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Abstract
In this survey, several model of tree transducers are investigated with respect to properties that are relevant in
machine translation. These properties include: suitable expressiveness, symmetry, preservation of regularity,
and closure under composition. For three tree transducer models, top-down tree transducers, extended top-down
tree transducers, and extended multi bottom-up tree transducers, the relevant results are presented in an informal
and illustrative manner. The aim of the survey is provide a synopsis that illustrates how theory (tree transducers)
and practice (machine translation) interact on this particular example. Additional details can be found in the
original results that are referenced throughout the text.

1. Introduction

The two research areas of tree automata and tree transducers [22, 23, 20] and computational linguistics [33, 27]
started on a common basis. The first tree-transducer model, the top-down tree transducer, was developed by
Thatcher [41] and Rounds [38] to formalize the notion of transformational grammars of natural language,
which was proposed by Chomsky [7]. Unfortunately, the two areas diverged rather soon. The research in
automata theory focused on new and generalized models, which overcome certain expressiveness shortcomings
and algorithmic problems. For example, the following tree-transducer or related models were introduced and
investigated:

• bottom-up tree transducers [42] and attributed tree transducers [17],
• macro tree transducers [8, 9, 14] and modular tree transducers [15],
• tree bimorphisms [2] and various models with synchronization [37].

However, computational linguists had turned to simpler transducer models based on strings such as finite-
state transducers [26]. Those transducers are easy to illustrate, to implement, to generalize to a probabilistic
setting, and to train on large quantities of linguistic data. With the introduction of the IBM-models [5], the
statistical approach to machine translation and with it finite-state transducers became the de-facto standard in
machine translation. With an ever growing amount of available linguistic data and engineering improvements
that enabled computational linguists to utilize those large amounts of data, the translation quality of machine
translation systems improved steadily during the 90s. However, finite-state transducers are, in general, not
expressive enough for many applications in natural language processing because they cannot perform certain
translations in a systematic manner. A finite-state transducer can learn any particular translation, but it might
not be able to generalize properly (linguistically) due to its limited expressiveness.

Recently, computational linguists have turned back to tree-transducer models for problems such as machine
translation [28], question answering, and summarization. In these applications, it is important to directly
manipulate the phrase structure (the parse tree), which is imposed on sentences of natural language. For
example, tree transducers, which operate on this phrase structure, have the ability to move complete syntactical
structures (subtrees) or process different phrase structures (subtrees) differently. In particular, this led to a
reconnection of the two research areas [39, 40]. In this survey, we will focus on unweighted models of tree
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transducers in machine translation. It should be noted that in most application areas weighted versions are
used, but to keep the presentation simple, we present only unweighted devices.

Shieber [39] and others have argued that top-down tree transducers [41, 38] are generally inadequate for linguistic
tasks because they cannot straightforwardly model local rotation, which is the reordering of subtrees at different
tree depths. Top-down tree transducers need to use their copying power to realize this kind of transformation.
However, copying top-down tree transducers do not have nice algorithmic properties, which led to the conclusion
that they are generally inadequate. This drawback was addressed with the generalization of top-down tree
transducers to extended top-down tree transducers, which were mentioned in [38] and have been investigated
in [1, 2, 24, 29, 32]. This new model does not suffer from the outlined representational inadequacies, but none
of the natural classes of translations computed by it is closed under composition [2, 32]. This new problem was
addressed in [30, 13, 31], where the extended multi bottom-up tree transducer is proposed as an alternative. Its
expressiveness is generally higher than that of the corresponding extended top-down tree transducers and the
standard composition results hold true, which means that linear nondeleting and linear extended multi bottom-
up tree transducers compute a class of translations that is closed under composition. However, the additional
power yields that other important operations fail, in general. For example, even translations computed by linear
nondeleting extended multi bottom-up tree transducers do not preserve the regularity of tree languages.

In this survey, we recall the 3 mentioned models and compare them with respect to a number of linguistically
and theoretically motivated properties:

• Expr: The model is suitably expressive for applications in machine translation, which for the models
under consideration boils down to the ability to handle local rotations.

• Sym: The model is symmetric, which means that for every translation that can be computed with the
model also its inverse translation can be computed. This property allows us consider a tree transducer
that translates English to German as a translator from German to English simply by inverting it.

• Pres, Pres−1: The translations computed by the model preserve regularity [22, 23] (Pres) and their
inverses preserve regularity (Pres−1). Regular tree languages are finitely representable using regular tree
grammars [22, 23] and the property demands that the image (and preimage) of such a language under the
translation remains regular (i.e., representable by a regular tree grammar).

• Comp: The class of translations computed by the model is closed under composition; i.e., for every two
translations in the class also their composition is in the class.

We demonstrate for each mentioned model which properties it fulfills and which it fails. We generally try to
illustrate the necessary constructions and counterexamples. The interested reader may then consult the original
literature, which we indicate, to find the formal constructions and proofs. The aim of this survey is to provide an
overview of the properties that the various tree-transducer models have. In addition, the sketched constructions
shall serve as a starting point for the understanding of the general constructions. Finally, the survey shall raise
the awareness on both sides (automata theory and computational linguistics) and provide an easy, intuitive
access to the tree-transducer literature.

Overall, the survey is structured as follows: Section 2 recalls basic notions and notation. In Section 3 we present
the first model, which is the classical top-down tree transducer. In this section, we also explain the linguistic
and algorithmic motivation for some of the properties in our list. Section 4 continues the investigation with
extended top-down tree transducers. The last model, the extended multi bottom-up tree transducer, is discussed
in Section 5. In the last section (Section 6) we will present a table summarizing our findings. To increase the
usefulness of the summary table, we add some additional models that we do not discuss in detail in this survey
to the table.

2. Notation

The set of nonnegative integers is N, and we let [n] = {1, 2, . . . , n} for every n ∈ N. We use the fixed set
X = {x1, x2, . . . } of (formal) variables and its subsets Xn = {xi | i ∈ [n]} for every n ∈ N. Now, let A, B,
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and C be sets. Any subset of A×B is a relation (or translation) from A to B. Let τ ⊆ A×B and τ ′ ⊆ B ×C
be relations. The inverse relation τ−1 of τ is τ−1 = {(b, a) | (a, b) ∈ τ}. Moreover, the composition τ ; τ ′ of
τ and τ ′ is the relation τ ; τ ′ ⊆ A× C given by

τ ; τ ′ = {(a, c) | ∃b ∈ B : (a, b) ∈ τ, (b, c) ∈ τ ′} .

Finally, the image τ(S) of S ⊆ A under τ is τ(S) = {b ∈ B | ∃a ∈ S : (a, b) ∈ τ}, and the preimage of T ⊆ B
under τ is τ−1(T ). These notions for relations extend to classes of relations in the standard manner. A relation
on B is simply a subset of B × B. For every L ⊆ B, we let idL = {(b, b) | b ∈ L}. The reflexive transitive
closure of a relation τ ⊆ B ×B is denoted by τ∗.

An alphabet Σ is a nonempty, finite set of symbols. For every rk: Σ→ N, the pair (Σ, rk) is a ranked alphabet,
and a symbol σ ∈ Σ has rank rk(σ). We simply write Σ instead of (Σ, rk) whenever the mapping rk is clear
from the context or irrelevant. Moreover, we let Σk = {σ ∈ Σ | rk(σ) = k} for every k ∈ N. If we want to make
the rank k = rk(σ) of a symbol σ ∈ Σ explicit, then we write σk.

Let Σ be a ranked alphabet and S a set. For every ranked subalphabet ∆ ⊆ Σ and set T , we let

∆(T ) = {δ(t1, . . . , tk) | k ∈ N, δ ∈ ∆k, t1, . . . , tk ∈ T} .

The set TΣ(S) of all Σ-trees indexed by S is the smallest set T such that S ∪ Σ(T ) ⊆ T . We generally assume
that Σ∩ S = ∅, and thus may write α() simply as α for every α ∈ Σ0. We let TΣ = TΣ(∅). By var(t) we denote
the set {x ∈ X | x occurs in t}. For every V ⊆ X, a tree t ∈ TΣ(X) is V -linear (respectively, V -nondeleting)
if every x ∈ V occurs at most (respectively, at least) once in t. A tree t ∈ TΣ(V ) is a V -context if it is
both V -linear and V -nondeleting. The set of all such V -contexts is CΣ(V ). Any mapping θ : V → TΣ(S) is
a substitution. The application tθ of the substitution θ to a tree t ∈ TΣ(S) is defined by xθ = θ(x) for every
x ∈ V and σ(t1, . . . , tk)θ = σ(t1θ, . . . , tkθ) for every σ ∈ Σk and t1, . . . , tk ∈ TΣ(S). If V = Xk, then we also
write t[θ(x1), . . . , θ(xk)] instead of tθ.

Next, we recall particular term-rewrite systems [3]. Let R ⊆
⋃

k∈N CΣ(Xk)×TΣ(Xk) be a finite relation. In the
following, such sets R are called rule sets, in which Σ is often the union of an input and output ranked alphabet.
To avoid technical difficulty, we simply assume that such unions can be formed (by renaming conflicting symbols).
Note that each rule set is a ranked alphabet, where the rank k of a rule (l, r) ∈ R is such that l ∈ CΣ(Xk). We
typically write (l, r) ∈ R as l→ r. A rule set R is linear (respectively, nondeleting) if r is Xk-linear (respectively,
Xk-nondeleting) for every l→ r ∈ R of rank k. Any rule set R induces a rewrite relation ⇒R on TΣ as follows.
For every t, u ∈ TΣ, let t ⇒R u if there exists a rule l → r ∈ R of rank k, a context c ∈ CΣ(X1), and a
substitution θ : Xk → TΣ such that t = c[lθ] and u = c[rθ].

Any subset of TΣ(V ) is a tree language. The regular tree languages are those generated by regular tree grammars.
A regular tree grammar [22, 23] is a tuple G = (N,Σ, S, P ) such that N is a finite set of nonterminals, Σ is a
ranked alphabet of input symbols, S ⊆ N is a set of start nonterminals, and P ⊆ N × TΣ(N) is a finite set
of productions. Clearly, P is a rule set (without variables) and its induced rewrite relation is ⇒P . The tree
language generated by G is L(G) = {t ∈ TΣ | ∃n ∈ S : n ⇒∗P t}. A tree language L is regular if it can be
generated by some regular tree grammar.

A relation τ ⊆ TΣ×T∆ is also called tree transformation or tree translation. A mapping f : TΣ → T∆ is a tree ho-
momorphism, if for every σ ∈ Σk there exists f(σ) ∈ T∆(Xk) such that f(σ(t1, . . . , tk)) = f(σ)[f(t1), . . . , f(tk)]
for every t1, . . . , tk ∈ TΣ. A tree homomorphism f : TΣ → T∆ is a particularly simple tree translations. It is
linear (respectively, complete) if f(σ) is Xk-linear (respectively, Xk-nondeleting) for every σ ∈ Σk.

3. Top-down tree transducer

The first tree transducer model that we recall is the top-down tree transducer. It was introduced by [38, 41]
to formalize the model of transformational grammars [6], which was originally proposed by Chomsky and
his followers. The phrase-structure models of natural language required formal devices that manipulate those
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phrase structures, which were and are typically represented as trees. To simplify the following presentation, we
assume that those phrase-structure trees (or parse trees) are ranked trees, which means that each symbol has
a fixed rank. This is uncommon in NLP, so whenever it is ambiguous, then we indicate that a symbol S has
rank n by writing Sn (see Figure 2).

A top-down tree transducer (tdtt) is a tuple M = (Q,Σ,∆, I, R) where

• Q is a finite set of states (considered as unary symbols; i.e., symbols of rank 1),
• Σ and ∆ are ranked alphabets of input and output symbols with Q ∩ (Σ ∪∆) = ∅,
• I ⊆ Q is a set of initial states, and
• R ⊆ Q(Σ(X))× T∆(Q(X)) is a finite rule set.

The tdtt M is linear (respectively, nondeleting) if the rules R are. Clearly, the rules R of the tdtt M give rise
to a term-rewrite relation ⇒∗R. The semantics of the tdtt M is τM = {(t, u) ∈ TΣ × T∆ | ∃q ∈ I : q(t) ⇒∗R u},
which is a relation τM ⊆ TΣ×T∆. In general, we can assume that each rule has the shape q(σ(x1, . . . , xk))→ u
where q ∈ Q, σ ∈ Σk, and u ∈ T∆(Q(Xk)).

As an illustration, let us consider the following tdtt M = (Q,Σ,∆, {q}, R) where

• Q = {q, 1, 2+, 3+},
• Σ = {zero, one, . . . , twelve, twen-, thir-,fif-, eigh-, -teen1, -ty2, -ty1, hundred2, hundred1},
• ∆ = {0, . . . , 9, 100, 10} where 100 and 10 are binary and all other symbols are nullary, and
• R contains the rules

q(hundred2(x1, x2))→ 100(q(x1), q(x2)) q(hundred1(x1))→ 100(q(x1), 10(0, 0))

q(-ty2(x1, x2))→ 10(2+(x1), 1(x2)) q(-ty1(x1))→ 10(2+(x1), 0)

q(-teen1(x1))→ 10(1, 3+(x1))

q(zero)→ 10(0, 0) . . . q(nine)→ 10(0, 9)

q(ten)→ 10(1, 0) q(eleven)→ 10(1, 1) q(twelve)→ 10(1, 2)

1(zero)→ 0 . . . 1(nine)→ 9

2+(twen-)→ 2 2+(thir-)→ 3 2+(four)→ 4

2+(fif-)→ 5 2+(six )→ 6 2+(seven)→ 7

2+(eigh-)→ 8 2+(nine)→ 9

3+(thir-)→ 3 3+(four)→ 4 3+(fif-)→ 5

3+(six )→ 6 3+(seven)→ 7 3+(eigh-)→ 8

3+(nine)→ 9 .

This tdtt M is linear and nondeleting. It can translate English representations of a limited set of numbers
into a decimal-like notation. For example, it can perform the translation displayed in Figure 1. It also checks
whether the number is properly represented in English. For example, it fails to translate any of the following:

-ty1(one) hundred2(fif-, -teen1(twelve)) -ty(five, zero)

because it considers them ill-shaped. In general, linear nondeleting tdtts are able to check whether the input
tree is an element of a given regular tree language.

Let us see how this model fares in the machine-translation domain. Shieber [39] argues that linear tdtts are
not expressive enough and that only general tdtts have sufficient expressive power to be considered for the
machine-translation task. Some problematic translations are presented in Figure 2. Let us discuss them in
some detail. The translation displayed left in Figure 2 is typical in the translation from English to Arabic [28].
The English determiner ‘the’ in front of the noun ‘boy ’ is dropped in the Arabic translation. If we want to
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Figure 1: Example derivation using a linear nondeleting tdtt.
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u2 u1 u3

Figure 2: Problematic translations for linear tdtts.

model this with a tdtt, then we need a rule q(NP2(x1, x2)) → u for some state q and output tree u. Clearly
the output tree u must match (up to the state) the target tree, which yields that at most one call p(xi) with
state p and i ∈ [2] can be contained in u. This immediately yields that one subtree (either the determiner in
the first subtree or the noun in the second subtree) is not considered by the tdtt, which thus must be deleting.
However, to perform the translation the noun ‘boy ’ should be considered because the tdtt is required to produce
its translation ‘atefl ’. Thus, assume that the rule is q(NP2(x1, x2)) → NP1(p(x2)). In that scenario, the tdtt
cannot determine whether there is only a determiner in the first subtree. In fact, the first subtree could as well
contain material that has to be translated into Arabic. Even if we add special rules for those situations, the
permissive rule q(NP2(x1, x2))→ NP1(p(x2)) allows the tdtt to just ignore the first subtree, which is clearly not
desirable. It can be argued that this is purely a problem of annotation and that the parse tree for the English
side should be adjusted. Indeed, this particular problem can be resolved in this manner, but the phrase-structure
annotation is standardized and the linguistic resources are annotated this way. In addition, an adaption of the
parse trees to each particular language pair that is used in machine translation seems unfeasible.

The problem that a tdtt cannot check deleted subtrees was also identified in the tree-transducer literature [10]
because it is a shortcoming of linear tdtts when compared to linear bottom-up tree transducers [10, 42] (linear
bots). Since this missing feature, called regular look-ahead, also impacts on closure under composition, it was
introduced to tdtts [11], which essentially allows them to check whether the current input tree can be generated
by a specific regular tree grammar before a rule is applied. In this manner, a tdtt with regular look-ahead
can first check the regular property whether the first subtree is indeed only a determiner before it executes the
rule q(NP2(x1, x2)) → NP1(p(x2)). We will not formally recall tdtts with regular look-ahead here, but we will
include them in our summary tables.

The right translation of Figure 2 also represents a common translation rule from English to Arabic. It repre-
sents the fact that English is predominantly ‘S-V-O’ (subject-verb-object), which is represented by the phrase
structure S2(t1,VP2(t2, t3)) where t1, t2, t3 are (in order) the parse tree of the subject, the verb, and the object.
In contrast, the dominating sentence structure in Arabic is ‘V-S-O’, which is represented by the flat phrase
structure S3(u2, u1, u3), where ui is the translation of ti (i.e., u1, u2, u3 are in order the translated subject, the
translated verb, and the translated object). It can easily be seen that such a translation cannot be achieved by
a linear tdtt, which is also formally demonstrated in [32]. However, general tdtts can induce this translation
using, for example, the following rules:

q(S2(x1, x2))→ S3(q1(x2), p(x1), q2(x2)) q1(VP2(x1, x2))→ p(x1) q2(VP2(x1, x2))→ p(x2) .

Note that any tdtt with such rules is both copying (i.e., nonlinear) and deleting. This leads to our first
conclusion:

Expr: Top-down tree transducers with regular look-ahead are expressive enough for machine trans-
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lation. Linear tdtts or tdtts without regular look-ahead are not expressive enough.

In general, tdtts are also not symmetric, which means that for a given tdtt M , we might be unable to find a tdtt
with the same properties (linear, nondeleting, with or without regular look-ahead) as M that computes τ−1

M .
This can easily be seen on the translations sketched in Figure 2. Their inverses can easily be realized by linear
nondeleting tdtts. Moreover, copying tdtts can easily produce two equal copies of an input subtree [10]. Any
tdtt that is supposed to compute the inverse of the translation of such a tdtt necessarily must check the equality
of two output subtrees, which are part of its input tree. However, the domain τ−1(T∆), which is the language
of all input trees that can be translated, of a tdtt M is regular [10], which proves that such an equality check
is not possible.

Sym: Top-down tree transducers are not symmetric.

Given a compact representation of a tree language of input or output trees, it is often desirable to compute a
compact representation of the corresponding translations. To keep the presentation simple, we restrict ourselves
to regular tree languages here, which can be finitely represented by regular tree grammars as recalled in Section 2.
Thus, it would be desirable if the image and preimage of a regular tree language under the translation τM of
a tdtt M would again be regular. Since tdtts are not symmetric, we have to consider both the image and the
preimage separately. As already argued, the ability of a copying tdtt M to generate identical copies of input
subtrees clearly means that the image of a regular tree language under its translation τM need not be regular
anymore. However, [10, 11] proves that the preimage of a regular tree language under τM for every tdtt M
is again regular and that the image of a regular tree language under τM for every a linear tdtt M is regular.
We will show how to prove this result in the next section, where we deal with more general top-down tree
transducers.

Pres, Pres−1: Linear tdtts preserve regularity and the preimage of a regular tree language under τM
is regular for each tdtt M .

Finally, we consider whether the class of translations computed by various tdtts is closed under composition.
Composition is an important operation because it supports a modular development of the final translation
system. Special components (like number translation, proper-name translation, etc.) can be hand-crafted
or trained on special resources and then composed with the other modules to obtain the final transducer.
For example, the translation system described in [43] consists of 3 modules: reordering, insertion, and word-
translation. Of course, such a chain (or cascade) of compositions can also be evaluated every time an input
is provided [35]. However, this can prove to be very inefficient, especially when the chain is evaluated for
many inputs (like a production machine-translation system). For tdtts this bucket-brigade approach is feasible
because for every input tree a tdtt can produce only finitely many translations (and thus a regular tree language).
However, if we start with a regular tree language L as input, then it depends on regularity-preservation whether
the image of L under τM for a tdtt M is still regular.

Classical composition, which composes two tdtts into a single one, can be used to reduce a chain of tdtts to a
single tdtt that computes the same translation as the chain of tdtts. This is a preprocessing step. At evaluation
time this avoids the computation of the intermediate results that occur in the bucket-brigade approach. Note
that offline composition can succeed even if regularity is not preserved. An example of this phenomenon is
presented in Section 5. The standard composition strategy is to process the right-hand sides of the rules with
the next transducer in the chain. Let us illustrate this on a rule of the example tdtt presented earlier. Suppose
that we have another tdtt that translates the decimal-like representation into a German representation. Such a
tdtt could have a rule set R′ that contains (among others) the following rules

p(100(x1, x2))→ hundert(p(x1), p(x2)) p(10(x1, x2))→ zehn(1(x2), zig(x2)) 1(0)→ ε zig(0)→ ε .
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Figure 3: Illustration of composition for linear nondeleting tdtts.

Model \ Criterion Expr Sym Pres Pres−1 Comp
Linear nondeleting tdtt 7 7 3 3 3
Linear tdtt 7 7 3 3 7
Linear tdtt with regular look-ahead 7 7 3 3 3
General tdtt 7 7 7 3 7
General tdtt with regular look-ahead 3 7 7 3 7

Table 1: Overview of formal properties of top-down tree transducers.

Figure 3 shows how to derive a new rule from a rule of our example tdtt using the rules just presented. The
obtained rule of the composed tdtt is

〈p, q〉(hundred1(x1))→ hundert(〈p, q〉(x1), zehn(ε, ε)) ,

where we paired the states to obtain a state of the composed tdtt. This simple composition strategy works for
linear nondeleting tdtts and for linear tdtts with regular look-ahead. In the latter case the regular look-ahead
needs to be handled, but we will not detail it here.

In general, nonlinear tdtts cannot be composed, which is demonstrated in [10]. Similarly, linear tdtts (without
regular look-ahead) do not compute a class of translations that is closed under composition. This is best
illustrated by the problematic translation displayed left in Figure 2, which can be achieved by a composition of
two linear tdtts. The first linear tdtt would just inspect the input tree and mark the node ‘NP’ should its first
subtree indeed contain only a determiner (as in the example). The second linear tdtt can then safely delete the
subtree containing the determiner provided that the mark is present. Since we already demonstrated that no
single linear tdtt can achieve this, a chain of two linear tdtts must be more powerful than a single one. In fact,
chains of linear tdtts are as powerful as a single linear tdtt with regular look-ahead, which is as powerful as a
chain of two linear tdtts.

Comp: Only linear tdtts with regular look-ahead and linear nondeleting tdtts compute a class of
translations that is closed under composition.

The properties of the individual models discussed in this section are summarized in Table 1, where we use

• Expr: for suitable expressiveness in the machine-translation task,
• Sym: for symmetry,
• Pres: for preservation of regularity,
• Pres−1: for preservation of regularity of the inverse translation, and
• Comp: for closure under composition.

Mind that we often identify the syntactic model with the class of translations it computes.

4. Extended top-down tree transducer

Next we recall extended top-down tree transducers. Since linear tdtts are not expressive enough and nonlinear
tdtts do not have good algorithmic properties, this alternative model was proposed for applications in machine
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S3
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Figure 4: English-to-Arabic translation that can be computed by an extended top-down tree transducer.

translation by [24, 25]. In fact, an equivalent model, the linear complete bimorphism was already investigated
in [1, 2]. We will mention this connection later when we consider preservation of regularity. A systematic study
of extended top-down tree transducers can be found in [32].

An extended top-down tree transducer (xtt) is a tuple M = (Q,Σ,∆, I, R) where

• Q is a finite set of states (considered as unary),
• Σ and ∆ are ranked alphabets of input and output symbols with Q ∩ (Σ ∪∆) = ∅,
• I ⊆ Q is a set of initial states, and
• R ⊆ Q(TΣ(X))× T∆(Q(X)) is a finite rule set.

In other words, the rules of an xtt can have an arbitrary context in the left-hand side instead of contexts that
contain exactly one input symbol as in tdtts. As before M is linear (respectively, nondeleting) if the rules R
are. In the natural language processing literature a slightly weaker version of linear nondeleting xtt (without
states) is known as synchronous tree-substitution grammar [39]. Clearly, also the rules R of an xtt M give rise
to a term-rewrite relation ⇒∗R. The semantics of the xtt M is τM = {(t, u) ∈ TΣ × T∆ | ∃q ∈ I : q(t)⇒∗R u}.

Figure 4 shows a translation from English to Arabic. It can be achieved with the following xtt (Q,Σ,∆, {q}, R)
where

• Q = {q, p, r},
• Σ = {S2,NP2,VP2,DT1,N1,V1, the, boy , saw , door},
• ∆ = {S3,S2,CONJ1,V1,N1,NP1,wa-, ra’aa, atefl , albab}, and
• R contains the following rules:

q(x1)→ S2(CONJ1(wa-), q(x1)) p(NP2(DT1(the),N1(boy)))→ NP1(N1(atefl))

q(S2(x1,VP2(x2, x3)))→ S3(r(x2), p(x1), p(x3)) p(NP2(DT1(the),N1(door)))→ NP1(N1(albab))

r(V1(saw))→ V1(ra’aa) .

This xtt is linear and nondeleting. An example derivation realizing the translation of Figure 4 is displayed in
Figure 5.

The following plain-language properties of xtt distinguish the model from tdtts [32]:

• Finite look-ahead : Every xtt can inspect a finite part of subtrees it deletes.
• Deep attachment of variables, which enables local rotations like the one displayed right in Figure 2.
• Infinitely many outputs for one input with the help of ε-rules (i.e., rules whose left-hand side is q(x1).

Overall, even linear nondeleting xtts have sufficient power for the application in machine translation, which is
the main reason why the toolkit Tiburon [34] implements xtts. In fact, linear nondeleting xtts can be used to
learn any finite corpus of bilingual data using the methods of [21, 24, 25].
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Figure 5: Derivation using the example rules that realizes the translation of Figure 4.

Expr: Even linear nondeleting xtts are expressive enough for applications in machine translation.

Let us quickly recall how we can obtain a linear and nondeleting xtt from bilingual training data. A bilingual
corpus typically contains sentences in two languages like:

the boy saw the door

wa- ra’aa atefl albab

These sentences are parsed (automatically or by hand) to create, for example, the tree pair of Figure 4. Adding
a state on top of the input tree, we could obtain a rule for a linear and nondeleting xtt. However, such rules are
clearly too specific and overfit the data because we cannot translate any unseen data. To remedy this situation,
a word aligner like Giza++ [36] is typically used to relate the words in the sentences (i.e., which source words
are or contribute to the translation of certain target words). Thus, the training material is a set of annotated
tree pairs that look like the one in Figure 6.

Given such aligned tree pairs, we can now extract rules in a more clever fashion [21]. For example, the pair
of subtrees NP2(DT1(the),N1(boy)) and NP1(N1(atefl)) can be extracted because it is consistent with the
alignments (no alignment between words outside to words inside the subtrees). In this way, the rules of the
example xtt of this section can be extracted. Finally, as already mentioned in the Introduction, applications
typically use weighted versions of the devices to distinguish more likely translations from less likely ones. For
example, a rule that encodes the standard ‘S-V-O’ word order in English should be prefered (receive a “better”
weight) to a rule that encodes a nonstandard word order. Essentially, the weight training procedure [24, 25]
counts how often a particular rule is used in a certain corpus and assigns better weights to rules that are used
more often.

Next, we present an alternative characterization that can be used prove certain results such as symmetry and
preservation of regularity for certain xtt. A linear and complete bimorphism [2] is a tuple B = (hi, L, ho) such
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Figure 6: Training data for a linear and nondeleting xtt.

that hi : TΓ → TΣ and ho : TΓ → T∆ are linear complete tree homomorphisms (called the input and the output
homomorphism) and L ⊆ TΓ is a regular tree language (called the center language). The tree transformation
computed by B is

τB = {(hi(s), ho(s)) | s ∈ L} .

In other words, τB = h−1
i ; idL ; ho.

We already remarked in Section 2 that each rule set is a ranked alphabet. Given a linear and nondeleting xtt
M = (Q,Σ,∆, I, R), we can construct tree homomorphisms hi : TR → TΣ and ho : TR → T∆ and a weighted
tree grammar G = (Q,R, I, P ) such that

• hi(ρ) = l,
• ho(ρ) = r, and
• q → ρ(q1, . . . , qk) ∈ P

for every rule ρ = q(l) → rθ with l ∈ CΣ(Xk), r ∈ C∆(Xk), and q, q1, . . . , qk ∈ Q where θ is the substitution
such that xiθ = qi(xi) for every i ∈ [k]. Clearly, the constructed tree homomorphisms are linear and complete.
The proof that the constructed bimorphism (hi, L(G), ho) is equivalent to the original xtt M is omitted here,
but it can be found in [30]. Moreover, a similar characterization, in which the output tree homomorphism is
only linear can be provided for linear xtt with regular look-ahead [30]. Finally, we remark that linear complete
bimorphisms are equally powerful as linear nondeleting xtts. This immediately yields that linear nondeleting
xtts are symmetric (because linear complete bimorphisms certainly are), whereas it can easily be proved that
all stronger models of xtts do not have this property.

Sym: Only linear nondeleting xtts are symmetric.

With the help of the bimorphism characterization [30], we can thus represent each linear xtt as a chain of
the inverse of a linear and complete tree homomorphism, an intersection with a regular tree language, and
a linear tree homomorphism. Since inverses of tree homomorphisms and linear tree homomorphisms preserve
regularity [22, 23] and regular tree languages are closed under intersection [22, 23], we can easily prove a number
of results concerning preservation of recognizability for linear xtts using the bimorphisms constructed for them.
The remaining results (displayed in Table 2) can easily be obtained and are detailed in [32].
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Figure 7: Counterexample of [2] demonstrating that linear nondeleting xtts cannot be composed.

Model \ Criterion Expr Sym Pres Pres−1 Comp
Linear nondeleting xtt 3 3 3 3 7
Linear xtt 3 7 3 3 7
Linear xtt with regular look-ahead 3 7 3 3 7
General xtt 3 7 7 3 7
General xtt with regular look-ahead 3 7 7 3 7

Table 2: Overview of formal properties of extended top-down tree transducers.

Pres, Pres−1: Linear xtts with regular look-ahead preserve regularity and the preimage of every
regular tree language is regular under τM for any xtt M .

Finally, let us consider composition. Unfortunately, it is known [2] that even linear nondeleting xtts compute a
class of translations that is not closed under composition. The counterexample of [2] is presented in Figure 7.
Both individual translations can easily be implemented using linear nondeleting xtts, but the full translation
cannot be implemented by a single linear and nondeleting xtt, which is due to the “misalignment” of subtrees [2].
In fact, [32] shows that every class L of tree translations that

• contains all translations computed by linear nondeleting tdtts,
• is suitably expressive for machine translation, and
• contains only translations computable by linear xtts with regular look-ahead

is not closed under composition. This shows that inside the class of translations computed by linear xtts, there
does not seem to be a suitable class for machine translation that is also closed under composition. Another
result of [32] shows that also every class L of tree transformations that

• contains all translations computed by tdtts and
• contains only translations computable by xtts with regular look-ahead

is also not closed under composition. Overall, this yields that closure under composition and sufficient expres-
sivity for machine translation exclude each other for most reasonable classes of xtts.

Comp: None of the discussed classes of xtts compute a class of translations that is closed under
composition.
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Figure 8: Example rules of an xmbot.

The properties of the individual models of xtt are summarized in Table 2. We continue to use the abbreviations
(for properties) that were introduced at the end of Section 3.

5. Extended multi bottom-up tree transducer

Finally, we recall extended multi bottom-up tree transducers [18, 19, 30, 13]. Compared to [18, 19] we slightly
adapt the model by omitting the special root symbol. This symbol is required in their model so that the
bottom-up device may deterministically identify the root of the input tree. However, in natural language
processing deterministic tree transducers have only very limited applications [29], so we will not deal with
deterministic devices and can thus omit the special root symbol. In addition, we extend the multi bottom-up
tree transducers [18, 19, 30] in the same manner as we extended tdtts to xtts.

An extended multi bottom-up tree transducer (xmbot) is a tuple M = (Q,Σ,∆, F,R) such that

• Q is a ranked alphabet (of states),
• Σ and ∆ are ranked alphabets (of input and output symbols) with Q ∩ (Σ ∪∆) = ∅,
• F ⊆ Q1 is a set of final states, and
• R ⊆ TΣ(Q(X))×Q(T∆(X)) is a finite rule set.

As usual, we say that M is linear (respectively, nondeleting) if R is such. The semantics of the xmbot M is
also given by the rewrite relation ⇒R. The tree transformation τM computed by M is

τM = {(t, u) ∈ TΣ × T∆ | ∃q ∈ F : t⇒∗R q(u)} .

Let us present an example xmbot M = (Q,Σ,Σ, {f}, R) where

• Q = {f1, q2},
• Σ = {σ2, a1, b1, e0}, and
• R contains the following rules, which are also displayed in Figure 8:

a(q(x1, x2))→ q(a(x1), a(x2)) q(x1, x2)→ f(σ(x1, x2))

b(q(x1, x2))→ q(b(x1), b(x2)) e→ q(e, e) .

This xmbot M is linear and nondeleting, and it computes the tree translation τM = {(t, σ(t, t)) | t ∈ TΓ} where
Γ = {a1, b1, e0}. An example derivation is presented in Figure 9. Overall, this shows that even linear xmbots
have some copying power. Indeed [13] shows that linear xmbots are finitely copying [12].

Next, let us consider whether xmbots are sufficiently powerful for machine translation. Since linear nondeleting
xtts are powerful enough as demonstrated in Section 4, we simply show that each such xtt can be simulated by
a linear and nondeleting xmbot. The simple transformation from an xtt to an xmbot is illustrated in Figure 10
on an example rule. Since the correspondence is very direct, we do not present a formal construction or proof.
In general, the suitability and advantages of xmbots over xtts in the area of machine translation are discussed
in detail in [31]. Overall, we showed that

Expr: Linear and nondeleting xmbots are expressive enough for applications in machine translation.
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Figure 9: Example derivation using the example rules of Figure 8.
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Figure 10: Transformation of an xtt rule (left) into an xmbot rule (right).

We have already seen that even linear (linear nondeleting) xmbots have a certain copying power (see Figures
8 and 9). Thus, xmbots can produce identical copies of an input subtree in the output, however, an xmbot
cannot check the equality of two input subtrees. Roughly speaking, a state can keep several (identical) output
trees because its rank can be different from 1. On those output trees it can enforce equality by generating them
synchronously. However, each state processes only one input subtree at a time, so it cannot enforce a similar
condition on the input subtrees. This can also be seen on the bimorphism characterization of [2, 13], which
shows that linear nondeleting xmbots are as powerful as linear complete bimorphisms, in which the output
homomorphism is an m-morphism [2] instead of a tree homomorphism (which is the same as a 1-morphism).

Sym: Extended multi bottom-up tree transducers are not symmetric.

The same argumentation can be used to prove that even linear nondeleting xmbots do not preserve regular-
ity. Given our example xmbot M , the input tree language TΓ is clearly regular, but its image τM (TΓ) is
{σ(t, t) | t ∈ TΓ}, which is obviously not regular. Using the mentioned bimorphism characterization [2, 13],
which can easily be extended to general xmbots [13], we can prove that the preimage of every regular tree
language under τM for every xmbot M is again regular [13].

Pres, Pres−1: Extended multi bottom-up tree transducers do not preserve regularity, but the preim-
age of any regular tree language is again regular under τM for every xmbot M .

In the transformation of xtt rules to xmbot rules (see Figure 10) we can see that all states of the constructed
xmbot are unary (as in the xtt). However, xmbots also allow states whose rank is larger than 1, which yields
some interesting properties. The most important property with respect to closure under composition is that we
can reduce each xmbot to an equivalent xmbot whose rules have at most 1 input or output symbol. Such rules
and xmbots of exclusively such rules are in 1-symbol normal-form. We present an example in Figure 11. The
formal construction is detailed in [13], where it is also shown that the properties ‘linear’ and ‘nondeleting’ are
preserved by the construction.

Thus, instead of composing arbitrary xmbots, it is sufficient to consider compositions of xmbots in 1-symbol
normal-form. The problem (misalignment) described in Section 4 can thus be avoided because each rule contains

13



b

q

x1 x2

→

q

b

x1

b

x2

old rule

b

q

x1 x2

→
q1

x1 x2

q1

x1 x2

→

q2

b

x1

x2

q2

x1 x2

→

q

x1 b

x2

new rules

Figure 11: Transformation of an xmbot rule into 1-symbol normal-form.

σ

q1

x1 x2

q2 →
q

x2

σ

q1

p1 p2

x1 x2

q2

→

q

p2

x1 x2

p1 →
p

α

q1

p1 p2

x1 x2

→

q1

p

α

p2

x1 x2

q1

x1 x2

→

q

γ

x2

γ

p2

x1 x2

→
p

x2

q1

p1 p2

x1 x2

→

q

p

x2

Figure 12: Composition of xmbot rules in 1-symbol normal-form (top: original rule(s); bottom: composed rule).

only one symbol. Consequently, it is sufficient to distinguish three simple cases in the composition construction
of two xmbots M and N with rule sets P and R, respectively:

• a rule of P that contains an input symbol,
• a rule of R that contains an output symbol, and
• a rule of P that contains an output symbol together with a rule of R that consumes this symbol (i.e., that

contains the same symbol in its left-hand side).

In this manner, we can easily construct the rules of a composed xmbot that computes the composition τM ; τN .
Each mentioned case is illustrated in Figure 12. Again, the formal construction (and its correctness) can be
found in [13]. Overall, this composition construction allows us to obtain the “classical” composition results that
are known for bottom-up tree transducers [10, 4]. In particular, linear nondeleting xmbots and linear xmbots
compute a class of translations that is closed under composition. Mind that xmbots are bottom-up devices
and thus automatically have regular look-ahead, so those results correspond exactly to the composition results
for tdtts (see Section 3). Overall, this closure is slightly surprising because even linear nondeleting xmbots
are finitely copying, which yields that the simple bucket-brigade approach to composition would fail (because
regularity is not preserved).

Comp: Linear nondeleting xmbots and linear xmbots compute a class of translations that is closed
under composition. General xmbots compute a class that is not closed under composition.

As usual, we summarize the properties of the individual models of xmbots in Table 3.

6. Conclusion

We have presented several tree-transducer models that can easily be used in machine translation. We introduced
them informally and presented their main properties as they relate to the machine-translation task at hand.
Table 4 summarizes the findings. In addition to the models that we discussed in this survey, we added ‘bottom-
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Model \ Criterion Expr Sym Pres Pres−1 Comp
Linear nondeleting xmbot 3 7 7 3 3
Linear xmbot 3 7 7 3 3
General xmbot 3 7 7 3 7

Table 3: Overview of formal properties of multi bottom-up tree transducers.

Model \ Criterion Expr Sym Pres Pres−1 Comp
Linear nondeleting tdtt 7 7 3 3 3
Linear tdtt 7 7 3 3 7
Linear tdtt with regular look-ahead 7 7 3 3 3
General tdtt 7 7 7 3 7
General tdtt with regular look-ahead 3 7 7 3 7

Linear nondeleting bot 7 7 3 3 3
Linear bot 7 7 3 3 3
General bot 3 7 7 3 7

Linear nondeleting xtt 3 3 3 3 7
Linear xtt 3 7 3 3 7
Linear xtt with regular look-ahead 3 7 3 3 7
General xtt 3 7 7 3 7
General xtt with regular look-ahead 3 7 7 3 7

Linear nondeleting xbot 3 3 3 3 7
Linear xbot 3 7 3 3 7
General xbot 3 7 7 3 7

Linear nondeleting xmbot 3 7 7 3 3
Linear xmbot 3 7 7 3 3
General xmbot 3 7 7 3 7

Regularity-preserving linear nondeleting xmbot 3 7 3 3 3
Regularity-preserving linear xmbot 3 7 3 3 3
Rational tree relations 3 3 3 3 3

Table 4: Overview of formal properties of various tree transducers.

up tree transducers’ (bot) and ‘extended bottom-up tree transducers’ (xbot) to the table for illustration. An
extended bottom-up tree transducer (xbot) is an xmbot in which all states are unary, and a bottom-up tree
transducer (bot) is an extended bottom-up tree transducer, in which each rule has a left-hand side in Σ(Q(X))
where Σ is the ranked alphabet of input symbols and Q is the set of states. It can easily be seen that no simple
tree transducer model is optimal in the sense that it enjoys all discussed properties.

Moreover, we added three “non-standard” models that enjoy even better properties. First, we can consider
only regularity-preserving linear (linear nondeleting) xmbots. Using a decomposition of [13] and a decidability
result of [16], we can decide whether a given xmbot is regularity-preserving. Since the composition of two
regularity-preserving translations clearly is again regularity-preserving (using the bucket-brigade approach)
and linear (linear nondeleting) xmbots can be composed, we obtain the results stated in the two penultimate
lines in Table 4. The final line refers to the rational tree relations of [37], which are computed by “invertable
regularity-preserving linear nondeleting xmbot”. It is again easily checked that the composition of two invertable
translations is again invertable, which yields the result shown in the last line of Table 4.
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