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Support Vector Machines

Motivation and history
e Linear learning machines
e Feature spaces and kernels

e Performance considerations

Optimization algorithms
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Motivation I

The generic problem: Classify a given input

1. two classes (binary classification)
2. several, but finitely many classes (multi-class classification)
3. infinitely many classes (regression,)
Applications:
e Handwritten digits recognition
e Speech recognition
e Text classification

e Face recognition
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The proposed solution: supervised learning, so given (non-trivial) training data
in different classes (labels known) predict test data (labels unknown).

More formally: Given a training set S C R"™ x {—1,1} of correctly classified
input data vectors & € R™, where every input data vector appears at most once in S
and there exist input data vectors p and 1 such that (p,1) € S as well as

(17,—1) € S (non-trivial S), successfully classify unseen input data vectors.
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Contestants: Different approaches:
e Nearest Neighbor e unsupervised learning
e Neural Networks e query learning
e Decision Trees e reinforcement learning

Goal: Performing better than the competitors in relevant applications
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History I

e Support Vector Machines are a rather new field of study

Early development in Bell Labs from 1990 to 1995

e Proposed by Vapnik and co-workers in 1992

Since then it is becoming more and more popular

e Is still a field of active research
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Given:

Wanted:

-

Linear Learning Machines.

A training set S

A hyperplane separating the input space into
halves containing only elements of one class
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Variables:

T, ©; input data vector (& € R™); specific input data vector
y; yi  classifier (y € {1,—1}); classifier for @;, so (Z;,y;) € S

w weight vector (normal vector) of a hyperplane (w € R"™)

b bias of a hyperplane (b € R)

Representation of a separating hyperplane: w-7+b=0

>0 ,lfyrb:1
<0 ,ify, =-1

Decision function: f(Z) = sgn(w -z +b)

o
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Goal: learn the coefficients w and b of the hyperplane

Problem: Many possible choices of w and b

Solution: Select W and b with the maximal margin (maximal

distance to any input data vector)

Observations reveal (cf. Vapnik’s statistical learning theory )

Vv

1 ify =1
@7+ b Y (1)
S—l ,ifyi:—l

Scaling does not change the hyperplane, but it does change the margin, so adjust
the scaling such that the closest points have functional margin 1 (f(Z) = 1)

=Maximize distance between w - +b = +1
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Distance between w - Z+ b =1 and —1 (closest points £ and 7™ ):

WXt +b—w-X-b 2 2
[ | A Vi d
Since max ”é 1= min “7;‘7 we finally gain the optimization problem:
target function: ming %
conditions: y;(W - Z; +b) > 1, from (1)
fori=1,...,1.

= This optimization problem is the basic (primal) Support Vector Machine form.
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Higher Dimensional Feature Spaces.

Problem: We tried to find a linear separating hyperplane, but data may not be

linear separable
Non-separable case: allow training errors &;

W - W
target function: min bE g +C Zfi

Y

conditions: yi(W-&; +b) >1—=¢&,
& >0; fori=1,...,1

If £ > 1 then 7; of the separating plane

Parameter C': large penalty parameter, so most &; are zero
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Nonlinear case: lincar separable in other spaces 7

Higher dimensional ( maybe infinite ) feature space
¢(f) - (qbl(f)? ¢2(f)7 . )
Example: 7 € R3, (%) € R

¢(f) — (17\/53317\/53327\/5373733%7
51337 513:%, \/§$1$2, \/§$1=‘L‘3, \/§$2SL‘3)
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Why higher dimensional spaces: a classic result by Cover [1965]
A standard problem [Cortes and Vapnik, 1995]:

target function: min, F o5 + C( Z &)
conditions: Yy (W - cb(ll?z) + b) >1-&,
& >0; fori=1,...,1

Other variants (though similar); Example:

target function: min@b,éﬁ — + C( Zf

conditions: Y, (W - ¢($z) + b) >1-¢&,
& >0; fori=1,...,1

-

Dept. of CS, NTU

13
Sep 12, 2001



Support Vector Machines

14

-~

Finding the Decision Function'

w is a vector in a high dimensional space = perhaps infinite

Therefore we consider the dual problem:

— — l
_ , a’Qa
target function: ming — E Q;
1=1

where Q;; = v; y; ¢(Zs) - ¢(Z;)

-

2
conditions: 0<aq; <C;fori=1,..
g&:O,

Next problem: Finding w and b from the standard Support Vector Machine form

Ll

~
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Remarks:
e Primal and dual: cf. optimization theory
e = Infinite dimensional programming
o Qi =viy; ¢(Z;) - ¢(F;) needs a closed form
e = Efficient calculation of high dimensional inner products

Example: 7; € R?, ¢(Z;) € R

-

/

Dept. of CS, NTU

Sep 12, 2001



Support Vector Machines

16

two feature space vectors.

Popular methods (kernels) ¢(%;) - ¢(Z;) =
o ¢ % ~7l” (Radial Basis Function),

— —
(a:i-a:j

a—+b)d (Polynomial kernel),

e tanh(a ;- Z; + )

Decision function:
sgn(@-0() +5) = sen( ) aiys 6(2) - 9(&) +b)

= No need to have w

Only ¢(Z;) of a; > 0 used

-

a; > 0 = support vectors

/Such a K-function is called kernel function, representing the inner product of \
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Support Vectors: More Important Data'
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Why is this good 7 Statistical learning theory

e Solving large quadratic problems: dual variable «

e Multiple-class classifications

— Several two-class problems or combined together

Automatic model selection

— select the best parameters (kernel type, C, etc)
e Comparisons with other methods

e Applications
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Performance considerations.

Training errors not important; only test errors count

If Q is positive definite, training can be fully separated

[ observations, ; € R™,7 =1,...,[, a learning machine:
r— f(r,a), f(@,a)=1or —1.

= Different a: different machines

The expected test error (generalized error)

R(@) = [ 3l 1@ &P )

y: class of ¥ (i.e. 1 or-1)
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e P(Z,y) unknown, empirical risk (training error):

ly; — f(Z;,d)| : loss, choose 0 <7 <1
With probability at least 1 — n:

R(@) < Rumy(a) + [ M02B /M) + 1) = og(]

h is the Vapnik Chervonenkis (VC) dimension

A bound to judge the performance of a learning machine

Independent of data distributions

A good pattern recognition method: minimize both terms at the same time

- /
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e Support Vector Machine bound:

Given &1, ..., &
F={Z—a-7||d]| <1 & <R}

With probability at least 1 — 7, if sgn(f) € sgn(F) has margin at least v on all

fii

R(G) < Remp(@) + 1/ $(& log? 1 +log 1)

e 7?: as large as possible

e Support Vector Machine:

target function: minw’b’g v -+ C’(Z &)

conditions: yi (W - d(Z;) +0) > 1 =&,
& >0;fori=1,...,1

- /

Sep 12, 2001

Dept. of CS, NTU



Support Vector Machines

22

-

equivalent to
w - w

5 T Z[_yi(w () +b) + 1]

22213 training errors; SVM: search for a balance

min

e Continuous loss function ? Loss of sparsity: all a; # 0

&0

g

° usually called regularization term

w‘

e This kind of bounds are still very loose

/
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Primal and Dual Relation.

e Simplified primal:

@
target function: ming 5

conditions: yi(W-7; +b) > 1

e Simplified dual:

— — l
, , alQa
target function: ming — E o
1=1

2
conditions: 0<aqy;fore=1,...,1
:lj' a = 07

where Q;; = v y; T; - T
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Karush-Kuhn-Tucker (KKT) condition'

e Given the optimization problem

target function: ming f(Z), £ € R"
conditions: gi(¥) >0;fori=1,...,m
hij(#)=0; for j=1,...,1

where \;, u;: Lagrange multiplier

Dept. of CS,
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e KKT-conditions:

OL(Z*, X%, i)

= 0
or
OL(T*, N\, [i*) ;
i =
Nigi(@*) = 0;fori=1,...,m
gi(Z*) > 0O;fori=1,...,m
Al > O;fori=1,....m

e Convex programming: convex objective function and convex feasible region
e Linear constraints

e = If there exist \* and " for some r* and the conditions above are met, then
Z* is an optimum.

necessary and sufficient condition

- /
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e The KKT condition of the dual:

N
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(Qd — E + b))

= > yiyjoy T — 1+ by
J

= yiw-T; — 1+ yb

= yz(zﬁfz+b)—1

e The KKT of the primal is the same as the KKT of the dual (cf. strong duality

theorem)

o /
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Large Dense Quadratic Programming'

T ~ =
e min%2% S apiforg-@=0,0<0a; <O

Qi; #0, Q : an [ by [ fully dense matrix

30,000 training points: 30,000 variables: (30,000% x 8/2) bytes = 3GB RAM:
still difficult

e Traditional methods: Newton, Quasi Newton cannot be directly applied

e Current methods:

— Nearest point of two convex hulls (Keerthi et al. [1999a])

-

— Decomposition methods (Osuna et al. [1997], Joachims [1998], Platt [1998])
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Decomposition Methods: Avoid Memory Problem.

Working on a few variable each time

It is like that for minimizing a function with 10 variables, you sequentially

work on one variable in each iteration
Working set B, N = {1,...,l}\B fixed ; Size of B usually <= 100

Sub-problem in each iteration:

. . AdLQBRAE o k-
target function: ming, 5 + (Ep + QNAaY) - OB
conditions: Yy - ap = —Yn - &?V,
0<ap<C
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Decomposition Algorithm: a Framework'

1. Given g < [, @': initial solution. k < 1.

2. If @* an optimum, stop. Find a working set B C {1,...,l}, |B| = q. Define
N ={1,...,1}\B, a% and a¥%

3. Solve a sub-problem:

. : a a - ke
target function: ming, 5QBBAE — (Ep — Qena%,) -dp

2
conditions: 0<(ap); <C;fori=1,...,q,
Yp-ap = —YyN Ay

4. Set o?lgrl and &’]fvﬂ, k < k + 1 and goto Step 2.

e Submatrices Qpp and QN needed; calculated when needed: avoid the

memory problem

- /
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The objective function is decreasing ; Convergence was not fully understood

Studies on convergence proofs: (Chang et al. [1999], Keerthi and Gilbert
[2000], Lin [2000])

Implementation: need knowledge of optimization

Early implementation: Working set by heuristics; Stopping conditions not
validated

Starting from zero vector ; Efficient when the percentage of support vectors is

small

Still slow in some difficult cases

/
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e Someone asked: the dual form is simple; why not solve it analytically 7 Solve

T AT

2

7

S

min

by

Ai=b=F=A"1
is not the end but just the beginning
= Numerical analysis techniques are important
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A Simple Implementation'

Consider |B| = 2, Sequential Minimal Optimization (SMO) by Platt [1998]

Sub-problem analytically solved; no need to use optimization software

e Contained flaws; modified by Keerthi et al. [1999]

KKT of the dual:

Qi—-E = —bj+Xrx—ji
ozz-)\i = 0; ,LLZ(C — Oéi) =0
X > 0; i>0

-
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e Equivalent to

This is how b is calculated

-

= — s Z O 9 if Oét < C
(Qa — E+ by): .
S 0 , if oy > 0
That is
f+b20 Jify, =15 040 < C
o —b<0 ,ifyp=—-1;04>0
(QOZ— E)t .
—b>0 ,ifyy=—-1;04<C
|+ <0 Lify,=1;0,>0
e That is
max(atg%?;izl =V f(@)q, o Vf(d))
<b< min(at<rcr’1;£1:_1 V (), at;f%,i;i:l —V f(d))

/
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e & not an optimal solution yet

max( max —Vf(d);, max Vf(a);)

Oét<C,’yt:1 Oét>0,yt:—1

> mln(at<g};1?:_1 Vf(d)y, ., ain —V£f(d))

e Working set {i,j}

i = argmax({—Vf(a@) |y =1, a0 <CHA{VS(@): | yr = —1,ar > 0}),
j=argmin({Vf(a): |y =—-1,a0 < C}H{=Vf(a); |y = 1,04 > 0})

- /
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/ e The sub-problem

min 5 [ozz- ozj} Qi Qi Y+ (Qi,nan — 1)a;
R Qji Qjj| |
+(QjnaNy — 1)y
Yitu + Y0 = =N - N,

OSO@,O&jSC

e Substitute
o = yi<_gN AN — Z/jOéj)

into the objective function ; An one-variable optimization problem

o If without considering 0 < o; < C::

—Gi—G, :
Qe — Gt QuTQ,2Q; i 7 9 (2)
j Gi—G; .
o =+ Qii+ij_J2Qij ity = Yis
where
K Gz = Vf(Oﬁ)Z and Gj = Vf(Oﬁ)j /
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e If outside [0, C], clipped into the feasible region ; If y; = y; and
C S 8% + Oﬁj S 20,

LEO&Z'—I—OZJ'—CSO&;LGUJSCEH

o “\

Hence if

Qj + _Gi _ Gj < L,
Qii + Qj; +2Qi; —

a*% = [, and

At = o + oy — Y = C.

v J

-
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e The stopping criteria

max( max —V/f(a);, max 1Vf(04)i)

a; <C,y;=1 ;i >0,y;=—
smin( _min  Vf(a), min —Vf(a))—e

e Computational Complexity: O(l) in each iteration for finding two indices of the

working set

e Implementation tricks: cache for recently used );; and others
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