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Abstract. A weighted tree transformation is a function � : T��T� ! A

where T� and T� are the sets of trees over the ranked alphabets� and�,
respectively, and A is the domain of a semiring. The input and output
product of � with tree series ' : T� ! A and  : T� ! A are the weighted
tree transformations ' / � and � .  , respectively, which are de�ned by
(' / �)(t; u) = '(t) � �(t; u) and (� .  )(t; u) = �(t; u) �  (u) for every
t 2 T� and u 2 T�. In this contribution, input and output products of
weighted tree transformations computed by weighted extended top-down
tree transducers (wxtt) with recognizable tree series are considered. The
classical approach is presented and used to solve the simple cases. It is
shown that input products can be computed in three successively more
di�cult scenarios: nondeleting wxtt, wxtt over idempotent semirings,
and weighted top-down tree transducers over rings.

1 Introduction

Top-down tree series transducers [1{3] are a weighted version of top-down tree
transducers [4{8]. Here we consider weighted extended top-down tree trans-
ducers (wxtt) [9{11], which are a generalization of top-down tree series trans-
ducers to allow several symbols in the left-hand side of rules. The framework
Tiburon [12] implements wxtt over various weight semirings like the Boolean
semiring (f?;>g;_;^;?;>), the arctic semiring (IN [ f�1g;max;+;�1; 0),
and the probability semiring (IR�0;+; �; 0; 1), where elements outside the inter-
val [0; 1] are included because a semiring is closed under addition.

In this contribution, we will consider two standard operations for wxtt: in-
put and output product. Given a wxtt M and a (suitable) recognizable tree
series ' [13{16, 3], their input product1 should be a wxtt that computes the
weight ('; t) � �M (t; u) for every input tree t and output tree u, where �M is
the weighted tree transformation computed by M . In other words, the obtained
wxtt shall scale the weight �M (t; u) assigned by M with the weight ('; t) as-
signed by ' to the input tree. The output product is de�ned analogously. For

? Financially supported by Ministerio de Educaci�on y Ciencia grants JDCI-2007-760
and MTM-2007-63422.

1 Formally, the input product is a weighted tree transformation that might or might
not be computable by another wxtt. In applications the former case is very desirable.



completeness' sake, we note that those products are partial; i.e., there exist wxtt
and recognizable tree series whose product cannot be computed by a wxtt.

Input and output product have several applications. First, they o�er the
possibility to integrate a stand-alone parser into a wxtt M . We can encode the
parser (e.g., the Collins parser [17]) as a recognizable tree series and then per-
form the input product. The obtained wxtt will multiply the parse weight of
the input tree to the weight of each tree pair in M . Another common usage
is restriction, in which we want to limit the input (or output) trees to be of a
given (recognizable) shape. For every recognizable tree language L [18, 19] we
can obtain a recognizable tree series 1L that assigns the weight 1 (neutral ele-
ment of the multiplication) to each tree of L and weight 0 (neutral element of
the addition) to each remaining tree. The input product with 1L then restricts
the weighted tree transformation to input trees of L. More precisely, the weight
of any tree pair (t; u) will be 0 if t =2 L, whereas the weight of the tree pair re-
mains �M (t; u) if t 2 L. This particular use of the input product is also known as
(generalized) Bar-Hillel construction, which originally restricts (or intersects)
a context-free grammar with a regular language [20]. If L is a singleton, then the
Bar-Hillel construction essentially yields a representation of the parses of the
element of L. Consequently, the Bar-Hillel construction can be understood
as a parser. This use is explained in detail in [21]. Finally, the input product
is equivalent to recognizable look-ahead [8, 11], so that devices with such look-
ahead can be simulated by an input product. This can be used to prove that
certain devices with recognizable look-ahead are as powerful as without. For
example, Theorem 2 of Sect. 4 easily yields a generalization to the weighted
case of [11, Theorem 4.4], which shows that nondeleting wxtt have recognizable
look-ahead in the unweighted case (i.e., over the Boolean semiring).

The output product can easily be obtained with existing composition con-
structions [22, 7, 2, 23]. The same applies to the input product if the wxtt is linear
and nondeleting [2, 11]. The main results of this paper concern nonlinear wxtt
and we obtain input product constructions for:

{ nondeleting wxtt over commutative semirings,
{ some-copy nondeleting wxtt over idempotent commutative semirings, and
{ some-copy nondeleting wxtt over commutative rings.

The �rst construction is rather standard. Some-copy nondeleting wxtt are de-
�ned such they fully explore at least one copy of each input subtree. In contrast,
in a nondeleting wxtt every copy of an input subtree is fully explored. Whenever
the wxtt copies a subtree, the second construction nondeterministically guesses
a copy that fully explores the subtree. The idempotence of the semiring guaran-
tees that the correct weight is obtained even if several copies are fully explored
(i.e., several guesses are successful). The �nal construction for rings (note that
no nontrivial idempotent commutative semiring is a commutative ring) is more
involved because a scheme needs to be developed such that several successful
explorations cancel each other out in a systematic way. The main problem is
that it cannot be enforced with the state behavior alone that only one guess is
successful.



2 Preliminaries

The set IN is the set of nonnegative integers. We let [k] = fi j 1 � i � kg for
every k 2 IN. Note that [0] = ;. The set of all strings over a set Q is denoted
by Q�, of which the empty string is ". The length jwj of a string w 2 Q� is
the number of occurrences of symbols. The ith symbol in w is denoted by wi.
We use a �xed set X = fxi j i 2 INg of formal variables and its �nite subsets
Xk = fxi j i 2 [k]g for every k 2 IN. Consequently, X0 = ;.

A ranked alphabet (�; rk) is a �nite set of symbols � together with a rank
mapping rk: � ! IN, which associates a rank to each symbol. We often just
write � instead of (�; rk) and write �k for the set of all symbols in � that have
rank k. The set of �-trees indexed by a set V , which is denoted by T�(V ), is the
smallest set such that (i) V � T�(V ) and (ii) �(t1; : : : ; tk) 2 T�(V ) for every
� 2 �k and t1; : : : ; tk 2 T�(V ). We write � for �() with � 2 �0. In addition,
we write T� for T�(;). Let t 2 T�(V ) be a tree. The set pos(t) of positions (or
nodes) in t is inductively de�ned by pos(v) = f"g for every v 2 V and

pos(�(t1; : : : ; tk)) = f"g [ fiw j i 2 [k]; w 2 pos(ti)g

for every � 2 �k and t1; : : : ; tk 2 T�(V ). We write t(w) for the label of t at
position w. Moreover, pos`(t) = fw 2 pos(t) j t(w) = `g for every ` 2 � [ V .
The tree t is linear (respectively, nondeleting) in V if jposv(t)j � 1 (respectively,
jposv(t)j � 1) for every v 2 V . We write C�(Xk) for the subset of all trees
of T�(X) that are linear and nondeleting in Xk.

Clearly, the positions pos(t) � IN� are lexicographically ordered. Thus, the
occurrences posv(t) of a variable v 2 V in t are also ordered. Given n pairwise
distinct variables v1; : : : ; vn 2 V and tvi1; : : : ; tvimi

2 T�(V ) for every i 2 [n]
with mi = jposvi(t)j, the substitution

t[v1  (tv11; : : : ; tv1m1
); : : : ; vn  (tvn1; : : : ; tvnmn

)]

or just t[vi  (tvi1; : : : ; tvimi
) j i 2 [n] ] denotes the tree obtained by replac-

ing, for every i 2 [n], the mi occurrences of vi in t by (tvi1; : : : ; tvimi
) in order;

i.e., the leftmost occurrence of vi is replaced by tvi1 and the rightmost occur-
rence is replaced by tvimi

. If t 2 C�(Xn) and Xn = fv1; : : : ; vng, then we just
write t[tx11; : : : ; txn1] instead of the cumbersome t[x1  (tx11); : : : ; xn  (txn1)].
Moreover, for every t 2 T� , let match(t) be the �nite set

match(t) = f(l; t1; : : : ; tk) j l 2 C�(Xk); t1; : : : ; tk 2 T� ; l[t1; : : : ; tk] = tg :

A (commutative) semiring A = (A;+; �; 0; 1) is an algebraic structure such
that (A;+; 0) and (A; �; 1) are commutative monoids, a � (b+ c) = (a � b) + (a � c)
for every a; b; c 2 A, and a � 0 = 0 = 0 � a for every a 2 A. It is idempotent if
1 + 1 = 1. In an idempotent semiring A the natural order � � A� A, which is
given by a � b if and only if a + b = b for every a; b 2 A, is a partial order for
which the operations + and � are monotone. Finally, the semiring A is a ring if
there exists an element (�1) 2 A such that 1 + (�1) = 0. For the rest of the
paper, let A = (A;+; �; 0; 1) be a commutative semiring.



Let � be a ranked alphabet. Every mapping ' : T� ! A is a tree series,
which is also expressed by ' 2 AhhT�ii. For every t 2 T� the value '(t) of t in '
is usually written as ('; t). Next, we recall recognizable tree series [13, 24, 3]. A
weighted tree automaton (wta) [24] is a system N = (P;�; F; �) where (i) P is a
�nite set of states, (ii) � is a ranked alphabet of input symbols, (iii) F : P ! A
is a �nal weight vector, and (iv) � = (�k)k2IN is a family of weighted transitions
with �k : P

k � �k � P ! A for every k 2 IN. We generalize our wta to work
on trees of T�(Xn) with n 2 IN. Note that T� = C�(X0) � T�(Xn). For all
p1; : : : ; pn 2 P we extend � to a mapping hp1���pn� : T�(Xn)! AP by

hp1���pn� (xi)p =

(
1 if p = pi

0 otherwise

hp1���pn� (�(t1; : : : ; tk))p =
X

q1;:::;qk2P

�k(q1 � � � qk; �; p) �
kY
i=1

hp1���pn� (ti)qi

for every i 2 [n], � 2 �k, t1; : : : ; tk 2 T�(Xn), and p 2 P . The wta N recognizes
the tree series kNk 2 AhhT�ii, which is given by (kNk; t) =

P
p2P F (p) � h�(t)p

for every t 2 T� . Recall that A is commutative, so F (p) � h�(t)p = h�(t)p �F (p).
A tree series that is recognized by some wta is recognizable.

Next, we de�ne our main tree transducer model: the weighted extended top-
down tree transducer [9{11]. Our de�nition will be slightly non-standard, but the
particular syntax will prove useful for our constructions. We assure the reader
that our semantics will be equivalent to the existing de�nitions [9{11, 25]. A
weighted extended top-down tree transducer (wxtt) is a system (Q;�;�; I;R)
where (i) Q is a �nite set of states, (ii) � and � are ranked alphabets of input
and output symbols, respectively, (iii) I : Q ! A is an initial weight vector, and

(iv) R is a �nite set of rules of the form (q; l)
a
! (w; r) with q 2 Q, l 2 C�(Xk),

a 2 A, w 2 (Q�)k, and r 2 T�(Xk) such that jwij = jposxi(r)j for every i 2 [k].

Intuitively speaking, a rule (q; l)
a
! (w; r) consists of a state q, a left-hand side l,

a weight a 2 A, a control word w, and a right-hand side r. The control word
consists of k words w1; : : : ; wk of states. For each i 2 [k], the ith word records the
states (in order) that are associated to the occurrences (in lexicographic order)
of the variable xi in r. A more classical rule shape, which we use in graphi-
cal representations, assumes that the states have rank 1 and presents the rule
(q; l)

a
! (w; r) as q(l)

a
! r[xi  ((wi)1(xi); : : : ; (wi)jwij(xi)) j 1 � i � jwj ]. An

example is displayed in Fig. 1 (left). The rule (q; l)
a
! (w; r) 2 R is linear (re-

spectively, nondeleting) if jwij � 1 (respectively, jwij � 1) for every 1 � i � jwj.
The wxtt M is linear (respectively, nondeleting) if every rule � 2 R is so. It is

a weighted top-down tree transducer (wtt) if for every (q; l)
a
! (w; r) 2 R there

exists � 2 �k such that l = �(x1; : : : ; xk). The example rule of Fig. 1 (left) is
nondeleting, but not linear. Any wxtt with that rule is not a wtt.

In the following, let M = (Q;�;�; I;R) be a wxtt. To simplify the devel-

opment, we assume henceforth that l 6= x1 for every rule (q; l)
a
! (w; r) 2 R.
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Fig. 1. Left: Graphical representation of the example rule (q; l)
a
! ((pq; q; p); r) where

l = �(�(x1; x2); x3) and r = �(�(x1; x2); �(x1; x3)). Right: Example of deleting rules.

In other words, we disallow "-rules.2 We use the symbol q with and without
additional subscripts for elements of Q. Consequently, if we write w = q1 � � � qn,
then implicitly qi 2 Q for every i 2 [n]. The semantics of the wxtt M (without
epsilon rules) is de�ned as follows: Let hR : T� � T� ! AQ be the mapping
de�ned for every t 2 T� , u 2 T�, and q 2 Q by

hR(t; u)q =
X

(q;l)
a
!(q11���q1n1 ;:::;qk1���qknk ;r)2R

(l;t1;:::;tk)2match(t);8i2[k];8j2[ni] : uij2T�
u=r[xi (ui1;:::;uini )ji2[k]]

a �
Y
i2[k]
j2[ni]

hR(ti; uij)qij :

The wxttM computes the tree transformation �M : T��T� ! A, which is given
by �M (t; u) =

P
q2Q I(q) � hR(t; u)q for every t 2 T� and u 2 T�.

3 Input and output product

In this section, we formally de�ne input and output product and then dis-
cuss the standard approach to solve the associated algorithmic problems. Let
� : T� � T� ! A, ' 2 AhhT�ii, and  2 AhhT�ii. The input product ' / � of �
with ' and the output product � .  of � with  are (' / �)(t; u) = ('; t) � �(t; u)
and (� .  )(t; u) = �(t; u) � ( ; u) for every t 2 T� and u 2 T�.

Classical solutions to the problems of input and output products are spe-
cialized Bar-Hillel constructions [20, 21] or compositions [22, 7]. The compo-
sition approach �rst embeds a tree series ' 2 AhhT�ii into the identity map-
ping id' : T��T� ! A, which is de�ned by id'(t; t

0) = ('; t) if t = t0 and 0 oth-
erwise for every t; t0 2 T� . Given two tree transformations �1 : T��T� ! A and
�2 : T� � T� ! A, the composition �1 ; �2 : T� � T� ! A of �1 and �2 is given
by (�1 ; �2)(t; v) =

P
u2T�

�1(t; u) � �2(u; v) for every t 2 T� and v 2 T� . Note
that, in general, the sum in the de�nition of �1 ; �2 may be in�nite, but in our
compositions �1 ; �2 one of the tree transformations �1 or �2 will always be an

2 Aside from well-de�nedness issues, there is no additional complexity with "-rules. All
our constructions can easily be adapted to work for general wxtt with well-de�ned
semantics, but we would like to avoid an in-depth discussion of well-de�nedness.



identity mapping id'. This yields that the sum in the de�nition of the composi-
tion �1 ; �2 essentially degenerates into a single summand. Thus, we can express
input and output product as ' / � = id' ; � and � .  = � ; id , respectively.

In this contribution, we consider input and output products of tree transfor-
mations that are computed by wxtt with recognizable tree series. The identity
mappings id' and id can be computed by linear and nondeleting wtt for all
recognizable tree series ' 2 AhhT�ii and  2 AhhT�ii. Thus, the main question
with regard to the composition approach is whether the given compositions for
input and output product can be computed by another wxtt.

First, let us discuss the question for an unweighted (i.e., Boolean weighted3)
wtt M [5, 4]. By the composition results of [22, 7], the composition approach
works for: (i) the output product and (ii) the input product if M is linear and
nondeleting. Further results can be obtained for special recognizable tree series
such as deterministic top-down recognizable tree series [26, 18], but we will focus
on general recognizable tree series in this contribution. The two mentioned results
generalize to wtt over commutative semirings [2, 23] and can easily be extended
to wxtt as well. If we were to discuss input and output product also for weighted
extended bottom-up tree transducers [9, 2, 27], then the roles would essentially
exchange. The input product would be easy with the help of the composition
approach and output products could be achieved following our approaches for
input products of wxtt.

4 Nondeleting transducers

From now on, let M = (Q;�;�; I;R) be a wxtt and N = (P;�; F; �) be a wta.
The aim of this and the following sections is to present constructions of M 0 such
that �M 0 = kNk / �M . This problem is simple if M is nondeleting. Each input
subtree is visited at least once by M due to nondeletion, and we can arbitrarily
select one call4 to perform the input product. We select the �rst call here. As a
notational convenience, we sometimes use angled brackets `h' and `i' instead of
parentheses `(' and `)'.

De�nition 1. The input product N /nM is the wxtt (Q0; �;�; I 0; R[R0) where

{ Q0 = Q [ (Q� P ),
{ I 0(q) = 0 and I 0(hq; pi) = I(q) � F (p) for every q 2 Q and p 2 P , and

{ (hq; pi; l)
a�a0
�! (hq11; p1iq12 � � � q1n1 ; : : : ; hqk1; pkiqk2 � � � qknk ; r) 2 R

0 for every

nondeleting rule (q; l)
a
! (q11 � � � q1n1 ; : : : ; qk1 � � � qknk ; r) 2 R and all states

p; p1; : : : ; pk 2 P where a0 = hp1���pk� (l)p.

Mind that in a nondeleting wxtt all rules are nondeleting, which allows us to
arbitrarily select any call because each call will fully explore its subtree.

3 The Boolean semiring is B = (f?;>g;_;^;?;>).
4 In a rule (q; l)

a
! (w; r) 2 R any (wi)j 2 Q with 1 � i � jwj and 1 � j � jwij is also

called `call ' to the subtree represented by xi. If jwij � 2, then there are several calls
to the same subtree.



Theorem 2. If M is nondeleting, then �(N/nM) = kNk / �M .

Our construction can easily be generalized to settings, where based on the
rule shape, the call that fully explores its subtree can be infered. The next
sections will deal with cases, in which such a prediction is not possible.

5 Idempotent semirings

In this and the next section, we develop successively more complicated input-
product constructions for deleting wxtt. Clearly, if M deletes a particular input
subtree in all copies, then we cannot obtain a general input-product construction
because the deleted subtree might be essential for the wta N . Consequently, we
restrict our attention to wxtt that visit each input subtree at least once. In
principle, algorithms for the input product can be imagined in this setting, but
such an algorithm would require extensive book-keeping. This is due to the fact
that we would need to record which subtree is visited by which call, which seems
unfeasible in a general-purpose construction. Nevertheless such a construction
should eventually be established for the particular wxtt that are the result of
binarizing nondeleting wxtt.

Let us consider the rules of Fig. 1 (right). Each subtree in the tree 
(�(�; �))
is visited at least once starting with state q. The �rst rule creates two copies of the
input subtree �(�; �), of which the �rst call explores the node labeled `�' and the
left subtree � (and deletes the right subtree �). The second call explores the `�'-
node and the right subtree �. Consequently, there is no single call that explores
the full subtree �(�; �), which yields that the product construction needs to
keep track which parts are explored by which call. To avoid this additional book-
keeping, we introduce some-copy nondeletion, which demands that for each input
subtree there is at least one call that fully explores the whole subtree.

De�nition 3. A state q 2 Q is t-nondeleting with t 2 T� if for every rule
(q; l)

a
! (w; r) 2 R, (l; t1; : : : ; tk) 2 match(t), and 1 � i � jwj there exists

1 � j � jwij such that (wi)j is ti-non-deleting. The wxtt M is some-copy non-
deleting if q is t-nondeleting for every t 2 T� and q 2 Q such that I(q) 6= 0.

Note that any rule ful�lling the premise in De�nition 3 must be nondelet-
ing, however, not all rules R need to be nondeleting for M to be some-copy
nondeleting. Classical nondeletion might be called \all-copies nondeletion" in
analogy. We further note that some-copy nondeletion is a semantic property.
It is decidable (because for every state q 2 Q the set of all trees t 2 T� such
that q is t-nondeleting is a recognizable tree language [18, 19]), but it might not
be a practical property. However, it encompasses several interesting forms of
\nondeletion" (such as the ones mentioned at the end of the previous section),
and thus allows us to present one construction (and its proof of correctness) for
several \nondeletion" properties. We already argued that the state q with the
rules of Fig. 1 (right) is not 
(�(�; �))-nondeleting because neither q1 nor q2
are �(�; �)-nondeleting. However, the wxtt with the rules of Fig. 2 is some-copy
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Fig. 2. Rules of a some-copy nondeleting wxtt.

nondeleting if q is the only initial state. Note that the call that fully explores
a subtree here depends on the input tree. For example, the �rst call created in
the �rst rule fully explores the subtree �1(�; �) in the tree 
(�1(�; �)), whereas
the second call fully explores �2(�; �) in the tree 
(�2(�; �)). The example also
demonstrates that it is not su�cient that one (non-deterministic) choice fully
explores a subtree. Although the state q2 can fully explore the subtree �1(�; �),
it is not �1(�; �)-nondeleting because of the last rule of Fig. 2.

Since we cannot infer the correct call that fully explores a subtree from the
information present in a rule, we have to guess it. IfM is some-copy nondeleting,
then we know that at least one such guess must be correct. However, it might
happen that several calls eventually fully explore the same subtree. The author
is unaware of any method to exclude this behavior with the help of the states
alone. Consequently, we only prove that our construction is correct in idempotent
semirings A. The idempotency yields that several equivalent (or even partial)
explorations can be performed without e�ect on the weight.

De�nition 4. The input product N /iM is the wxtt (Q0; �;�; I 0; R[R0) where

{ Q0 = Q [ (Q� P ),
{ I 0(q) = 0 and I 0(hq; pi) = I(q) � F (p) for every q 2 Q and p 2 P , and

{ (hq; pi; l)
a�a0
�! (q11 � � � hq1j1 ; p1i � � � q1n1 ; : : : ; qk1 � � � hqkjk ; pki � � � qknk ; r) 2 R0

for every nondeleting rule (q; l)
a
! (q11 � � � q1n1 ; : : : ; qk1 � � � qknk ; r) 2 R, all

states p; p1; : : : ; pk 2 P , and j1 2 [n1]; : : : ; jk 2 [nk] where a
0 = hp1���pk� (l)p.

Note that only one state of each part in the control word is replaced. Let us
illustrate the construction on the rules of Fig. 2.

Example 5. Suppose thatA = (IN[f�1g;max;+;�1; 0) is the arctic semiring,
which is idempotent. Moreover, suppose that M is given by the rules of Fig. 2
and that N is the trivial wta with P = fpg such that (kNk; t) = 0 for every
t 2 T� . Clearly, kNk / �M = �M , so we would not need a construction at all, but
let us consider the input tree t = �1(�; �) and the output tree u = �(�; �). A
simple calculation shows that hR(t; u)q1 = 3 and hR(t; u)q2 = max(3; 6). Now,
let N /i M = (Q0; �;�; I 0; R0). Then hR0(t; u)hq1;pi = 3 and hR0(t; u)hq2;pi = 3,
which shows that the derivation with weight 6 is not possible in R0 with a paired



state because the last rule (which resulted in the weight 6) of Fig. 2 is deleting
and thus no new rules (with a paired state) are created for it.

Theorem 6. If M is some-copy nondeleting and A an idempotent semiring,
then �(N/iM) = kNk / �M .

6 Rings

In this �nal section, we will discuss the input product for wxtt over rings. From
here on, we assume that A is a ring. To keep the presentation simple, we make
the additional restriction that M is a wtt. This will make the discussion of
the t-nondeletion property easier. We note that the restriction is done only for
convenience. More elaborate versions of our construction could easily overcome
the restriction. In the previous section we could easily allow spurious derivations
because idempotence would \hide" the wrong weights corresponding to those
spurious derivations. This is no longer possible in rings because no non-trivial
(i.e., 0 6= 1) ring is idempotent. Consequently, our �nal construction needs to
take care of those spurious derivations. To this end, we use a simple elimination
pattern. Let Q � C be such that (Q � C) \ Q = ; for some set C. For every
set Q0 such that Q � Q0 and w 2 (Q0)�, we let jwjQ = jfi j wi 2 Qgj be the
number of Q-symbols in w. Our elimination pattern f : (Q0)� ! A is given by
f(w) = 1 if jwj � jwjQ is odd, and f(w) = �1 otherwise. Intuitively speaking,
an elimination mapping is a strategy such that the derivations properly cancel
to just one derivation irrespective of the set of calls that fully explore a certain
subtree. This set of calls is non-empty because we will again assume some-copy
nondeletion. Let us illustrate this for Q0 = Q[ (Q�C). For every w 2 (Q0)� let
base(w) be the unique word such that base(") = " and

base(q0w0) =

(
q0 base(w0) if q0 2 Q

q base(w0) if q0 = hq; ci

for every q0 2 Q0 and w0 2 (Q0)�. Let q 2 Q be an arbitrary state and c 2 C.
Given a nonempty set J � [n] with m = jJ j, which represents the calls that fully
explore a given subtree, w 2 Qn, and c1; : : : ; cn 2 C we haveX

w02(Q0)�nQ�

base(w0)=w
8i2[n] : w0

i=hwi;cii if w
0

i =2Q
8i2[n]nJ : w0

i2Q

f(w0) =
X

w02fq;hq;cigmnfqgm

f(w0) = 1 ;

where the last step is a trivial consequence of Pascal's triangle. Consequently,
for any choice of calls that fully explore a certain subtree, our elimination strat-
egy ensures that all but one cancel.

Before we proceed, let us consider the negation of t-nondeletion for wtt. Let
t = �(t1; : : : ; tk) for some � 2 �k and t1; : : : ; tk 2 T� . A state q 2 Q is t-deleting



if there exist a rule (q; �(x1; : : : ; xk))
a
! (w; r) 2 R and i 2 [k] such that (wi)j is

ti-deleting for every 1 � j � jwij. Consequently, a state q is �(t1; : : : ; tk)-deleting

for one of two reasons: (i) It has a deleting rule (q; �(x1; : : : ; xk))
a
! (w; r) 2 R, or

(ii) it has a nondeleting rule (q; �(x1; : : : ; xk))
a
! (w; r) 2 R such that all states

called on a subtree ti are ti-deleting. In the �rst case, the subtrees t1; : : : ; tk are
obviously irrelevant. This characterization yields a simple check of t-deletion in-
side a wtt, which will be coded in the next construction. We need some additional
notation. Let C = P(P(Q)) where P(S) denotes the powerset of S. Moreover,
for every � 2 �k, i 2 [k], S � Q, C 2 C, and q 2 Q, let

nexti(�; q) = ff(wi)1; : : : ; (wi)jwijg j (q; �(x1; : : : ; xk))
a
! (w; r) 2 Rg

nexti(�; S) = f
[

q2S
wq j 8q 2 S : wq 2 nexti(�; q)g

nexti(q; �; C) =
[
S2C

nexti(�; S) [ nexti(�; q) :

De�nition 7. The input product N /r M is the wtt (Q0; �;�; I 0; R00) where

{ Q0 = Q [ (Q� C) [ (Q� C � P ) and R00 = R [R [R0,
{ for every q 2 Q, C 2 C, and p 2 P , let I 0(q) = I 0(hq; Ci) = 0 and

I 0(hq; C; pi) =

(
I(q) � F (p) if C = ffqgg

0 otherwise,

{ for every q 2 Q, C 2 C such that ; =2 C, � 2 �k, and every nondeleting rule
(q; �(x1; : : : ; xk))

a
! (w; r) 2 R, let

(hq; Ci; �(x1; : : : ; xk))
a�f(w0

1
)�:::�f(w0

k)�����������! (w01 � � �w
0
k; r) 2 R

for every w01; : : : ; w
0
k 2 (Q [ (Q� C))� nQ� such that for every i 2 [k]

w0i =

(
wi if w0i 2 Q

(wi; nexti(q; �; C)) otherwise,

{ for every rule (hq; Ci; �(x1; : : : ; xk))
a
! (w; r) 2 R and p; p1; : : : ; pk 2 P let

a0 = hp1���pk� (l)p and

(hq; C; pi; �(x1; : : : ; xk))
a�a0
�! (w01 � � �w

0
k; r) 2 R

0 ;

where, for every i 2 [k], the control word w0i is obtained from wi by replacing
the �rst paired state hq0; C 0i, by hq0; C 0; pii.

In other words, the paired states guess the calls that fully explore their
subtrees. Note that if there exists any deleting rule (q; l)

a
! (w; r) 2 R with

l = �(x1; : : : ; xk) and wi = " for some i 2 [k], then for every (hq; Ci; l)
e
! (w0; r0)

in R there exists 1 � j � jw0ij such that (w
0
i)j = hq

0; C 0i or (w0i)j = hq
0; C 0; pi with



hq; qi




x1

1
!

�

hq1; q1q2i

x1

q2

x1

hq1; q1q2i

�1

x1 x2

1
!

�

hq; qi

x1

hq; qi

x2

hq; qi

�

1
! �

hq; qi




x1

1
!

�

q1

x1

hq2; q1q2i

x1

hq2; q1q2i

�1

x1 x2

1
!

�

hq; ("; q)i

x2

hq; ("; q)i

x1

hq; qi




x1

�1
!

�

hq1; q1q2i

x1

hq2; q1q2i

x1

hq2; q1q2i

�2

x1 x2

1
!

�

hq; qi

x1

hq; qi

x2

Fig. 3. Some constructed rules of R where R is the set of rules of Fig. 2. We use a
string notation for the elements of C here.

; 2 C 0. This is due to the fact that ; 2 nexti(q; �; C) because ; 2 nexti(�; q). A
similar statement holds for R0. In essence, this blocks the computations, in which
the guess was wrong because a deletion would be possible. It is not quite obvious
that (aside from one) the various correct guesses cancel each other out.Let us
illustrate the construction on the example rules of Fig. 2.

Example 8. Suppose that A = (ZZ;+; �; 0; 1) is the ring of integers, and letM be
given by the rules of Fig. 2. To keep the example short, Fig. 3 only presents some
relevant rules of R that are constructed in the third item of De�nition 7. For
t = 
(�1(�; �)) and u = �(�(�; �); �(�; �)) we can compute that

hR(t; u)q = 1 + 6 = hR[R(t; u)hq;ffqggi :

Now, let S be the set R without the rule with weight 6, and let S be the
corresponding rule set constructed in the third item of De�nition 7. Then

hS(t; u)q = 1 = 1 + 1� 1 = hS[S(t; u)hq;ffqggi :

Theorem 9. If M is a some-copy nondeleting wtt and A is a ring, then

�(N/rM) = kNk / �M :
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