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Abstract. Two types of simulations for weighted tree automata (wta)
are considered. Wta process trees and assign a weight to each of them.
The weights are taken from a semiring. The two types of simulations
work for wta over additively idempotent, commutative semirings and
can be used to reduce the size of wta while preserving their semantics.
Such reductions are an important tool in automata toolkits.

1 Introduction

Automata minimization is an important and well-studied subject. Here we con-
sider (finite-state) tree automata and weighted tree automata, which are used
in applications such as model checking [1] and natural language processing [2].
Deterministic (bottom-up) tree automata can be minimized efficiently using, for
example, an algorithm inspired by Hopcroft [3, 4]. However, minimizing nonde-
terministic tree automata is PSPACE-complete [5] and cannot be approximated
well [6–8] unless P = PSPACE. Consequently, alternative (efficient) methods to
reduce the size of tree automata were explored [9, 4, 10, 11]. An efficient min-
imization procedure for deterministic (bottom-up) weighted tree automata is
presented in [12] and efficient reductions of nondeterministic weighted tree au-
tomata with the help of bisimulation relations are considered in [13].

Here we consider the simulation approach of [10] for weighted tree automata
over additively idempotent, commutative semirings. A weighted tree automaton
essentially is a tree automaton in which each transition carries a weight (an
element of a semiring). Instead of accepting a certain set of trees, a weighted
tree automaton assigns a weight to each tree. First, the automaton assigns a
weight to each run, which is the same as a run of the corresponding unweighted
automaton. The weight of the run is obtained by multiplying (in the semiring)
the participating transition weights (each transition weight as often as it occurs
in the run) and eventually the final weight associated to the state reached at the
root. Should there be several runs on the same input tree, then the weights of
those runs are summed up to obtain the weight assigned to this input tree.
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In [10] two types of simulation relations, called downward and upward simu-
lations, are examined for tree automata. Roughly speaking, we generalize these
notions to the setting of weighted tree automata. While there are several poten-
tial generalizations, our approach requires us to consider ordered semirings. Here
we choose to work with additively idempotent (i.e., a + a = a for all semiring
elements a) semirings and their natural order. We define two types of simulation
relations: backward and forward simulation. Intuitively, these notions correspond
to backward and forward bisimulation of [13], but are unfortunately not general-
izations of those concepts. Backward simulation generalizes downward simulation
of [10] and our forward simulation generalizes upward simulation with respect to
the identity as downward simulation [10]. We choose not to generalize upward
simulations [10] with respect to arbitrary downward simulations since we believe
that two completely separate notions are easier to handle and understand.

A simulation is a quasi-order (i.e., a reflexive and transitive relation) on the
states of an input automaton M . A backward simulation is such that larger
states dominate the smaller states; i.e., if the smaller state accepts a tree with
weight a, then the larger state accepts the same tree with a weight that is larger
than a (see Lemma 3). We take the equivalence induced by this quasi-order (i.e.,
two states are equivalent if they simulate each other) and reduce M with it
(see Definition 6). This construction is simple for tree automata, however our
reductions need to address the weights. This yields separate constructions for
the backward (see Definition 6) and forward (see Definition 13) case. We show
in Theorem 7 that the weighted tree automaton obtained with the help of a
backward simulation, which never has more states than M , is equivalent to M .

In a forward simulation we do not consider the trees that a state can accept,
but rather the contexts (i.e., trees over the input ranked alphabet with a unique
occurrence of the extra symbol �) that can be processed starting from that
state. For those contexts a similar domination property as in the backward case
must hold (see Lemma 12). Again, we use the induced equivalence to reduce
the automaton. Theorem 15 shows that we obtain an equivalent weighted tree
automaton.

Both types of simulations admit a greatest simulation that can be used for
greatest gain in reduction (see Theorems 2 and 11). For deterministic weighted
tree automata, we show that backward simulation is ineffective and forward
simulation is only as effective as forward bisimulation [13]. This essentially means
that our new tools do not surpass the existing tools in the deterministic case,
but they can yield much greater reductions in the nondeterministic case. In
summary, we add two more tools to the toolbox, which can be used to reduce
nondeterministic weighted tree automata.

2 Preliminaries

We denote the nonnegative integers, which include 0, by N. For every l, u ∈ N, the
subset {n ∈ N | l 6 n 6 u} is simply written as [l, u]. An alphabet is a nonempty
and finite set. Its elements are called symbols. A ranked alphabet (Σ, rk) consists



of an alphabet Σ and a mapping rk: Σ → N, which associates to each symbol
a rank. The set Σk = {σ ∈ Σ | rk(σ) = k} contains the symbols of rank k.
Henceforth, we will denote such a ranked alphabet by Σ alone and assume that
the mapping rk is implicit. For a ranked alphabet Σ and a set T , we write Σ(T )
for {σ(t1, . . . , tk) | σ ∈ Σk, t1, . . . , tk ∈ T}. We generally write α instead of α()
for α ∈ Σ0. The set TΣ(V ) of Σ-trees indexed by a set V is the smallest set such
that V ⊆ TΣ(V ) and Σ(TΣ(V )) ⊆ TΣ(V ). We just write TΣ for TΣ(∅).

A relation % on a set S is a subset of S × S. The inverse %−1 is the relation
{(s′, s) | s % s′} and the composition of two relations %1 and %2 on S is

%1 ; %2 = {(s, s′′) | ∃s′ ∈ S : s %1 s
′ %2 s

′′} .

A quasi-order � on S is a reflexive, transitive relation on S. An up-set A ⊆ S
(with respect to �) is such that for every s � s′ with s ∈ A also s′ ∈ A. The
smallest up-set containing A ⊆ S is denoted by ↑(A). If A = {s}, then we simply
write ↑(s). The quasi-order � is an equivalence relation if it is symmetric, and it
is a partial order if it is anti-symmetric. A partial order 6 on S is total if s 6 s′

or s′ 6 s for every s, s′ ∈ S. Let ≡ be an equivalence on S. We write [s]≡ for the
equivalence class of s ∈ S and (S/≡) for the partition {[s]≡ | s ∈ S}. Whenever
possible without confusion, we drop ≡ from [s]≡. Note that if � is a quasi-order
on S, then ' = �∩�−1 is an equivalence relation on S and � induces a partial
order on S/'.

A commutative semiring is an algebraic structure A = (A,+, ·, 0, 1) com-
prising two commutative monoids (A,+, 0) and (A, ·, 1) such that · distributes
over + and 0 is absorbing for · (i.e., 0 · a = 0 for every a ∈ A). It is (addi-
tively) idempotent if 1 + 1 = 1. Moreover, let 6 be a partial order on A. It
partially orders A if a1 + b1 6 a2 + b2 and a1 · b1 6 a2 · b2 for every a1 6 a2 and
b1 6 b2. Let v be the quasi-order on A such that a v b if there exists c ∈ A with
a+c = b. Whenever v is anti-symmetric, it is called the natural order. Note that
for an idempotent semiring, the relation v is always a partial order. Morever,
the natural order always (independent of idempotency) partially orders A.

A tree series (over Σ and A) is a mapping ϕ : TΣ → A. The set of all such
tree series is A〈〈TΣ〉〉. We write (ψ, t) instead of ψ(t) for every t ∈ TΣ . A weighted
tree automaton (wta) [14–16] is a tuple M = (Q,Σ,A, µ, F ) such that

– Q is a finite set of states,
– Σ is a ranked alphabet of input symbols,
– A = (A,+, ·, 0, 1) is a semiring,
– µ = (µk)k∈N is such that µk : Σk → AQ×Q

k

, and
– F : Q→ A is a final weight assignment.

The wta is deterministic if for every σ ∈ Σk and q1, . . . , qk ∈ Q there exists at
most one q ∈ Q such that µk(σ)q,q1,...,qk

6= 0. A wta computes a tree series as
follows. Let hµ : TΣ(Q)→ AQ be the mapping such that

– for every p, q ∈ Q

hµ(p)q =

{
1 if p = q

0 otherwise



– for every σ ∈ Σk, t1, . . . , tk ∈ TΣ , and q ∈ Q

hµ(σ(t1, . . . , tk))q =
∑

q1,...,qk∈Q
µk(σ)q,q1,...,qk

·
k∏
i=1

hµ(ti)qi
.

The wta M recognizes the tree series ϕM ∈ A〈〈TΣ〉〉, which is defined for
every t ∈ TΣ by (ϕM , t) =

∑
q∈Q F (q) · hµ(t)q. Two wta are equivalent if they

recognize the same tree series.

3 A backward simulation

In this section, we investigate backward simulation for wta [14–16]. Such simu-
lations for unweighted tree automata were already considered in [10] and back-
ward bisimulations, which are a related concept, for wta were considered in [13].
To avoid a very detailed discussion, we restrict ourselves to idempotent and
commutative semirings and their natural order. With minor modifications, our
arguments also work for other idempotent (even non-commutative) semirings
that are partially ordered. In the following, we fix an idempotent semiring
A = (A,+, ·, 0, 1) and its natural order v. In addition, let M = (Q,Σ,A, µ, F )
be a wta, and without loss of generality, suppose that Q is totally ordered. We
will use min(P ) with P ⊆ Q for the minimal state of P with respect to that
total order.

Let us start with the definition of a backward simulation. Note that our def-
inition yields the definition of [10] when considered in the unweighted case.
In that case, if a state q simulates a state p and there exists a transition
σ(p1, . . . , pk) → p, then there also exists a transition σ(q1, . . . , qk) → q such
that the qi simulate the corresponding pi. Now, let us consider the weighted
setting. In essence, for a state q to simulate a state p, written p � q, we de-
mand that for every transition weight µk(σ)p,p1,...,pk

there exists a larger (with
respect to the natural order v) transition weight µk(σ)q,q1,...,qk

such that, for
every i ∈ [1, k], the state qi simulates pi. Note that there is no condition on the
final weights.

Definition 1 (cf. [10, Section 2]). A quasi-order � on Q is a backward
simulation for M if for every p � q, σ ∈ Σk, and p1, . . . , pk ∈ Q there exist
q1, . . . , qk ∈ Q such that µk(σ)p,p1,...,pk

v µk(σ)q,q1,...,qk
and pi � qi for every

i ∈ [1, k].

Let us discuss the definition. We already remarked that it coincides with
the definition of a backward simulation [10] in the unweighted case [i.e., the
case where A = ({⊥,>},∨,∧,⊥,>) is the Boolean semiring]. However, the
definition does not generalize the notion of backward bisimulation for wta of [13].
Next, let us establish some central properties of backward simulations. First,
there is a greatest backward simulation for M . We prove this along the lines
of [13, Theorem 22].



Theorem 2. There exists a greatest (with respect to ⊆) backward simulation
for M .

Proof. Let � and �′ be backward simulations for M . We claim that (� ∪�′)∗,
the reflexive and transitive closure of � ∪ �′, is again a backward simulation.
Clearly, (� ∪ �′)∗ is a quasi-order. Now, let (p, q) ∈ (� ∪ �′)∗, σ ∈ Σ, and
p1, . . . , pk ∈ Q. Consequently, there exist r1, . . . , rn ∈ Q such that

p = r0 � r1 �′ r2 � r3 �′ · · · �′ rn = q .

By this chain of inequalities, there also exist q1, . . . , qk ∈ Q such that

µk(σ)p,p1,...,pk
v µk(σ)q,q1,...,qk

and pi (� ;�′ ;� ;�′ ; · · · ;�′) qi

for every i ∈ [1, k], which proves that (� ∪�′)∗ is a backward simulation. ut

The main property of a state q that simulates a state p is that the state q
accepts every input tree with a weight that is larger than the weight with which
the same tree is accepted by p. In the unweighted case, this corresponds to the
statement that the tree language accepted by p is a subset of the tree language
accepted by q (see [10, Section 6.1]). In general, this immediately yields that any
two states equivalent in � ∩ �−1, which is always an equivalence relation since
� is a quasi-order, accept the same tree series.

Lemma 3. Let � be a backward simulation for M . Then hµ(t)p v hµ(t)q for
every t ∈ TΣ and p � q.

Proof. Let t = σ(t1, . . . , tk) for some σ ∈ Σk and t1, . . . , tk ∈ TΣ . We compute
as follows:

hµ(σ(t1, . . . , tk))p =
∑

p1,...,pk∈Q
µk(σ)p,p1,...,pk

·
k∏
i=1

hµ(ti)pi
.

For all p1, . . . , pk ∈ Q there exist (q1, . . . , qk) ∈ Qk such that pi � qi for every
i ∈ [1, k] and µk(σ)p,p1,...,pk

v µk(σ)q,q1,...,qk
because p � q. Denote (q1, . . . , qk)

by f(p1, . . . , pk) and qi by f(p1, . . . , pk)i for every i ∈ [1, k]. Then we continue
with

hµ(σ(t1, . . . , tk))p v
∑

p1,...,pk∈Q
µk(σ)q,f(p1,...,pk) ·

k∏
i=1

hµ(ti)f(p1,...,pk)i

by induction hypothesis and the fact that v partially orders A and

hµ(σ(t1, . . . , tk))p v
∑

(q1,...,qk)∈f(Qk)

µk(σ)q,q1,...,qk
·
k∏
i=1

hµ(ti)qi

v
∑

q1,...,qk∈Q
µk(σ)q,q1,...,qk

·
k∏
i=1

hµ(ti)qi



= hµ(σ(t1, . . . , tk))q

by idempotency of A and the definition of the natural order. ut

We already remarked that this yields that states p, q ∈ Q such that p � q
and q � p, which we call equivalent, recognize the same tree series. Let us note
another property of such states.

Note 4. Let p � q � p. For every σ ∈ Σk and p1, . . . , pk ∈ Q there exist
q1, . . . , qk ∈ Q and r1, . . . , rk ∈ Q such that pi � qi � ri � qi for every i ∈ [1, k]
and

µk(σ)p,p1,...,pk
v µk(σ)q,q1,...,qk

= µk(σ)p,r1,...,rk
.

So equivalent states enforce equally weighted transitions, but not necessarily
within the same blocks (because, in general, we might have qi 6� pi for some
i ∈ [1, k] in Note 4). However, the property hints at an essential property of
equivalent states p and q. If p 6= q, then there must be at least two transitions,
one to p and one to q, with the same weight. Otherwise p and q cannot be
equivalent.

Corollary 5 (of Lemma 3). Let � be a backward simulation for M and
' = (� ∩�−1). Then hµ(t)p = hµ(t)q for every p ' q.

This completes our investigation of the principal properties of backward sim-
ulation. Next, let us show how to reduce the size of a wta using a backward
simulation. The main idea is, of course, to collapse equivalent states into just
a single state. Recall, that we assumed a total order on Q and that min(P )
with P ⊆ Q denotes the smallest element in P with respect to that order. We
use this order in our construction to obtain a unique wta. In contrast to [13,
Definition 18], we thus need not discuss why the constructed wta is well-defined.

Definition 6. Let � be a backward simulation for M and ' = (�∩�−1). The
collapsed wta (M/') = (Q′, Σ,A, µ′, F ′) is given by

– Q′ = (Q/'),
– F ′(P ) =

∑
q∈P F (q) for every P ∈ Q′, and

– for every σ ∈ Σk, states P, P1, . . . , Pk ∈ Q′

µ′k(σ)P,P1,...,Pk
=

∑
q1∈P1,...,qk∈Pk

µk(σ)min(P ),q1,...,qk
.

Clearly, (M/') never has strictly more states than M . Naturally, the best
reduction is achieved by the greatest backward simulation. Next, let us show
that M/' is equivalent to M , which proves that our construction preserves the
semantics. Note that we make no assumptions on the total order on Q, so that
the theorem will hold for any total order on Q.

Theorem 7 (cf. [10, Theorem 7]). Let � be a backward simulation for M
and ' = (� ∩�−1). Then M and M/' are equivalent.



Proof. Let (M/') = (Q′, Σ,A, µ′, F ′) be the collapsed wta. We first prove
that hµ′(t)P = hµ(t)q for every t ∈ TΣ , P ∈ Q′, and q ∈ P . Suppose that
t = σ(t1, . . . , tk) for some σ ∈ Σk and t1, . . . , tk ∈ TΣ . Then

hµ′(σ(t1, . . . , tk))P

=
∑

P1,...,Pk∈Q′
µ′k(σ)P,P1,...,Pk

·
k∏
i=1

hµ′(ti)Pi

=
∑

P1,...,Pk∈Q′

( ∑
q1∈P1,...,qk∈Pk

µk(σ)min(P ),q1,...,qk

)
·
k∏
i=1

hµ′(ti)Pi

†
=

∑
q1,...,qk∈Q

µk(σ)min(P ),q1,...,qk
·
k∏
i=1

hµ(ti)qi

= hµ(σ(t1, . . . , tk))min(P )

= hµ(σ(t1, . . . , tk))q

using the induction hypothesis at † and Corollary 5 in the last step where
q ' min(P ). With this auxiliary result

(ϕ(M/'), t) =
∑
P∈Q′

F ′(P ) · hµ′(t)P =
∑
P∈Q′

(∑
q∈P

F (q)
)
· hµ′(t)P

=
∑
q∈Q

F (q) · hµ(t)q = (ϕM , t) . ut

An other negative property of our notion of backward simulation is that the
result obtained by collapsing M with the greatest backward simulation is not
minimal with respect to backward simulation. We call M backward-simulation
minimal if every backward simulation for it is a partial order. If a backward sim-
ulation � is a partial order, then �∩�−1 is the identity, which yields no reduc-
tion in the number of states if used to collapse M . Thus, a backward-simulation
minimal wta cannot be reduced any further using backward simulation, which
justifies the name. Let us illustrate the definitions and the principal disadvan-
tages of backward simulation on a very simplistic example. Similar examples can
easily be constructed for more commonly used idempotent semirings such as the
tropical semiring (R ∪ {∞},min,+,∞, 0).

Example 8. Let S = {1, 2}. We consider the semiring P(S) = (P(S),∪,∩, ∅, S)
where P(S) is the powerset of S. Moreover, consider the wta

M = ([1, 6], Σ,P(S), µ, F )

where

– Σ = {α, γ} contains the nullary symbol α and the unary symbol γ,
– F (i) = {1, 2} for every i ∈ [1, 6], and



– the following transitions

µ0(α)1,ε = {1, 2} µ0(α)2,ε = {1, 2} µ0(α)3,ε = {1, 2}
µ1(γ)5,1 = {1} µ1(γ)4,2 = {1}
µ1(γ)5,2 = {2} µ1(γ)4,1 = {2}
µ1(γ)6,3 = {1, 2} .

Let � be the greatest backward simulation on M , and let ' = (�∩�−1). Then
1 ' 2 ' 3 and 4 ' 5 � 6, but 6 6� 5 and 6 6� 4. Then the collapsed wta is
M ′ = (Q′, Σ,P(S), µ′, F ′) with Q′ = {{1, 2, 3}, {4, 5}, {6}}, F ′(P ) = {1, 2} for
every P ∈ Q′, and

µ′0(α){1,2,3},ε = {1, 2} µ′1(γ){4,5},{1,2,3} = {1, 2} µ′1(γ){6},{1,2,3} = {1, 2} .

The wta M and M ′ are displayed in Figure 1. Now the states {4, 5} and {6}
are equivalent; i.e., {4, 5} simulates {6} and vice versa. This demonstrates that
the collapsed wta with respect to the greatest backward simulation need not be
backward-simulation minimal. ut

1 4

2 5

3 6

α/{1, 2}

α/{1, 2}

α/{1, 2}

γ/{2}

γ/{1}γ/{1}

γ/{2}

γ/{1, 2}

{1, 2, 3} {4, 5}

{6}

α/{1, 2} γ/{1, 2}

γ/{1, 2}

Fig. 1. The wta of Example 8 (without final weights).

Let us quickly consider deterministic wta. For every input tree t ∈ TΣ , the
vector hµ(t) contains at most one nonzero entry if M is deterministic [17, Obser-
vation 4.1.6]. Thus, if M is deterministic and has no useless states (a state q ∈ Q
is useless if hµ(t)q = 0 for every t ∈ TΣ), then it is automatically backward-
simulation minimal by Corollary 5. In other words, we cannot reduce a deter-
ministic wta with the help of a backward simulation.

At the end of this section, let us develop a very simple algorithm to compute
the greatest backward simulation. Our algorithm (Algorithm 1) starts with the
optimistic assumption that all states simulate each other and the refines the
relation as it finds evidence to the contrary (see [10, 13]). To speed up the algo-
rithm, we could also use the property mentioned in Note 4, but we present the
simple, non-optimized version of the algorithm here for clarity.



Algorithm 1 Computing the greatest backward simulation for M .
R0 ← Q×Q
i← 0
repeat
j ← i
for all σ ∈ Σk and p1, . . . , pk ∈ Q do
Ri+1 ← {(p, q) ∈ Ri |

∃(p1, q1), . . . , (pk, qk) ∈ Ri : µk(σ)p,p1,...,pk v µk(σ)q,q1,...,qk}
i← i+ 1

until Ri = Rj

Theorem 9. Algorithm 1 returns the greatest backward simulation for M .

Proof. Let � be the greatest backward simulation for M . First, we prove that
� ⊆ Ri for every i that is encountered during the run of the algorithm. Let us
proceed by induction on i. Trivially � ⊆ R0 because R0 = Q × Q. Now, let us
assume that p � q. Consequently, (p, q) ∈ Ri by the induction hypothesis. Let
σ ∈ Σk and p1, . . . , pk ∈ Q. Then by Definition 1 there exist q1, . . . , qk ∈ Q such
that µk(σ)p,p1,...,pk

v µk(σ)q,q1,...,qk
and pi � qi for every i ∈ [1, k]. By induction

hypothesis, we also have (pi, qi) ∈ Ri for every i ∈ [1, k]. Consequently, we
obtain (p, q) ∈ Ri+1. This proves � ⊆ Ri+1. At termination, Ri is a backward
simulation (see Definition 1) and since � ⊆ Ri and � is the greatest backward
simulation for M , we can conclude that Ri = �. ut

4 A forward simulation

Next, we consider a forward version of the simulation of Section 3. Similar sim-
ulations (called composed simulations) for the unweighted case are considered
in [10] and forward bisimulation for wta is considered in [13]. Let us follow the
structure of the previous section and start with the definition of a forward sim-
ulation. Note that we will use the same symbols here as in Section 3, but it
should be clear that we exclusively speak about forward simulations here unless
otherwise mentioned.

For state q ∈ Q to (forward) simulate another state p, written p � q, we
demand that for every transition weight µk(σ)p′,q1,...,qi−1,p,qi+1,...,qk

, there exists
a larger transition weight µk(σ)q′,q1,...,qi−1,q,qi+1,...,qk

with the additional restric-
tion that the state q′ simulates p′. In addition, the final weight of q should be
larger than the one of p. In the unweighted case, this coincides with the defi-
nition of an upward simulation [10, Section 2] with respect to the identity as a
backward simulation. There it is demanded that q should be a final state if p is.
Moreover, for every transition σ(q1, . . . , qi−1, p, qi+1, . . . , qk) → p′ there should
exist a transition σ(q1, . . . , qi−1, q, qi+1, . . . , qk)→ q′ such that q′ simulates p′.

Definition 10. A quasi-order � ⊆ Q×Q is a forward simulation for M if for
every p � q the following two conditions are satisfied:



– F (p) v F (q) and
– for every σ ∈ Σk, i ∈ [1, k], and p′, q1, . . . , qk ∈ Q there exist q′ ∈ Q such

that p′ � q′ and

µk(σ)p′,q1,...,qi−1,p,qi+1,...,qk
v µk(σ)q′,q1,...,qi−1,q,qi+1,...,qk

.

A forward simulation is also only a quasi-order and not an equivalence rela-
tion like every forward bisimulation. We do not consider upward simulations [10]
here since we believe that two independent simulations are easier to understand
and we can always first reduce with the help of a backward simulation and then
with a forward simulation to achieve roughly the same as with an upward simula-
tion of [10]. Let us proceed with the principal properties of forward simulations.
As in the backward case, there exists a greatest forward simulation for M .

Theorem 11 (see [13, Theorem 7]). There exists a greatest forward simula-
tion for M .

Proof. Let� and�′ be forward simulations forM . Again, we claim that (�∪�′)∗
is a forward simulation. Clearly, (�∪�′)∗ is a quasi-order. Let (p, q) ∈ (�∪�′)∗,
σ ∈ Σk, i ∈ [1, k], and p′, q1, . . . , qk ∈ Q. Consequently, there exist r1, . . . , rn ∈ Q
such that

p = r0 � r1 �′ r2 � r3 �′ · · · �′ rn = q .

By this chain of inequalities, there also exists q′ ∈ Q such that

µk(σ)p′,q1,...,qi−1,p,qi+1,...,qk
v µk(σ)q′,q1,...,qi−1,q,qi+1,...,qk

and p′ (� ;�′ ;� ;�′ ; · · · ;�′) q′, which proves that (� ∪ �′)∗ is a forward
simulation. ut

To state the main property of similar states, we need some additional notions.
A context is a tree of TΣ({�}), where � is a distinguished (fixed) symbol, such
that � occurs exactly once. The set of all contexts is denoted by CΣ . The tree c[t]
is obtained by replacing the symbol � in the context c ∈ CΣ by the tree t ∈ TΣ .

Lemma 12. Let � be a forward simulation for M . Moreover, let c ∈ CΣ and
p � q. Then

∑
r∈B hµ(c[p])r v

∑
r∈B hµ(c[q])r for every up-set B ⊆ Q.

Proof. We prove the statement by induction on c ∈ CΣ . In the base case, let
c = �. Then ∑

r∈B
hµ(p)r =

{
1 if p ∈ B
0 otherwise.

Since B is an up-set, p ∈ B implies q ∈ B and thus by 0 v 1

∑
r∈B

hµ(p)r v

{
1 if q ∈ B
0 otherwise



=
∑
r∈B

hµ(q)r .

In the induction step, let c = σ(t1, . . . , tj−1, c
′, tj+1, . . . , tk) for some σ ∈ Σk,

j ∈ [1, k], c′ ∈ CΣ , and t1, . . . , tk ∈ TΣ . Then∑
r∈B

hµ(σ(t1, . . . , tj−1, c
′[p], tj+1, . . . , tk))r

=
∑
r∈B

p1,...,pk∈Q

µk(σ)r,p1,...,pk
· hµ(c′[p])pj ·

∏
i∈[1,k]\{j}

hµ(ti)pi .

Then hµ(c′[p])pj
v
∑
p′∈↑(pj)

hµ(c′[q])p′ by the induction hypothesis, and thus

v
∑
r∈B

p1,...,pk∈Q

µk(σ)r,p1,...,pk
·
( ∑
p′∈↑(pj)

hµ(c′[q])p′
)
·

∏
i∈[1,k]\{j}

hµ(ti)pi

v
∑
r∈B

p1,...,pk∈Q
p′∈↑(pj)

( ∑
r′∈↑(r)

µk(σ)r′,p1,...,pj−1,p′,pj+1,...,pk

)
· hµ(c′[q])p′ ·

∏
i∈[1,k]\{j}

hµ(ti)pi

because pj � p′ and thus for every r ∈ B there exists r′ ∈ Q such that r � r′

and µk(σ)r,p1,...,pk
v µk(σ)r′,p1,...,pj−1,p′,pj+1,...,pk

. Since B is an up-set and A
idempotent, we continue with

=
∑
r∈B

p1,...,pk∈Q

µk(σ)r,p1,...,pk
· hµ(c′[q])pj ·

∏
i∈[1,k]\{j}

hµ(ti)pi

=
∑
r∈B

hµ(σ(t1, . . . , tj−1, c
′[q], tj+1, . . . , tk))r . ut

Next, let us show how to reduce the size of a wta using a forward simulation.
We again make use of the total order on Q to simplify the construction. In
particular, the minimum operation in the construction refers to this total order
and not to the forward simulation for M .

Definition 13 (cf. [13, Definition 3]). Let � be a forward simulation for M
and ' = (� ∩�−1). The collapsed wta (M/') = (Q′, Σ,A, µ′, F ′) is given by

– Q′ = (Q/'),
– F ′(P ) = F (min(P )) for every P ∈ Q′, and
– for every σ ∈ Σk, states P, P1, . . . , Pk ∈ Q′

µ′k(σ)P,P1,...,Pk
=
∑
q∈P

µk(σ)q,min(P1),...,min(Pk)



As before, the collapsed wta M/' never has more states than M itself and
the best reduction is achieved by the greatest forward simulation. However, we
first need to show that M/' is equivalent to M . Beforehand, let us note an
important property of equivalent states (i.e., states that simulate each other)
that follows immediately from Definition 10.

Note 14. Let � be a forward simulation for M , and let ' = (� ∩ �−1). Then
for every p ' q, σ ∈ Σk, i ∈ [1, k], and p′, q1, . . . , qk ∈ Q, there exist q′, r′ ∈ Q
such that p′ � q′ ' r′ and

µk(σ)p′,q1,...,qi−1,p,qi+1,...,qk
v µk(σ)q′,q1,...,qi−1,p,qi+1,...,qk

= µk(σ)r′,q1,...,qi−1,q,qi+1,...,qk
.

We will use this property in the proof of the next theorem, which will prove
the correctness of our construction.

Theorem 15 (cf. [10, Theorem 7]). Let � be a forward simulation for M
and ' = (� ∩�−1). Then M and M/' are equivalent.

Proof. Let (M/') = (Q′, Σ,A, µ′, F ′) be the collapsed wta. We first prove
that hµ′(t)P =

∑
q∈↑(P ) hµ(t)q for every t ∈ TΣ , and P ∈ Q′. Suppose that

t = σ(t1, . . . , tk) for some σ ∈ Σk and t1, . . . , tk ∈ TΣ . Then we compute as
follows where the equality marked † is explained below.

hµ′(σ(t1, . . . , tk))P

=
∑

P1,...,Pk∈Q′
µ′k(σ)P,P1,...,Pk

·
k∏
i=1

hµ′(ti)Pi

=
∑

P1,...,Pk∈Q′
µ′k(σ)P,P1,...,Pk

·
k∏
i=1

( ∑
qi∈↑(Pi)

hµ(ti)qi

)

=
∑

P1,...,Pk∈Q′
q1∈↑(P1),...,qk∈↑(Pk)

( ∑
q∈↑(P )

µk(σ)q,min(P1),...,min(Pk)

)
·
k∏
i=1

hµ(ti)qi

=
∑

q∈↑(P )

∑
P1,...,Pk∈Q′

q1∈↑(P1),...,qk∈↑(Pk)

µk(σ)q,min(P1),...,min(Pk) ·
k∏
i=1

hµ(ti)qi

†
=

∑
q∈↑(P )

∑
P1,...,Pk∈Q′

q1∈↑(P1),...,qk∈↑(Pk)

µk(σ)q,q1,...,qk
·
k∏
i=1

hµ(ti)qi

=
∑

q∈↑(P )

hµ(σ(t1, . . . , tk))q

Let us take a closer look at the equation marked †. We can show this equal-
ity by showing both inequalities. Let us consider the inequality v first. Clearly,



it is sufficient to show that for each summand of the left-hand side there ex-
ists a larger summand in the right-hand side. For this we consider a sum-
mand µk(σ)p,min(P1),...,min(Pk) ·

∏k
i=1 hµ(ti)qi of the left-hand side of † for some

P1, . . . , Pk ∈ Q′, p ∈ ↑(P ), and q1, . . . , qk ∈ Q such that qi ∈ ↑(Pi) for every
i ∈ [1, k]. Since min(Pi) � qi for every i ∈ [1, k], there exists q ∈ Q such that
µk(σ)p,min(P1),...,min(Pk) v µk(σ)q,q1···qk

by Definition 10. Consequently,

µk(σ)p,min(P1),...,min(Pk) ·
k∏
i=1

hµ(ti)qi
v µk(σ)q,q1,...,qk

·
k∏
i=1

hµ(ti)qi

and the latter is a summand on the right-hand side of †. For the converse inequal-
ity, let us consider a summand µk(σ)q,q1,...,qk

·
∏k
i=1 hµ(ti)qi

in the right-hand
side where q ∈ ↑(P ) and q1, . . . , qk ∈ Q. For every i ∈ [1, k] let Pi = [qi].
Then min(Pi) ' qi for every i ∈ [1, k]. Then by Definition 10 and the property
remarked in Note 14, there exist p, q′ ∈ Q such that q � q′ ' p and

µk(σ)q,q1,...,qk
v µk(σ)q′,q1,...,qk

= µk(σ)p,min(P1),...,min(Pk) .

It follows that

µk(σ)q,q1,...,qk
·
k∏
i=1

hµ(ti)qi
v µk(σ)p,min(P1),...,min(Pk) ·

k∏
i=1

hµ(ti)qi
,

which is a summand of the left-hand side because q � p. This completes the
proof of our auxiliary statement. For the statement of the theorem, we compute
as follows:

(ϕ(M/'), t) =
∑
P∈Q′

F ′(P ) · hµ′(t)P =
∑
P∈Q′

F ′(P ) ·
( ∑
q∈↑(P )

hµ(t)q
)

=
∑

P∈Q′,q∈↑(P )

F ′(P ) · hµ(t)q =
∑
q∈Q

F (q) · hµ(t)q = (ϕM , t)

because F (p) v F (q) if p � q. This proves our theorem. ut

Also the notion of forward simulation has the negative properties outlined
in the section on backward simulation. For example, the result obtained by col-
lapsing M with the greatest forward simulation is again not necessarily minimal
with respect to forward simulation. Accordingly, we call M forward-simulation
minimal if every forward simulation for it is a partial order. Let us also present
a small example for forward simulation.

Example 16. Consider the wta M of Example 8. Let � be the coarsest forward
simulation for it, and let ' = (� ∩ �−1). Then 4 ' 5 ' 6 and 1 ' 2 � 3
but 3 6� 2. Consequently, the collapsed wta is M ′ = (Q′, Σ,P(S), µ′, F ′) where
Q′ = {{1, 2}, {3}, {4, 5, 6}}, F ′(P ) = {1, 2} for every P ∈ Q′, and

µ′0(α){1,2},ε = {1, 2} µ′1(γ){4,5,6},{1,2} = {1, 2}



µ′0(α){3},ε = {1, 2} µ′1(γ){4,5,6},{3} = {1, 2} .

Figure 2 displays M and M ′. In M ′ the states {1, 2} and {3} are equivalent;
i.e., {1, 2} simulates {3} and vice versa. This again demonstrates that the col-
lapsed wta with respect to the greatest forward simulation need not be forward-
simulation minimal. ut

1 4

2 5

3 6

α/{1, 2}

α/{1, 2}

α/{1, 2}

γ/{2}

γ/{1}γ/{1}

γ/{2}

γ/{1, 2}

{1, 2} {4, 5, 6}

{3}

α/{1, 2}

α/{1, 2}

γ/{1, 2}

γ/{1, 2}

Fig. 2. The wta of Example 16 (without final weights).

Let us also discuss the deterministic case. Roughly speaking, we claim that
reduction with the help of forward simulation is not more effective than reduction
with the help of forward bisimulation on deterministic wta. Let us quickly recall
the definition of a forward bisimulation [13] for M .

Definition 17 (see [13, Definition 1]). An equivalence relation ≡ on Q is a
forward bisimulation for M if for every p ≡ q the following two conditions hold:

(i) F (p) = F (q) and
(ii) for every σ ∈ Σk, i ∈ [1, k], q1, . . . , qk ∈ Q, and P ∈ (Q/≡)∑

r∈P
µk(σ)r,q1,...,qi−1,p,qi+1,...,qk

=
∑
r∈P

µk(σ)r,q1,...,qi−1,q,qi+1,...,qk
.

Suppose that M is deterministic. To prove that reduction with the help of
forward simulation is only as effective as reduction with the help of forward
bisimulation, it is sufficient to show that any equivalence relation ' obtained
from a forward simulation � for M is indeed a forward bisimulation for M . The
algorithm in [13] can then be used to compute an equivalent wta that has at
most as many states as (M/'). Recall that a state q ∈ Q is useless if hµ(t)q = 0
for every t ∈ TΣ .

Theorem 18. Let M be deterministic and without useless states. Moreover, let
� be a forward simulation for M , and ' = (� ∩ �−1). Then ' is a forward
bisimulation for M .



Proof. Let p ' q, σ ∈ Σk, i ∈ [1, k], and p′, q1, . . . , qk ∈ Q be such that
µk(σ)p′,q1,...,qi−1,p,qi+1,...,qk

6= 0. By determinism there exists at most one such p′

and if M has no useless states, then there exists at least one such p′. Since p ' q,
there exist q′, r′ ∈ Q such that p′ � q′ � r′ and

µk(σ)p′,q1,...,qi−1,p,qi+1,...,qk
v µk(σ)q′,q1,...,qi−1,q,qi+1,...,qk

v µk(σ)r′,q1,...,qi−1,p,qi+1,...,qk
.

By determinism, r′ = p′ and thus p′ ' q′ and

µk(σ)p′,q1,...,qi−1,p,qi+1,...,qk
= µk(σ)q′,q1,...,qi−1,q,qi+1,...,qk

.

Consequently, for every P ∈ (Q/')

∑
r∈P

µk(σ)r,q1,...,qi−1,p,qi+1,...,qk
=

{
µk(σ)p′,q1,...,qi−1,p,qi+1,...,qk

if p′ ∈ P
0 otherwise

=

{
µk(σ)q′,q1,...,qi−1,q,qi+1,...,qk

if q′ ∈ P
0 otherwise

=
∑
r∈P

µk(σ)r,q1,...,qi−1,q,qi+1,...,qk

because p′ ∈ P if and only if q′ ∈ P . This proves condition (ii) of Defi-
nition 17. For condition (i) of the same definition, we simply observe that
F (p) v F (q) v F (p), which proves it and hence the statement that ' is a
forward bisimulation. ut

Minimization (i.e., finding a minimal deterministic wta that is equivalent
to M) of deterministic wta is discussed in [12]. Note that the previous theorem
also proves that reduction with the help of the greatest forward simulation does
not necessarily yield a minimal deterministic wta. This is due to the fact that
forward bisimulation does not achieve that (cf. [18, Theorem 3.12]).

Algorithm 2 Computing the greatest forward simulation for M .
R0 ← {(p, q) ∈ Q×Q | F (p) v F (q)}
i← 0
repeat
j ← i
for all σ ∈ Σk, n ∈ [1, k], and p′, q1, . . . , qk ∈ Q do
Ri+1 ← {(p, q) ∈ Ri | ∃(p′, q′) ∈ Ri :

µk(σ)p′,q1,...,qn−1,p,qn+1,...,qk
v µk(σ)q′,q1,...,qn−1,q,qn+1,...,qk

}
i← i+ 1

until Ri = Rj

Finally, let us develop an algorithm for the greatest forward simulation. Our
algorithm is displayed in Algorithm 2.



Theorem 19. Algorithm 2 returns the greatest forward simulation for M .

Proof. Let � be the greatest forward simulation for M . Again we prove that
� ⊆ Ri for every relevant i as an auxiliary statement. Using the first condition
of Definition 10, we have � ⊆ R0. Suppose that p � q. Then (p, q) ∈ Ri by the
induction hypothesis. Moreover, let σ ∈ Σk, n ∈ [1, k], and p′, q1, . . . , qk ∈ Q.
Since p � q, we can conclude that there exists q′ ∈ Q such that p′ � q′ and

µk(σ)p′,q1,...,qn−1,p,qn+1,...,qk
v µk(σ)q′,q1,...,qn−1,q,qn+1,...,qk

.

Invoking the induction hypothesis, we obtain (p′, q′) ∈ Ri and thus (p, q) ∈ Ri+1.
Thus � ⊆ Ri+1. Clearly, Ri is a forward simulation for M (see Definition 10) at
termination. Since � ⊆ Ri and � is the greatest forward simulation for M , we
can conclude that Ri = �. ut
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