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Abstract. Weighted tree grammars (for short: WTG) are an extension
of weighted context-free grammars that generate trees instead of strings.
They can be used in natural language parsing to directly generate the
parse tree of a sentence or to encode the set of all parse trees of a sen-
tence. Two types of simulations for WTG over idempotent, commutative
semirings are introduced. They generalize the existing notions of simula-
tion and bisimulation for WTG. Both simulations can be used to reduce
the size of WTG while preserving the semantics, and are thus an impor-
tant tool in toolkits. Since the new notions are more general than the
existing ones, they yield the best reduction rates achievable by all min-
imization procedures that rely on simulation or bisimulation. However,
the existing notions might allow faster minimization.

1 Introduction

Grammar reduction and minimization are well-studied subjects [1]. Here we
consider weighted tree grammars (Wtg), which are widely used in applications
such as model checking [2] and in several areas of natural language processing [3].
Such Wtg are an extension of weighted (probabilistic) context-free grammars
that generate trees instead of strings. They can, for example, be used to generate
parse trees (with a weight) directly. Several toolkits implement Wtg [4–6].

Let us review the existing results on minimization of Wtg. There exists
a direct correspondence between Wtg and weighted tree automata [7–9]. De-
terministic bottom-up (unweighted) tree automata can be minimized efficiently
using the algorithms inspired by Hopcroft [10, 11]. This work has been ex-
tended to deterministic bottom-up weighted tree automata over semifields (i.e.,
commutative semirings with multiplicative inverses) in [12]. However, minimiz-
ing general (unweighted) tree grammars is Pspace-complete [13] and cannot be
approximated well [14, 15] unless P = Pspace. These negative results extend to
Wtg over idempotent, commutative semirings. Consequently, alternative (effi-
cient) methods to reduce the size of tree grammars are explored in [11, 16–18].
In contrast, general Wtg over fields (i.e., commutative semirings with multi-
plicative and additive inverses) can efficiently be minimized to a unique (up to
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a change of basis) minimal Wtg [19, 20]. Finally, efficient reductions of Wtg
with the help of bisimulation relations are considered in [21].

Here we extend the simulation approach for tree grammars of [17] to Wtg
over idempotent, commutative semirings, and in the process, overcome the major
problems of [18]. Let us explain Wtg in more detail. A Wtg is a tree gram-
mar, in which each production is assigned a weight of a semiring. Instead of just
generating a certain set of trees, a Wtg assigns a weight to each tree. In [17]
two types of simulation relations, called downward and upward simulations, are
investigated for tree grammars. These notions were generalized to Wtg in [18].
This generalization required semirings with a partial order, so idempotent (i.e.,
a + a = a for all a) semirings equipped with their natural order were consid-
ered. Idempotent semirings are used, for example, when extracting the n-best
derivations [22] from a parser (even if the parser was not trained over an idem-
potent semiring) and Wtg over certain idempotent semirings (like the tropical
semiring) directly represent all “best” derivations.

We generalize backward and forward simulation, which are defined in [18]. In-
tuitively, these notions correspond to backward and forward bisimulation of [21],
but the notions of [18] did not properly generalize them. In addition, backward
simulation generalizes downward simulation of [17] and our forward simulation
generalizes upward simulation with respect to the identity as downward sim-
ulation [17]. We choose not to generalize upward simulations with respect to
arbitrary downward simulations since we believe that two completely separate
notions are easier to handle and understand. Our new notions now generalize all
existing simulation and bisimulation notions for Wtg over commutative, idem-
potent semirings, and in addition, enjoy better properties than the corresponding
notions of [18]. While a reduction with respect to a simulation of [18] might yield
a Wtg that can be reduced further with the same type of simulation, this cannot
occur with our simulations.

A backward simulation is a quasi-order (i.e., a reflexive, transitive relation)
on the nonterminals of the Wtg such that larger nonterminals dominate the
smaller ones; i.e., if a nonterminal allows us to generate a tree with weight a,
then any larger nonterminal must be able to generate the same tree with a
weight that is larger than a. This relation even holds at the transition level for
the notions of [18], but it is lost at the transition level in our generalization. Two
nonterminals that can simulate each other are considered equivalent, and we can
reduce the Wtg with this equivalence relation. The obtained Wtg is equivalent
to the original Wtg, so our reduction procedure can be applied before and after
lossy reduction techniques such as pruning.

We also generalize forward simulation and show similar properties. Our min-
imization algorithms compute the greatest backward and forward simulations,
which yield the best reduction. In addition, once a Wtg has been minimized with
one type of simulation, it cannot be reduced any further using the same type.
However, alternating backward and forward simulation can yield even smaller
Wtg. In addition, pruning and other methods might also enable further non-
terminals to become equivalent, so we might obtain even further reductions.
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Fig. 1. Example tree (left) and tree used in Example 1 (right).

2 Trees and Weighted Tree Grammars

A quasi-order � on S is a reflexive, transitive relation on S. An up-set A ⊆ S
(with respect to �) is such that for every s � s′ with s ∈ A also s′ ∈ A. The
smallest up-set containing A ⊆ S is denoted by ↑A. If the quasi-order is not
obvious from the context, then we write ↑�(A). Moreover, if A = {a}, then we
write ↑a [and ↑�(a)].

For simplicity, we consider trees over ranked alphabets; i.e., each symbol we
use has a fixed rank. Given an alphabet Σ, we write Σk for the set of symbols
of Σ that have rank k. The rank of a symbol determines how many children a
node marked with that symbol has in a tree. Consequently, our trees are formed
by putting a symbol of rank k above k subtrees. Formally, the set TΣ of trees
over Σ is the smallest set such that σ(t1, . . . , tk) ∈ TΣ for every σ ∈ Σk and
t1, . . . , tk ∈ TΣ .

A commutative semiring is an algebraic structure (A,+, ·) such that (A,+)
and (A, ·) are commutative monoids and · distributes over finite sums. It is
idempotent if a + a = a for every a ∈ A. In an idempotent, commutative semi-
ring (A,+, ·) the natural order v on A is defined by a v b if a + b = b. In the
following, let (A,+, ·) be an idempotent, commutative semiring. For example,
the tropical semiring (IR ∪ {∞},min,+) is such a semiring, in which v = ≥.

To present our approach in a general setting, we recall weighted tree gram-
mars (Wtg) [7, 23–25]1. Weighted context-free grammars can be modelled as
such grammars. Essentially, a Wtg defines a weighted hypergraph [22], and
formally, a Wtg (in normal form) is a structure (N,Σ,P, I) such that

– N is a finite set of nonterminals,
– Σ is a ranked alphabet of terminals,
– P is a finite set of productions of the form S

a→ σ(S1, . . . , Sk) where σ ∈ Σk,
a ∈ A is a weight, and S, S1, . . . , Sk ∈ N are nonterminals, and

– I : N → A is an initial weight assignment.

Intuitively, a production S
a→ σ(S1, . . . , Sk) yields that a tree σ(t1, . . . , tk)

can be generated by S provided that the subtrees t1, . . . , tk can be generated
1 Note that most of the cited references investigate weighted tree automata, which are

an equivalent formalism.



by S1, . . . , Sk, respectively. The production incurs the weight a. In general, we
assume that no two productions differ only in the weight. Left-most derivations
are defined as usual. The weight of a derivation is the product (using ·) of
the weights of the productions involved (counting multiple occurrences of the
same production). The weight wt(t, S) of a terminal tree t ∈ TΣ and a start
nonterminal S is obtained by adding the weights of all derivations of t from S.2

Finally, the weight wt(t) is wt(t) =
∑
S∈N I(S) · wt(t, S). Let us illustrate this

on a small example of [5]. Note that the weights are just made up and do not
reflect usage probabilities.

Example 1. Let the semiring be the arctic semiring (IR ∪ {−∞},max,+). Con-
sider the Wtg (N,Σ,P, I) such that

– N = {s,np, dt , jj ,nn, vp, v},
– Σ contains {S2,NP2,NP3,VP2} and the English words “the”, “a”, “funny”,

“blue”, “strange”, “fish”, “carrot”, “ate”, and “created”,
– P contains the productions:

s 1→ S2(np, vp) dt .5→ the dt .5→ a

np .4→ NP2(dt ,nn) jj .2→ funny jj .3→ blue jj .5→ strange

np .6→ NP3(dt , jj ,nn) nn .8→ fish nn .2→ carrot

vp 1→ VP2(v ,np) v .7→ ate v .3→ created ,

– I(s) = 1 and I(S) = −∞ for all remaining S ∈ N .

Now let us show a derivation. Consider tree t of Fig. 1 (right), which repre-
sents a parse tree of the English sentence “The strange fish ate a carrot.” We can
derive it as follows (at the end of the line we display the accumulated weight):

s ⇒ S2(np, vp)⇒ S2(NP3(dt , jj ,nn), vp) (1.6)
⇒ S2(NP3(the, jj ,nn), vp)⇒ S2(NP3(the, strange,nn), vp) (2.6)
⇒∗ S2(NP3(the, strange,fish),VP2(ate,NP2(a, carrot))) (6.2)

Since this is the only derivation that yields t (see Fig. 1), we have wt(t, s) = 6.2.
If there would be several derivations (starting with s), then we would take the
maximum weight among all such derivations. Since I(S) = −∞ for all S be-
sides s, we can conclude wt(t) = 6.2.

3 Backward simulation

Backward simulation was investigated for unweighted tree automata in [17] and
generalized to our setting in [18]. Here we develop a general notion that gener-
alizes the mentioned notions and the backward bisimulations of [21], which were
2 In proofs we sometimes use the equivalent initial-algebra semantics [9], which is

given by: wt(σ(t1, . . . , tk), S) =
P
S
a→σ(S1,...,Sk)∈P a·

Qk
i=1 wt(ti, Si) for every S ∈ N ,

σ ∈ Σk, and t1, . . . , tk ∈ TΣ .



not generalized by the notions of [18]. This latter fact led to the strange situ-
ation that a backward bisimulation was not at the same time also a backward
simulation. Our notions repair this, and in addition, our minimization procedure
is guaranteed to reduce more than all the minimization procedures developed for
the mentioned simulations and bisimulations. From now on, let G = (N,Σ,P, I)
be a Wtg, and for every σ ∈ Σk and T0, . . . , Tk ⊆ N , let

pwtσ(T0, . . . , Tk) =
∑

S0
a→σ(S1,...,Sk)∈P
S0∈T0,...,Sk∈Tk

a .

Intuitively, pwtσ(T0, . . . , Tk) is the weight of all productions generating the sym-
bol σ and using the states of T0, . . . , Tk.

Definition 2 (cf. [18, Definition 1]). A quasi-order � on N is a backward
simulation if for every S � T , symbol σ ∈ Σk, and T1, . . . , Tk ∈ N

pwtσ({S}, ↑T1, . . . , ↑Tk) v pwtσ({T}, ↑T1, . . . , ↑Tk) .

Note that the notion of a backward bisimulation is obtained by requiring
that � is an equivalence relation in the previous definition (in that case ↑T is
the equivalence class of T ). For the following discussions and results, let � be
a backward simulation3. Unfortunately, our definition does not easily offer an
intuitive explanation, thus let us continue to explore some central properties
of such simulations. First, there exists a greatest (with respect to ⊆) backward
simulation. This can be proved by showing that for any two backward simulations
also the reflexive, transitive closure of their union is a backward simulation.

The main property of nonterminals S � T is that S generates trees t with a
weight that is smaller than the weight with which the same tree t is generated
by T . This immediately yields that nonterminals S and T that simulate each
other (i.e., S � T � S) generate t with the same weight.

Lemma 3 (see [18, Lemma 3]). We have wt(t, S) v wt(t, T ) for every t ∈ TΣ
and S � T .

Proof. Since this property is essential for our approach, let us present full proof
details. First, we remark that the semiring operations + and · are monotone with
respect to the natural order v. Moreover, a v a + b for every a, b ∈ A. Second,
suppose that t = σ(t1, . . . , tk) for some σ ∈ Σk and t1, . . . , tk ∈ TΣ . We prove
the statement by induction as follows (recall that the first line is the definition
of the initial-algebra semantics):

wt(t, S) =
∑

S
a→σ(S1,...,Sk)∈P

a ·
k∏
i=1

wt(ti, Si)

3 Note that the name “backward simulation” makes more sense if we consider weighted
bottom-up tree automata.



v
∑

S1,...,Sk∈N
pwtσ({S}, ↑S1, . . . , ↑Sk) ·

k∏
i=1

wt(ti, Si)

†
v

∑
S1,...,Sk∈N

pwtσ({T}, ↑S1, . . . , ↑Sk) ·
k∏
i=1

wt(ti, Si)

=
∑

S1,...,Sk∈N
T1∈↑S1,...,Tk∈↑Sk
T
a→σ(T1,...,Tk)∈P

a ·
k∏
i=1

wt(ti, Si)
‡
v

∑
S1,...,Sk∈N

T1∈↑S1,...,Tk∈↑Sk
T
a→σ(T1,...,Tk)∈P

a ·
k∏
i=1

wt(ti, Ti)

=
∑

T
a→σ(T1,...,Tk)∈P

a ·
k∏
i=1

wt(ti, Ti) = wt(t, T ) ,

where we use S � T at † and k times the induction hypothesis at ‡, which is
applicable because Si � Ti for every 1 ≤ i ≤ k. ut

Clearly, nonterminals that simulate each other are superfluous. We can use
this to reduce the number of nonterminals and the number of productions of the
Wtg. Let us remark that {(S, T ) | S � T � S} is an equivalence relation on N ,
which we denote by '. The equivalence class of S ∈ N is denoted by [S].

Definition 4 (see [18, Definition 6]). The collapsed Wtg, denoted by G/',
is (N ′, Σ, P ′, I ′) where

– N ′ = {[S] | S ∈ N},
– P ′ contains, for every σ ∈ Σk and S, S1, . . . , Sk ∈ N , the production

[S]
pwtσ({S},↑S1,...,↑Sk)−−−−−−−−−−−−−−→ σ([S1], . . . , [Sk]) ,

– I ′([S]) =
∑
T∈[S] I(T ) for every S ∈ N .

An easy check shows that the weight of the production in the second item
in Definition 4 is independent of the chosen representatives S, S1, . . . , Sk. In
addition, the collapsed Wtg G/' never has more nonterminals than G.

Theorem 5 (see [18, Theorem 7]). The Wtg G and G/' are equivalent.

Proof. This is the most important theorem of this section, so let us present some
detail. Let (G/') = (N ′, Σ, P ′, I ′), and we write wt′ for the weight computed
with respect to G/'. In a manner similar to the proof of Lemma 3 we first prove
that wt′(t, [S]) = wt(t, S) for every t ∈ TΣ and S ∈ N . Let t = σ(t1, . . . , tk) for
some σ ∈ Σk and t1, . . . , tk ∈ TΣ . Then

wt′(t, [S]) =
∑

[S]
a′→σ([S1],...,[Sk])∈P ′

a′ ·
k∏
i=1

wt′(ti, [Si])
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Fig. 2. The Wtg (left) and the collapsed Wtg (right) of Example 6.

†
=

∑
S1,...,Sk∈N

pwtσ({S}, ↑S1, . . . , ↑Sk) ·
k∏
i=1

wt(ti, Si)

=
∑

S1,...,Sk∈N
T1∈↑S1,...,Tk∈↑Sk
S
a→σ(T1,...,Tk)∈P

a ·
k∏
i=1

wt(ti, Si) =
∑

S
a→σ(S1,...,Sk)∈P

a ·
k∏
i=1

wt(ti, Si)

= wt(t, S) ,

where we used the induction hypothesis at †. With this auxiliary result, we
immediately obtain

wt′(t) =
∑
T∈N ′

I ′(T ) · wt′(t, T ) =
∑
S∈N

I(S) · wt(t, S) = wt(t) . ut

In contrast to the backward simulation of [18], G/' cannot be reduced any
further with the help of backward simulation, if � is our greatest backward
simulation. Let us illustrate the definitions on a very simplistic example.

Example 6. Consider the tropical semiring (IR∪{∞},min,+), and let G be such
that N = {pro,nmb,n,np, lit , lit-np} and Σ = {one,NP1}, and P contains the
following productions:

np 1→ NP1(pro) n 2→ NP1(pro) lit-np 1→ NP1(lit) lit 1→ one

np 2→ NP1(nmb) n 1→ NP1(nmb) pro 1→ one nmb 1→ one .

Finally, I(S) = 1 for every S ∈ N .
Let � be the greatest backward simulation. Then pro � nmb � lit � pro and

n � np � lit-np � n. The collapsed Wtg is (N ′, Σ, P ′, I ′) with N ′ = {[lit ], [n]},



Algorithm 1 Minimization algorithm using backward simulation.
R0 ← N ×N
i← 0
repeat

j ← i
for all σ ∈ Σk and T1, . . . , Tk ∈ N , let T1 = ↑Ri(T1), . . . , Tk = ↑Ri(Tk) and do

Ri+1 ← {(S, T ) ∈ Ri | pwtσ({S}, T1, . . . , Tk) v pwtσ({T}, T1, . . . , Tk)}
i← i+ 1

until Ri = Rj

I ′(T ) = 1 for every T ∈ N ′, and P ′ contains the two productions: [lit ] → one
and [n]→ NP1([lit ]) both with weight 1. The two Wtg are displayed in Fig. 2.

Finally, let us develop an algorithm that computes the greatest backward
simulation, which we denote by � for the rest of this section. Our algorithm,
which is displayed in Algorithm 1, proceeds in a similar fashion as the algorithm
for the greatest simulation of a labeled transition system [17] and the algorithm
for the coarsest backward bisimulation of [21]. Let r be the maximal rank of
symbol in Σ. Our algorithm is conceptually simple, but its run-time complexity
is O(|N |2+r|P |), which is very high compared to the algorithms of [21, 17], which
run in time O(|N |r|P |). A more efficient implementation, which utilizes the
ideas of [21, 17], remains a topic for further research. We compute � directly by
refining the trivial quasi-order Q×Q iteratively. The main property that allows
the refinement step is outlined in the next lemma.

Lemma 7. Let σ ∈ Σk and T1, . . . , Tk ⊆ N be up-sets. Then for every S � T

pwtσ({S}, T1, . . . , Tk) v pwtσ({T}, T1, . . . , Tk) .

Proof. The proof can easily be obtained from the definitions and is omitted. ut

Thus, in our algorithm we need to select up-sets (with respect to �) and can
then discard some pairs (S, T ) of nonterminals such that T cannot simulate S.
A simple implementation of Algorithm 1 runs in time O(|N |2+r|P |), if we select
the up-sets in order of their cardinality and reuse the already computed sums.

Theorem 8 (cf. [18, Theorem 9]). Algorithm 1 can be implemented to run
in time O(|N |2+r|P |) and returns Ri = �.

Proof. The time bound is easy to obtain. For the correctness, we prove the
following two statements for every i (encountered during execution): (i) � ⊆ Ri
and (ii) ↑Ri(S) is an up-set (with respect to �) for every S ∈ N . Let us proceed
by induction on i. Both statements are true for i = 0 because R0 = N ×N and
↑R0

(S) = N for every S ∈ N . Now, suppose that S � T . Then (S, T ) ∈ Ri by the
induction hypothesis. Moreover, by Lemma 7, (S, T ) ∈ Ri+1. Thus � ⊆ Ri+1.
Now, let S, T, U ∈ N be such that S ∈ ↑Ri+1

(T ) and S � U . Since � ⊆ Ri+1, we
also have (S,U) ∈ Ri+1 and thus U ∈ ↑Ri+1

(T ), which proves that ↑Ri+1
(T ) is an



up-set (with respect to �). Clearly, at termination, Ri is a backward simulation
(see Definition 2). Since � ⊆ Ri and � is the greatest backward simulation
for M , we can conclude that Ri = �. ut

4 Forward simulation

The previous section established a new method to reduce Wtg. However, once
we reduce with the help of the greatest backward simulation, we cannot reduce
the Wtg any further with the help of backward simulation. Next, we introduce
an alternative procedure, which can, in principle, reduce such Wtg further. In
fact, the two minimization procedures can be alternated for maximal reduction.
The new procedure uses a forward version of the simulation of Sect. 3. Our
forward simulation is a generalization of the forward bisimulation of [21] and
the forward simulation of [18], which in turn is the weighted analogue to the
composed simulations of [17]. For a definition of ‘pwt’ see the paragraph before
Definition 2. To simplify the following discussion, we will generally omit the set
braces for singleton sets.

Definition 9 (cf. [18, Definition 10]). A quasi-order � on N is a forward
simulation if for every S � T :

– I(S) v I(T ) and
– for every symbol σ ∈ Σk, all nonterminals S′, S1, . . . , Sk ∈ N , and 1 ≤ i ≤ k

pwtσ(↑S′, S1, . . . , S, . . . , Sk) v pwtσ(↑S′, S1, . . . , T, . . . , Sk)

where S and T occur at the (i+ 1)th position.

Our definition of forward simulation is more general than the existing no-
tions of [21, 17, 18]. However, we do not consider general upward simulations [17]
with respect to arbitrary downward simulations here since we believe that two
independent simulations (our forward simulation does not depend on a backward
simulation) are easier to understand and analyze. Moreover, we can always first
use backward-simulation minimization and then forward-simulation minimiza-
tion to achieve roughly the same as with an upward-simulation minimization
of [17]. As already remarked in the previous section, the more general the notion
of simulation, the better the reduction rate (potentially at the expense of the
run-time of the reduction algorithm).

Another similarity to the backward case is that our definition of forward
simulation is hard to illustrate. Thus, let us proceed with the principal properties
of forward simulations. As in the backward case, there exists a greatest forward
simulation. This follows from the fact that the reflexive, transitive closure of the
union of any two forward simulations is again a forward simulation. From now
on, let � be a forward simulation.

The main property of similar states is slightly more complicated this time.
We need an additional notion. A context is a tree of TΣ∪{�}, where � is a



new nullary symbol, such that the symbol � occurs exactly once. The set of all
contexts is denoted by CΣ . The tree c[t] is obtained by replacing the symbol �
in the context c ∈ CΣ by the tree t ∈ TΣ .

Lemma 10 (see [18, Lemma 12]). Let c ∈ CΣ, S′ ∈ N , and S � T . Then∑
T ′∈↑S′

wt(c[S], T ′) v
∑

T ′∈↑S′

wt(c[T ], T ′) .

Proof. This property is not essential for our goals, so we omit the proof. ut

Again, we want to use the simulation to reduce the size of the Wtg. The
definition of the collapsed WTG is slightly different this time. As before, let
' be the equivalence relation {(S, T ) | S � T � S}.

Definition 11 (see [18, Definition 13]). The collapsed Wtg, which is de-
noted by G/', is (N ′, Σ, P ′, I ′) where

– N ′ = {[S] | S ∈ N},
– P ′ contains, for every σ ∈ Σk and S, S1, . . . , Sk ∈ N , the production

[S]
pwtσ(↑S,S1,...,Sk)−−−−−−−−−−−−→ σ([S1], . . . , [Sk]) ,

– I ′([S]) = I(S) for every S ∈ N .

It is again simple to show that the second and third item in Definition 11 are
well-defined (i.e., independent of the chosen representative). Next, we prove the
correctness of our construction.

Theorem 12 (see [18, Theorem 15]). The Wtg G and G/' are equivalent.

Proof. Let (G/') = (N ′, Σ, P ′, I ′). As before, we use wt′ for weights computed
using G/'. As a first step, we prove that wt′(t, [S]) =

∑
T∈↑S wt(t, T ) for every

t ∈ TΣ and S ∈ N . Suppose that t = σ(t1, . . . , tk) for some σ ∈ Σk and
t1, . . . , tk ∈ TΣ . Then we compute as follows where the equality marked † is
explained below.

wt′(t, [S]) =
∑

S1,...,Sk∈N
pwtσ(↑S, S1, . . . , Sk) ·

k∏
i=1

wt′(ti, [Si])

=
∑

S1,...,Sk∈N
T1∈↑S1,...,Tk∈↑Sk

pwtσ(↑S, S1, . . . , Sk) ·
k∏
i=1

wt(ti, Ti)

†
=

∑
T1,...,Tk∈N

pwtσ(↑S, T1, . . . , Tk) ·
k∏
i=1

wt(ti, Ti) =
∑
T∈↑S

wt(t, T ) .

Let us take a closer look at the equation marked †. We can show this equality by
showing both directions. Let us consider v first. Clearly, it is sufficient to show



that for each summand of the left-hand side there exists a larger summand in
the right-hand side. For this we consider a summand

pwtσ(↑S, S1, . . . , Sk) ·
k∏
i=1

wt(ti, Ti)

of the left-hand side of † for some nonterminals S1, . . . , Sk, T1, . . . , Tk ∈ N such
that Ti ∈ ↑Si for every 1 ≤ i ≤ k. By Definition 9 and Si � Ti we have
pwtσ(↑S, S1, . . . , Sk) v pwtσ(↑S, T1, . . . , Tk). Consequently,

pwtσ(↑S, S1, . . . , Sk) ·
k∏
i=1

wt(ti, Ti) v pwtσ(↑S, T1, . . . , Tk) ·
k∏
i=1

wt(ti, Ti)

and the latter is a summand on the right-hand side of †. For the converse, let us
consider a summand pwtσ(↑S, T1, . . . , Tk) ·

∏k
i=1 wt(ti, Ti) in the right-hand side

where T1, . . . , Tk ∈ N . Then this is clearly also a summand of the left-hand side
of † (by setting Si = Ti). This completes the proof of our auxiliary statement.
For the statement of the theorem, we compute as follows:

wt′(t) =
∑
S∈N

I ′([S]) · wt′(t, [S]) =
∑
S∈N

I(S) ·
( ∑
T∈↑S

wt(t, T )
)

=
∑
S∈N

I(S) · wt(t, S) = wt(t)

because I(S) v I(T ) if S � T . This proves our theorem. ut

As in the backward case, the Wtg obtained by reducing with respect to
the greatest forward simulation cannot be reduced any further with the help of
forward simulation. Let us look at an example for illustration.

Example 13. Consider the original Wtg of Example 6. Let � be the greatest
forward simulation. Then pro � nmb � lit � pro and n � np � lit-np � n.
The reduced Wtg coincides with the one of Example 6. Note that this is not a
general property, but we rather chose a Wtg with this property to save space.

Now let us develop an algorithm (see Algorithm 2) for the greatest forward
simulation, which we denote by � for the rest of the section. It will run in
time O(|N |3r|P |), which is high compared to the run-time O(|N |r|P |) of the
preceding algorithms [21, 17]. The initial weight of a nontermial T that sim-
ulates S must be larger than that of S. Thus, we start with this restricted
quasi-order in Algorithm 2. Again, we use a simple property that allows us to
refine iteratively.

Lemma 14. Let σ ∈ Σk, S1, . . . , Sk ∈ N , 1 ≤ i ≤ k, and T ⊆ N be an up-set.
Then pwtσ(T , S1, . . . , S, . . . , Sk) v pwtσ(T , S1, . . . , T, . . . , Sk) for every S � T
where S and T occur at the (i+ 1)th position.



Algorithm 2 Minimization algorithm using forward simulation.
R0 ← {(S, T ) ∈ N ×N | I(S) v I(T )}
i← 0
repeat

j ← i
for all σ ∈ Σk, n ∈ {1, . . . , k}, and S′, S1, . . . , Sk ∈ N , let T ′ = ↑Ri(S

′) and
do

Ri+1 ← {(S, T ) ∈ Ri | pwtσ(T ′, . . . , S, . . . ) v pwtσ(T ′, . . . , T, . . . )}
i← i+ 1

until Ri = Rj

Proof. The proof can be obtained easily from Definition 9. ut

Theorem 15 (see [18, Theorem 19]). Algorithm 2 can be implemented to
run in time O(|N |3r|P |) and returns Ri = �.

Proof. Again, the given time bound is easy to obtain. We prove the following
two statements for every relevant i: (i) � ⊆ Ri and (ii) ↑Ri(S

′) is an up-set
(with respect to �) for every S′ ∈ N . By the first condition of Definition 9
we have � ⊆ R0. Moreover, if � ⊆ Ri, then ↑Ri(S

′) is an up-set with respect
to � for every S′ ∈ N (see the proof of Theorem 8). Now, suppose that S � T .
Then (S, T ) ∈ Ri by the induction hypothesis. Moreover, by Lemma 14 we
also have (S, T ) ∈ Ri+1 because ↑Ri(S

′) is an up-set (with respect to �). Thus
� ⊆ Ri+1. Clearly, Ri is a forward simulation (see Definition 9) at termination.
Since � ⊆ Ri, we can conclude that Ri = �. ut

Conclusion

We introduced the most general simulation relations for weighted tree automata,
which generalize all the existing notions of [21, 17, 26]. Such simulations enjoy the
theoretical properties we expect, but the computation of the greatest backward
and forward simulation is significantly more expensive than the corresponding
computations for the notions of [21, 17, 26]. Earlier work in [21, 17, 26] reports
reductions of 7–76.1% (with an average around 50%) with less general forms of
(bi)simulation, so our work will result in at least as much reduction. Future im-
plementation work will be undertaken to verify how much our approach improves
upon those results.
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