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Abstract. Compositions of well-known tree-to-tree translation models
used in statistical machine translation are investigated. Synchronous
context-free grammars are closed under composition in both the un-
weighted as well as the weighted case. In addition, it is demonstrated
that there is a close connection between compositions of synchronous
tree-substitution grammars and compositions of certain tree transduc-
ers because the intermediate trees can encode finite-state information.
Utilizing these close ties, the composition closure of synchronous tree-
substitution grammars is identified in the unweighted and weighted case.
In particular, in the weighted case, these results build on a novel lifting
strategy that will prove useful also in other setups.

1 Introduction

Several different translation models are nowadays used in syntax-based sta-
tistical machine translation [17]. The translation model is the main compo-
nent responsible for the transformation of the input into the translated out-
put, and thus the expressive power of the translation model limits the possi-
ble translations. For example, the framework ‘Moses’ [18] provides implementa-
tions of synchronous context-free grammars (SCFGs) [1] and several variants of
synchronous tree-substitution grammars (STSGs) [6]. The expressive power of
SCFGs and STSGs is reasonably well-understood, and in particular, knowledge
of the limitations of the models has helped many authors to pre-process [26,5,20]
or post-process [4,25] their data and to achieve better translation results. To-
gether with pre- or post-processing steps, the translation model is no longer solely
responsible for the transformation process, but we rather obtain a composition
of several models or simply a composition chain [23]. Occasionally, composition
chains also appear because they ideally support a modular development of com-
ponents for specific translation tasks [3] (e.g., translating numerals or geographic
locations). However, it is often difficult to evaluate such composition chains ef-
ficiently especially when the pre- or post-processing steps are nondeterministic.

In the string-to-string setting the phrase-based models are essentially finite-
state transducers and chains of them can be collapsed into a single transducer [24]
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because they are closed under composition. However, this is not true for several
tree-to-tree models. Efficient on-the-fly evaluations for composition chains are
presented in [23] along with the observation that the straightforward sequential
evaluation of composition chains is terribly inefficient. Even in the on-the-fly
evaluation the chains should be as short as possible. In this contribution, we will
investigate the expressive power of composition chains of the established tree-to-
tree translation models. The symmetric tree-to-tree setting, although typically
worse in terms of translation quality than the string-to-tree or tree-to-string
setting, is particularly convenient since it allows a clean notion of composition.

We first demonstrate that (unweighted and weighted) composition chains of
SCFGs can always be reduced to just a single SCFG. In addition, we demon-
strate how to utilize results for unweighted extended tree transducers [22] to
obtain results for STSGs. The main insight in this part is that even local models
like STSGs obtain a finite-state behavior in composition chains. Thus, a com-
position of two STSGs is as powerful as a composition of two corresponding
tree transducers. This close connection allows us to show that two STSGs are
necessary and sufficient for arbitrary composition chains of certain simple, yet
commonly used STSGs. These results hold in the absence of weights. However,
all translation models used in statistical machine translation are weighted, so as
a second contribution we demonstrate how to lift the unweighted results into the
weighted setting. Our novel lifting procedure, which we believe will be useful also
in other setups, relies on a separation of the weights and several normalization
procedures. Overall, we achieve the same results also in the weighted setting,
which essentially shows that short chains of certain STSGs suffice.

2 Preliminaries

Let us start with some basic notions for trees, which we depict graphically when-
ever possible. Formally, our trees use a finite set N of internal labels and a finite
set L of leaf labels. The internal labels can label any non-leaf node of the tree and
such labeled nodes can have any positive number of children, whereas leaf labels
only label leaves; i.e., nodes without children. Thus, our trees are inductively
defined to be the smallest set TN (L) such that (i) every leaf node labeled ` ∈ L
is a tree ` ∈ TN (L) and (ii) n(t1, . . . , tk) ∈ TN (L) is a tree consisting of a root
node labeled n and k direct subtrees for any given positive integer k, internal la-
bel n ∈ N , and trees t1, . . . , tk ∈ TN (L). A tree t that consists only of a (non-leaf)
root node and leaf nodes is shallow, so a shallow tree is of the form n(`1, . . . , `k)
for some n ∈ N , k ≥ 1, and `1, . . . , `k ∈ L. To easily access information in a tree,
we use the following notation. For each node ν in a tree t ∈ TN (L) we write t(ν)
for the label of the node ν. Occasionally, we are interested in the leaf nodes
that are labeled by certain leaf labels Q ⊆ L. Consequently, the set of all nodes
that are leaves and labeled by an element of Q is denoted by leavesQ(t), and
the elements of leavesQ(t) are called anchors for substitution. Moreover, given
another tree u ∈ TN (L) and a leaf ν ∈ leavesQ(t), we write t[ν ← u] for the
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Fig. 1. The left tree t is not shallow, whereas the right tree u is. If Q = {q}, then
leavesQ(t) = ∅ and leavesQ(u) = {ν}, where ν is the q-labeled node in u. Obviously,
its label is u(ν) = q. Moreover, u[ν ← her] = S(He, likes, her). Note that the q-labeled
node vanishes in the substitution.

tree obtained from t by replacing the leaf ν by the tree u. These notations are
illustrated in Fig. 1, and we refer to [12,13] for an in-depth exposition.

Our weights will be taken from commutative semirings [16,14], which are
algebraic structures (A,+, ·, 0, 1) such that (A,+, 0) and (A, ·, 1) are commuta-

tive monoids and (
∑k
i=1 ai) · a =

∑k
i=1(ai · a) for all non-negative integers k

and a, a1, . . . , ak ∈ A. Typical examples of such semirings include the Boolean
semiring ({0, 1},max,min, 0, 1), the Viterbi semiring ([0, 1],max, ·, 0, 1) on the
unit interval [0, 1], and the semiring (Q,+, ·, 0, 1) of rational numbers. In the
following, let (A,+, ·, 0, 1) be an arbitrary commutative semiring. Similarly, we
fix the finite sets N and L of default internal labels and leaf labels, respectively.

A weighted (linear, nondeleting extended top-down) tree transducer [15,9]
is a tuple T = (Q,Σ, (q1, q2), R,wt) consisting of (i) a finite set Q of states,
(ii) a finite set Σ of internal labels for the trees generated, (iii) designated initial

states q1, q2 ∈ Q, (iv) a finite set R of rules of the form (q, t)
ϕ
— (q′, t′) con-

sisting of states q, q′ ∈ Q, input and output tree fragments t, t′ ∈ TΣ(L ∪ Q),1

and a bijective alignment ϕ : leavesQ(t) → leavesQ(t′), and (v) a rule weight
assignment wt: R → A. The transducer T is a synchronous tree-substitution

grammar (STSG) [6] if Q = Σ and in each rule (q, t)
ϕ
— (q′, t′) ∈ R the root

labels of t and t′ are q and q′, respectively.2 Roughly speaking, an STSG replaces
the “hidden” finite-state behavior by locality tests because the root labels (i.e.,
the states of a rule) are visible in the input and output tree fragments. Finally,
T is a synchronous context-free grammar (SCFG) [1] if it is an STSG and in

each rule (q, t)
ϕ
— (q′, t′) ∈ R the trees t and t′ are shallow. In an SCFG, the

input and the output tree are assembled like derivation trees of a context-free
grammar (i.e., one level at a time). We recall two restrictions on tree transducer

rules. A rule (q, t)
ϕ
— (q′, t′) is an ε-rule if t ∈ Q. Similarly, it is a non-strict rule

if t′ ∈ Q. The tree transducer T is ε-free if it does not contain any ε-rules in R,
and it is strict provided that it has no non-strict rules in R. Finally, simple tree

1 For technical reasons we disallow that {t, t′} ⊆ Q.
2 Note that in an STSG the elements of Σ can label internal nodes and leaves.
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Fig. 2. Example rules of a tree transducer [top left], an STSG [top right], and an
SCFG [bottom].

transducers are both ε-free and strict. Note that an SCFG is always simple. We
show a few example rules of each type in Fig. 2.

Let us recall the derivation semantics [10] of a weighted tree transducer
T = (Q,Σ, (q1, q2), R,wt). The derivations are defined over rule-like triples of
the form (u, ψ, u′) consisting of a (partial) input tree u ∈ TΣ(L ∪ Q), a bijec-
tive alignment ψ : leavesQ(u) → leavesQ(u′) linking synchronous states, and a
(partial) output tree u′ ∈ TΣ(L∪Q). Note that the derivation forms are thus es-
sentially rules without the states. Given two such forms (u, ψ, u′) and (s, ψ′, s′)

and a rule ρ = (q, t)
ϕ
— (q′, t′) ∈ R, we say that (u, ψ, u′) derives (s, ψ′, s′)

via ρ, written (u, ψ, u′) ⇒ρ
T (s, ψ′, s′) if the least element ν ∈ leavesQ(u) with

respect to some arbitrary linear order on nodes is such that (i) the node ν is
labeled u(ν) = q, (ii) its synchronized node ψ(ν) in u′ has label u′(ψ(ν)) = q′,
(iii) s = u[ν ← t] is obtained from u by replacing ν by t, (iv) s′ = u′[ψ(ν)← t′]
is obtained from u′ by replacing ψ(ν) by t′, and (v) the synchronization ψ′

is given for every ν′ ∈ leavesQ(s) by ψ′(ν′) = ϕ(ν′) if ν′ ∈ leavesQ(t) and
ψ′(ν′) = ψ(ν′) otherwise. In other words, we keep the old synchronized states
(except the replaced ones) and add the synchronized states of the rule ρ.3 We
illustrate a derivation step in Fig. 3. The derivation process starts with the initial
form ξ0 = (q1, ψ0, q2), in which the root nodes ν1 and ν2 of the trees q1 and q2,
respectively, are synchronized (i.e., ψ0(ν1) = ν2). Given trees t, t′ ∈ TΣ(L), the
transducer T assigns the weight

T (t, t′) =
∑

ξ0⇒
ρ1
T ξ1⇒

ρ2
T ···⇒

ρn
T (t,∅,t′)

(
n∏
i=1

wt(ρi)

)

to the pair (t, t′). We note that this sum always remains finite. Intuitively, we
sum up the weights of all derivations of the tree pair (t, t′), where the weight of
the derivation is obtained by multiplying the rule weights used in the derivation.
In this manner, the transducer T computes a mapping T : TΣ(L)× TΣ(L)→ A.

Finally, let us formally introduce compositions of weighted tree-to-tree trans-
lations. For all alphabets Σ and ∆, a mapping τ : TΣ(L) × T∆(L) → A is fini-

3 For simplicity, we assume that nodes in different trees are disjoint.
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Fig. 3. The rule ρ: (q2,NP(NNS(flowers)))
∅

— (q′2,NP(D(les),NC(fleurs))) used in a
derivation step. Note that the states q2 and q′2 completely disappear.

tary, if for every t ∈ TΣ(L) there exist only finitely many u ∈ T∆(L) such that
τ(t, u) 6= 0. Similarly, it is co-finitary, if for every u ∈ T∆(L) there exist only
finitely many t ∈ TΣ(L) such that τ(t, u) 6= 0. Now let τ : TΣ(L) × T∆(L) → A
and τ ′ : T∆(L)× TΓ (L)→ A be such that τ is finitary or τ ′ is co-finitary. Then
the composition τ followed by τ ′, written τ ; τ ′, is defined for every t ∈ TΣ(L)
and s ∈ TΓ (L) by

(τ ; τ ′)(t, s) =
∑

u∈T∆(L)

τ(t, u) · τ ′(u, s) .

Note that this sum is well-defined because of the finitary or co-finitary restric-
tion, which yields that only finitely many choices of u yield non-zero products.
Roughly speaking, we sum over all potential intermediate trees u and take the
product of the weights for the translation from t to u and the translation from u
to s, which shows that composition corresponds to executing the second trans-
ducer on the output of the first transducer. Composition extends to classes C
of weighted translations in the usual manner, and we use Cn for the composi-
tion C ; · · · ; C containing the class C exactly n times.

3 Unweighted compositions

Let us first collect what is known about the unweighted case, which is obtained
using the Boolean semiring ({0, 1},max,min, 0, 1) as weight structure. In this
setting, tree-to-tree translations are essentially relations on trees. It is evident
from the formal definitions that each SCFG is a special STSG, which in turn is a
special tree transducer, so the expressive power increases from SCFGs to STSGs
to tree transducers (TTs). Using the abbreviations as denotations for the classes
of tree relations that can be generated by the corresponding translation model,
we thus have SCFG ⊆ STSG ⊆ TT. Moreover, the key property that separates
SCFGs and STSGs was identified in [6]. The relations computed by SCFGs only
contain pairs of isomorphic trees (disregarding the labels and the order of the
children). It is also easy to show that STSGs and TTs can be separated, so we
obtain the strict hierarchy

SCFG ⊂ STSG ⊂ TT . (1)



Table 1. Known results on composition closures.

Model Composition closure Reference

top-down tree transducer 1 [7]
simple tree transducer 2 [2]
other tree transducer ∞ [8]

Composition essentially corresponds to running two translations consecutively,
where the first translation translates the input into intermediate results and the
second translation translates those intermediate results into the final results.
Compositions of tree translations have been extensively investigated (see [11] for
a survey). To avoid a careful distinction between transducers and their trans-
lations, we will conflate the class of models with the class of translations com-
putable by it. Since all classes discussed here contain the identity relation, com-
positions of our classes C form a natural hierarchy; i.e., C ⊆ C2 ⊆ C3 ⊆ · · · .
This hierarchy collapses at level n if Cn = Cn+1. We also say that the composi-
tion closure is obtained at level n provided that n is the least integer, for which
the hierarchy collapses. Intuitively, if the closure is obtained at level n, then
compositions of n translations of C are necessary and sufficient to generate any
translation computable by any composition of C. Provided that the composition
closure for C is n, we thus have C ⊂ · · · ⊂ Cn = Cn+1 = · · · . We use∞ to indicate
that the hierarchy never collapses. We summarize the known results [7,2,8] on
the composition closure in Table 1.

We start our investigation with SCFGs. Given two SCFGs T1 and T2 we
can simply “join” rules of T1 and T2 that coincide on the intermediate tree. We
illustrate this approach in Fig. 4. Such rules can certainly be executed consecu-
tively in the on-the-fly approach [23]. A refined version of this approach taking
the finite-state information and the non-shallow output into account is used to
prove that (our linear and nondeleting) top-down tree transducers are closed
under composition [7].

Theorem 1. The composition closure of unweighted and weighted SCFGs is
achieved at the first level.

Proof. We prove the statement for arbitrary weighted SCFGs. Let

T = (Σ,Σ, (S1, S2), R,wt) and T ′ = (Σ′, Σ′, (S′1, S
′
2), R′,wt′)

be weighted SCFGs. If S2 6= S′1, then the composition T ; T ′ is the constant 0
mapping, which can easily be computed by a single SCFG. Now suppose that
S2 = S′1. We construct the weighted SCFG T ′′ = (Σ′′, Σ′′, (S1, S

′
2), R′′,wt′′),

where Σ′′ = Σ ∪ Σ′ and the rules R′′ and their weights wt′′ are obtained as

follows: For every rule ρ = (σ, s)
ϕ
— (δ, t) of R and rule ρ′ = (δ, t)

ψ
— (γ, u) of R′

we construct the rule ρ′′ = (σ, s)
ϕ;ψ
— (γ, u) ofR′′ and set wt′′(ρ′′) = wt(ρ)·wt′(ρ′).

No other rules are in R′′. The correctness of this construction is straightforward.
ut
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Fig. 4. Rule matching and joining in the composition of SCFGs. The left and middle
part form a rule of T1 and the middle and right part form a rule of T2. The newly
constructed rule will simply avoid the intermediate tree fragment.

Next, we will show that the composition closure for simple STSGs can be ob-
tained from the known results via a small insight. Recall that SCFGs and STSGs
are both local, so they are missing the hidden finite-state behavior of general
tree transducers. However, we can simulate the hidden finite-state behavior for
both models in compositions with the help of the unknown (hidden) intermedi-
ate trees. Namely, we can annotate the desired finite-state information on the
intermediate trees in the spirit of the representation of a regular tree language
as the image of a local tree language under a relabeling [13]. We illustrate the
approach in Fig. 5. Note that the first STSG encodes the states in its output
(i.e., the intermediate tree), whereas the second STSG encodes them in its input
(i.e., also the intermediate tree).

Lemma 1. For all n ≥ 2, compositions of n simple STSGs are as expressive as
compositions of n simple tree transducers.

Proof. We only provide the argument for compositions T ;T ′ of 2 simple STSGs

T and T ′. Assume that (q, t)
ϕ
— (q′, t′) is a rule of the first simple tree trans-

ducer T = (Q,Σ, (q1, q2), R,wt). Since T is strict, we have t′ = δ(t′1, . . . , t
′
k) for

some internal symbol δ ∈ Σ and subtrees t′1, . . . , t
′
k. We will adjust the internal

symbols to Σ′ = Σ∪(Σ×Q×Q), which allows us to use combinations of internal
symbols together with two states. For every state-labeled node ν ∈ leavesQ(t′)
in t′ we additionally guess two internal symbols σν , δν ∈ Σ. Then we construct

the rule
(
σ, u
) ϕ

—
(
(δ, q, q′), (δ, q, q′)(u′1, . . . , u

′
k)
)
, where σ is the root label of t,

u = t[ϕ−1(ν) ← σν | ν ∈ leavesQ(t′)], and the subtrees u′1, . . . , u
′
k are obtained

from the subtrees t′1, . . . , t
′
k by replacing each leaf node ν ∈ leavesQ(t′) by the

state-annotated variant (δν , t(ϕ
−1(ν)), t′(ν)). In other words, we guess the inter-

nal symbols that will replace a state leaf in the input and output fragment t and t′

and replace the state leaf by the guessed internal symbol in the input fragment
and the triple containing the guessed internal symbol and the two synchronized
states. We construct a new rule for each original rule and all possible guesses.
Similarly, we need to annotate the finite-state information of the second tree
transducer T ′ in its input fragments, which works in essentially the same man-
ner using the input fragments instead of the output fragments. This also shows
that we actually need to annotate up to 4 states to each symbol in the interme-
diate tree, and we additionally need to guess the finite-state information (that
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Table 2. Composition closure results for unweighted and weighted SCFGs and STSGs.
They mirror the corresponding results for tree transducers.

Model Unweighted / weighted composition closure Results

SCFGs 1 Theorem 1
simple STSGs 2 Theorems 2 and 4
other STSGs ∞ Theorems 3 and 5

can also occur in internal symbols) of the other tree transducer. We omit the
technical details. ut

Theorem 2. The composition closure of simple STSGs is obtained at the second
level.

Proof. Simple tree transducers achieve the composition closure at level 2 [2].
Since the second levels of the composition hierarchy for simple tree transducers
and simple STSGs coincide by Lemma 1 and simple STSGs are less expressive
by (1), the composition closure of simple STSGs is achieved at level 2 as well. ut

Finally, we examine the composition hierarchy of the remaining cases (non-
strict STSGs and STSGs with ε-rules). In both cases, the corresponding hierar-
chy for tree transducers is infinite. Moreover, re-examining the counterexample
translation τ provided in [8, Example 43], we can easily see that it does not uti-
lize its finitely many states and can be generated by a non-strict STSG as well.
Hence for every n ≥ 1 we also obtain a translation τn+1 that can be computed by
(n+ 1) STSGs, but not by n tree transducers according to [8, Lemma 44]. Since
by (1) we have STSG ⊆ TT, it follows that STSGn ⊆ TTn and thus n STSGs
also cannot implement τn+1. The analogous arguments using the inverse trans-
lation τ−1 can be used to prove the infiniteness of the composition hierarchy for
STSGs with ε-rules. We summarize the results in Table 2.

Theorem 3. The composition hierarchy of strict STSGs, ε-free STSGs, and
general STSGs is infinite.



4 Weighted compositions

In the weighted setting, which is more relevant in statistical machine translation,
the models assign a weight to each rule. During derivations the weights of the
participating rules are multiplied, and if there are several ways to achieve the
same input- and output-tree pair, then the derivation weights are summed up.
To avoid infinite summations, we restrict ourselves to ε-free or strict models.

The goal of this section is to lift the unweighted results of the previous section
into the weighted setting. In Theorem 1 we already proved that SCFGs are closed
under composition also in the weighted case. Moreover, the result of Lemma 1
also holds in the weighted case, so the composition closure of simple weighted
STSGs and that of simple weighted tree transducers again coincide. It only re-
mains to establish the composition closure for simple weighted tree transducers.
Roughly speaking, we will reduce the weighted problem to the unweighted set-
ting by removing the weights from the tree transducer and moving them into a
particularly simple type of translation, called weighted relabeling. For the ease of
presentation we assume that no rule consists only of a leaf in the input or output

tree fragment (i.e., t /∈ L and t′ /∈ L for all considered rules (q, t)
ϕ
— (q′, t′)). This

is realistic in statistical machine translation since the parsers usually attach at
least a part-of-speech tag to each lexical item. Moreover, we can easily adjust
our approach and relabel leaf symbols as well.

For a given alphabet Σ, a weighted relabeling is a mapping κ : Σ × Σ → A.
In other words, it is a weighted association between symbols. It extends to pairs
of trees such that it assigns weight 0 to all pairs of trees of different shape. For
trees of the same shape, it simply takes the product of the symbol-to-symbol
weights given by κ for all corresponding nodes in the two trees. Formally, each
such relabeling κ extends to a weighted tree translation κ : TΣ(L)× TΣ(L)→ A
inductively by (i) κ(`, `) = 1 for every ` ∈ L; i.e., we do not relabel leaf symbols,
and (ii) for every k ≥ 1, symbols σ, δ ∈ Σ, subtrees t1, . . . , tk, u1, . . . , uk ∈ TΣ(L)

κ
(
σ(t1, . . . , tk), δ(u1, . . . , uk)

)
= κ(σ, δ) ·

k∏
i=1

κ(ti, ui) .

We relabel trees with an internal symbol as root by charging the weight for
relabeling the root symbol to another symbol and then multiply the product
of the weights of recursively relabeling the subtrees. In all remaining cases,
κ(. . . , . . . ) = 0. We use wREL for the class of all weighted translations com-
putable by weighted relabelings and s-wTT for the corresponding class com-
puted by simple weighted tree transducers. Since most devices in this section
are weighted, we will drop the explicit mention that they are weighted and sim-
ply say ‘relabeling’ or ‘simple tree transducer’.

Lemma 2. For every composition of a simple tree transducer and a relabeling
in either order, we can present an equivalent simple tree transducer.

s-wTT ; wREL ⊆ s-wTT and wREL ; s-wTT ⊆ s-wTT



Proof. The first statement is obtained by combining the decomposition of [9,
Lemma 4.1] and the composition results of [19, Theorem 2.4]. Moreover, since
all the involved models are symmetric, we also immediately obtain the second
statement. ut

The next lemma shows that we can separate the weights from a simple tree
transducer leaving a composition of an essentially unweighted (i.e., unambigu-
ous and Boolean4) simple tree transducer T ′ and a relabeling. Moreover, the
tree relation computed by T ′ will be injective.5 Unambiguous means that for
each (successful) translation (t, u) containing an input and an output tree there
exists exactly one derivation yielding (t, u). We use su-TTinj for the injective
translations computed by simple unambiguous tree transducers. Note that these
weighted translations are essentially the characteristic functions of the trans-
lations of the corresponding unweighted tree transducers, which motivates the
chosen abbreviation.

Lemma 3. Every simple tree transducer T can be equivalently represented by a
composition of a simple unambiguous Boolean tree transducer T ′ computing an
injective translation followed by a relabeling κ.

s-wTT ⊆ su-TTinj ; wREL

Proof. Let T = (Q,Σ, (q1, q2), R,wt). For every rule ρ = (q, t)
ϕ
— (q′, t′) of R,

we have t′ = σ(t′1, . . . , t
′
k) for some integer k, symbol σ ∈ Σ, and subtrees

t′1, . . . , t
′
k ∈ TΣ(L ∪ Q) because T is strict. For this rule ρ, we construct the

rule (q, t)
ϕ
— (q′, 〈σ, ρ〉(t′1, . . . , t′k)) of T ′, which essentially records the rule appli-

cation in the root of the output tree fragment. The weight of this new rule is 1
in T ′. Finally, the relabeling κ is such that κ(σ, σ) = 1 and κ(〈σ, ρ〉, σ) = wt(ρ)
for all σ ∈ Σ and ρ ∈ R, and 0 otherwise. In other words, the relabeling re-
moves the annotation and charges the weight of the annotated rule. Obviously,
the constructed tree transducer is Boolean. In addition, since the derivation is
completely visible in the output, the tree transducer T ′ is unambiguous. ut

Using Lemmas 2 and 3 we can now separate the weights from a composition
chain because

s-wTT ; s-wTT2 ⊆ su-TTinj ; wREL ; s-wTT2 (Lemma 3)

⊆ su-TTinj ; s-wTT2 ⊆ su-TT2
inj ; wREL ; s-wTT (Lemmas 2 and 3)

⊆ su-TT2
inj ; s-wTT ⊆ su-TT3

inj ; wREL . (Lemmas 2 and 3)

Now we can apply the result of [2] on the unweighted composition closure of s-TT.
Note that the composition of injective translations is naturally again injective.

su-TT3
inj ; wREL ⊆ s-TT2︸ ︷︷ ︸

injective

; wREL ,

4 using only the weights 0 and 1
5 A tree translation τ : TΣ(L) × TΣ(L) → A is injective if for every output tree
u ∈ TΣ(L) there exists at most one input tree t ∈ TΣ(L) such that τ(t, u) 6= 0.



where s-TT is the class of translations computed by simple unweighted tree
transducers. We cannot simply simulate those unweighted tree transducers di-
rectly by weighted tree transducers. We first use standard techniques (regular
restrictions; see [22]) to make both unweighted translations injective. Moreover
each injective translation can be made unambiguous using essentially the same
techniques, so we obtain

s-TT2︸ ︷︷ ︸
injective

; wREL ⊆ su-TT2
inj ; wREL ⊆ s-wTT2 ,

where the last step uses Lemma 2. Note that unambiguous unweighted tree trans-
ducers can easily be simulated by the corresponding weighted tree transducers.
Thus, we derived the difficult part of the composition closure.

Theorem 4. The composition closure of weighted simple STSGs is achieved at
the second level.

Proof. We showed that s-wTT3 ⊆ s-wTT2, so the composition hierarchy of the
class s-wTT collapses at level 2. Moreover using the linking arguments of [21]
we can also conclude that s-wTT ⊂ s-WTT2. ut

Finally, for the remaining classes (i.e., strict STSGs and ε-free STSGs), we
can essentially import the infinite composition hierarchy from the unweighted
case using the linking technique of [21]. We omit the details.

Theorem 5. The composition hierarchy of strict weighted STSGs and ε-free
weighted STSGs is infinite.

Conclusion

We have investigated the expressive power of compositions of the well-established
tree-to-tree translation models: SCFGs, STSGs, and tree transducers. In the un-
weighted case, the results for the local devices [i.e., SCFGs and STSGs] closely
mirror the known composition results for tree transducers due to the fact that
we can encode the finite-state information in the intermediate trees of a com-
position. The same picture presents itself in the weighted setting, for which we
showed how to lift the corresponding results from the unweighted setting to the
weighted setting. This uses a novel decomposition separating the weights from
simple tree transducers and then constructions for the obtained unambiguous
and injective tree transducers. Overall, we demonstrated that in the relevant
cases, short (length 1 or 2) composition chains are necessary and sufficient to
simulate arbitrarily long composition chains.
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9. Fülöp, Z., Maletti, A., Vogler, H.: Weighted extended tree transducers. Fundam.
Inform. 111(2), 163–202 (2011)
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26. Xia, F., McCord, M.C.: Improving a statistical MT system with automatically
learned rewrite patterns. In: Proc. CoLing. pp. 508–514 (2004)


