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Abstract. Top-down tree transducers with ε-rules (εtdtts) are a re-
stricted version of extended top-down tree transducers. They are imple-
mented in the framework Tiburon and fulfill some criteria desirable in
a machine translation model. However, they compute a class of trans-
formations that is not closed under composition (not even for linear
and nondeleting εtdtts). A composition construction that composes two
εtdtts M and N is presented, and it is shown that the construction is
correct, whenever (i) N is linear, (ii) M is total or N is nondeleting, and
(iii) M has at most one output symbol in each rule.

1 Introduction

Many aspects of machine translation (MT) of natural languages can be for-
malized by employing weighted finite-state (string) transducers [1, 2]. Successful
implementations based on this word- or phrase-based approach are, for exam-
ple, the At&t Fsm toolkit [3], Xerox’s finite-state calculus [4], the Rwth
toolkit [5], Carmel [6], and OpenFst [7]. However, the phrase-based approach
is not expressive enough, for example, to easily handle the rotation needed in the
translation of the English structure NP-V-NP (subject-verb-noun phrase) to the
Arabic structure V-NP-NP. A finite-state transducer can only implement this
rotation by storing the subject, which might be very long, in its finite memory.

Syntax-based (or tree-based) formalisms can remedy this shortage. Examples
of such formalisms are the top-down tree transducer [8, 9], the extended top-
down tree transducer [10–12], the synchronous tree substitution grammar [13],
the synchronous tree-adjoining grammar [14], the multi bottom-up tree trans-
ducer [15–18], and the extended multi bottom-up tree transducer [19]. Some
of these models are formally compared in [20, 21, 19] and an overview on their
usability in syntax-based MT is presented in [22, 23]. For example, the toolkit
Tiburon [24] implements weighted extended top-down tree transducers with
some standard operations.
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In this paper, we consider top-down tree transducers with ε-rules (εtdtts),
which are a (syntactically) restricted version of extended top-down tree trans-
ducers [25, 21] and as such implemented in Tiburon [24]. In fact, εtdtts properly
generalize finite-state transducers, and thus existing models for the phrase-based
approach can be straightforwardly translated into εtdtts. Moreover, ε-rules some-
times allow the designer to more compactly express himself. The addition of
ε-rules is also a step towards symmetry of the model; extended top-down tree
transducers have full symmetry in the linear and nondeleting case.

It is often beneficial in the development process to train “small” task-specific
transducers [26]. Then we would like to compose those “small” transducers to
obtain a single transducer, to which further operations can be applied. The
success of the finite-state transducer toolkits (like Carmel [6] and OpenFsm [7])
is to a large extent due to this compositional approach, which allows us to avoid
cascades of transducers.

Here, we study εtdtts in order to better understand compositions of extended
top-down tree transducers. In fact, several phenomena (ε-rules and non-shallow
left-hand sides) contribute to the problems faced in such compositions. To inves-
tigate the effect of ε-rules, we prove a composition result inspired by Baker [27,
28]. Namely, the composition of two εtdtts M and N can be computed by one
εtdtt if (i) N is linear, (ii) M is total or N is nondeleting, and (iii) M has at
most one output symbol in each rule (cf. Theorem 17). Compared to Baker’s
original result [27] for nondeterministic top-down tree transducers, we have the
additional condition that each rule of M contains at most one output symbol.
Our result generalizes the composition closure for transformations computed by
finite-state transducers, for which Condition (iii) can always be achieved [29,
Cor. III.6.2]. However, this is not true for linear and nondeleting εtdtts, and we
investigate procedures that reduce the number of output symbols per rule.

2 Notation

Let X = {x1, x2, . . .} be a fixed set of variables and Xk = {xi | 1 ≤ i ≤ k} for
every k ≥ 0. The composition of the relations τ1 ⊆ A × B and τ2 ⊆ B × C is
denoted by τ1 ;τ2. This notation is extended to classes of relations in the obvious
way. Ranked alphabets are defined as usual. We use Σk to denote the set of all
symbols of rank k in the ranked alphabet Σ. To indicate that σ ∈ Σ has rank k
we write σ(k). Two ranked alphabets Σ and ∆ are called compatible if every
symbol of Σ ∩∆ is assigned the same rank in Σ as in ∆. Then, Σ ∪∆ is again
a ranked alphabet. The set of Σ-trees indexed by a set V is denoted by TΣ(V ).
We denote by CΣ(V ) ⊆ TΣ({x1} ∪ V ) the set of all contexts over Σ indexed
by V , which are Σ-trees indexed by {x1} ∪ V such that the variable x1 occurs
exactly once. We abbreviate TΣ(∅) and CΣ(∅) by TΣ and CΣ , respectively.

Given L ⊆ TΣ(V ) we denote the set {σ(t1, . . . , tk) | σ ∈ Σk, t1, . . . , tk ∈ L}
by Σ(L). Now let t ∈ TΣ(V ). We denote the set of all variables x ∈ X that occur
in t by var(t). Finally, for any finite set Y ⊆ X we call a mapping θ : Y → TΣ(V )
a substitution. Such a substitution θ applied to t yields the tree tθ that is ob-
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tained from t by replacing each occurrence of every x ∈ Y by θ(x). If Y = {x1}
and t ∈ CΣ(V ), then we also write t[θ(x1)] instead of tθ.

3 Top-down tree transducers with ε-rules

In this section, we recall top-down tree transducers [9, 8, 30, 31]. We slightly
change their definition to allow rules that do not consume an input symbol.
Such rules are called (input) ε-rules.

Definition 1. A top-down tree transducer with ε-rules (for short: εtdtt) is a
system (Q,Σ,∆, I,R) where:

– Q is a finite set of states (disjoint to Σ and ∆). Each state is considered to
be of rank 1.

– Σ and ∆ are ranked alphabets of input and output symbols, respectively.
– I ⊆ Q is a set of initial states.
– R is a finite set of rules of the form

(i) q(σ(x1, . . . , xk))→ r with q ∈ Q, σ ∈ Σk, and r ∈ T∆(Q(Xk)) or
(ii) q(x1)→ r with q ∈ Q and r ∈ T∆(Q(X1)).

Rules of the form (i) are input-consuming, whereas rules of the form (ii) are
ε-rules. We denote the set of input-consuming and ε-rules of R by RΣ and Rε,
respectively. An εtdtt without ε-rules is called a top-down tree transducer (tdtt).

For simplicity, we generally assume that input and output ranked alphabets
are compatible (i.e., all encountered symbols have only one rank). For the rest
of this section, let M = (Q,Σ,∆, I,R) be an εtdtt. A rule l → r ∈ R is called
linear (respectively, nondeleting) if every variable x ∈ var(l) occurs at most once
(respectively, at least once) in r. The εtdtt M is linear (respectively, nondeleting)
if all of its rules are so.

Example 2. Let N = ({p}, Σ,Σ, {p}, R) be the εtdtt with Σ = {σ(2), γ(1), α(0)}
and the following rules:

p(x1)→ γ(p(x1)) p(γ(x1))→ γ(p(x1))
p(σ(x1, x2))→ σ(p(x1), p(x2)) p(α)→ α .

Clearly, N is linear and nondeleting. Intuitively, the ε-rule allows the transducer
to insert (at any place in the output tree) any number of γ-symbols. The re-
maining rules just output the input symbol and process the subtrees recursively.

The semantics of the εtdtt M is given by rewriting (cf. [21, Definition 2]).
Since in the composition of two εtdtts M and N (cf. Definition 13), the εtdtt
N will process right-hand sides of rules of M and such right-hand sides involve
symbols of the form q(xi) that are not in the input alphabet of N , we define
the rewrite relation also for trees containing symbols not present in Q ∪Σ ∪∆.
So let Σ′ and ∆′ be two compatible ranked alphabets such that Σ ⊆ Σ′ and
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∆ ⊆ ∆′. Moreover, let l → r ∈ R be a rule, C ∈ C∆′(Q(TΣ′)) be a context,
and θ : var(l)→ TΣ′ be a substitution. Then we say that C[lθ] rewrites to C[rθ]
using l → r, denoted by C[lθ] ⇒l→r

M C[rθ]. For every ζ, ξ ∈ T∆′(Q(TΣ′)) we
write ζ ⇒M ξ if there exists ρ ∈ R such that ζ ⇒ρ

M ξ. The tree transformation
computed by M , denoted by τM , is the relation

τM = {(t, u) ∈ TΣ × T∆ | ∃q ∈ I : q(t)⇒∗M u}

where ⇒∗M denotes the reflexive, transitive closure of ⇒M . Two εtdtt are equiv-
alent if their computed tree transformations coincide.

Example 3. Consider the εtdtt N of Example 2. To illustrate the use of symbols
that are not in Q ∪Σ, let v be such a new symbol. Then

p(γ(v))⇒N γ(p(γ(v)))⇒N γ(γ(p(v))) .

In a similar way, we have p(γ(α))⇒∗N γ(γ(p(α)))⇒N γ(γ(α)), and consequently,
(γ(α), γ(γ(α))) ∈ τN .

We say that M is total if for every q ∈ Q and t ∈ TΣ there exists u ∈ T∆
such that q(t) ⇒∗M u. This property is clearly decidable, which can be seen as
follows: We first modify M such that I = {q} and call the resulting εtdtt Mq. It
is known [25] that the domain of τMq

is a regular tree language, and thus we can
decide whether it is TΣ [30, 31]. The domain of τMq

is TΣ for all states q ∈ Q if
and only if M is total. The εtdtt of Example 2 is total, but let us illustrate the
notion of totality on another example.

Example 4. We consider the ranked alphabet Σ = {σ(2), γ(1), α(0)} and the εtdtt
M = ({q, q1}, Σ,Σ, {q}, R) with the rules

q(x1)→ γ(q1(x1)) q(γ(x1))→ γ(q(x1))
q1(σ(x1, x2))→ σ(q(x1), σ(α, q(x2))) q(α)→ α .

Clearly, there is no tree u ∈ TΣ such that q1(α)⇒∗M u. Thus M is not total.

Finally, the class of tree transformations computed by εtdtts is denoted by
εTOP. We use ‘l’ and ‘n’ to restrict to the transformations computed by linear
and nondeleting εtdtts, respectively. For example, ln-εTOP denotes the class of
transformations computed by linear, nondeleting εtdtts.

We conclude this section by showing that ln-εTOP is not closed under com-
position. This shows that linear, nondeleting εtdtts are strictly less expressive
than linear, nondeleting recognizable tree transducers of [32] because the lat-
ter compute a class of transformations that is closed under composition [32,
Theorem 2.4]. Note that the latter have regular extended right-hand sides.

Theorem 5. ln-εTOP ; ln-εTOP 6⊆ l-εTOP.

Proof. Consider the two transformations

τ1 = {(α, σ(α, α))} and τ2 = {(σ(α, α), σ(γm(α), γn(α))) | m,n ≥ 0}

where γm(α) abbreviates γ(γ(· · · γ(α) · · · )) containing the symbol γ exactly
m times. It is easy to show that τ1 and τ2 are in ln-εTOP. However, the com-
position τ1 ; τ2 clearly cannot be computed by any linear εtdtt. ut
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4 Separating output symbols

Next we define two normal forms of

C

σ

r′

δ

q′(xi) p(xj)

x1

D

σ

q′(xi) p(xj)

C

δ

q(x)

x1

x1

(i) (ii)

Fig. 1. The two forms of right-hand
sides that are forbidden in a maximally
output-separated εtdtt.

εtdtts. One will be the normal form
we already mentioned, in which each
rule contains at most one output sym-
bol. For our composition results in
the next section, we will require the
first transducer to be in this normal
form. The second normal form is less
restricted, viz. we only demand that
no (nontrivial) context can be sepa-
rated from any right-hand side of a
rule. This normal form can always be
achieved (see Theorem 8) while pre-
serving linearity or nondeletion. The
underlying algorithm is valuable be-
cause on some input transducers it
achieves even 1-symbol normal form.

Definition 6 (cf. [19, Definition 4]). Let M = (Q,Σ,∆, I,R) be an εtdtt.

– It is in 1-symbol normal form if r ∈ Q(X) ∪∆(Q(X)) for every l→ r ∈ R.
– It is maximally output-separated if for every l→ r ∈ R:

(i) r 6= C[r′] for every context C ∈ C∆ \ {x1} and r′ ∈ ∆(T∆(Q(X))), and
(ii) r 6= D[C[q(x)]] for every context D ∈ C∆(Q(X)) \ {x1} potentially con-

taining states, context C ∈ C∆ \ {x1}, state q ∈ Q, and variable x ∈ X.

By definition, every εtdtt in 1-symbol normal form is maximally output-
separated. Let us explain the normal forms in more detail. The right-hand side
of a rule of an εtdtt in 1-symbol normal form is either a state followed by a subtree
variable (like q(x1)) or a single output symbol at the root with states as children
(like δ(p(x1), q(x2))). The weaker property of maximal output-separation only
demands that no nontrivial context C without states can be split from the right-
hand side r of a rule. More precisely, Condition (i) states that C cannot be taken
off from r such that at least one output symbol remains, and Condition (ii) states
that C[q(x)] may not form a proper subtree of r (see Figure 1).

Example 7. Let M = ({q}, Σ,Σ, {q}, R) be the linear, nondeleting, and total
εtdtt with Σ = {σ(2), γ(1), α(0)} and the following rules

q(σ(x1, x2))→ γ(σ(q(x1), σ(α, q(x2)))) (ρ1)
q(γ(x1))→ γ(q(x1)) (ρ2)

q(α)→ α . (ρ3)

This εtdtt is not maximally output-separated because the right-hand side of
the rule ρ1 can be decomposed into the context γ(x1) and σ(q(x1), σ(α, q(x2))),
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which violates Condition (i) of Definition 6. Further, the subtree σ(α, q(x2)) can
be decomposed into the context σ(α, x1) and the subtree q(x2), which violates
Condition (ii) of Definition 6. Note that the rules ρ2 and ρ3 satisfy Conditions
(i) and (ii) because they have only one output symbol.

It was formally verified in [33] that for every linear and nondeleting εtdtt
there exists an equivalent linear and nondeleting εtdtt that is maximally output-
separated. Here we extend this result and show that, in general, every εtdtt can
be transformed into an equivalent maximally output-separated εtdtt.

Theorem 8. For every εtdtt M we can effectively construct an equivalent maxi-
mally output-separated εtdtt N . Moreover, if M is linear (respectively, nondelet-
ing), then so is N .

Proof. Let M = (Q,Σ,∆, I,R) be an εtdtt. We will present an iterative proce-
dure that transforms M into an equivalent maximally output-separated εtdtt.
Suppose that M is not maximally output-separated; otherwise there is nothing
to show. Thus, there exist a rule l→ r ∈ R and

(i) a context C ∈ C∆ \ {x1} and r′ ∈ ∆(T∆(Q(X))) such that r = C[r′], or
(ii) a context D ∈ C∆(Q(X)) \ {x1} potentially containing states, a context

C ∈ C∆\{x1}, a state q ∈ Q, and a variable x ∈ X such that r = D[C[q(x)]].

Let p /∈ Q be a new state and l = p′(l′) for some p′ ∈ Q and l′ ∈ TΣ(X). We
construct the εtdtt M ′ = (Q ∪ {p}, Σ,∆, I,R′) with R′ = (R \ {l → r}) ∪ R′′
where:

– In case (i), R′′ contains the two rules: p′(x1)→ C[p(x1)] and p(l′)→ r′.
– Otherwise R′′ contains the two rules: l→ D[p(x)] and p(x1)→ C[q(x1)].

Note that M ′ is linear (respectively, nondeleting), if M is. Moreover, we observe
that each new right-hand side (i.e., C[p(x1)], r′, D[p(x)], and C[q(x1)]) contains
strictly fewer output symbols than r. Hence, this procedure can only be finitely
iterated and eventually must yield a maximally output-separated εtdtt N . The
proof that M and M ′ are equivalent (i.e., τM = τM ′) is straightforward and
dropped here. ut

Example 9. Recall the linear, nondeleting, and total εtdtt M of Example 7,
which is not maximally output-separated. After having applied the first item of
the construction to rule ρ1 we obtain the εtdtt which is shown in Example 4.
Since this is still not maximally output-separated, we apply the second item of
the construction to the rule q1(σ(x1, x2))→ σ(q(x1), σ(α, q(x2))) and obtain the
εtdtt M ′ = ({q, q1, q2}, Σ,Σ, {q}, R′) with rules

q(x1)→ γ(q1(x1)) q1(σ(x1, x2))→ σ(q(x1), q2(x2))
q(γ(x1))→ γ(q(x1)) q2(x1)→ σ(α, q(x1))

q(α)→ α .

The linear and nondeleting εtdtt M ′ is not in 1-symbol normal form but maxi-
mally output-separated. Note that M ′ is not total.
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Whereas the normalization of an εtdtt to one that is maximally output-
separated preserves linearity and nondeletion, there exist εtdtts (in fact, even
linear, nondeleting tdtts) that admit no equivalent linear, nondeleting εtdtt in
1-symbol normal form.

Example 10. Let M = ({q}, Σ,∆, {q}, R) be the linear, nondeleting, and total
tdtt such that Σ = {σ(2), α(0)}, ∆ = {δ(3), α(0)}, and R contains the two rules

q(σ(x1, x2))→ δ(q(x1), q(x2), α) q(α)→ α .

Clearly, M is maximally output-separated, but more interestingly, there exists no
equivalent linear or nondeleting εtdtt N in 1-symbol normal form. To illustrate
this, let N be an equivalent εtdtt in 1-symbol normal form. Obviously, it must
have a rule ρ = l→ r that generates the δ in the output. This rule ρ must contain
three variables in r, which proves that N is not linear because l is either p(x1),
p(σ(x1, x2)), or p(α) for some state p. Now suppose that there are states q1, q2, q3
and z1, z2, z3 ∈ X2 such that r = δ(q1(z1), q2(z2), q3(z3)). Then q3(t) ⇒∗N α for
every t ∈ TΣ . Taking t = σ(α, α), it is obvious that this cannot be achieved by
a nondeleting εtdtt.

The previous example shows that linearity and nondeletion must be sacrificed
to obtain 1-symbol normal form. Indeed we will show in the next theorem that
for every εtdtt there exists an equivalent εtdtt in 1-symbol normal form. Natu-
rally, the obtained εtdtt is, in general, nonlinear and deleting (and typically also
non-total). Unfortunately, this limits the application in practice because some
important operations cannot be applied to nonlinear εtdtts (e.g., computation
of the range, image of a regular tree language, etc.).3

Theorem 11 (cf. [19, Theorem 5]). For every εtdtt we can effectively con-
struct an equivalent εtdtt in 1-symbol normal form.

Proof. We present a procedure that iteratively yields the desired εtdtt. Let
M = (Q,Σ,∆, I,R) be an εtdtt that is not in 1-symbol normal form. Thus there
exists a rule l → r ∈ R such that r contains at least two output symbols (i.e.,
r /∈ Q(X)∪∆(Q(X))). Consequently, let l = p(l′) for some p ∈ Q and l′ ∈ TΣ(X),
and let r = δ(r1, . . . , rk) for some k ≥ 1, δ ∈ ∆k, and r1, . . . , rk ∈ T∆(Q(X)). Let
q1, . . . , qk be k new distinct states. We construct the εtdtt M ′ = (Q′, Σ,∆, I,R′)
where Q′ = Q ∪ {q1, . . . , qk}, R′ = (R \ {l→ r}) ∪ {ρ, ρ1, . . . , ρk}, and

ρ = p(x1)→ δ(q1(x1), . . . , qk(x1))
ρ1 = q1(l′)→ r1, . . . , ρk = qk(l′)→ rk .

Clearly, the right-hand sides of the new rules all contain fewer output symbols
than r. Thus, the iteration of the above procedure must eventually terminate
with an εtdtt N in 1-symbol normal form. The proof that M and M ′ are equiv-
alent (i.e., τM = τM ′) is similar to the corresponding proof of Theorem 8. ut
3 We thus suggest the following normalization procedure: First transform into max-

imally output-separated normal form and only then apply the transformation into
1-symbol normal form, if still necessary.
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Example 12. Recall the linear and nondeleting εtdtt M ′ from Example 9. The
interesting rule is q2(x1) → σ(α, q(x1)). According to the construction in the
proof of Theorem 11, we replace this rule by the rules

q2(x1)→ σ(q3(x1), q4(x1)) q3(x1)→ α q4(x1)→ q(x1) .

Thus we obtain the εtdtt M ′′ = ({q, q1, q2, q3, q4}, Σ,Σ, {q}, R′′) with rules

q(x1)→ γ(q1(x1)) q1(σ(x1, x2))→ σ(q(x1), q2(x2))
q(γ(x1))→ γ(q(x1)) q2(x1)→ σ(q3(x1), q4(x1))

q(α)→ α q3(x1)→ α

q4(x1)→ q(x1) .

Note that M ′′ is in 1-symbol normal form, but nonlinear, deleting, and non-total.

5 Composition construction

This section is devoted to the compositions of tree transformations computed by
εtdtts. We start by recalling the classical composition result for tdtts [28, 27].
Let M and N be tdtts. If (i) M is deterministic or N is linear, and (ii) M is
total or N is nondeleting, then τM ; τN can be computed by a tdtt.

Here we focus on εtdtts, so let M and N be εtdtts. Since deterministic
transducers have only few applications in natural language processing, we modify
Condition (i) to: (i) N is linear. We will prove that if Conditions (i) and (ii) are
fulfilled and, additionally, (iii) M is in 1-symbol normal form, then there exists
an εtdtt, denoted by M ;N , that computes τM ; τN .

Now we define the composition of M and N . Our principal approach coincides
with the one of [27, 19]. In fact, if M and N are tdtts, then M ;N is equal to the
composition of M and N as defined in [27, p. 195].

To simplify the construction of M ; N , we make the following conventions
valid. Let M = (Q,Σ, Γ, IM , RM ) and N = (P, Γ,∆, IN , RN ) be εtdtts such that
all involved ranked alphabets are compatible. Moreover, we do not distinguish
between the trees p(q(t)) and (p, q)(t) where p ∈ P and q ∈ Q. Recall that we
have defined the rewrite relation of an εtdtt on trees that may contain symbols
that are not present in that transducer.

Definition 13 (cf. [19, Definition 9]). Let M be in 1-symbol normal form.
The composition of M and N is the εtdtt

M ;N = (P ×Q,Σ,∆, IN × IM , R′M ∪R′N ∪R′M ;N )

where: R′M = {p(l)→ p(r) | p ∈ P, l→ r ∈ RM , r ∈ Q(X)}
R′N = {l[q(x1)]→ r[q(x1)] | q ∈ Q, l→ r ∈ RεN}

R′M ;N = {p(l)→ r′ | p ∈ P, l→ r ∈ RM ,∃ρ ∈ RΓN : p(r)⇒ρ
N r′} .
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Let us discuss the three sets R′M , R′N , and R′M ;N in detail. The set R′M
contains variants of all rules of RM that do not contain any output symbol. For
each state p ∈ P , such a variant is obtained by annotating the two states (in the
left- and right-hand side) by p (i.e., replacing q by (p, q)). The set R′N contains
variants of the ε-rules of RN ; this time annotated with a state q ∈ Q. This is
illustrated in Example 14. Finally, the set R′M ;N contains rules that are obtained
by processing the right-hand side of a rule of RM that contains an output symbol
by an input-consuming rule of RN . Since M is in 1-symbol normal form, each
rule of RM has at most one output symbol and the rule of RN will consume it.

The construction trivially preserves linearity and nondeletion. Let us illus-
trate the construction by composing our running example with the transducer
of Example 2.

Example 14. We consider the εtdtt M ′′ = (Q,Σ,Σ, {q}, R′′) of Example 12
(with Q = {q, q1, q2, q3, q4}) and the εtdtt N = ({p}, Σ,Σ, {p}, R) of Example 2.
Note that M ′′ is in 1-symbol normal form and N is linear and nondeleting. Here
we only discuss some of the rules of M ′′ ;N that are needed to process the input
t = σ(γ(α), α). Since p(x1)→ γ(p(x1)) is in RN , we have that

{(p, q′)(x1)→ γ((p, q′)(x1)) | q′ ∈ Q}

is a subset of R′N . Moreover, by p(q(x1)) ⇒M ′′ p(γ(q1(x1))) ⇒N γ(p(q1(x1)))
we obtain the rule (p, q)(x1)→ γ((p, q1)(x1)) in R′M ′′;N . Finally, we have

p(q1(σ(x1, x2)))⇒M ′′ p(σ(q(x1), q2(x2)))⇒N σ(p(q(x1)), p(q2(x2)))

and thus the rule (p, q1)(σ(x1, x2)) → σ((p, q)(x1), (p, q2)(x2)) in R′M ′′;N . Alto-
gether, we obtain this potential derivation where we write ⇒ for ⇒M ′′;N :

(p, q)(t)⇒ γ((p, q)(t))⇒ γ(γ((p, q1)(t)))⇒ γ(γ(σ((p, q)(γ(α)), (p, q2)(α)))) .

Continuing also with rules we did not explicitly show, we obtain

⇒ γ(γ(σ(γ((p, q)(α)), (p, q2)(α))))⇒ γ(γ(σ(γ(α), (p, q2)(α))))
⇒ γ(γ(σ(γ(α), γ((p, q2)(α)))))⇒ γ(γ(σ(γ(α), γ(α)))) .

Next, we will consider the correctness of our composition construction of
Definition 13. To this end, we prove that τM ; τN = τM ;N provided that (i) N is
linear, (ii) M is total or N is nondeleting, and (iii) M is in 1-symbol normal
form. Henceforth we assume the notation of Definition 13.4

We start with the easy direction and show that every derivation that first
uses exclusively derivation steps of M and then only steps of N can be simulated
by a derivation of M ;N .

4 The following lemmas exhibit an interesting symmetry to the bottom-up case de-
scribed in [19]. Roughly speaking, the preconditions of Lemmas 15 and 16 are ex-
changed in the bottom-up case.

9



Lemma 15 (cf. [19, Lemma 12]). Let ζ ∈ P (Q(TΣ)), ξ ∈ P (TΓ ), and u ∈ T∆
be such that ζ ⇒∗M ξ ⇒∗N u. If M is in 1-symbol normal form, then ζ ⇒∗M ;N u.
In particular, τM ; τN ⊆ τM ;N .

Proof. The proof can be done by induction on n in the derivation ζ ⇒n
M ξ ⇒∗N u

where ⇒n
M is the n-fold composition of ⇒M . In the induction step, we have to

consider two situations, namely whether the first applied rule (of RM ) creates an
output symbol or not. If it does not, then we can immediately use the induction
hypothesis to conclude ζ ⇒∗M ;N u. Otherwise, we need to identify the rules
(potentially many because N might copy with the help of ε-rules) in ξ ⇒∗N u
that process the created output symbol. We then apply those rules immediately
and use the induction hypothesis. ut

Lemma 16 (cf. [19, Lemma 11]). Let ζ ∈ P (Q(TΣ)) and u ∈ T∆ be such
that ζ ⇒∗M ;N u. If (i) N is linear and (ii) M is total or N is nondeleting, then
ζ (⇒∗M ;⇒∗N ) u. In particular, τM ;N ⊆ τM ; τN .

Proof. We prove the statement by induction on n in the derivation ζ ⇒n
M ;N u.

Clearly, there are three types (R′M , R′N , and R′M ;N ) of rules to distinguish. The
case R′M is trivial. In the other two cases, we defer the derivation step using a
rule of RN . This can only be done, if (i) N is linear (because otherwise N might
copy redeces of M) and (ii) M is total or N is nondeleting (because otherwise
M can get stuck on a redex that originally was deleted by N). ut

Theorem 17. Let M and N be εtdtts. If (i) N is linear, (ii) M is total or N
is nondeleting, and (iii) M is in 1-symbol normal form, then M ; N computes
τM ; τN .

Proof. The theorem follows directly from Lemmas 15 and 16. ut

The reader might wonder why we keep requirement (iii), although it can
always be achieved using Theorem 11. First, totality is not preserved by Theo-
rem 11, and second, if we consider linear εtdtts M and N , then M ; N is also
linear. The latter fact can, for example, be used to show that ln-εTOP is closed
under left-composition with relabelings [30, 31], which are computed by linear,
nondeleting top-down tree transducers that are always in 1-symbol normal form.
In addition, the composition closure of finite-state transductions follows from the
linear variant because finite-state transducers can be brought into 1-symbol nor-
mal form using the procedure for maximal output-separation.5

We note that Theorem 17 generalizes the main theorem of [33], which states
that a linear and nondeleting εtdtt in 1-symbol normal form can be composed
with a linear and nondeleting εtdtt.

Corollary 18. ln−εTOP ; · · · ; ln−εTOP ⊂ εTOP.

Proof. Inclusion is immediate by Theorems 11 and 17. Strictness follows from
the fact that not all transformations of εTOP preserve regularity whereas all
transformations of ln−εTOP do [30, 25]. ut
5 In principle, we could also use the procedure of Theorem 11, but we would need to

prove that, in this special case, linearity and nondeletion are actually preserved.
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6 Conclusions and open problems

In this paper we have considered εtdtts, which straightforwardly generalize finite-
state (string) transducers, and thus, technology developed for the latter model
can be embedded into the former one. We have proved that, for two εtdtts
M and N , the composition of τM and τN can be computed by one εtdtt provided
that (i) N is linear, (ii) M is total or N is nondeleting, and (iii) M is in 1-symbol
normal form. This generalizes Baker’s composition result for nondeterministic
top-down tree transducers. Moreover, our investigation on composition of εtdtt
might give some insight in how to solve the open problem stated in [34, 35]: find
a tree transducer model that is expressive, modular, inclusive, and trainable.

Another open problem (stated by one of the referees) is the following: given a
tree transducer type (such as linear, nondeleting εtdtts) whose class of transfor-
mations is not closed under composition (such as ln-εTOP) but ideally has the
other three properties (of the list mentioned above), develop an algorithm that
accepts two transducers of that type and determines whether their composition
can be captured by the same type of transducer (and if it can, return such a
transducer).
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