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Itinerary

• Motivation and history

• Linear learning machines

• Feature spaces and kernels

• Performance considerations

• Optimization algorithms

Dept. of CS, NTU Sep 12, 2001



Support Vector Machines 3✬

✫

✩

✪

Motivation

The generic problem: Classify a given input

1. two classes (binary classification)

2. several, but finitely many classes (multi-class classification)

3. infinitely many classes (regression)

Applications:

• Handwritten digits recognition

• Speech recognition

• Text classification

• Face recognition
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✫

✩

✪

The proposed solution: supervised learning, so given (non-trivial) training data

in different classes (labels known) predict test data (labels unknown).

More formally: Given a training set S ⊆ R
n × {−1, 1} of correctly classified

input data vectors ~x ∈ R
n, where every input data vector appears at most once in S

and there exist input data vectors ~p and ~n such that (~p, 1) ∈ S as well as

(~n,−1) ∈ S (non-trivial S), successfully classify unseen input data vectors.
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✫

✩

✪

Contestants:

• Nearest Neighbor

• Neural Networks

• Decision Trees

Different approaches:

• unsupervised learning

• query learning

• reinforcement learning

Goal: Performing better than the competitors in relevant applications
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✫

✩

✪

History

• Support Vector Machines are a rather new field of study

• Early development in Bell Labs from 1990 to 1995

• Proposed by Vapnik and co-workers in 1992

• Since then it is becoming more and more popular

• Is still a field of active research
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✫

✩

✪

Linear Learning Machines

Given: A training set S

Wanted: A hyperplane separating the input space into

halves containing only elements of one class

~w · ~x+ b = +1, 0,−1
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✫

✩

✪

Variables:

~x; ~xi input data vector (~x ∈ R
n); specific input data vector

y; yi classifier (y ∈ {1,−1}); classifier for ~xi, so (~xi, yi) ∈ S

~w weight vector (normal vector) of a hyperplane (~w ∈ R
n)

b bias of a hyperplane (b ∈ R)

Representation of a separating hyperplane: ~w · ~x+ b = 0

~w · ~xi + b







> 0 , if yi = 1

< 0 , if yi = −1

Decision function: f(~x) = sgn(~w · ~x+ b)
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✫

✩

✪

Goal: learn the coefficients ~w and b of the hyperplane

Problem: Many possible choices of ~w and b

Solution: Select ~w and b with the maximal margin (maximal

distance to any input data vector)

Observations reveal (cf. Vapnik’s statistical learning theory )

~w · ~xi + b







≥ 1 , if yi = 1

≤ −1 , if yi = −1
(1)

Scaling does not change the hyperplane, but it does change the margin, so adjust

the scaling such that the closest points have functional margin 1 (f(~x) = 1)

⇒Maximize distance between ~w · ~x+ b = ±1
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✫

✩

✪

Distance between ~w · ~x+ b = 1 and −1 (closest points ~x+ and ~x−):

~w · ~x+ + b− ~w · ~x− − b

‖~w ‖ =
2

‖~w ‖ =
2√
~w · ~w

.

Since max 2
‖~w ‖ ≡ min ~w·~w

2
we finally gain the optimization problem:

target function: min~w,b

~w · ~w
2

conditions: yi(~w · ~xi + b) ≥ 1, from (1)

for i = 1, . . . , l.

⇒ This optimization problem is the basic (primal) Support Vector Machine form.
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✫

✩

✪

Higher Dimensional Feature Spaces

Problem: We tried to find a linear separating hyperplane, but data may not be

linear separable

Non-separable case: allow training errors ξi

target function: min
~w,b,~ξ

~w · ~w
2

+ C
l

∑

i=1

ξi

conditions: yi(~w · ~xi + b) ≥ 1− ξi,

ξi ≥ 0; for i = 1, . . . , l

If ξi > 1 then ~xi not on the correct side of the separating plane

Parameter C: large penalty parameter, so most ξi are zero
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✫

✩

✪

Nonlinear case: linear separable in other spaces ?

Higher dimensional ( maybe infinite ) feature space

φ(~x) = (φ1(~x), φ2(~x), . . .).

Example: ~x ∈ R
3, φ(~x) ∈ R

10

φ(~x) = (1,
√
2x1,
√
2x2,
√
2x3, x

2
1,

x2
2, x

2
3,
√
2x1x2,

√
2x1x3,

√
2x2x3)
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✫

✩

✪

Why higher dimensional spaces: a classic result by Cover [1965]

A standard problem [Cortes and Vapnik, 1995]:

target function: min
~w,b,~ξ

~w · ~w
2

+ C(
l

∑

i=1

ξi)

conditions: yi(~w · φ(~xi) + b) ≥ 1− ξi,

ξi ≥ 0; for i = 1, . . . , l

Other variants (though similar); Example:

target function: min
~w,b,~ξ

~w · ~w
2

+ C(
l

∑

i=1

ξ2i )

conditions: yi(~w · φ(~xi) + b) ≥ 1− ξi,

ξi ≥ 0; for i = 1, . . . , l
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✫

✩

✪

Finding the Decision Function

Next problem: Finding ~w and b from the standard Support Vector Machine form

~w is a vector in a high dimensional space ⇒ perhaps infinite

Therefore we consider the dual problem:

target function: min~α

~αTQ~α

2
−

l
∑

i=1

αi

conditions: 0 ≤ αi ≤ C; for i = 1, . . . , l

~y · ~α = 0,

where Qij = yi yj φ(~xi) · φ(~xj)

~w =
∑l

i=1 αi yi φ(~xi)
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✫

✩

✪

Remarks:

• Primal and dual: cf. optimization theory

• ⇒ Infinite dimensional programming

• Qij = yi yj φ(~xi) · φ(~xj) needs a closed form

• ⇒ Efficient calculation of high dimensional inner products

Example: ~xi ∈ R
3, φ(~xi) ∈ R

10

φ(~xi) = (1,
√
2(~xi)1,

√
2(~xi)2,

√
2(~xi)3, (~xi)

2
1, (~xi)

2
2, (~xi)

2
3,√

2(~xi)1(~xi)2,
√
2(~xi)1(~xi)3,

√
2(~xi)2(~xi)3),

Then K(~xi, ~xj) = φ(~xi) · φ(~xj) = (1 + ~xi · ~xj)
2.
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✫

✩

✪

Such a K-function is called kernel function, representing the inner product of

two feature space vectors.

Popular methods (kernels) φ(~xi) · φ(~xj) =

• e−γ‖~xi−~xj‖
2

(Radial Basis Function),

• (
~xi·~xj

a+b
)d (Polynomial kernel),

• tanh(a ~xi · ~xj + b)

Decision function:

sgn
(

~w · φ(~x) + b
)

= sgn
(

l
∑

i=1

αi yi φ(~xi) · φ(~x) + b
)

⇒ No need to have ~w

Only φ(~xi) of αi > 0 used

αi > 0⇒ support vectors
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✫

✩

✪

Support Vectors: More Important Data
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✫

✩

✪

Issues

Why is this good ? Statistical learning theory

• Solving large quadratic problems: dual variable α

• Multiple-class classifications

– Several two-class problems or combined together

• Automatic model selection

– select the best parameters (kernel type, C, etc)

• Comparisons with other methods

• Applications
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✫

✩

✪

Performance considerations

• Training errors not important; only test errors count

• If Q is positive definite, training can be fully separated

• l observations, ~xi ∈ R
n, i = 1, . . . , l, a learning machine:

~x→ f(~x, ~α), f(~x, ~α) = 1 or − 1.

⇒ Different ~α: different machines

• The expected test error (generalized error)

R(~α) =

∫

1

2
|y − f(~x, ~α)|dP (~x, y)

y: class of ~x (i.e. 1 or -1)
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✫

✩

✪

• P (~x, y) unknown, empirical risk (training error):

Remp(~α) =
1

2l

l
∑

i=1

|yi − f(~xi, ~α)|

• 1
2
|yi − f(~xi, ~α)| : loss, choose 0 ≤ η ≤ 1

With probability at least 1− η:

R(~α) ≤ Remp(~α) +

√

h(log(2l/h) + 1)− log(η/4)

l

• h is the Vapnik Chervonenkis (VC) dimension

• A bound to judge the performance of a learning machine

• Independent of data distributions

• A good pattern recognition method: minimize both terms at the same time
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✫

✩

✪

• Support Vector Machine bound:

Given ~x1, . . . , ~xl

F = {~x→ ~w · ~x | ‖~w ‖ ≤ 1, ‖~x ‖ ≤ R}
With probability at least 1− η, if sgn(f) ∈ sgn(F) has margin at least γ on all

~xi:

R(~α) ≤ Remp(~α) +
√

c
l
(R

2

γ2 log2 l + log 1
η
)

• γ2: as large as possible

• Support Vector Machine:

target function: min
~w,b,~ξ

~w · ~w
2

+ C(

l
∑

i=1

ξi)

conditions: yi(~w · φ(~xi) + b) ≥ 1− ξi,

ξi ≥ 0; for i = 1, . . . , l
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✫

✩

✪

equivalent to

min
~w · ~w
2

+
∑

[−yi(~w · φ(~xi) + b) + 1]+

∑l
i=1: training errors; SVM: search for a balance

• Continuous loss function ? Loss of sparsity: all αi 6= 0

• ~w·~w
2

usually called regularization term

• This kind of bounds are still very loose
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✫

✩

✪

Primal and Dual Relation

• Simplified primal:

target function: min~w,b

~w · ~w
2

conditions: yi(~w · ~xi + b) ≥ 1

• Simplified dual:

target function: min~α

~αTQ~α

2
−

l
∑

i=1

αi

conditions: 0 ≤ αi; for i = 1, . . . , l

~y · ~α = 0,

where Qij = yi yj ~xi · ~xj
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✫

✩

✪

Karush-Kuhn-Tucker (KKT) condition

• Given the optimization problem

target function: min~x f(~x), ~x ∈ R
n

conditions: gi(~x) ≥ 0; for i = 1, . . . ,m

hj(~x) = 0; for j = 1, . . . , l

• Corresponding Lagrangian function

L(~x,~λ, ~µ) = f(~x)−
∑

i

λigi(~x) +
∑

j

µjhj(~x)

where λi, µi: Lagrange multiplier
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✫

✩

✪

• KKT-conditions:

∂L(~x∗, ~λ∗, ~µ∗)

∂~x
= 0

∂L(~x∗, ~λ∗, ~µ∗)

∂~µ
= 0

λigi(~x
∗) = 0; for i = 1, . . . ,m

gi(~x
∗) ≥ 0; for i = 1, . . . ,m

λ∗
i ≥ 0; for i = 1, . . . ,m

• Convex programming: convex objective function and convex feasible region

• Linear constraints

• ⇒ If there exist ~λ∗ and ~µ∗ for some ~x∗ and the conditions above are met, then

~x∗ is an optimum.

necessary and sufficient condition
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✫

✩

✪

• The KKT condition of the dual:

Q~α− ~E = −b~y + ~λ

αiλi = 0

~λ ≥ 0

• The KKT condition of the primal:

~w =
l

∑

i=1

αi~xi

αi(~w · ~xi + byi − 1) = 0

~y · ~α = 0

~α ≥ 0

Dept. of CS, NTU Sep 12, 2001



Support Vector Machines 27✬

✫

✩

✪

• Let λi = yi(~w · ~xi + b)− 1 ,

(Q~α− ~E + b~y)i

=
∑

j

yi yj αj ~xi · ~xj − 1 + byi

= yi ~w · ~xi − 1 + yib

= yi(~w · ~xi + b)− 1

• The KKT of the primal is the same as the KKT of the dual (cf. strong duality

theorem)
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✫

✩

✪

Large Dense Quadratic Programming

• min ~αTQ~α
2
−

∑l
i=1 αi; for ~y · ~α = 0, 0 ≤ αi ≤ C

• Qij 6= 0, Q : an l by l fully dense matrix

• 30,000 training points: 30,000 variables: (30, 0002 × 8/2) bytes = 3GB RAM:

still difficult

• Traditional methods: Newton, Quasi Newton cannot be directly applied

• Current methods:

– Decomposition methods (Osuna et al. [1997], Joachims [1998], Platt [1998])

– Nearest point of two convex hulls (Keerthi et al. [1999a])
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✫

✩

✪

Decomposition Methods: Avoid Memory Problem

• Working on a few variable each time

• It is like that for minimizing a function with 10 variables, you sequentially

work on one variable in each iteration

• Working set B, N = {1, . . . , l}\B fixed ; Size of B usually <= 100

• Sub-problem in each iteration:

target function: min~αB

~αT
BQBB~αB

2
+ ( ~EB +QBN~αk

N ) · ~αB

conditions: ~yB · ~αB = −~yN · ~αk
N ,

0 ≤ ~αB ≤ C
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✫

✩

✪

Decomposition Algorithm: a Framework

1. Given q ≪ l, ~α1: initial solution. k ← 1.

2. If ~αk an optimum, stop. Find a working set B ⊂ {1, . . . , l}, |B| = q. Define

N ≡ {1, . . . , l}\B, ~αk
B and ~αk

N

3. Solve a sub-problem:

target function: min~αB

~αT
BQBB~αB

2
− ( ~EB −QBN~αk

N ) · ~αB

conditions: 0 ≤ ( ~αB)i ≤ C; for i = 1, . . . , q,

~yB · ~αB = −~yN · ~αk
N

4. Set ~αk+1
B and ~αk+1

N , k ← k + 1 and goto Step 2.

• Submatrices QBB and QBN needed; calculated when needed: avoid the

memory problem
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✫

✩

✪

• The objective function is decreasing ; Convergence was not fully understood

• Studies on convergence proofs: (Chang et al. [1999], Keerthi and Gilbert

[2000], Lin [2000])

• Implementation: need knowledge of optimization

• Early implementation: Working set by heuristics; Stopping conditions not

validated

• Starting from zero vector ; Efficient when the percentage of support vectors is

small

• Still slow in some difficult cases
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✫

✩

✪

• Someone asked: the dual form is simple; why not solve it analytically ? Solve

min
~xTA~x

2
−~b · ~x

by

A~x = ~b ⇒ ~x = A−1~b

is not the end but just the beginning

⇒ Numerical analysis techniques are important
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✫

✩

✪

A Simple Implementation

• Consider |B| = 2, Sequential Minimal Optimization (SMO) by Platt [1998]

• Sub-problem analytically solved; no need to use optimization software

• Contained flaws; modified by Keerthi et al. [1999]

• KKT of the dual:

Q~α− ~E = −b~y + ~λ− ~µ

αiλi = 0; µi(C − αi) = 0

~λ ≥ 0; ~µ ≥ 0
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✫

✩

✪

• Equivalent to

(Q~α− ~E + b~y)t







≥ 0 , if αt < C

≤ 0 , if αt > 0

That is

(Q~α− ~E)t



























+b ≥ 0 , if yt = 1 ; αt < C

−b ≤ 0 , if yt = −1 ; αt > 0

−b ≥ 0 , if yt = −1 ; αt < C

+b ≤ 0 , if yt = 1 ; αt > 0

• That is

max( max
αt<C,yt=1

−∇f(~α)t, max
αt>0,yt=−1

∇f(~α)t)

≤ b ≤ min( min
αt<C,yt=−1

∇f(~α)t, min
αt>0,yt=1

−∇f(~α)t)

This is how b is calculated
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✫

✩

✪

• ~α not an optimal solution yet

max( max
αt<C,yt=1

−∇f(~α)t, max
αt>0,yt=−1

∇f(~α)t)

> min( min
αt<C,yt=−1

∇f(~α)t, min
αt>0,yt=1

−∇f(~α)t)

• Working set {i, j}

i ≡ argmax({−∇f(~α)t | yt = 1, αt < C}, {∇f(~α)t | yt = −1, αt > 0}),
j ≡ argmin({∇f(~α)t | yt = −1, αt < C}, {−∇f(~α)t | yt = 1, αt > 0})
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✫

✩

✪

• The sub-problem

min
αi,αj

1

2

[

αi αj

]





Qii Qij

Qji Qjj









αi

αj



+ (Qi,N~αN − 1)~αi

+(Qj,N~αN − 1)αj

yiαi + yjαj = −~yN · ~αk
N ,

0 ≤ αi, αj ≤ C

• Substitute

αi = yi(−~yN · ~αN − yjαj)

into the objective function ; An one-variable optimization problem

• If without considering 0 ≤ αj ≤ C:

αnew
j =







αj +
−Gi−Gj

Qii+Qjj+2Qij
, if yi 6= yj ,

αj +
Gi−Gj

Qii+Qjj−2Qij
, if yi = yj ,

(2)

where

Gi ≡ ∇f(α)i and Gj ≡ ∇f(α)j .
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✫

✩

✪

• If outside [0, C], clipped into the feasible region ; If yi = yj and

C ≤ αi + αj ≤ 2C,

L ≡ αi + αj − C ≤ αnew
j ≤ C ≡ H

αi

αj

αi + αj = ∆

Hence if

αj +
−Gi −Gj

Qii +Qjj + 2Qij

≤ L,

αnew
j ≡ L and

αnew
i = αi + αj − αnew

j = C. (3)
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✫

✩

✪

• The stopping criteria

max( max
αi<C,yi=1

−∇f(α)i, max
αi>0,yi=−1

∇f(α)i)

≤ min( min
αi<C,yi=−1

∇f(α)i, min
αi>0,yi=1

−∇f(α)i)− ǫ

• Computational Complexity: O(l) in each iteration for finding two indices of the

working set

• Implementation tricks: cache for recently used Qij and others
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