ii.

Thus we successfully showed that �= is an equivalence relation. The only remaining step is
to show that �= is even a congruence. Fortunately, this is rather easy.

Lemma 16. Let A be a zero-divisor free semiring that allows greedy factorization. Then �= is

a congruence for every  2 AhhT�ii.

Now let us proceed with the implementation of the congruence by some deterministic and
complete wta. We prepare this by presenting conditions that imply that we can successfully
implement a congruence. We chose to rephrase Conditions (MN1) and (MN2) from [7] in order
to improve readability. In essence, we can already see the automaton in that modi�ed de�nition
of Conditions (MN1) and (MN2).

De�nition 17. Let �= � T� � T� be a congruence and  2 AhhT�ii. We say that �= respects  
if there exists a mapping F : (T�=�=)! A and a mapping c : T� ! A n f0g such that

{ ( ; t) = F ([t]) � c(t) for every t 2 T�; and
{ for every k 2 N, � 2 �k, and T1; : : : ; Tk 2 (T�=�=) there exists an a 2 A, denoted by

b�(T1; : : : ; Tk), such that

c(�(t1; : : : ; tk)) = a � c(t1) � : : : � c(tk)

for every ti 2 Ti with i 2 [1; k].

Next we state that every series  2 AhhT�ii that is respected by some congruence with
�nite index can be recognized by a deterministic wta. Thus, the previous de�nition establishes
su�cient conditions so that the congruence is implementable.
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Lemma 18. Let  2 AhhT�ii. Moreover, let �= be a congruence with �nite index that respects  .
Then  2 Arec

dethhT�ii.

Proof. Since �= respects  , there exist F : (T�=�=)! A, c : T� ! Anf0g, and b� : (T�=�=)
k ! A

for every k 2 N and � 2 �k such that the conditions of De�nition 17 hold. We construct the
wta M�= = ((T�=�=); �;A; F; �) where

�k(�)[t1]���[tk];[�(t1;:::;tk)] = b�([t1]; : : : ; [tk])

for every k 2 N, � 2 �k, and t1; : : : ; tk 2 T� and the remaining entries in � are 0. Clearly, M�=

is deterministic. The proof of S(M) =  is straightforward. ut

In fact, the \respects" property is necessary and su�cient, which can be seen in the next
theorem.

Theorem 19. Let A be a zero-divisor free semiring, and let  2 AhhT�ii. The following are

equivalent:

1. There exists a congruence relation with �nite index that respects  .
2.  is deterministically recognizable.

Proof. The implication 1 to 2 is proved in Lemma 18. It remains to show that 2 implies 1. Let
M = (Q;�;A; F; �) be a deterministic and complete wta such that S(M) =  . Clearly, �M is
a congruence with �nite index by Lemma 3.

Finally, it remains to show that �M respects  . Let G : (T�=�=)! A and c : T� ! Anf0g be
de�ned by G([t]) = FRM (t) and c(t) = h�(t)RM (t) for every t 2 T� . It is easily veri�ed that both
mappings are well-de�ned. First we need to prove that ( ; t) = G([t]) � c(t) for every t 2 T� .

G([t]) � c(t) = FRM (t) � h�(t)RM (t) = (S(M); t) = ( ; t)

because M is deterministic. We observe that for every k 2 N, � 2 �k, and t1; : : : ; tk 2 T�

c(�(t1; : : : ; tk))

= h�(�(t1; : : : ; tk))RM (�(t1;:::;tk))

= �k(�)RM (t1)���RM (tk);RM (�(t1;:::;tk)) � h�(t1)RM (t1) � : : : � h�(tk)RM (tk)

= �k(�)RM (t1)���RM (tk);RM (�(t1;:::;tk)) � c(t1) � : : : � c(tk)

which proves that �M respects  . ut

In analogy to Theorem 4 we can show that �=S(M) is coarser than �M for every determin-
istic and complete wta over a zero-divisor free semiring. Thus, the only remaining question is
whether �= respects  . If this would be true and �= would have �nite index, then �= would
be implementable and thus a minimal deterministic and complete wta would be found.

Open problem: Find suitable conditions on  and A so that �= respects  !

4.3 A Myhill-Nerode theorem for all-accepting wta

In this section we show how we can use the approach of the previous section to derive a Myhill-
Nerode theorem for deterministic aa-wta.

Let  2 AhhT�ii be a tree series over the cancellative semiring A. We de�ne ' � T� � T�
by t ' u if and only if there exist a; b 2 A n f0g such that for every C 2 C� there exists a
d 2 A with

( ;C[t]) = d � a and ( ;C[u]) = d � b and d 2 f0; 1g if C = � :
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Lemma 20. If  is implementable and A allows greedy factorization, then ' is a congruence.

Proof. The proof can be obtained by reconsidering the proofs of Lemmata 14, 15, and 16. ut

Let us consider the open problem for deterministic aa-wta over cancellative semirings.

Theorem 21. Let  2 AhhT�ii be implementable with A a cancellative semiring that allows

greedy factorization. Then ' respects  .

Proof. By Lemma 20, ' is a congruence. Thus we need to show that there exist mappings
F : (T�=' ) ! A and c : T� ! A n f0g such that the conditions of De�nition 17 are met. For
every t 2 T� let

F ([t]) =

(
1 if t 2 supp( )

0 otherwise
and c(t) =

(
( ; t) if t 2 supp( )

1 otherwise.

We �rst verify that F is well-de�ned. Let t ' u. We need to prove that t 2 supp( ) if and
only if u 2 supp( ). Since t ' u there exist a; b 2 A n f0g such that for every context C 2 C�
there exists d 2 A with

( ;C[t]) = d � a and ( ;C[u]) = d � b and d 2 f0; 1g if C = � :

Now consider the context C = �. Thus ( ; t) = d�a and ( ; u) = d�b with d 2 f0; 1g. Depending
on d either (i) ( ; t) = 0 = ( ; u) or (ii) t; u 2 supp( ), which proves that F is well-de�ned. It
remains to verify the properties of De�nition 17. First, for every t 2 T�

F ([t]) � c(t) =

(
1 � ( ; t) if t 2 supp( )

0 otherwise
= ( ; t) :

Second, let k 2 N, � 2 �k, and t1; : : : ; tk 2 T� . We need to show that there exists a
b�([t1]; : : : ; [tk]) such that c(�(t1; : : : ; tk)) = b�([t1]; : : : ; [tk]) � c(t1) � : : : � c(tk). Since  is im-
plementable, we can de�ne b�([t1]; : : : ; [tk]) = ( ; �(t1; : : : ; tk))=(( ; t1) � : : : � ( ; tk)). We should
�rst verify that this is independent of the representatives. Thus, let u1; : : : ; uk 2 T� be such
that ti ' ui for every i 2 [1; k]. Then there exist ai; bi 2 A n f0g such that for every context
C 2 C� there exists di 2 A with

( ;C[ti]) = di � ai and ( ;C[ui]) = di � bi and di 2 f0; 1g if C = �

for every i 2 [1; k]. Now if ( ; ti) = 0 then also ( ;C[t]) = 0 because  is implementable.
The same argument holds for ui and C[ui]. Suppose that there exist i 2 [1; k] such that
( ; ti) = 0. Then ( ; �(t1; : : : ; tk))=(( ; t1)�: : :�( ; tk)) = 0 and since ( ; ui) = 0 by ti ' ui also
( ; �(u1; : : : ; uk))=(( ; u1)�: : :�( ; uk)) = 0. Now suppose that ( ; ti) 6= 0 for every i 2 [1; k]. It is
immediately clear that ai = ( ; ti) and bi = ( ; ui) by considering the context �. Consequently,

( ; �(t1; : : : ; tk))=
� kY
i=1

( ; ti)
�

= ( ; �(u1; t2; : : : ; tk))=
�
( ; u1) �

kY
i=2

( ; ti)
�

(via the context �(�; t2; : : : ; tk))

= : : :

= ( ; �(u1; : : : ; uk�1; tk))=
�k�1Y
i=1

( ; ui) � ( ; tk)
�
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= ( ; �(u1; : : : ; uk))=
� kY
i=1

( ; ui)
�

(via the context �(u1; : : : ; uk�1;�)) ut

Let us now derive aMyhill-Nerode theorem for deterministic aa-wta. In [8] such a theorem
is shown for the case that the underlying semiring is a semi�eld. We extend this result to certain
cancellative semirings.

Corollary 22. Let  2 AhhT�ii be implementable with A a cancellative semiring that allows

greedy factorization. The following are equivalent:

1. ' has �nite index.

2. There exists a congruence with �nite index that respects  .
3.  is deterministically recognizable.

4.  is recognized by some deterministic aa-wta M .

Proof. 1 ! 2 was shown in Theorem 21. The equivalence of 2 and 3 is due to Theorem 19.
Moreover, we already remarked that ' is coarser than �M , which shows 4 ! 1. It remains
to show 3 ! 4. This can be shown by a straightforward construction that normalizes the �nal
weights to 1. In general, this is only possible in a semi�eld, but due to the implementability
of  , it can also be performed in the cancellative semiring A. ut

Clearly, the above corollary shows that the tree series that can be recognized by deterministic
aa-wta are exactly the implementable tree series that can be recognized by deterministic wta.
Moreover, it can be shown that the deterministic aa-wta that can be constructed from the
deterministic wta using the �nal weight normalization mentioned in the proof of Corollary 22
is indeed the minimal deterministic aa-wta recognizing  .
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