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Abstract. We investigate the tree-series-to-tree-series (ts-ts) transfor-
mation computed by tree series transducers. Unless the used semiring is
complete, this transformation is, in general, not well-de�ned. In practice,
many used semirings are not complete (like the probability semiring). We
establish a syntactical condition that guarantees well-de�nedness of the
ts-ts transformation in arbitrary commutative semirings. For positive
(i. e., zero-sum and zero-divisor free) semirings the condition actually
characterizes the well-de�nedness, so that well-de�nedness is decidable
in this scenario.

1 Introduction

Tree series transducers [1, 2] are a generalization of tree transducers [3{
7]. The framework Tiburon [8] implements a generalization of top-down
tree series transducers [2] using various weight structures such as the
Boolean semiring (f0; 1g;_;^) and the probability semiring (R;+; �).
Such tree series transducers compute both a tree-to-tree-series (t-ts) and
a tree-series-to-tree-series (ts-ts) transformation, where a tree series is
a mapping assigning a weight to each tree. The t-ts transformation is
always well-de�ned, but the ts-ts transformation is well-de�ned only for
complete semirings [9, 10] such as the Boolean semiring. However, for
the probability semiring the ts-ts transformation need not be well-de�ned
because in�nite sums might occur. Of course, some incomplete semirings
(e. g., positive semirings) can be extended by a new element 1, which
is the result of all nontrivial in�nite sums. However, such a de�nition is
clearly not practical and does not work for the probability semiring.

A standard application of the ts-ts transformation is the computation
of the image of a recognizable tree series [11{14]. This is, for example,
used to translate a language model (parses of an input sentence) to a
language model (resp., parses of output sentences) in another language.
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For some tree series transducers the image is again a recognizable tree
series [15, 16]. In fact, the image operation is implemented in Tiburon for
the Boolean semiring. However, in the probability semiring, the image
operation is only meaningful if the ts-ts transformation is well-de�ned.

In this contribution we investigate for which tree series transducers
the ts-ts transformation is well-de�ned following the approach of [17, 18]
for weighted �nite-state transducers. To this end, we develop a general
notion of convergence that can serve as a baseline for all semirings. More
re�ned notions for particular semirings can be derived in the same man-
ner. Thereafter we present a syntactical condition, which in general, guar-
antees that the ts-ts transformation is well-de�ned (using the baseline
notion of convergence mentioned). In fact, the condition is such that we
obtain a characterization for certain tree series transducers over positive
(i. e., zero-sum and zero-divisor free) semirings. This yields that well-
de�nedness of the ts-ts transformation is decidable for certain tree series
transducers over positive semirings. This also applies to tree series trans-
ducers over the Boolean semiring (i. e., tree transducers).

2 Preliminaries

The nonnegative integers are denoted by N and N+ = N n f0g. We use
[k; n] for fi j k 6 i 6 ng where the i are either integers or reals depending
on the context. In the former case, we abbreviate [1; n] to [n]. An alphabet

is a �nite set of symbols. A ranked alphabet is an alphabet � together with
a mapping rk: � ! N, which assigns to each symbol a rank. The set of
symbols of rank k is denoted by �k. For convenience we assume �xed sets
X = fxi j i 2 N+g and Z = fzi j i 2 N+g of variables. For k 2 N we use
Xk = fxi j i 2 [k]g and Zk = fzi j i 2 [k]g. Given V � X[Z, the set T�(V )
of �-trees indexed by V is the smallest set T such that V � T and for
every � 2 �k and t1; : : : ; tk 2 T also �(t1; : : : ; tk) 2 T . We generally
assume that X [ Z is disjoint with any considered ranked alphabet, so
we usually write � instead of �() whenever � 2 �0. Moreover, we also
use T� for T�(;). Let t; t1; : : : ; tk 2 T�(Z). We denote by t[t1; : : : ; tk] the
tree obtained from t by replacing for every i 2 [k] every zi-leaf in t by the
tree ti. The tree t is nondeleting (resp., linear) in V � Z, if each v 2 V
occurs at least (resp., at most) once in t. The set of variables occurring
in t is var(t) and the size of t (i. e., the number of nodes in t) is size(t).
Finally, the height of a tree is inductively de�ned by height(v) = 1 for
every v 2 V and height(�(t1; : : : ; tk)) = 1 + maxfheight(ti) j i 2 [k]g for
every � 2 �k and t1; : : : ; tk 2 T�(V ).



An algebraic structure (A;+) is a monoid if + is an associative (bi-
nary) operation on A that permits a neutral element. A (commutative)

semiring (A;+; �) consists of two commutative monoids (A;+) and (A; �)
such that � distributes over + and the neutral element 0 of (A;+) is ab-
sorbing with respect to � (i. e., a � 0 = 0 = 0 � a for every a 2 A). The
neutral element of an additive operation is usually denoted by 0 and that
of multiplicative operation by 1. We also use the summation

P
i2I ai for

an index set I and a family (ai j i 2 I) of semiring elements. Such a sum-
mation is well-de�ned if ai = 0 for almost all i 2 I. The actual sum is
then de�ned in the obvious way. A semiring A = (A;+; �) is zero-sum

free, whenever a+ b = 0 implies that a = 0 for every a; b 2 A, and zero-

divisor free, whenever a � b = 0 implies that 0 2 fa; bg. A zero-sum and
zero-divisor free semiring is positive.

Let A = (A;+; �) be a semiring. Every mapping ' : T ! A for some
T � T�(V ) is a tree series. We denote the set of those by AhhT ii. We usu-
ally write the coe�cient '(t) of t in ' as ('; t). Moreover, we write ' as
the formal sum

P
t2T ('; t) t. We extend both operations of A componen-

twise to tree series, i. e., ('+ ; t) = ('; t)+( ; t) for every '; 2 AhhT ii
and t 2 T . The support of ' is supp(') = ft j ('; t) 6= 0g. The set of
tree series with �nite support is denoted by AhT i. For every a 2 A, the
tree series ea is such that (ea; t) = a for every t 2 T . The tree series ' is
nondeleting (resp., linear) in V , if every t 2 supp(') is nondeleting (resp.,
linear) in V . We use var(') as a shorthand for

S
t2supp(') var(t).

Let ' 2 AhT�(Z)i and  1; : : : ;  k 2 AhT�(Z)i. The pure substitu-

tion [19, 2] of ( 1; : : : ;  k) into ' is de�ned by

' ( 1; : : : ;  k) =
X

t;t1;:::;tk2T�(Z)

('; t)( 1; t1) � � � ( k; tk) t[t1; : : : ; tk] :

Let A be a semiring, � and � be ranked alphabets, and Q a �nite
set. A (polynomial) representation [2] is a family � = (�k j k 2 N) of
�k : �k ! AhT�(Z)i

Q�(Q�Xk)
�

such that for every � 2 �k and q 2 Q

(i) �k(�)q;w 2 AhT�(Zjwj)i for every w 2 (Q�Xk)
� and

(ii) �k(�)q;w = e0 for almost all w 2 (Q�Xk)
�.

A (polynomial) tree series transducer [1, 2] is a tuple (Q;�;�;A; I; �)
such that � is a representation and I � Q. It is top-down (resp., bottom-

up) [2] if �k(�)q;w is nondeleting and linear in Zjwj [resp., if there exist
q1; : : : ; qk 2 Q such that w = (q1; x1) � � � (qk; xk)] for every � 2 �k, q 2 Q,
and w 2 (Q � Xk)

� such that �k(�)q;w 6= e0. Let h� : T� ! AhhT�iiQ be



de�ned for every � 2 �k, t1; : : : ; tk 2 T� , and q 2 Q by

h�
�
�(t1; : : : ; tk)

�
q
=

X
w2(Q�Xk)

�;
w=(q1;xi1 )���(qn;xin )

�k(�)q;w 
�
h�(ti1)q1 ; : : : ; h�(tin)qn

�
:

The transducer M computes the tree-to-tree-series transformation (t-ts
transformation) �M : T� ! AhhT�ii de�ned by �M (t) =

P
q2I h�(t)q for

every t 2 T� . Both h� and the t-ts transformation �M are well-de�ned. Fi-
nally, the tree-series-to-tree-series transformation (ts-ts transformation)
computed by M is �M (') =

P
t2T�

('; t) � �M (t) for every ' 2 AhhT�ii,
whenever this sum is well-de�ned. We say that �M is well-de�ned when-
ever �M (') is well-de�ned for every ' 2 AhhT�ii.

3 Convergence

In this section, we will explore when the ts-ts transformation of a tree
series transducer M = (Q;�;�;A; I; �) is well-de�ned. Roughly speak-
ing, it is well-de�ned if every output tree u 2 T� can be generated [i. e.,
u 2 supp(�M (t))] by only �nitely many input trees t 2 T� . Note that
our de�nition of well-de�nedness works in any semiring; for particular
semirings like (R;+; �; 0; 1) other notions of well-de�nedness (or equiva-
lently, convergence) might be more realistic. However, those more re�ned
notions typically include our notion of well-de�nedness (i. e., any sum
that is well-de�ned according to our de�nition is also well-de�ned in the
re�ned setting and the sums coincide), so that our approach can be seen
as a general baseline. We �rst show that �M is well-de�ned if and only if
�M (e1) is well-de�ned. Thus, subsequent investigations need not consider
the actual input tree series.

Proposition 1. The ts-ts transformation �M is well-de�ned if and only

if �M (e1) is well-de�ned.

Proof. Let ' 2 AhhT�ii and u 2 T�. One direction is trivial. In the
other direction, the sum �M (e1) is well-de�ned by assumption. Hence,
(�M (t); u) = 0 for almost all t 2 T� . Thus, �M (') is well-de�ned. ut

Let us take a closer look at �M (e1). By de�nition, it is
P

t2T�
�M (t).

This is well-de�ned if it is not possible to transform large (with respect
to the size) input trees to small output trees. Let us introduce the no-
tion of convergence [18] that we will use. For every ' 2 AhhT�(Z)ii let
k'k = maxt2supp(') size(t)

�1. We call k'k the norm of '. Intuitively, the



norm of ' is the inverse of the size of a smallest tree in the support of '.
Thus, the norm of e0 is 0.

Proposition 2. For every '; 2 AhhT�(Z)ii

(i) k'k = 0 if and only if ' = e0.
(ii) k'+  k 6 k'k+ k k.

Actually, it can be shown that k�k is a monoid-homomorphism from
(AhhT�(Z)ii;+) to ([0; 1];max) if A is zero-sum free. We derive the dis-
tance dk�k on AhhT�(Z)ii, which is given by dk�k('; ) = j k'k � k k j for
every '; 2 AhhT�(Z)ii.

Proposition 3. The distance dk�k de�nes a pseudometric on AhhT�(Z)ii.

With the help of this pseudometric, we can now introduce the usual
notion of Cauchy-convergence for sequences of tree series.

De�nition 4. Let 	 = ( i j i 2 N) be a family of  i 2 AhhT�(Z)ii. It
converges (using the pseudometric dk�k) if

(9 2 AhhT�(Z)ii)(8� > 0)(9j� 2 N)(8j > j�) : dk�k( j ;  ) < � :

If 	 converges, then  in the above display is a limit of 	 and we say

that 	 converges to  or symbolically 	 !  .

Convergence to e0 will play a central role. In fact, 	 converges to e0 if

(8n 2 N)(9jn 2 N)(8j > jn) : min
t2supp( j)

size(t) > n :

Let T = (ti j i 2 N) be a family of ti 2 T� . It is an enumeration of T� if
for every t 2 T� there exists exactly one i 2 N such that ti = t, and it is
size-compliant if size(ti) 6 size(tj) for all i 6 j. We write �M (T ) for the
family (�M (ti) j i 2 N). Next we characterize when �M (e1) is well-de�ned
in terms of size-compliant enumerations.

Theorem 5. The following are equivalent:

(i) �M is well-de�ned.
(ii) �M (T )! e0 for every size-compliant enumeration T of T�.
(iii) �M (T )! e0 for some size-compliant enumeration T of T�.

Proof. The existence of at least one size-compliant enumeration of T� is
self-evident, so (ii) clearly implies (iii). Let us assume that there exists a
size-compliant enumeration T = (ti j i 2 N) such that �M (T ) converges
to e0. We know that for every n 2 N there exists a jn 2 N such that



for all j > jn we have that minu2supp(�M (tj)) size(u) > n, or equivalently,
u =2 supp(�M (tj)) for all u 2 T� with size(u) 6 n. In particular, for every
u 2 T� there exists nu 2 N such that u =2 supp(�M (tn)) for all n > nu.
Thus, �M (e1) and by Proposition 1 also �M are well-de�ned.

Conversely, suppose that �M and hence �M (e1) are well-de�ned (see
Proposition 1). There exists a �nite subset Su � T� for every tree u 2 T�
such that u =2 supp(�M (t)) for every t =2 Su. Let n 2 N and T = (ti j i 2 N)
be a size-compliant enumeration of T� . Let Un = fu 2 T� j size(u) 6 ng
and Sn =

S
u2Un

Su. Clearly, Un and thus also Sn are �nite. Finally, let
mn = maxt2Sn size(t) + 1 and jn be an index such that size(tjn) > mn.
It remains to prove that minu2supp(�M (tj)) size(u) > n for every j > jn.
Suppose that u 2 supp(�M (tj)) and size(u) 6 n. Thus u 2 Un. By this,
we obtain that tj 2 Su and tj 2 Sn. It follows that mn > size(tj) + 1.
By the size-compliance condition, size(tj) > size(tjn) > mn. With the
previous inequality, we obtain size(tj) > size(tj) + 1. Thus, there exists
no u 2 supp(�M (tj)) with size(u) 6 n, which proves that �M (T )! e0. ut

The previous theorem is clear if A is zero-sum free, but in other cases
one might be tempted to assume that the theorem only holds because of
our peculiar (or even de�cient) de�nition of well-de�ned sums. Let us show
on an example that this is indeed not the case. Let � = � = f(1); �(0)g
and A = Z. Moreover, let �M (t) = (�1)jtj �. Now one might argue that
�M (e1) is well-de�ned and equal to e0 because �M (n(�))+�M (n+1(�)) = e0
for every even n. However, the last property also holds for each odd n,
which yields �M (e1) = �M (�)+

P
t2T�nf�g

�M (t) = �M (�). Thus, we argued
for two di�erent results of the sum, which shows that it is not well-de�ned.

4 Towards a syntactical property

Next, we present a syntactic condition that guarantees that the ts-ts
transformation computed by a tree series transducer is well-de�ned. Let
M = (Q;�;�;A; I; �) be a tree series transducer. Note that we could
reduce the problem to unweighted tree transducers, but we avoid this for
two reasons: (i) It is rather unintuitive that

W
i2N 1 is not well-de�ned

in the Boolean semiring (f0; 1g;_;^) and (ii) we lack the space to in-
troduce them (using the standard set notation). We generally follow the
approach of [17, 18] by the analysis is slightly more complicated by the
tree structure. First we introduce some important notions like the depen-
dency relations P;R � Q � Q. For every p; q 2 Q, let (p; q) 2 P (resp.,
(p; q) 2 R) if zi 2 supp(�k(�)p;w (resp., supp(�k(�)p;w) 6= ;) for some
� 2 �k and w 2 (Q � Xk)

� such that wj = (q; xi) for some 1 6 j 6 jwj.



Let @ and v (resp., � and �) be the transitive and reexive, transitive
closure of P (resp., of R), respectively. Note that in general v and � are
not partial orders. Then the following de�nitions are natural (note that
our reading is top-down).

De�nition 6. Let q 2 Q.

{ If q @ q (resp., q � q), then q is circular (resp., self-replicating).
{ If there exists p 2 I such that p � q, then q is accessible.
{ If there exist p 2 Q and � 2 �0 such that �0(�)p;" 6= e0 and q � p,

then q is co-accessible.

The tree series transducer M is reduced if every state is accessible and

co-accessible. Finally, M is non-circular if no state q 2 Q is circular.

Note that �M is trivially well-de�ned ifM has no self-replicating state
(the latter can easily be checked). In the sequel, we assume that M has
at least one self-replicating state. It is also obvious that we can construct
a reduced tree series transducer M 0 that is equivalent to M . We simply
remove all states that are not accessible or not co-accessible. It should be
clear that this procedure does not change the computed tree series.

Proposition 7. There exists a reduced tree series transducer M 0 such

that �M = �M 0.

Next, we introduce an essential notion: deletion points. A deletion
point is a pair (p; q) of states such that one of the transitions into p
deletes a subtree potentially processed in q.

De�nition 8. We say that (p; q) 2 Q2 is a deletion point if there exist

� 2 �k, w 2 (Q�Xk)
�, u 2 supp(�k(�)p;w), and i 2 [k] such that

{ there does not exist 1 6 j 6 jwj and r 2 Q such that wj = (r; xi), or
{ zj =2 var(u) for some 1 6 j 6 jwj such that wj = (q; xi).

The conditions could be called input- and output-deleting, respectively.

Note that top-down and bottom-up tree series transducers have a
deletion point if and only if they are deleting [2]. Note that if a top-
down tree transducer has the deletion point (p; q), then it also has the
deletion point (p; r) for every r 2 Q. Let us illustrate the notion on a
small example.

Example 9. Let M = (f?;?g; �;�;N; f?g; �) be the tree series trans-
ducer with � = f�(2); �(0)g and



�0(�)p;" = 1 � �2(�)?;(?;x1)(?;x2) = 1 �(z1; z2)

�2(�)?;(?;x1)(?;x2) = 1 �(z1; �) �2(�)?;(?;x1)(?;x2) = 1 �(�; z2)

for every p; q 2 f?;?g. Then only (?;?) is a deletion point.

De�nition 10 (see, e. g., [18]). The tree series transducer M is reg-
ulated if it is non-circular and there exists no deletion point (p; q) such

that q � r for some self-replicating r 2 Q.

Note that it is clearly decidable whether a tree series transducer is
regulated. A regulated top-down tree series transducer is nondeleting [2].
This is due to the fact that a deleting top-down tree series transducer has
a deletion point (p; q) and thus also the deletion point (p; r) where r is a
self-replicating state.

Theorem 11. Let M be a regulated tree series transducer. Then �M is

well-de�ned.

Proof. Let M = (Q;�;�;A; I; �). By Theorem 5, it is su�cient to show
that for an arbitrary size-compliant enumeration T = (ti j i 2 N) the fam-
ily �M (T ) converges to e0. Let mx = maxfk j �k 6= ;g and n = card(Q).
We will prove that bheight(t)=nc � n 6 height(u) for every t 2 T�
and u 2 supp(�M (t)). Consider a maximal path in t (which de�nes the
height). Since M is non-circular, it may erase at most n � 1 input sym-
bols along this path before it produces output. It might also decide to
delete the translation incurred along a su�x of the path. However, the
length of such a su�x is limited by n because otherwise M has a dele-
tion point that leads to a self-replicating state. Note that if M is a top-
down tree series transducer, then it may not delete (because regulated
implies nondeletion). Thus, in this case the bound could be improved
to bheight(t)=nc 6 height(u). The formal proof of both bounds is straight-
forward and hence omitted. With the given lower bound, it is clear that
�M (T ) converges to e0 because height(u) 6 size(u) for every u 2 T� and
size(t) 6 mxheight(t) for every t 2 T� . Thus, �M is well-de�ned. ut

We will show the converse only for positive semirings. The main ben-
e�t of this approach is that the problem can essentially be reduced to
unweighted transducers. We need an additional notion. The tree series
transducerM is input-linear if for every q 2 Q, � 2 �k, and w 2 (Q�Xk)

�

such that �k(�)q;w 6= e0 there exists at most one 1 6 j 6 jwj such that
wj = (p; x) for every x 2 Xk. Note that bottom-up implies input-linear.
The following lemma shows that every tree series transducer can be turned



into an input-nondeleting one (see De�nition 8). In fact, we will only need
it for input-linear tree series transducers.

Lemma 12 (see [20, Lemma 1(1)]). If M is input-linear, then there

exists a bottom-up tree series transducer M 0 such that �M 0 = �M .

Proof. It follows directly by reconsidering the proof of [20, Lemma 1(1)].
The top-down tree series transducer constructed in this proof will be the
identity if M is input-linear (as already noted before [20, Theorem 4]).
Finally, note that the completeness-assumption is not necessary in our
case because our tree series transducers are always polynomial [20]. ut

Consequently, we will only deal with bottom-up tree series transduc-
ers. For those there exists a decomposition result [2, Lemma 5.6], which
states that every bottom-up tree series transducer can be decomposed
into a relabeling tree series transducer and a f0; 1g-weighted homomor-
phism tree series transducer (see [2] for the de�nitions of those notions).
Roughly speaking, the relabeling tree series transducer annotates each
node of the input tree by an applicable entry of �. Such relabeled in-
put trees are called runs. The homomorphism then simply evaluates the
run thereby creating the output tree. We use this decomposition in the
following informal argument.

Lemma 13. Let M be a reduced bottom-up tree series transducer over a

positive semiring. If �M is well-de�ned, then M is regulated.

Proof. Suppose that M = (Q;�;�;A; I; �) is not regulated. Since A is
positive, we restrict ourselves to the unweighted (i. e., Boolean-semiring
weighted) bottom-up tree transducer M 0 obtained by replacing every
nonzero semiring coe�cient in � by 1. By a minor extension of [21,
Corollary 3] we have supp(�M 0(t)) = supp(�M (t)) for every t 2 T� . We
will identify M and M 0 in the following discussion. If M has a deletion
point (p; q), then there exists a subtree u of a run, which is deleted by
the evaluation homomorphism, because p is accessible and co-accessible.
Note that we can replace u by any run that arrives in the state p at the
root. If there exists a self-replicating state r such that p � r, then it is
immediately clear that there exist in�nitely many such runs, and conse-
quently, in�nitely many suitable input trees. Since the subrun is deleted
all those input trees can be transformed to the same output tree. On the
other hand, if M is circular, then we can transform in�nitely many input
trees into the same output tree by using the circle any number of times.
The formal proof is again straightforward and omitted. ut



Theorem 14. LetM be a reduced input-linear tree series transducer over

a positive semiring. Then �M is well-de�ned if and only if M is regulated.

Proof. It follows from Theorem 11 and Lemmata 12 and 13. ut
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