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ABSTRACT

Polynomial bottom-up and top-down tree series transducers over partially ordered
semirings are considered, and the classes of "-tree-to-tree-series (for short: "-t-ts) and
o-tree-to-tree-series (for short: o-t-ts) transformations computed by such transducers
are compared. The main result is the following. Let A be a weakly growing semiring
and x; y 2 fdeterministic;homomorphismg. The class of o-t-ts transformations com-
puted by x bottom-up tree series transducers over A is incomparable (with respect to
set inclusion) with the class of "-t-ts transformations computed by y bottom-up tree
series transducers over A. Moreover, the latter class is incomparable with the class
of "-t-ts transformations computed by x top-down tree series transducers over A. If
additionally A is additively idempotent, then the above statements even hold for every
x; y 2 fpolynomial;deterministic;homomorphismg.

1. Introduction

Tree series transducers [40, 19, 25, 27] were introduced as a joint generalization of
tree transducers [45, 47, 16] and weighted tree automata [46, 38, 7]. Both historical
predecessors of tree series transducers have successfully been motivated from and
applied in practice. Speci�cally, tree transducers are motivated from syntax-directed
translations in compilers [33, 17, 26], and they are applied in, e.g., functional program
analysis and transformation [37, 30, 34, 48], computational linguistics [43, 36, 42, 35],
generation of pictures [11, 12], and query languages of xml databases [3, 20]. Weighted
tree automata have been applied to code selection in compilers [24, 5] and tree pattern
matching [46]. Moreover, a rich theory of tree transducers was developed (see [16, 1,
18] as seminal papers and [28, 44, 9, 29, 26] as survey papers and monographs) during
the seventies, whereas weighted tree automata just recently received some attention
(e.g., [46, 38, 4, 6, 13, 14, 23, 15]).
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Roughly speaking, tree series transducers capture both (a) the way of translating
input trees into output trees, as it is inherent in bottom-up and top-down tree trans-
ducers, and (b) the computation of a weight (or cost) in a semiring, as it is inherent in
weighted tree automata. More formally, a (bottom-up or top-down) tree series trans-
ducer is a tuple M = (Q;�;�;A; D; �), where Q is a �nite set of states, � and �
are ranked alphabets of input and output symbols, respectively, A = (A;�;�;0;1)
is a semiring, D � Q is a set of designated states (also called �nal states if M is
bottom-up, or initial states if M is top-down), and � = (�k j k 2 N ) is a (bottom-up
or top-down) tree representation. The tree representation consists of mappings �k
that map the set of k-ary symbols of �, denoted by �(k), into (Q�Q(Xk)

�)-matrices
over AhhT�(X)ii, where Q(Xk) = f q(xi) j q 2 Q; 1 � i � k g, T�(X) denotes the set
of �-trees indexed by variables of X = fx1; x2; : : :g, and AhhT�(X)ii denotes the set
of mappings ' : T�(X) �! A (called tree series). Using m-substitution of tree
series (with m 2 f"; og; see [27]) in order to substitute tree series into tree series,
we can impose a �-algebraic structure on AhhT�ii

Q and thereby obtain the unique
�-homomorphism hm� : T� �! AhhT�ii

Q. Then the m-tree-to-tree-series (for short:
m-t-ts) transformation computed by M is the mapping �mM : T� �! AhhT�ii de-
�ned by �mM (s) =

P
q2D h

m
� (s)q. Thus, for a given input tree s 2 T�, M computes

a (potentially in�nite) set supp(�mM (s)) = f t 2 T� j (�
m
M (s); t) 6= 0 g of output trees

and associates a coe�cient (�mM (s); t) 2 A to every output tree t 2 T�. Note that
(�mM (s); t) denotes the application '(t) with ' = �mM (s). For every so-called polyno-
mial tree series transducerM and input tree s 2 T�, the set supp(�

m
M (s)) of computed

and relevant output trees is �nite. Polynomial bottom-up and top-down tree series
transducers over the boolean semiring B = (f0; 1g;_;^; 0; 1) essentially are bottom-up
and top-down tree transducers, respectively (see Section 4 of [19]).

In the same way as tree transducers, also tree series transducers can have particular
properties, e.g., they can be deterministic or they are homomorphisms (see, e.g., [16]).
Note that homomorphism tree series transducers are deterministic and deterministic
tree series transducers are polynomial. The classes of m-t-ts transformations com-
puted by bottom-up and top-down tree series transducers having the property x (e.g.,
being deterministic) over A are denoted by x{BOTm(A) and x{TOPm(A), respec-
tively.

In [27] several classes of the form x{BOTm(A) and x{TOPm(A) have been com-
pared with respect to set inclusion. For instance, it was proved that:

� x{TOP"(A) = x{TOPo(A), see Theorem 5.2 of [27], for every semiring A and
x 2 fpolynomial; deterministic; homomorphismg;

� p{BOT"(N1) 1 p{BOTo(N1), where p stands for polynomial, the semi-
ringN1 of non-negative integers (with in�nity) is (N[f1g;+; �; 0; 1), and 1 de-
notes incomparability with respect to set inclusion (see Corollary 5.18 of [27]);
and

� p{BOT"(T) 1 p{BOTo(T), where T = (N [ f1g;min;+;1; 0) is the tropical
semiring (see Corollary 5.23 of [27]).

The latter two incomparability results motivated us to investigate the question
whether this incomparability also holds for semirings di�erent from N1 and T. In
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this paper we answer this question in the a�rmative. Additionally, we compare
classes of "-t-ts transformations that are computed by di�erent types of tree series
transducers; i.e., bottom-up and top-down tree series transducers. Our main result is
Theorem 5.10, which states the following:

We have that x{BOTo(A) 1 y{BOT"(A) and y{BOT"(A) 1 x{TOP"(A)
for every x; y 2 fdeterministic; homomorphismg and weakly growing semi-
ring A. Provided that A is additively idempotent, x and y may even be
polynomial in this statement.

Let us add some details and then brie
y discuss the way how to prove this theo-
rem. A partially ordered semiring (A;�;�;0;1;�) is a semiring (A;�;�;0;1) with
a partial order � on A such that the order is preserved by both semiring operations.
The partially ordered semiring A = (A;�;�;0;1;�) is called weakly growing, if:

(i) there is an a 2 A such that ai � aj for all non-negative integers i < j; and

(ii) for every a1; a2; b 2 A n f0g, d 2 A, and n 2 N, if a
n = a1 � b � a2 � d, then

there is an m 2 N such that b � am.

Roughly speaking, Condition (ii) requires that every element b that occurs in a de-
composition of a power of a can be bounded (from above) by another power of a. In
particular, the following semirings are weakly growing:

� N1 with � = �, a = 2, and m = n;

� T with � = �, a = 1, and m = max(n; d);

� the arctic semiring A = (N [ f�1g;max;+;�1; 0) with � = �, a = 1, and
m = n; and

� the formal language semiring (P(S�);[; �; ;; f"g) over the alphabet S with
� = �, a = f"; sg for some s 2 S, and m = n.

In order to prove the non-inclusion results of the main theorem, we use the par-
tial order on the semiring and establish a framework of mappings called coe�cient
majorizations. For a given m-t-ts transformation � : T� �! AhhT�ii, a coe�cient
majorization f : N+ �! A is a mapping such that f(n) is an upper bound of the
set C� (n), which is the set of all coe�cients generated from input trees of height at
most n; i.e.,

C� (n) = f (�(s); t) j s 2 T�;height(s) � n; t 2 supp(�(s)) g :

Given two classes T1 and T2 of transformations, we can prove T1 6� T2 by exhibiting
(i) a mapping f that is a coe�cient majorization for the class T2 (i.e., a coe�cient
majorization for every � 2 T2) and (ii) a transformation � 2 T1 for which f is no
coe�cient majorization. For particular classes, this is achieved in Lemma 5.9.

Coe�cient majorizations have been investigated for the speci�c case in which the
coe�cient (�(s); t) is the height or size of the output tree t, e.g., for top-down tree
transducers (see Lemma 3.27 of [26]), for attributed tree transducers (see Lemmata
3.3 of [17] and 5.40 of [26]), for macro tree transducers (see Lemmata 3.3 of [17]
and 4.22 of [26]), and for bottom-up tree transducers (which have the same coe�cient
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majorization as top-down tree transducers, which follows in a straightforward manner
from Theorem 3.15 in [16]).

This paper is structured as follows. Section 2 recalls the relevant basic mathe-
matical notions and notations, in particular partially ordered semirings, tree series,
and substitution of tree series. Section 3 presents the de�nition of tree series transduc-
ers from [19] in some detail along with the de�nition of several subclasses of tree series
transducers. Section 4 establishes a coe�cient majorization for them-t-ts transforma-
tion computed by a polynomial tree series transducer that is bottom-up or top-down.
Finally, in Section 5 the incomparability results outlined above are derived.

2. Preliminaries

In this section we present some basic notions and notations required in the sequel. Sec-
tion 2.1 recalls partial orders [10] and associated notions. Words [41] and trees [28, 29]
are considered in Section 2.2, whereas Section 2.3 is dedicated to algebraic structures
and, in particular, (partially ordered) semirings [39, 32, 31]. Finally, this section
is concluded by the presentation of formal tree series [2, 39] and two de�nitions of
substitution for tree series [19, 27].

2.1. Partial Orders

The set f0; 1; 2; : : : g of all non-negative integers is denoted by N, and we let
N+ = Nnf0g. For every i; j 2 N we denote the interval fn 2 N j i � n � j g by [i; j],
and we use [j] to abbreviate [1; j]. The cardinality of a set S (i.e., the number of ele-
ments of S) is denoted by card(S), and for every set S the power set of S, comprising
all subsets of S, is denoted by P(S).

Given a non-empty set A, a binary relation � � A � A is called partial order
(on A), if � is re
exive, antisymmetric, and transitive. The pair (A;�) is termed
partially ordered set, and we represent the pair by A alone whenever � is understood
from the context. Let a1; a2 2 A. The fact that neither a1 � a2 nor a2 � a1 (or
equivalently: a1 and a2 are incomparable) is expressed as a1 1 a2. In case there are
no incomparable elements, the partial order � is said to be a total order. As usual,
the strict order � � A � A corresponding to � is de�ned by a1 � a2, if and only if
a1 � a2 and a1 6= a2.

Let S � A. An element u 2 A is called upper bound of S, if s � u for every s 2 S.
The set of all upper bounds of S is denoted by "S, and if "S contains a least element,
then it is called supremum of S and denoted by supS. If, for every a1; a2 2 A there
is an upper bound of fa1; a2g (i.e., "fa1; a2g 6= ;), then A is called directed.

2.2. Words and trees

By a word of length n 2 N we mean an element of the n-fold Cartesian product
Sn = S � � � � � S of a set S. The set of all words over S is denoted by S�, where the
particular element () 2 S0, called the empty word, is displayed as ". The length of a
word w 2 S� is denoted by jwj; thus j"j = 0.
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Every non-empty and �nite set is called alphabet ; its elements are termed symbols.
A ranked alphabet is de�ned to be a pair (�; rk), where � is an alphabet and the
mapping rk : � �! N associates to every symbol a rank. For every k 2 N we let
�(k) = f� 2 � j rk(�) = k g be the set of symbols having rank k. In the following,
we usually assume that rk is implicitly given. Hence we identify (�; rk) with � and
specify the ranked alphabet by listing the symbols with their rank put in parentheses
as superscripts as in f�(2); �(0)g. Themaximal rank of the ranked alphabet �, denoted
by mx�, is the maximal n 2 N such that �(n) 6= ;.

Let � be a ranked alphabet and X = fxi j i 2 N+ g be a set of (formal) variables.
The set of (�nite, labeled, and ordered) �-trees indexed by V � X, denoted by T�(V ),
is inductively de�ned to be the smallest set T such that (i) V � T and (ii) for every
k 2 N, � 2 �(k), and t1; : : : ; tk 2 T also �(t1; : : : ; tk) 2 T . We use T� as an
abbreviation for T�(;) and usually write � instead of �() whenever � 2 �(0). The
number of occurrences of a given x 2 X in t 2 T�(X) is denoted by jtjx. Since we
often deal with �nite subsets of X, we let Xn = fxi j i 2 [n] g for every n 2 N (note
that X0 = ;).

We distinguish a subset cT�(Xn) of T�(Xn) as follows. Let t 2 T�(Xn) be incT�(Xn), if and only if for every i 2 [n] the variable xi occurs exactly once in t and the
variables occur in the order x1; : : : ; xn when reading t from left to right. Moreover,
we recursively de�ne the mapping height : T�(X) �! N+ by the following equalities:

� height(x) = 1 for every x 2 X; and

� height(�(t1; : : : ; tk)) = 1 +max fheight(ti) j i 2 [k] g for every k 2 N, � 2 �
(k),

and t1; : : : ; tk 2 T�(X).

Given n 2 N, t 2 T�(Xn), and s1; : : : ; sn 2 T�(X), the expression t[s1; : : : ; sn]
denotes the result of replacing (in parallel) every occurrence of xi in t with si for
every i 2 [n]; i.e., xi[s1; : : : ; sn] = si for every i 2 [n] and

�(t1; : : : ; tk)[s1; : : : ; sn] = �(t1[s1; : : : ; sn]; : : : ; tk[s1; : : : ; sn])

for every k 2 N, � 2 �(k), and t1; : : : ; tk 2 T�(Xn). Let � be a ranked alphabet with
exactly one non-nullary symbol, more precisely

S
k2N+

�(k) = f�g. The set of fully

balanced trees (over �) is de�ned to be the smallest T � T� such that � 2 T for every
� 2 �(0), and whenever t 2 T also �(t; : : : ; t| {z }

rk(�)

) 2 T .

2.3. Monoids and (partially ordered) semirings

A monoid is an algebraic structure A = (A;
;1) consisting of a carrier set A with an
associative binary operation 
 : A�A �! A and a unit 1 2 A. By a semiring (with
one and absorbing zero) we mean an algebraic structure A = (A;�;�;0;1) such that
(A;�;0) is a commutative monoid, (A;�;1) is a monoid, multiplication distributes
over addition, and 0 acts as a zero for multiplication; i.e., a�0 = 0 = 0� a for every
a 2 A. By convention, we assume that multiplication has a higher (binding) priority
than addition; e.g., we read a1 � a2 � a3 as a1 � (a2 � a3).
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For every a 2 A and n 2 N we denote by an the product a � � � � � a containing
n times the factor a and set a0 = 1. Moreover, given ai 2 A for i 2 [n], we also
let
P
i2[n] ai = a1 � � � � � an and

Q
i2[n] ai = a1 � � � � � an. Note that

P
i2; ai = 0

and
Q
i2; ai = 1. Finally, we also use the sum over arbitrary index sets, given that

only �nitely many summands are non-zero, exploiting that � is commutative (i.e.,
the order in which elements are summed up is irrelevant). Important semirings are,
for example:

� the non-negative integers (with in�nity) N1 = (N [ f1g;+; �; 0; 1) with the
common operations of addition and multiplication extended to1 by a+1 =1
and a � 1 =1 =1 � a for every element a 2 N+ [ f1g;

� the tropical semiring T = (N [ f1g;min;+;1; 0) with minimum and addition
extended to 1 such that 1 is the unit of min and + is the addition of N1;

� the arctic semiring A = (N [ f�1g;max;+;�1; 0) with maximum and ad-
dition extended to �1 such that �1 is the unit of max and acts as a zero
for +;

� the boolean semiring B = (f0; 1g;_;^; 0; 1) with the usual operations of dis-
junction and conjunction;

� the semiring Z=4Z = (f0; 1; 2; 3g;+; �; 0; 1) with the usual addition and multi-
plication modulo 4;

� the min-max semiring Rmin;max = (R [ f1;�1g;min;max;1;�1) with the
common minimum and maximum operations; and

� the language semiring LS = (P(S�);[; �; ;; f"g) for some alphabet S with union
and concatenation of words lifted to sets of words.

Several more examples of semirings can be found, e.g., in [32, 31]. For the sake of
simplicity, we assume 0 6= 1 for all semirings we consider; i.e., we ignore the trivial
semiring with the singleton carrier set.

A semiring A = (A;�;�;0;1) with �nite carrier set A is called �nite, and A is
called additively idempotent, if it ful�ls 1 � 1 = 1. Clearly, this immediately yields
a�a = a for every a 2 A by distributivity. Finally, A is calledmultiplicatively periodic,
if for every a 2 A there exist i; j 2 N such that i < j and ai = aj . For example, the
semirings B, Z=4Z, and Rmin;max are multiplicatively periodic, whereas N1, A, T,
and LS are not. Obviously, every �nite semiring is multiplicatively periodic.

Now we consider semirings endowed with a partial order. Given a semiring
A = (A;�;�;0;1) and a partial order � � A�A, we say that � partially orders A,
or equivalently, A is partially ordered (by �), if for every a1; a2; b1; b2 2 A:

(PO�) if a1 � a2 and b1 � b2, then a1 � b1 � a2 � b2; and

(PO�) if a1 � a2 and b1 � b2, then a1 � b1 � a2 � b2.

The literature contains several di�erent notions of partially ordered semirings. For
example, in [32, 31] the axiom (PO�) is only demanded for multiplication with positive
elements a 2 A (i.e., 0 � a). The positive elements of such a partially ordered semiring
form a partially ordered subsemiring according to our de�nition. In contrast, the
de�nition of partially ordered semirings in [39] requires every element to be positive.
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In the sequel we denote a semiring A = (A;�;�;0;1) partially ordered by �
simply by (A;�;�;0;1;�) and call it totally ordered if � is a total order.
The set PA = f a 2 A j0 � a g is called the positive cone of A (via �) and
NA = f a 2 A j a � 0 g is called the negative cone of A (note that PA \NA = f0g).
Moreover, we say that A has the growth property (G�) whenever 1 � 1 � 1. Note
that (G�) implies that a � a � a for every a 2 A. Moreover, every additively
idempotent and partially ordered semiring trivially satis�es (G�). Finally, if every
element of a partially ordered semiring is comparable to 0, then Observation 2.1(i,ii)
characterizes (G�).

2.1 Observation Let A = (A;�;�;0;1;�) be a partially ordered semiring.

(i) If 0 � 1, then A = PA and (G�) is satis�ed.

(ii) If 1 � 0, then A = NA and (G�) implies that A is additively idempotent.

(iii) If 0 � 1 or 1 � 0, then A is directed.

Proof. The �rst parts of Statements (i) and (ii) are immediate by (PO�). If 0 � 1

then 1 � 1�1 by (PO�). If 1 � 0 then 1�1 � 1 by (PO�). Together with 1 � 1�1
from (G�) we obtain 1 = 1� 1 and thus additive idempotency. Finally, let us prove
Statement (iii). Let a; b 2 A. We claim that there is a c 2 A with a � c and b � c.
Since A = PA [NA, we may assume that a; b 2 PA. Now put c = a� b to obtain the
claim and the result. �

We conclude that a totally ordered semiring A possesses property (G�) if and
only if A is partially ordered in the sense of [39] or additively idempotent. The
next observation groups together some simple statements concerning partially ordered
semirings. The statements lift several conditions like (PO�), (PO�), and (G�) from
exactly two elements to several elements. The proofs are straightforward and therefore
left to the reader.

2.2 Observation Let A = (A;�;�;0;1;�) be a partially ordered semiring.

(i) Let n 2 N, and let ai; bi 2 A for i 2 [n]. If ai � bi for every i 2 [n], thenP
i2[n] ai �

P
i2[n] bi and

Q
i2[n] ai �

Q
i2[n] bi.

(ii) Assume that A has property (G�), and let a 2 A. For all m;n 2 N+, if m � n
then

P
i2[m] a �

P
i2[n] a. Note that m = 0 is excluded, because there may

be a 2 A with 0 6� a.

(iii) Let b 2 A with 1 � b. For all m;n 2 N, if m � n then bm � bn. 2

Generalizing the usual total order � on N, some semirings are partially ordered
by a partial order de�ned in terms of the semiring addition. We consider the relation
v � A� A that is de�ned for every a1; a2 2 A by a1 v a2, if and only if there exists
an a 2 A such that a1�a = a2. The semiring A is said to be naturally ordered if v is a
partial order (for this it su�ces to show that v is antisymmetric). We always write v
for the natural order. Note that every additively idempotent semiring is naturally
ordered (e.g., [49]).
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Theorem 2.1 of [39] establishes that naturally ordered semirings are partially or-
dered by v. In addition, they always ful�l (G�) and have a directed carrier set by
Observation 2.1(iii).

2.3 Proposition Let A = (A;�;�;0;1) be a naturally ordered semiring. Then
(A;�;�;0;1;v) is a partially ordered semiring and 0 v a for every a 2 A. 2

Let us consider some examples. The semiring Z=4Z is partially ordered only by
the trivial order =. All the semirings N1, A, T, B, Rmin;max, and LS are naturally
ordered, and among these only LS is not totally ordered. In each of these cases the
positive cone is the whole carrier set (by Proposition 2.3 and Observation 2.1(i)).
Note that T is also partially ordered by the total order �; this is the converse of the
natural order v induced by the minimum operation.

In fact, if A is totally ordered by �, then the carrier set is directed, while, in
general, it cannot be concluded that A has property (G�). For example, the semiring
(f0; 1; 2g;+; �; 0; 1;�) completely determined by 1+1 = 2+1 = 2+2 = 2 and 2 �2 = 2
(note that the remaining cases are such that 0 and 1 are unit elements with respect
to addition and multiplication, respectively, and 0 acts as zero), is totally ordered
by 2 � 1 � 0, but 1 + 1 � 1. Also note that, e.g., B is additively idempotent and
partially ordered by =, but the carrier set is not directed because "f0; 1g = ;.

2.4. Formal tree series

Let � be a ranked alphabet, A = (A;�;�;0;1) be a semiring, and V � X. Every
mapping ' : T�(V ) �! A is called (formal) tree series (over �, V , and A). We use
AhhT�(V )ii to denote the set of all tree series over �, V , and A. Given t 2 T�(V ),
we usually write ('; t), termed coe�cient of t, instead of '(t) and

P
t2T�(V )

('; t) t

instead of '. For example,
P
t2T�(V )

height(t) t is the tree series that associates to

every tree its height. We add tree series pointwise; i.e., (' �  ; t) = ('; t) � ( ; t)
for every '; 2 AhhT�(V )ii and t 2 T�(V ). As usual, we use the

P
-notation to

abbreviate sums over �nite index sets.
Given ' 2 AhhT�(V )ii, the set supp(') = f t 2 T�(V ) j ('; t) 6= 0 g is called the

support of '. Whenever supp(') is �nite, ' is said to be polynomial, and ' ismonomial
if supp(') contains at most one element. The set of all polynomial tree series (over �,
V , and A) is denoted by AhT�(V )i. Moreover, if there is an a 2 A such that ('; t) = a
for every t 2 T�(V ), then ' is said to be constant and we use ea to abbreviate such '.

Tree substitution can be generalized to tree languages [21, 22] as well as tree series.
We follow the IO-substitution approach [8, 19]. Since we will only need tree series
substitution for polynomial tree series, we restrict the de�nitions appropriately. Then,
in particular, the summations over tree series are �nite. Let n 2 N, ' 2 AhT�(Xn)i,
and  1; : : : ;  n 2 AhT�(V )i. (Pure) substitution of ( 1; : : : ;  n) into ', denoted by

'
"
 �( 1; : : : ;  n), is de�ned by

'
"
 �( 1; : : : ;  n) =

X
t2supp(');

(8i2[n]): ti2supp( i)

�
('; t)�

Y
i2[n]

( i; ti)
�
t[t1; : : : ; tn]:



543

Thus '
"
 �( 1; : : : ;  n) is in AhT�(V )i, and irrespective of the number of occurrences

of xi for some i 2 [n], the coe�cient ( i; ti) is taken into account exactly once (even
if xi does not appear at all in t). This particularity led to the introduction of a
di�erent notion of substitution de�ned in [27] as follows.

'
o
 �( 1; : : : ;  n) =

X
t2supp(');

(8i2[n]): ti2supp( i)

�
('; t)�

Y
i2[n]

( i; ti)
jtjxi

�
t[t1; : : : ; tn]:

This notion of substitution, called o-substitution, takes ( i; ti) into account as often
as xi appears in t. Proposition 3.4 of [27] lists some properties common to both types
of substitution. In particular, note the third property in case m = o.

2.4 Proposition Let n 2 N, ' 2 AhT�(Xn)i, and  1; : : : ;  n 2 AhT�(X)i. Then
for every m 2 f"; og and i 2 [n]:

(i) '
m
 �() = ';

(ii) e0 m
 �( 1; : : : ;  n) = e0; and

(iii) '
m
 �( 1; : : : ;  i�1; e0;  i+1; : : : ;  n) = e0. 2

Finally, in [40] a notion of substitution based on the OI-substitution approach [21,
22] is introduced. There the number of occurrences of a certain variable is taken into
account as well. However, in this paper we exclusively deal with the IO-substitution
approach.

3. Tree series transducers

In this section we recall the notions of bottom-up and top-down tree series trans-
ducers from [19]. Figure 1 attempts to display the automata and transducer con-
cepts subsumed by tree series transducers. Roughly speaking, moving upwards-left
adds weights (costs or multiplicity), moving upwards performs the generalization from
strings to trees, and �nally, moving upwards-right adds an output component.

Before we proceed with the de�nition of tree series transducers, we recall some
basic notions concerning matrices. Let I and S be sets. The set of all mappings
f : I �! S is denoted by SI , and we occasionally write fi instead of f(i) with i 2 I.
Now let I and J be sets. An (I � J)-matrix over S is a mapping M : I � J �! S.
The element M(i; j), usually written Mi;j , is called the (i; j)-entry of M .

Next we de�ne tree representations, which encode the transitions and output trees
of tree series transducers. Let Q be a �nite set representing the state set of a tree series
transducer. For every V � X we abbreviate f q(v) j q 2 Q; v 2 V g by Q(V ). Roughly
speaking, a tree representation is a family of mappings, each of which maps an input
symbol to a matrix indexed by sequences of (annotated) states (more formally, by a
state and an element of Q(X)�). The entries of those matrices are tree series over �,
X, and A, where � is an output ranked alphabet and A is the carrier set of a semiring.
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tree series
transducer

� : T� �! AhhT�ii

weighted tree
automaton

L 2 AhhT�ii

weighted transducer

� : �� �! Ahh��ii

tree transducer

� : T� �! IBhhT�ii

weighted automaton

L 2 Ahh��ii

tree automaton

L 2 IBhhT�ii

generalized

sequential machine

� : �� �! IBhh��ii

string automaton

L 2 IBhh��ii

Figure 1: Generalization hierarchy.
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3.1 De�nition Given a �nite set Q, ranked alphabets � and �, and a semi-
ring A = (A;�;�;0;1), a tree representation (over Q, �, �, and A) is a family
(�k j k 2 N ) of mappings

�k : �
(k) �! AhhT�(X)iiQ�Q(Xk)

�

such that for every � 2 �(k) there exist only �nitely many (q; w) 2 Q�Q(Xk)
� with

�k(�)q;w 6= e0, and �k(�)q;w 2 AhhT�(Xjwj)ii for every such (q; w).

� The tree representation � is called bottom-up, if for every k 2 N, � 2 �(k), and
(q; w) 2 Q � Q(Xk)

� with �k(�)q;w 6= e0 we have w = (q1(x1); : : : ; qk(xk)) for
some q1; : : : ; qk 2 Q.

� The tree representation � is called top-down, if for every k 2 N, � 2 �(k), and
(q; w) 2 Q�Q(Xk)

� we have supp(�k(�)q;w) � cT�(Xjwj).

Finally, if for every k 2 N, � 2 �(k), and (q; w) 2 Q�Q(Xk)
� the tree series �k(�)q;w

is polynomial, then � is called polynomial. 2

Note that polynomial tree representations are �nitely representable due to the
�niteness of the input ranked alphabet � and the fact that for every k 2 N almost all
entries in the matrices in the range of �k are e0. A tree series transducer is basically
a tree representation together with supportive information about the state set Q, the
input and output ranked alphabets � and �, respectively, and the semiring A. Addi-
tionally, we distinguish certain states, which are called designated states. Depending
on the mode of traversing the input, these might be initial or �nal states.

3.2 De�nition A tree series transducer is a sextupleM = (Q;�;�;A; D; �), where:

� Q and D � Q are alphabets of states and designated states, respectively;

� � and � are ranked alphabets (both disjoint to Q) of input and output symbols,
respectively;

� A = (A;�;�;0;1) is a semiring; and

� � is a tree representation over Q, �, �, and A.

Tree series transducers inherit the properties bottom-up, top-down, and polynomial
from their tree representation; i.e., M is called bottom-up (top-down and polynomial,
respectively), if � is bottom-up (top-down and polynomial, respectively). The ele-
ments of D are also called �nal states (respectively, initial states), if M is bottom-up
(respectively, top-down). 2

For the rest of the paper we only consider polynomial tree series transducers that
are bottom-up or top-down. For an investigation of general tree series transducers, we
refer the reader to [19, 27, 25]. To be concise, we drop the variables from the second
index of the matrices in the range of bottom-up tree representations; e.g., we write
�k(�)q;(q1;:::;qk) instead of �k(�)q;(q1(x1);:::;qk(xk)).

3.3 De�nition Let M = (Q;�;�;A; D; �) be a bottom-up tree series transducer.
We say that M is:
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� deterministic, if for every k 2 N, � 2 �(k), and q1; : : : ; qk 2 Q there exists at
most one (q; t) 2 Q� T�(X) such that t 2 supp(�k(�)q;(q1;:::;qk));

� total, if D = Q and for every k 2 N, � 2 �(k), and q1; : : : ; qk 2 Q there exists
at least one (q; t) 2 Q� T�(X) such that t 2 supp(�k(�)q;(q1;:::;qk)); and

� a homomorphism, if M is total and deterministic, and Q is a singleton. 2

Similarly these concepts (of determinism, totality, and homomorphism) can be
de�ned for top-down tree series transducers.

3.4 De�nition LetM = (Q;�;�;A; D; �) be a top-down tree series transducer. We
say that M is:

� deterministic, if D is a singleton and for every k 2 N, � 2 �(k), and q 2 Q there
exists at most one (w; t) 2 Q(Xk)

� � T�(X) such that t 2 supp(�k(�)q;w);

� total, if for every k 2 N, � 2 �(k), and q 2 Q there exists at least one
(w; t) 2 Q(Xk)

� � T�(X) such that t 2 supp(�k(�)q;w); and

� a homomorphism, if M is total and deterministic, and Q is a singleton. 2

Note that a deterministic (top-down or bottom-up) tree series transducer is polyno-
mial. Finally, we assign a formal semantics to polynomial tree series transducers. We
de�ne two di�erent semantics; namely, the "-tree-to-tree-series transformation and the
o-tree-to-tree-series transformation computed by a polynomial tree series transducer.
Both are de�ned in the same manner; the only di�erence is the type of substitution
used.

3.5 De�nition Let M = (Q;�;�;A; D; �) be a polynomial tree series transducer
and m 2 f"; og.

(i) For every k 2 N and � 2 �(k) the tree representation � induces a map-

ping �k(�)
m

:
�
AhT�i

Q
�k
�! AhT�i

Q de�ned for every q 2 Q and
R1; : : : ; Rk 2 AhT�i

Q by

�k(�)
m
(R1; : : : ; Rk)q =

X
w2Q(Xk)

�;
w=(q1(xi1 );:::;ql(xil ))

�k(�)q;w
m
 �

�
(Ri1)q1 ; : : : ; (Ril)ql

�
:

The above sum is essentially �nite because there are only �nitely many
w 2 Q(Xk)

� such that �k(�)q;w 6= e0 (if �k(�)q;w = e0 then the summand is e0 by
Proposition 2.4(ii)). Note that�

AhT�i
Q;
�
�k(�)

m
j k 2 N; � 2 �(k)

��
de�nes a �-algebra, and T� is the free �-algebra. Thus there exists a unique
homomorphism hm� : T� �! AhT�i

Q, which is inductively de�ned for every

k 2 N, � 2 �(k), and s1; : : : ; sk 2 T� by

hm� (�(s1; : : : ; sk)) = �k(�)
m
(hm� (s1); : : : ; h

m
� (sk)):
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(ii) The m-tree-to-tree-series transformation, abbreviated m-t-ts transformation,
computed by M is the mapping �mM : T� �! AhT�i speci�ed for every s 2 T�
by �mM (s) =

P
q2D h

m
� (s)q. 2

3.6 Example The bottom-up tree series transducer M = (f�g;�;�;A; f�g; �) over
the arctic semiring A with � = f�(2); �(0)g, � = f�(0)g, and � de�ned by

�2(�)�;(�;�) = max(1 x1; 1 x2) and �0(�)�;" = 1 �

is total and polynomial, but not deterministic, and consequently, not a homomor-
phism. The o-t-ts transformation computed by M is �oM (s) = height(s) � for every
s 2 T�. To illustrate the previous de�nition, we prove this property by structural
induction over s.

Induction base: Let s = �.

�oM (�)
Def. 3.5(ii)

= max
q2f�g

ho�(�)q = ho�(�)�
Def. 3.5(i)

= �0(�)
o
()�

Def. 3.5(i)
= �0(�)�;"

o
 �()

Prop. 2.4(i)
= �0(�)�;" = 1 � = height(�) �

Induction step: Let s = �(s1; s2) for some s1; s2 2 T�. Note that a
0 = 0.

�oM
�
�(s1; s2)

� Def. 3.5(ii)
= max

q2f�g
ho�
�
�(s1; s2)

�
q
= ho�

�
�(s1; s2)

�
�

Def. 3.5(i)
= �2(�)

o�
ho�(s1); h

o
�(s2)

�
�

Def. 3.5(i)
= max

(q1;q2)2f�g2
�2(�)�;(q1;q2)

o
 �

�
ho�(s1)q1 ; h

o
�(s2)q2

�
= �2(�)�;(�;�)

o
 �

�
ho�(s1)�; h

o
�(s2)�

�
= max(1 x1; 1 x2)

o
 �

�
max
q2f�g

ho�(s1)q; max
q2f�g

ho�(s2)q
�

Def. 3.5(ii)
= max(1 x1; 1 x2)

o
 �

�
�oM (s1); �

o
M (s2)

�
I.H.
= max(1 x1; 1 x2)

o
 �

�
height(s1) �; height(s2) �

�
y
= max

�
1 + height(s1); 1 + height(s2)

�
�

= 1 +max
�
height(s1); height(s2)

�
�

= height
�
�(s1; s2)

�
�

Note that supp
�
max(1x1; 1x2)

�
= fx1; x2g and supp

�
�oM (s1)

�
= supp

�
�oM (s2)

�
= f�g

are used at y. 2

In the sequel we are interested in the computational power of subclasses of bottom-
up and top-down tree series transducers. More precisely, to every class of restricted
bottom-up or top-down tree series transducers (see the properties in De�nitions
3.3 and 3.4) we associate the class of all m-t-ts transformations computed by them.
Then we compare such classes of m-t-ts transformations by means of set inclusion.
The next de�nition establishes shorthands for classes of m-t-ts transformations.
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3.7 De�nition Let m 2 f"; og. The class of all m-t-ts transformations computed
by polynomial, deterministic, and homomorphism bottom-up tree series transducers
over the semiring A is denoted by p{BOTm(A), d{BOTm(A), and h{BOTm(A),
respectively. Likewise, we use p{TOPm(A), d{TOPm(A), and h{TOPm(A) to stand
for the corresponding classes of m-t-ts transformations computed by top-down tree
series transducers over A. 2

We note that there are two di�erences concerning the denotation of classes of
transformations in comparison to [27]. One di�erence is that our " disappears in the
denotation of the same class in [27], and the second di�erence is that here we drop
the index t � ts (standing for tree-to-tree-series) from the denotation of our classes.
Thus, e.g., d{BOT"(A) is denoted by d-BOT t-ts(A) in [27].

3.8 Theorem Let M = (Q;�;�;A; D; �) be a polynomial top-down tree series
transducer.

(i) h"�(s)q = ho�(s)q for every s 2 T� and q 2 Q.

(ii) x{TOP"(A) = x{TOPo(A) for every x 2 fp;d;hg.

Proof. See Lemma 5.1 and Theorem 5.2 of [27]. �

Next we recall a property of deterministic tree series transducers that are bottom-
up or top-down. Roughly speaking, the addition operation of the underlying semiring
is irrelevant concerning computations of a deterministic tree series transducer; i.e., all
computations are performed in the multiplicative monoid of the semiring.

3.9 Proposition Let M = (Q;�;�;A; D; �) be a deterministic (bottom-up or top-
down) tree series transducer and m 2 f"; og. Then hm� (s)q and �

m
M (s) are monomial

for every s 2 T� and q 2 Q. Moreover, if M is bottom-up then for every s 2 T� there
exists at most one q 2 Q such that hm� (s)q 6= e0.
Proof. If m = " then the proof of the statement is in Proposition 3.12 of [19]. The
proof of the statement with m = o uses exactly the same argumentation. �

Before we proceed to the next section, we explicitly exclude certain non-interesting
tree series transducers. We call a tree series transducer M = (Q;�;�;A; D; �) non-
trivial, if �(0) 6= ; and there exist k 2 N, � 2 �(k), and q 2 Q such that �k(�)q;" 6= e0.
Hence, in particular, for bottom-up tree series transducers, non-triviality implies that
there exists a � 2 �(0) satisfying the condition above. Moreover, non-triviality implies
�(0) 6= ;. Let M be a trivial tree series transducer. Then �mM (s) = e0 for every s 2 T�
and m 2 f"; og. Since this particular case is not interesting, we assume that all tree
series transducers that are considered in the rest of the paper are non-trivial.

Moreover, we henceforth assume that mx� � 1 for all considered ranked alpha-
bets � of input symbols. This is justi�ed because if we restrict ourselves to input
alphabets with only nullary symbols then

x{BOT"(A) = x{BOTo(A) = x{TOP"(A) = x{TOPo(A):
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4. Coe�cient majorization

Throughout the rest of the section, A = (A;�;�;0;1;�) is a partially ordered semi-
ring. Thus, e.g., the semirings N1, A, T, B, Rmin;max, and LS (for an alphabet S)
are suitable. Moreover, we let m 2 f"; og and M = (Q;�;�;A; D; �) be a non-trivial
polynomial tree series transducer with mx� � 1. More speci�cally, M is bottom-up
in Section 4.2 and top-down in Section 4.3.

4.1. The general approach

We approximate the coe�cient of an output tree that is in the support of a tree series
in the range of �mM . More precisely, we de�ne coe�cient majorizations f : N+ �! A,
which ful�l f(n) 2 "CmM (n) for every n 2 N+, where C

m
M (n) � A, the set of coe�cients

generated by M on input trees of height at most n, is

CmM (n) =
�
(hm� (s)q; t)

�� q 2 Q; s 2 T�; height(s) � n; t 2 supp(hm� (s)q) 	 :
The existence of such mappings gives rise to a property of polynomial tree series
transducers. We exploit this property in Section 5 to reprove some recent results
and to provide some insight into the relation between the two modes of traversing
the input tree (i.e., bottom-up and top-down) and the two types of substitution (i.e.,
pure and o-substitution).

We start by de�ning some constants associated with the polynomial tree series
transducer M . They provide the abstraction from the concrete tree series transducer
used in our majorizations.

4.1 De�nition We de�ne the following constants representing basic facts of M :

� the maximal rank rM 2 N+ of the input symbols: rM = mx�;

� the number dM 2 N+ of follow-up states (or successor states):

dM =

8><>:
1 if M is deterministic,

card(Q) if M is bottom-up and not deterministic,

max(2; card(Q) � rM ) otherwise;

� the maximal support cardinality eM 2 N+:

eM = max

�
card

�
supp(�k(�)q;w)

� ���� k 2 N; � 2 �(k);

q 2 Q;w 2 Q(Xk)
�

�
;

� the maximal variable degree uM;m 2 N:

uM;m =

8><>:
rM if m = ";

max
k2N;�2�(k);q2Q;

w2Q(Xk)
�;t2supp(�k(�)q;w)

P
x2Xjwj

jtjx if m = o;
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� and the maximal length vM 2 N of the second index in any matrix in the range
of �k:

vM = max
n
jwj

��� k 2 N; � 2 �(k); q 2 Q;w 2 Q(Xk)
�; �k(�)q;w 6= e0 o :

2

Let us discuss those constants in more detail. The constant rM represents the
maximal number of direct subtrees of any input tree. This number coincides with
the maximal rank of the input ranked alphabet. Next we consider a state q 2 Q
and a word w 2 Q(Xk)

� such that �k(�)q;w 6= e0. The constant dM represents the
number of possible combinations for a single symbol of the word w. For a determin-
istic tree series transducer dM is apparently 1 by Proposition 3.9. Given that M is
bottom-up, we have only card(Q) choices for the state because the variable of Xk is
uniquely determined by the position in the word w. Finally, for polynomial top-down
tree series transducers we have card(Q) � k choices, but for technical reasons we take
max(2; card(Q) � rM ).

The intention of the constant eM , which is well-de�ned because M is polynomial,
is obvious. Lastly, the constants uM;m and vM ful�l a similar purpose. They both
limit the number of factors representing subtree coe�cients in any multiplication (see
the de�nition of pure and o-substitution). The bottom-up case, in which at most rM
factors (if m = ") or at most as many factors as there are variables in the tree selected
from the tree representation (if m = o) occur, is handled by the constant uM;m. In
the top-down case, which is handled by vM , there is no di�erence between pure and
o-substitution. Here there are at most as many factors as the length of the longest
word w 2 Q(Xk)

� with �k(�)q;w 6= e0.
Note that uM;m and vM are well-de�ned; for the former we need that M is poly-

nomial. Additionally, vM = rM if M is bottom-up, and vM = uM;o if M is top-down.

4.2 De�nition An element c 2 A is an upper bound of the coe�cients of �, if

c 2 "

 
f1g [

(
(�k(�)q;w; t)

����� k 2 N; � 2 �(k); q 2 Q;

w 2 Q(Xk)
�; t 2 supp(�k(�)q;w)

)!
:

2

Note that such an element need not exist in general. However, the existence can be
guaranteed, e.g., by demanding that A is directed. In the following, we often assume
an upper bound c of the coe�cients of �, and apparently, to obtain the best results,
it should be chosen as small as possible; hence it should be the supremum of the
non-zero coe�cients occurring in �, if it exists.

Next we introduce particular mappings, namely cardinality, sum, and coe�cient
majorizations. Given an n 2 N+, a cardinality majorization is supposed to limit the
cardinality of the support of hm� (s)q for every q 2 Q and s 2 T� of height at most n.
A sum majorization shall provide an upper bound of the n-fold sum of an a 2 A. This
mapping represents internal knowledge of the semiring and is externally provided. For
example, the mapping g(n; a) = n � a for every n 2 N+ and a 2 N [ f1g is suitable
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for N1. The sum majorization allows us to omit unnecessary detail, for the mapping
is only required to approximate the sum; it need not return the precise sum. Finally,
given n 2 N+, a coe�cient majorization f is supposed to limit all non-zero coe�cients
generated byM on input trees of height at most n; i.e., it must ful�l f(n) 2 "CmM (n).

4.3 De�nition The following notions are de�ned.

� A mapping l : N+ �! N+ such that card
�
supp(hm� (s)q)

�
� l(n) for every

n 2 N+, s 2 T� of height at most n, and q 2 Q is called cardinality majorization
(with respect to M and m).

� A mapping g : N+�A �! A such that
P
i2[n] a � g(n; a) for every n 2 N+ and

a 2 A is called sum majorization (with respect to A).

� A mapping f : N+ �! A such that f(n) 2 "CmM (n) for every n 2 N+ is called
coe�cient majorization (with respect to M and m). 2

We note that throughout Section 5, we will use g(n; a) =
P
i2[n] a as sum ma-

jorization. Now we continue by providing an example for each of the above de�ned
majorizations using our running example bottom-up tree series transducer of Exam-
ple 3.6.

4.4 Example Let M be the tree series transducer of Example 3.6, and let m = o.
Recall that A (the semiring used by M) ful�ls the general conditions of this section.

� The mapping l : N+ �! N+ de�ned by l(n) = 1 for every n 2 N+ is a cardinality
majorization because card(T�) = 1.

� The mapping g : N+ � (N [ f�1g) �! N [ f�1g de�ned by g(n; a) = a for
every n 2 N+ and a 2 N[ f�1g is a sum majorization because A is additively
idempotent.

� The mapping f : N+ �! N [ f�1g de�ned by f(n) = n is a coe�cient
majorization, which is immediate from Example 3.6. 2

Next we discuss the general approach used to derive a coe�cient majorization.
Let s 2 T� and let c be an upper bound of the coe�cients of � (see De�nition 4.2).
Using a cardinality majorization l and a sum majorization g, we can introduce a
so-called ample coe�cient majorization associated with l, g, and c (see De�nitions
4.5 and 4.11). The di�erent modi�ers (i.e., m = " or m = o) are taken care of by
the maximal variable degree uM;m (see De�nition 4.1) in case M is bottom-up, while
the m-t-ts transformations computed by top-down tree series transducers using on
the one hand m = " and on the other hand m = o do not di�er (i.e., �"M = �oM ; see
Lemma 5.1 of [27]).

Roughly speaking, if s has height 1, then every support element of hm� (s)q has a
coe�cient that is at most c. Given s of height n + 1, we �rst compute an upper
bound of the coe�cients of all subtrees of height at most n. Since those weights are
multiplied in the de�nition of substitution, we take the result of the recursive call to
the uM;m-th power, if M is bottom-up, and to the vM -th power, if M is top-down.
Recall that uM;m and vM are de�ned such that they hold the maximal number of
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multiplications in any product generated by one substitution. The other factor is
provided by the tree representation, and thus c provides a suitable upper bound of
this factor.

Finally, by substitution, equal trees might arise such that the coe�cients of those
are going to be summed up. The cardinality majorization l with the help of the
sum majorization g is going to provide an upper bound of this sum as we will see in
Theorems 4.7 and 4.13.

In the sections to follow we distinguish the two modes of traversing the input tree,
namely bottom-up and top-down. In particular, in the top-down section we casually
refer to the bottom-up section because the derived majorizations generally have the
same structure and so properties only depending on the structure carry over to the
top-down case.

4.2. The bottom-up case

Recall that in this section M is always a (non-trivial) polynomial bottom-up tree
series transducer with mx� � 1. Moreover, let l and g be a cardinality majorization
and a sum majorization, respectively. Lastly, let c be an upper bound of the coef-
�cients of � (see De�nition 4.2). According to the outline just presented, we de�ne
the following coe�cient majorization. Recall the constants rM , dM , eM , and uM;m

from De�nition 4.1.

4.5 De�nition The ample coe�cient majorization fbotM;m;l;g;c : N+ �! A (associated
with l, g, and c) is de�ned recursively by

fbotM;m;l;g;c(1) = c

fbotM;m;l;g;c(n) = g
�
(dM )rM � eM � l(n� 1)rM ; c� fbotM;m;l;g;c(n� 1)uM;m

�
for every n � 2. 2

Thus the ample coe�cient majorization depends on the polynomial bottom-up tree
series transducerM (or more speci�cally: a few characteristics ofM), the modi�er m,
the cardinality majorization l, the sum majorization g, and the upper bound c. Next
we prove that the ample coe�cient majorization is indeed a coe�cient majorization.

This result is proved for two cases:

(C1) A satis�es (G�); or

(C2) M is deterministic and l(n) = 1 for every n 2 N+, which is a cardinality ma-
jorization by Proposition 3.9.

In fact, (PO�) is not even needed in Case (C2).

4.6 Observation Given (C1) or (C2), we have 1 � fbotM;m;l;g;c(n) for every n 2 N+.

Proof. The proof is by induction on n. The induction base is immediate by De�ni-
tion 4.2, so we proceed with the induction step. Clearly, a = c � fbotM;m;l;g;c(n)

uM;m

obeys 1 � a by induction hypothesis, Observation 2.2(iii), and (PO�). In Case (C1)
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we have a � fbotM;m;l;g;c(n+ 1) by Observation 2.2(ii). Thus 1 � a � fbotM;m;l;g;c(n+ 1).
Now let us consider Case (C2). IfM is deterministic, then dM = 1 and eM = 1. More-
over, l(n) = 1 by assumption. Hence we obtain that fbotM;m;l;g;c(n + 1) = g(1; a) and

a � g(1; a) because g is a sum majorization. Thus again 1 � a � fbotM;m;l;g;c(n+ 1). �

4.7 Theorem Given (C1) or (C2), the ample coe�cient majorization fbotM;m;l;g;c is a

coe�cient majorization; i.e., fbotM;m;l;g;c(n) 2 "C
m
M (n) for every n 2 N+. Moreover,

� in Case (C1): (�mM (s); t) � g
�
card(D); fbotM;m;l;g;c(n)

�
; and

� in Case (C2): (�mM (s); t) � g
�
1; fbotM;m;l;g;c(n)

�
for every n 2 N+, s 2 T�, and t 2 supp(�

m
M (s)) such that height(s) � n.

Proof. Obviously we have to prove (hm� (s)q; t) � fbotM;m;l;g;c(n) for every n 2 N+,
q 2 Q, s 2 T�, and t 2 supp(hm� (s)q) such that height(s) � n. We proceed by
structural induction over s.

Induction base: Let s = � with � 2 �(0). Since t 2 supp(hm� (�)q), we have

(hm� (�)q; t)
Def. 3.5(i)

= (�0(�)q;"; t) � c = fbotM;m;l;g;c(1):

Induction step: Let k 2 N+, � 2 �(k), s1; : : : ; sk 2 T�, and s = �(s1; : : : ; sk) be an
input tree of height at most n. Note that throughout the proof we use the statements
of Observation 2.2 without explicit reference. First we prove the induction step for
M being not deterministic; i.e., Case (C1).

(hm� (�(s1; : : : ; sk))q; t)

Def. 3.5(i)
=

� X
q1;:::;qk2Q

�k(�)q;(q1;:::;qk)
m
 �(hm� (s1)q1 ; : : : ; h

m
� (sk)qk); t

�
?
=

X
w=(q1;:::;qk)2Q

k;

t=t0[t1;:::;tk];t
02supp(�k(�)q;w);

(8i2[k]) : ti2supp(h
m
� (si)qi )

(�k(�)q;w; t
0)�

Y
i2[k]

(hm� (si)qi ; ti)
ni

where for every i 2 [k] : ni =

(
jt0jxi if m = o;

1 if m = "

I.H.
�

X
:::

c�
Y
i2[k]

fbotM;m;l;g;c(n� 1)ni =
X
:::

c� fbotM;m;l;g;c(n� 1)n1+���+nk

where
X
:::

abbreviates the sum of (?)

Obs. 4.6
�

X
:::

c� fbotM;m;l;g;c(n� 1)uM;m
y
�

X
w=(q1;:::;qk)2Q

k;

t02supp(�k(�)q;w);
(8i2[k]) : ti2supp(h

m
� (si)qi )

a

where a = c� fbotM;m;l;g;c(n� 1)uM;m



554

�
X

j2[(dM )k�eM �l(n�1)k]

a �
X

j2[(dM )rM �eM �l(n�1)rM ]

a

� g
�
(dM )rM � eM � l(n� 1)rM ; a

�
= fbotM;m;l;g;c(n)

The step at y is governed by t 2 supp(hm� (s)q), which implies that there exists
at least one non-zero summand of the sum, needed for the application of Ob-
servation 2.2(ii). For the next step, note that eM � card(supp(�k(�)q;w)) and
l
�
n � 1

�
� card(supp(hm� (si)qi)) for every i 2 [k]. This concludes the induction

step for M being not deterministic.

Now let M be deterministic.

(hm� (�(s1; : : : ; sk))q; t)

Def. 3.5(i)
=

� X
q1;:::;qk2Q

�k(�)q;(q1;:::;qk)
m
 �(hm� (s1)q1 ; : : : ; h

m
� (sk)qk); t

�
?
=

X
w=(q1;:::;qk)2Q

k;

t=t0[t1;:::;tk];t
02supp(�k(�)q;w);

(8i2[k]) : ti2supp(h
m
� (si)qi )

(�k(�)q;w; t
0)�

Y
i2[k]

(hm� (si)qi ; ti)
ni

where for every i 2 [k] : ni =

(
jt0jxi if m = o;

1 if m = "

I.H.
�

X
j2[(dM )rM �eM �l(n�1)rM ]

c� fbotM;m;l;g;c(n� 1)n1+���+nk

Obs 4.6
�

X
j2[(dM )rM �eM �l(n�1)rM ]

c� fbotM;m;l;g;c(n� 1)uM;m

� g((dM )rM � eM � l(n� 1)rM ; a) = fbotM;m;l;g;c(n)

Since M is deterministic, the states qi are �xed by Proposition 3.9 because
ti 2 supp(hm� (si)qi). Moreover, by determinism and t 2 supp(hm� (s)q) we have that
supp(�k(�)q;w) is singleton. Thus the index set in ? is singleton. This makes the step
marked I.H. possible. It uses the induction hypothesis and the facts that dM = 1,
eM = 1, and that (G�) holds if l(n� 1) 6= 1.

Thus we have proved the �rst statement of the theorem for both cases (C1)
and (C2). This statement easily allows us to derive the latter statement of the the-
orem as follows. First we again consider the case that M is not deterministic; i.e.,
Case (C1).

(�mM (s); t)

Def. 3.5(ii)
=

X
q2D

(hm� (s)q; t) =
X

q2D s.th. t2supp(hm� (s)q)

(hm� (s)q; t)

Obs. 2.2(i)

�
X

q2D s.th. t2supp(hm� (s)q)

fbotM;m;l;g;c(n)
Obs. 2.2(ii)

�
X
q2D

fbotM;m;l;g;c(n)
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� g
�
card(D); fbotM;m;l;g;c(n)

�
Recall that t 2 supp(�mM (s)). Thus the step labeled Obs. 2.2(ii) is possible because
there exists a q 2 D such that t 2 supp(hm� (s)q).

Finally, let M be deterministic. Recall that by Proposition 3.9, there exists a state
p 2 Q such that hm� (s)q = e0 for all q 2 Q with q 6= p. Moreover, since t 2 supp(�mM (s))

we also have hm� (s)p 6= e0.
(�mM (s); t)

Def. 3.5(ii)
=

X
q2D

(hm� (s)q; t) = (hm� (s)p; t) � g
�
1; fbotM;m;l;g;c(n)

�
This completes the proof. �

Continuing with the running example, we present the ample coe�cient majorization
for the tree series transducer M of Example 3.6.

4.8 Example Let M = (f�g;�;�;A; f�g; �) be the tree series transducer of Exam-
ple 3.6. The constants of De�nition 4.1 are rM = 2, dM = 1, eM = 2, and uM;o = 1,
and we let l and g be the cardinality and sum majorization presented in Example 4.4,
respectively (i.e., l(n) = 1 and g(n; a) = a for every n 2 N+ and a 2 N [ f�1g).

Finally, we let c = 1, which is an upper bound of the coe�cients of � accord-
ing to De�nition 4.2. We obtain the ample coe�cient majorization fbotM;o;l;g;c with

fbotM;o;l;g;c(1) = 1 and for every n � 2

fbotM;o;l;g;c(n) = g
�
2 � l(n� 1)2; 1 + fbotM;o;l;g;c(n� 1)

�
= 1 + fbotM;o;l;g;c(n� 1) = n:

Theorem 4.7 applied to this example yields that (�oM (s); t) � n for every n 2 N+,
s 2 T� of height at most n, and t 2 supp(�oM (s)). Note, furthermore, that fbotM;o;l;g;c

coincides with the coe�cient majorization presented in Example 4.4. 2

We have derived a mapping fbotM;m;l;g;c that limits the coe�cients of output sub-

trees generated by M . By de�nition, fbotM;m;l;g;c depends on a cardinality majoriza-
tion l : N+ �! N+ and a sum majorization g : N+�A �! A. The sum majorization g
is speci�c for A and needs to be provided from the outside; i.e., it cannot be deduced
from properties of M . In Section 5 we will see how restrictions on A allow an easy
de�nition of g. The cardinality majorization l limits the support cardinality of the
computed tree series. This mapping was also supplied from the outside, but now we
derive an easy cardinality majorization lbotM .

Given n 2 N+, we have to limit the cardinality of the support of hm� (s)q for every
s 2 T� of height at most n and q 2 Q. The idea is to pessimistically assume that given
k 2 N, pairs of di�erent trees (t; t0) 2 T�(Xk)

2, and (t1; t
0
1); : : : ; (tk; t

0
k) 2 (T�)

2, the
trees t[t1; : : : ; tk] and t0[t01; : : : ; t

0
k] are di�erent. This is | of course | not true in

general, but it is appropriate for our cardinality majorization because the number of
di�erent trees in the support might only be overestimated.
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4.9 De�nition The ample cardinality majorization associated with M is the mapping
lbotM : N+ �! N+ de�ned for every n 2 N+ by

lbotM (n) = (dM )
P

i2[1;n�1] r
i
M � (eM )

P
i2[0;n�1] r

i
M

=

(
eM if n = 1;

(dM )rM � eM � l
bot
M (n� 1)rM if n > 1:

2

4.10 Lemma The ample cardinality majorization associated withM is a cardinality
majorization; i.e., card(supp(hm� (s)q)) � l

bot
M (n) for every n 2 N+, q 2 Q, and s 2 T�

of height at most n.

Proof. IfM is deterministic, then lbotM (n) = 1, which is a cardinality majorization by
Proposition 3.9. Now assume that M is not deterministic. We prove the statement
by structural induction over s.

Induction base: Let s = � with � 2 �(0).

card
�
supp(hm� (�)q)

� Def. 3.5(i)
= card

�
supp(�0(�)q;")

�
� eM = lbotM (1)

Induction step: Let s = �(s1; : : : ; sk) for some k 2 N+, � 2 �
(k), and s1; : : : ; sk 2 T�.

Recall that height(s) � n.

card
�
supp(hm� (�(s1; : : : ; sk))q)

�
Def. 3.5(i)

= card
�
supp

� X
w=(q1;:::;qk)2Qk

�k(�)q;w
m
 �(hm� (s1)q1 ; : : : ; h

m
� (sk)qk)

��
= card

�
supp

� X
w=(q1;:::;qk)2Q

k;

t02supp(�k(�)q;w);
(8i2[k]) : ti2supp(h

m
� (si)qi )

(�k(�)q;w; t
0)�

Y
i2[k]

(hm� (si)qi ; ti)
ni t0[t1; : : : ; tk]

��

where for every i 2 [k] : ni =

(
jt0jxi if m = o;

1 if m = "

y
� (dM )k � eM � l

bot
M (n� 1)k � (dM )rM � eM � l

bot
M (n� 1)rM

= lbotM (n)

At y we used the induction hypothesis and eM � card(supp(�k(�)q;w)). �

Thus we obtain an ample coe�cient majorization fbot
M;m;lbot

M
;g;c

that only depends

on the constants, a sum majorization g, and c. If we use g(n; a) =
P
i2[n] a as sum

majorization, we obtain a coe�cient majorization that only depends on the constants
and c.

4.3. The top-down case

The results of this section are also proved for two cases: (C1) A satis�es (G�),
or (C2) M is deterministic and l(n) = 1 for every n 2 N+, which is a cardinality
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majorization by Proposition 3.9. As in the bottom-up case, (PO�) is not even needed
in Case (C2). In this section we consider polynomial top-down tree series transducers
and derive similar majorizations for them. Thus, M always denotes a (non-trivial)
polynomial top-down tree series transducer with mx� � 1 in this section. Moreover,
we let l and g be a cardinality and a sum majorization, respectively, and c be an upper
bound of the coe�cients of �. Recall the constants dM , eM , and vM of De�nition 4.1.

4.11 De�nition The ample coe�cient majorization f topM;l;g;c : N+ �! A (associated
with l, g, and c) is de�ned recursively by

f topM;l;g;c(1) = c

f topM;l;g;c(n) = g
�
(dM )1+vM � eM � l(n� 1)vM ; c� f topM;l;g;c(n� 1)vM

�
for every n � 2. 2

Note the structural similarity of f topM;l;g;c and the ample coe�cient majorization

of a polynomial bottom-up tree series transducer. Also note that f topM;l;g;c does not
depend on m. Theorem 4.7, which states that the ample coe�cient majorization of a
polynomial bottom-up tree series transducer is indeed a coe�cient majorization, and
its proof can be translated in a straightforward manner to the top-down case. The
general approach remains the same, though there are some notational changes, so we
resupply the proof. Due to Theorem 3.8(i) it su�ces to consider m = ".

4.12 Observation Given (C1) or (C2), we have 1 � f topM;l;g;c(n) for every n 2 N+.

Proof. The proof is literally the same as the proof of Observation 4.6 except that
fbotM;m;l;g;c and uM;m have to be replaced by f topM;l;g;c and vM , respectively. �

4.13 Theorem Given (C1) or (C2), the ample coe�cient majorization f topM;l;g;c is a

coe�cient majorization; i.e., f topM;l;g;c(n) 2 "C
"
M (n) for every n 2 N+. Moreover,

� in Case (C1): (�"M (s); t) � g
�
card(D); f topM;l;g;c(n)

�
; and

� in Case (C2): (�"M (s); t) � g
�
1; f topM;l;g;c(n)

�
for every n 2 N+, s 2 T�, and t 2 supp(�

"
M (s)) such that height(s) � n.

Proof. The proof of the latter statement is identical to the proof of the corresponding
statement of Theorem 4.7. So it remains to prove (h"�(s)q; t) � f topM;l;g;c(n) for every
n 2 N+, q 2 Q, s 2 T�, and t 2 supp(h

"
�(s)q) such that height(s) � n. We prove this

statement by structural induction over s.

Induction base: Let s = � with � 2 �(0). Since t 2 supp(h"�(�)q), we have

(h"�(�)q; t)
Def. 3.5(i)

= (�0(�)q;"; t) � c = f topM;l;g;c(1):

Induction step: Let k 2 N+, � 2 �
(k), and s1; : : : ; sk 2 T� such that s = �(s1; : : : ; sk)

is of height at most n. First let M be not deterministic; i.e., Case (C1).�
h"�
�
�(s1; : : : ; sk)

�
q
; t
�
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Def. 3.5(i)
=

� X
w2Q(Xk)

�;

w=(q1(xi1 );:::;ql(xil ))

�k(�)q;w
"
 �(h"�(si1)q1 ; : : : ; h

"
�(sil)ql); t

�
?
=

X
w=(q1(xi1 );:::;ql(xil ))2Q(Xk)

�;

t=t0[t1;:::;tl];t
02supp(�k(�)q;w);

(8j2[l]) : tj2supp(h
"
�(sij )qj )

(�k(�)q;w; t
0)�

Y
j2[l]

(h"�(sij )qj ; tj)

I.H.
�

X
:::

c� f topM;l;g;c(n� 1)l
Obs. 4.12
�

X
:::

c� f topM;l;g;c(n� 1)vM

where
X
:::

is the sum of ?

y
�

X
w=(q1(xi1 );:::;ql(xil ))2Q(Xk)

�;

t02supp(�k(�)q;w);
(8j2[l]) : tj2supp(h

"
�(sij )qj )

a �
X

j02[(dM )1+vM �eM �
Q
j2[vM ] l(n�1)]

a

where a = c� f topM;l;g;c(n� 1)vM

� g
�
(dM )1+vM � eM � l(n� 1)vM ; a

�
= f topM;l;g;c(n)

The step at y is governed by t 2 supp(h"�(s)q), which implies that there exists
at least one non-zero summand of the sum, needed for the application of Ob-
servation 2.2(ii). For the next step, note that eM � card(supp(�k(�)q;w)) and
l(n�1) � card(supp(h"�(sij )qj )). Finally, let us consider how many w 2 Q(Xk)

� there

are such that �k(�)q;w 6= e0. Clearly, there are at mostPj2[0;vM ](dM )j such w, but if

M is also bottom-up then there are at most (dM )k because w = (q1(x1); : : : ; qk(xk))
for some q1; : : : ; qk 2 Q. Note that dM > 1 by De�nition 4.1 except when M is
top-down and bottom-up. If dM > 1, then

P
j2[0;vM ](dM )j � (dM )1+vM , and if M is

bottom-up then (dM )k � (dM )1+vM because k � mx� = vM . This concludes the
induction step for Case (C1).

Now let M be deterministic.�
h"�
�
�(s1; : : : ; sk)

�
q
; t
�

Def. 3.5(i)
=

� X
w2Q(Xk)

�;

w=(q1(xi1 );:::;ql(xil ))

�k(�)q;w
"
 �(h"�(si1)q1 ; : : : ; h

"
�(sil)ql); t

�

=
X

w=(q1(xi1 );:::;ql(xil ))2Q(Xk)
�;

t=t0[t1;:::;tl];t
02supp(�k(�)q;w);

(8j2[l]) : tj2supp(h
"
�(sij )qj )

(�k(�)q;w; t
0)�

Y
j2[l]

(h"�(sij )qj ; tj)

I.H.
�

X
j02[(dM )1+vM �eM �

Q
j2[vM ] l(n�1)]

c� f topM;l;g;c(n� 1)vM

� g
�
(dM )1+vM � eM � l(n� 1)vM ; a

�
= f topM;l;g;c(n)
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Since M is deterministic, w is �xed by de�nition, supp(�k(�)q;w) is singleton by
de�nition and the fact that t 2 supp(h"�(s)q), and supp(h"�(sij )qj ) is singleton for
every j 2 [l] by Proposition 3.9 and t 2 supp(h"�(s)q). Recall that dM = 1 and
eM = 1. Moreover, Property (G�) holds if l(n� 1) 6= 1. Together with the induction
hypothesis, this justi�es the step marked I.H. �

Finally, we also derive an ample cardinality majorization for polynomial top-down
tree series transducers.

4.14 De�nition The ample cardinality majorization associated with M is the map-
ping ltopM : N+ �! N+ recursively de�ned by

ltopM (1) = eM

ltopM (n) = (dM )1+vM � eM � l
top
M (n� 1)vM

for every n � 2. 2

4.15 Lemma The ample cardinality majorization associated withM is a cardinality
majorization; i.e., card(supp(h"�(s)q)) � ltopM (n) for every n 2 N+, q 2 Q, and s 2 T�
of height at most n.

Proof. The proof proceeds along the lines of the proof of Lemma 4.10 with just minor
changes, most of which were already outlined in the proof of Theorem 4.13. �

5. Incomparability results

In the �rst part of this section we reprove two recent results from [27] concerning
growth properties of polynomial bottom-up tree series transducers using our coe�-
cient majorization approach (i.e., using Theorem 4.7). The second part then focuses
on some simpli�ed coe�cient majorization that allows us to derive incomparability
results for classes of m-t-ts transformations computed by polynomial bottom-up as
well as top-down tree series transducers.

Let M = (Q;�;�;N1; D; �) be a polynomial bottom-up tree series transducer.
First we reprove a slightly less general version of Lemma 5.14 of [27]. In [27], 1 may
not occur as coe�cient in �mM (s) for every s 2 T�. However, if 1 occurs in � but not
in �mM (s), then 1 can be eliminated from �.

5.1 Lemma Let M = (Q;�;�;N1; D; �) be a polynomial bottom-up tree series
transducer with � = f�(2); �(0)g and � = f�(0)g such that 1 does not occur as coef-
�cient in any tree series of �. There exists an integer b such that (�oM (s); �) � bheight(s)

for every s 2 T�.

Proof. We can instantiate Theorem 4.7, because N1 is totally ordered by �. More-
over, N1 has property (G�). The constants of De�nition 4.1 are: rM = mx� = 2,
eM � card(T�(X2)) = 3, and uM;o � 1. Finally, an upper bound c 2 N of the
coe�cients of � clearly exists.
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We choose the sum majorization g(n; a) = n � a and the cardinality majorization
l(n) = 1, which is a cardinality majorization due to card(T�) = 1. Hence

fbotM;o;l;g;c(1) = c

fbotM;o;l;g;c(n) = (dM )2 � eM � c � f
bot
M;o;l;g;c(n� 1)uM;o

for every n � 2 and thus fbotM;o;l;g;c(n) � (3 � (dM )2 � c)n�1 � c. Because c 6=1, we have

b = 3 �card(Q) �(dM )2 �c 6=1, and we obtain (�oM (s); �) � bheight(s) by Theorem 4.7.�

Similarly we can prove a variant of Lemma 5.16 of [27].

5.2 Lemma Let M = (Q;�;�;N1; D; �) be a polynomial bottom-up tree series
transducer with mx� = 1 such that 1 does not occur as coe�cient in any tree series
of �. Then there is an integer b such that (�"M (s); t) � bheight(s)

2

for every s 2 T� and
t 2 T�.

Proof. Theorem 4.7 is applicable, because N1 ful�ls the general restrictions imposed
on the semiring. Obviously, the constants of De�nition 4.1 are: rM = mx� = 1 and
uM;" = 1. Clearly, there exists an upper bound c 2 N of the coe�cients of �. Using the
sum majorization g(n; a) = n�a and ample cardinality majorization l = lbotM associated
with M of De�nition 4.9, which is a cardinality majorization due to Lemma 4.10, we
obtain

fbotM;";l;g;c(1) = c

fbotM;";l;g;c(n) = (dM )n�1 � (eM )n � c � fbotM;";l;g;c(n� 1)

for every n � 2 and thus

fbotM;";l;g;c(n) = (dM )
P

i2[1;n�1] i � (eM )
P

i2[2;n] i � cn � (dM � eM � c)
n�(n+1)

2 ;

which implies the required bound by setting b = card(Q) � dM � eM � cM as follows.

Since card(Q) � (dM � eM � c)
n�(n+1)

2 � bheight(s)
2

, we obtain (�"M (s); t) � bheight(s)
2

by Theorem 4.7. �

Corollary 5.18 in [27] is proved using essentially Lemmata 5.1 and 5.2 together with
some examples required to show incomparability.

5.3 Corollary p{BOT"(N1) 1 p{BOTo(N1). 2

Using the same approach we can also reprove Lemmata 5.19 and 5.21 of [27]. They
are used to prove Corollary 5.23 of [27], which essentially states the above for T.

The ample cardinality majorization associated with a deterministic tree series trans-
ducer (see De�nitions 4.9 and 4.14) is l(n) = 1. Now let us consider the �rst argument
of the sum majorization g in the de�nition of the ample coe�cient majorization (see
De�nitions 4.5 and 4.11) for deterministic tree series transducers. We immediately
observe that the �rst argument is always 1. Next let us consider additively idempo-
tent semirings. Certainly, such semirings ful�l (G�) irrespective of the partial order.
Moreover, additively idempotent semirings are partially ordered by their natural or-
der. Finally, we can use g(n; a) = a as sum majorization.
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LetM = (Q;�;�;A; D; �) be a (non-trivial) polynomial tree series transducer that
is bottom-up or top-down. The following theorem shows that, provided that M is
deterministic or A is additively idempotent, a very simple mapping, called coe�cient
approximation, is a coe�cient majorization.

5.4 De�nition For every a 2 A and z 2 N we de�ne the coe�cient approximation

fa;z : N+ �! A by fa;z(n) = a
P

i2[0;n�1] z
i

for every n 2 N+. 2

5.5 Theorem Let m 2 f"; og, and let A be a semiring partially ordered by �. More-
over, let M = (Q;�;�;A; D; �) be a polynomial tree series transducer that is top-
down or bottom-up, and let c be an upper bound of the coe�cients of �. If (i) A is
additively idempotent or (ii) M is deterministic, then the coe�cient approximation
fc;z : N+ �! A with

z =

(
uM;m if M is bottom-up,

vM if M is top-down,

is a coe�cient majorization. Moreover (�mM (s); t) � fc;z(n) for every n 2 N+, s 2 T�
of height at most n, and t 2 supp(�mM (s)).

Proof. To show that fc;z is a coe�cient majorization, we show that fc;z is equal

to the ample coe�cient majorization fbotM;m;l;g;c or f topM;l;g;c (depending on whether
M is bottom-up or top-down) for a particular cardinality majorization l and the sum
majorization g(n; a) =

P
i2[n] a.

Let us �rst consider case (ii), in which M is deterministic. We let l(n) = 1 for
every n 2 N+, which is a cardinality majorization due to Proposition 3.9. Finally, we
note that by determinism dM = 1 and eM = 1, thus the �rst argument of the sum
majorization g is always 1. In case (i) we let l be an arbitrary cardinality majorization;
e.g., we could set l = lbotM if M is bottom-up, and l = ltopM if M is top-down. Clearly,
g(n; a) = a for every n 2 N+ and a 2 A.

We continue in both cases by showing that fc;z(n) = h(n), where h = fbotM;m;l;g;c if

M is bottom-up, and h = f topM;l;g;c if M is top-down. Obviously, h(1) = c = fc;z(1)
and otherwise

h(n) = g
�
(dM )x � eM � l(n� 1)y; c� h(n� 1)z

�
where x = y = rM and z = uM;m if M is bottom-up,

otherwise x = 1 + vM and y = z = vM

= c� h(n� 1)z = c
P

i2[0;n�1] z
i

= fc;z(n):

Thus h = fc;z and by Theorems 4.7 and 4.13 it follows that fc;z is a coe�cient
majorization. It remains to show the latter statement of the theorem. In case (i) we
have

(�mM (s); t)
Thms. 4.7 & 4.13

�
X
q2D

fc;z
�
n
� y
= fc;z

�
n
�
;

where at y we used that A is idempotent. In case (ii) we conclude (�mM (s); t) � fc;z(n)
from Theorems 4.7 and 4.13. �
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The following observation shows that fa;z(n) � fa;z0(n) whenever z � z0. This
allows us to use an upper bound of the parameter z in order to obtain an upper
bound of the coe�cient of an output tree.

5.6 Observation Let a 2 A with 1 � a and z; z0; n 2 N with z � z0. Then
fa;z(n) � fa;z0(n).

Proof. Immediate from Observation 2.2(iii). �

Next we establish that the coe�cient approximation for deterministic tree series
transducers as well as for polynomial tree series transducers over additively idem-
potent semirings (i.e., in those cases when it is a coe�cient majorization according
to Theorem 5.5) gives an upper bound that can be reached by a homomorphism
tree series transducer. We use this result in our main incomparability result (see
Lemma 5.9).

5.7 Lemma Let �0 = f
(1); �(0)g, �0 = f�(2); �(0)g, and �00 = f�(0)g. Moreover, let
z 2 N+, c 2 A with 1 � c, and �00 = f�(z); �(0)g. There exists a homomorphism x
tree series transducer N = (f�g;�;�;A; f�g; �) such that c is an upper bound of the
coe�cients of �, uN;m = z, and for every n 2 N+ there exist s 2 T� of height n and
t 2 supp(�mN (s)) such that (�mN (s); t) = fc;z(n), where:

(i) m = ", � = �00, � = �00, and x = bottom-up;

(ii) m = o, � = �0, � = �0, and x = bottom-up; or

(iii) m = o, � = �0, � = �0, and x = top-down (note that uN;o = vN ).

Proof. We prove the statements individually.

(i) Let �0(�)�;" = c � and �z(�)�;(�;:::;�) = c �. Note that uN;" = z. Moreover,
let s 2 T�00 be the fully balanced tree of height n 2 N+. A straightforward
structural induction shows that (�"N (s); �) = fc;z(n) as follows. The induction
base is (�"N (�); �) = c = fc;z(1). In the induction step we have for every
s = �(s0; : : : ; s0) with s0 2 T�00 being a fully balanced tree of height n� 1�

�"N
�
�(s0; : : : ; s0)

�
; �
�

Def. 3.5(ii)
=

�
h"�
�
�(s0; : : : ; s0)

�
�
; �
�

= (�z(�)�;(�;:::;�); �)�
Y
i2[z]

(h�(s
0)�; �)

Def. 3.5(ii)
= c� (�"N (s

0); �)z

I.H.
= c� fc;z

�
n� 1

�z Def. 5.4
= fc;z(n):

(ii) Let �0(�)�;" = c� and �1(
)�;(�) = c�(x1; �(: : : ; �(x1; �) : : :)) such that x1 occurs
z times in the latter tree. Clearly, uN;o = z. Moreover, one can easily show by
a similar induction as in Item (i) that for every s 2 T�0 of height n 2 N+ there
exists t 2 T�0 such that (�oN (s); t) = fc;z(n).

(iii) Let �0(�)�;" = c� and �1(
)�;(�(x1);:::;�(x1)) = c�(x1; �(: : : ; �(xz; �) : : :)). Clearly
vN = uN;o = z and the proof of (iii) is analogous to the previous ones and
omitted. �
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The main theorem states the incomparability of the classes of m-t-ts transforma-
tions computed by polynomial bottom-up tree series transducers form = " andm = o
over a semiring A with an additional property, which we introduce next. Roughly
speaking, we require that A is partially ordered by a partial order � such that for
some a 2 A we have ai � aj whenever i < j. Moreover, we require that every element
that occurs in a decomposition of an can be bounded from above by a power of a.

5.8 De�nition A partially ordered semiring A = (A;�;�;0;1;�) is weakly growing,
if:

(i) there is a 2 A such that ai � aj for all non-negative integers i < j; and

(ii) for every a1; a2; b 2 A n f0g, d 2 A, and n 2 N, if a
n = a1 � b � a2 � d, then

there is an m 2 N such that b � am. 2

The �rst condition ensures that a0 � a1 � a2 � � � � . The second condition in-
tuitively requires that the growth is not too slow; i.e., we should at least be able
to bound (from above) elements that occur in decompositions. Stronger conditions
than (ii) can be obtained, for example, by requiring that whenever b 6= 0, then b � am

for some m 2 N, an Archimedian type property for the element a. This would essen-
tially state that the growth of a is unbounded; i.e., " f an jn 2 N g = ;. Certainly,
the non-negative integers (without in�nity) N = (N;+; �; 0; 1) ful�l this property for
a = 2 as well as A does for a = 1. However, already N1 does not satisfy it.

Another strong notion of growth can be obtained by requiring that (i)A is naturally
ordered, (ii) ai < aj whenever i < j, and (iii) a v a�b and a v b�a for every a; b 2 A
with b 6= 0. The semirings N, N1, and A ful�l this property, but T does not.

For our incomparability results we only need the weakly growing property. In the
deterministic case, a yet weaker property obtained from De�nition 5.8 by �xing d = 0

in Item (ii) is su�cient for our incomparability results for deterministic tree series
transducers. However, we consider this a minor issue and proceed with the de�nition
as given (even for deterministic tree series transducers).

The following semirings are weakly growing:

� N1 with the partial order �, a = 2, and m = n;

� T with the partial order �, a = 1, and m = max(n; d);

� A with the partial order �, a = 1, and m = n;

� LS (S an alphabet) with the partial order �, a = f"; sg for some s 2 S, and
m = n.

The above statements are easily checked. On the other hand, B and Rmin;max are not
weakly growing because they are multiplicatively periodic.

Next we are going to show that given an additively idempotent and weakly grow-
ing semiring, the classes of m-t-ts transformations computed by polynomial bottom-
up tree series transducers using "-substitution and o-substitution are incomparable.
Moreover, we also obtain the incomparability of the former class and the class of "-t-ts
transformations computed by polynomial top-down tree series transducers. The same
statements for deterministic tree series transducers can be proved independently of
additive idempotency.
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Before stating the incomparability theorem, we provide a sketch of the proof. Infor-
mally speaking, we show both directions by constructing a speci�c homomorphism tree
series transducer N using the particular coe�cient a 2 A that ful�ls the conditions of
De�nition 5.8. The approximation mapping can be applied to every polynomial tree
series transducer M that is supposed to compute the same m-t-ts transformation.
By a careful choice of the input and output ranked alphabets we limit the constants
uM;m and vM . We then proceed by showing that N has a higher growth rate thanM .
This growth argument yields the desired contradiction.

5.9 Lemma Let A be a weakly growing semiring. Moreover, let x = p if A is
additively idempotent and x = d otherwise. Then:

� h{BOT"(A) 6� x{BOTo(A) and h{BOTo(A) 6� x{BOT"(A); and

� h{BOT"(A) 6� x{TOP"(A) and h{TOP"(A) 6� x{BOT"(A).

Proof. Let A be weakly growing with respect to the partial order � and the el-
ement a 2 A (see De�nition 5.8) First we prove h{BOT"(A) 6� x{BOTo(A) and
h{BOT"(A) 6� x{TOP"(A). We consider the ranked alphabets �00 = f�(2); �(0)g
and �00 = f�(0)g as input and output ranked alphabet, respectively. Then by
Lemma 5.7(i) (with z = 2) there is a homomorphism bottom-up tree series trans-
ducer N = (f?g;�00;�00;A; f?g; �) such that a is an upper bound of the coe�cients
of �, uN;" = rN = 2, and for every n 2 N+ there exist s 2 T�00 of height n and
t 2 supp

�
�"N (s)

�
such that (�"N (s); t) = fa;uN;"(n) = a2

n�1.
Assume that there exists a (bottom-up or top-down) polynomial tree series trans-

ducer M = (Q;�00;�00;A; D; �) which, in case A is not additively idempotent, is
deterministic, with �oM = �"N . Since M is polynomial, there are only �nitely many
non-zero coe�cients c1; : : : ; ck 2 A for some k 2 N occurring in the tree series of �.
Obviously, we can assume that for every cj with j 2 [k] there exist aj ; �aj 2 A n f0g,
bj 2 A, and mj 2 N such that amj = aj � cj � �aj � bj . If there is a cj not obeying
this property, then it cannot in
uence �oM (see De�nition 3.5), because �oM = �"N and
every coe�cient appearing in a tree series in the range of �"N is a power of a. Thus,
such coe�cients cj can be changed in � to 1 without e�ect on �oM .

Since A is weakly growing with respect to a, there is an ej 2 N such that cj � a
ej .

Consequently, maxi2[k] a
ei = amaxi2[k] ei is an upper bound of the coe�cients of �. Let

e = maxi2[k] ei and c
0 = ae. By Theorem 5.5 and Observation 5.6 for every s 2 T�00

and every t 2 supp(�oM (s))

(�oM (s); t) � fc0;1
�
height(s)

�
= (c0)height(s) = (ae)height(s);

because uM;o � 1 and vM � 1 due to the speci�c form of �00. However, there

exists an n0 2 N+ such that e � n0 < 2n
0

� 1. With this height n0 there also exist

s0 2 T�00 and t0 2 supp(�"N (s
0)) such that (�"N (s

0); t0) = fa;2(n
0) = a2

n0�1, whereas

(�oM (s0); t0) � ae�n
0

and ae�n
0

� a2
n0�1 (because A is weakly growing with respect

to a), which yields a contradiction to the assumption �oM = �"N . Consequently, �
"
N is

neither in x{BOTo(A) nor in x{TOP"(A).
The statements h{BOTo(A) 6� x{BOT"(A) and h{TOP"(A) 6� x{BOT"(A) are

established using the input ranked alphabet �0 = f
(1); �(0)g and output ranked
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alphabet �0 = f�(2); �(0)g. By Lemma 5.7(ii) there is a homomorphism bottom-up
tree series transducer N such that a is an upper bound of the coe�cients of the tree
representation of N and uN;o = 2 and by Lemma 5.7(iii) there is a homomorphism
top-down tree series transducer N 0 with a being an upper bound of the coe�cients
of the tree representation of N 0 and vN 0 = 2. Moreover, for every n 2 N+ there exist
s; s0 2 T�0 of height n and t 2 supp(�oN (s)) and t

0 2 supp(�"N 0(s0)) such that

(�oN (s); t) = fa;uN;o(n) = a2
n�1 and (�"N 0(s0); t0) = fa;vN0 (n) = a2

n�1:

LetM = (Q;�0;�0;A; D; �) be a polynomial bottom-up tree series transducer that is
deterministic, whenever A is not additively idempotent, and �"M = �oN . An argumen-
tation analogous to the one in the �rst part of the proof (using uN;" = rN = 1) shows
that (�"M (s); t) � (c0)height(s) for every s 2 T�0 and t 2 supp(�"M (s)), where c0 = ae for
some e 2 N. This again yields the desired contradiction. �

5.10 Theorem Let A be a weakly growing semiring. Moreover, let � = fp; d; hg if
A is additively idempotent, and � = fd; hg otherwise. For every x; y 2 �

x{BOTo(A) 1 y{BOT"(A) and y{BOT"(A) 1 x{TOP"(A):

Proof. The theorem is an immediate consequence of Lemma 5.9. �

Consider the additively idempotent semirings T, A, and LS . For those and N1

we derive the following statements.

5.11 Corollary Let S be an alphabet.

(i) For every A 2 fT;A;LSg and every x; y 2 fp; d; hg

x{BOT"(A) 1 y{BOTo(A) and x{BOT"(A) 1 y{TOP"(A):

(ii) For every x; y 2 fd; hg

x{BOT"(N1) 1 y{BOTo(N1) and x{BOT"(N1) 1 y{TOP"(N1):

Proof. Both results are immediate consequences of Theorem 5.10. �

In fact, the �rst part of Corollary 5.11(ii) is slightly weaker than Corollary 5.3
(Corollary 5.18 of [27]), because in the latter result classes of polynomial t-ts transfor-
mations are compared (and not only deterministic ones). The second part strengthens
Proposition 3.14 of [19]. Also note that for A = T the �rst part of Corollary 5.11(i)
restates Corollary 5.23 of [27].

Open Problems

It remains to compare bottom-up tree series transducers using o-substitution and
top-down tree series transducers. Homomorphism tree series transducers of the above
types have been investigated in [27]. Speci�cally, it was shown in Theorem 5.12 of [27]
that for homomorphisms over zero-divisor free and commutative semirings the classes
of t-ts transformations computed by the above transducers coincide.
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