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Tree Automata � Syntax

De�nition: A tree automaton is a quadruple M = (Q,Σ, δ, F ) where

(i) Q is a �nite set of states,

(ii) Σ is a ranked alphabet of input symbols,

(iii) δ =
⋃
k∈N δ

(k) with δ(k) ⊆ Qk × Σ(k) ×Q is a ranked alphabet of transitions, and

(iv) F ⊆ Q is a set of �nal states.

Example: ME = ({q0, q1, q, r}, {σ(2), α(0)}, δE , {q1, r}) with the following set δE of

transitions.

δE = {(ε, α, q0)︸ ︷︷ ︸
τ1

, (ε, α, q)︸ ︷︷ ︸
τ2

, (q0q0, σ, q0)︸ ︷︷ ︸
τ3

, (q0q, σ, q1)︸ ︷︷ ︸
τ4

, (q0q, σ, q)︸ ︷︷ ︸
τ5

, (qq1, σ, r)︸ ︷︷ ︸
τ6

, (rr, σ, r)︸ ︷︷ ︸
τ7

}
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Tree Automata � Semantics

De�nition: Let n ∈ N, q1, . . . , qn, q ∈ Q, and s ∈ TΣ(Xn). The set

Ψq
q1...qn(s) ⊆ Tδ(Xn) of (q1 . . . qn, q)-computations of s is inductively de�ned by:

(i) Let s = xj for some j ∈ [n], then

Ψq
q1...qn(s) =

{xj} , if qj = q

∅ , otherwise
.

(ii) Let s = σ(s1, . . . , sk) for some k ∈ N, σ ∈ Σ(k), s1, . . . , sk ∈ TΣ(Xn).

Ψq
q1...qn(s) =

{
τ(ψ1, . . . , ψk)

∣∣∣∣∣ τ = (r1 . . . rk, σ, q) ∈ δ(k),

(∀j ∈ [k]) : ψj ∈ Ψrj
q1...qn(sj)

}
.

De�nition: The language accepted by M is

L(M) =
⋃
q∈F
{ s ∈ TΣ |Ψq(s) 6= ∅ } .
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Tree Automata � Semantics (cont.)

sE =

σ

α σ

σ

α x1

α
ψE =

(qq1, σ, r)

(ε, α, q) (q0q, σ, q1)

(q0q0, σ, q0)

(ε, α, q0) x1

(ε, α, q)

=

τ6

τ2 τ4

τ3

τ1 x1

τ2

An input tree sE ∈ T{σ(2),α(0)}(X1) and a (q0, r)-computation

ψE ∈ TδE (X1) ∩Ψr
q0(sE) of s.

The language accepted by ME is L(ME) = {σ(s1, s2) | s1, s2 ∈ TΣ }.

Tree Automata and Cost Functions 4 February 20, 2004



Tree Automata � Trace Graph

De�nition: The trace graph of M is the labeled, directed graph G(M) = (Q,E) where

E ⊆ Q× (δ ×N+)×Q is

E =
{

(q′, 〈τ, j〉, q)
∣∣∣ k ∈ N+, j ∈ [k], τ = (q1 . . . qk, σ, q) ∈ δ(k), q′ = qj

}
.

Example: The trace graph of ME

q0 q q1 r
〈τ6, 2〉〈τ4, 2〉〈τ5, 1〉

〈τ3, 1〉
〈τ3, 2〉

〈τ5, 2〉 〈τ7, 1〉
〈τ7, 2〉

〈τ4, 1〉 〈τ6, 1〉
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Tree Automata � Trace Graph (cont.)

De�nition: We de�ne the equivalence relation ≡M ⊆ Q×Q as follows:

q ≡M q′ ⇐⇒ if q and q′ are strongly connected in G(M).

De�nition: We de�ne the partial order ≤M ⊆ Q/≡M
×Q/≡M

as follows:

[q]≡M
≤M [q′]≡M

⇐⇒ q′ is reachable from q in G(M).

De�nition: Finally we de�ne the partial order ≤M ⊆ Q×Q as follows:

q ≤M q′ ⇐⇒ [q]≡M
≤M [q′]≡M

and q /∈ [q′]≡M
\ {q′}.

Example: [q0]≡ME
= {q0}, [q]≡ME

= {q}, [q1]≡ME
= {q1}, and [r]≡ME

= {r}.

[q0]≡ME
<ME

[q]≡ME
<ME

[q1]≡ME
<ME

[r]≡ME
and q0 <ME

q <ME
q1 <ME

r.
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Decomposition of a Computation

De�nition:

Ψq
q1...qn =

⋃
s∈TΣ(Xn)

Ψq
q1...qn(s)

Ψ̂q
q1...qn =

⋃
s∈T̂Σ(Xn)

Ψq
q1...qn(s)

δ(q) =
{

(q1 . . . qk, σ, q) ∈ δ(k) | k ∈ N, q1, . . . , qk ∈ Q
}
.

De�nition: For every n ∈ N, q, q1, . . . , qn ∈ Q we de�ne the set

Ψ
q

q1...qn =
{
ψ ∈ Ψq

q1...qn

∣∣ (∀w ∈ pos(ψ))(∃r ∈ [q]≡M
) : labψ(w) ∈ δ(r) ∪Xn

}
.
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Decomposition of a Computation (cont.)

(qq1, σ, r)

x1 x2

(ε, α, q) (q0q, σ, q1)

x1 x2

(q0q0, σ, q0)

(ε, α, q0)

x1

(ε, α, q)

=

(qq1, σ, r)

(ε, α, q) (q0q, σ, q1)

(q0q0, σ, q0)

(ε, α, q0) x1

(ε, α, q)

Ψ
r

qq1 Ψ
q1
q0q

Ψ
q0
q0 Ψ

q
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Cost Functions

De�nition: Let M = (Q,Σ, δ, F ) be a tree automaton and A = (A,⊕,�,0,1) be a

semiring. A mapping c : δ −→ A〈X〉 satisfying for every k ∈ N and τ ∈ δ(k) the

condition that c(τ) ∈ A〈Xk〉 is called a (polynomial) cost function for M .

Example: The following mapping cE : δE −→ N〈X〉 is a cost function for ME .

cE(τ1) = 0 cE(τ2) = 2 cE(τ3) = 3x1 + 4x2 cE(τ4) = 3x1x2

cE(τ5) = 2x1 + x2 cE(τ6) = 5x1 cE(τ7) = x1 + x2.

De�nition: We extend c to a mapping c : Tδ(X) −→ A〈X〉 as follows.

(i) If ψ = x for some x ∈ X, then c(ψ) = x.

(ii) If ψ = τ(ψ1, . . . , ψk) for some k ∈ N, τ ∈ δ(k), ψ1, . . . , ψk ∈ Tδ(X), then

c(ψ) = c(τ)[c(ψ1), . . . , c(ψk)].
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Cost Functions (cont.)

De�nition: The set of accepting costs is

c(M) =
⋃
q∈F

c(M)q =
⋃
q∈F
{ c(ψ) |ψ ∈ Ψq } .

ψE =

τ6

τ2 τ4

τ3

τ1 x1

τ2
c(ψE) =

c(τ6)

c(τ2) c(τ4)

c(τ3)

c(τ1) c(x1)

c(τ2)

=

5x1

2 3x1x2

3x1 + 4x2

0 x1

2
≡ 10

Example: cE(ME)/≡ = {[0]≡, [10]≡, [20]≡, . . .}.
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E-states

Observation: Let q, q′ ∈ Q, ψ ∈ Ψq, ψ2 ∈ Ψq′ , and ψ1 ∈ Ψq
q′ such that ψ = ψ1[ψ2].

Then c(ψ) = c(ψ1)[c(ψ2)].

De�nition: For every E ⊆ A we de�ne the set QE ⊆ Q of E-states of M to be

QE = { q ∈ Q | (∀ψ ∈ Ψq)(∃e ∈ E) : c(ψ) ≡ e } .

Clearly, QA = Q and Q∅ = ∅, because M is assumed to have no useless states.

Lemma: Provided that A is positive, one-summand free, and one-product free, we can

e�ectively compute the sets Q{0}, Q{1}, and Q{0,1}.

Example: Using ME with cost function cE we observe that Q{0} = {q0, q1}.
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Algorithm Computing the {0}-States

For every set S let eS : (X ∪A)× S × P(S) −→ X ∪A be speci�ed for every

z ∈ X ∪A, s ∈ S, and S′ ⊆ S by

eS(z, s, S′) =

z , if s ∈ S′

0 , otherwise
.

Require: M has no useless states, A is positive

n := 0, Q0 := ∅
repeat

Qn+1 := Qn ∪

{
q ∈ Q

∣∣∣∣∣ k ∈ N, τ = (q1 . . . qk, σ, q) ∈ δ(k),

c(τ)[eQ(x1, q1, Qn), . . . , eQ(xk, qk, Qn)] 6≡ 0

}
n := n+ 1

until Qn = Qn−1

Ensure: Q{0} = Q \Qn
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Reduced Tree Automata with Cost Functions

De�nition: M is called reduced, if

(i) ⊥ ∈ Q is the designated zero-state, i.e., Q{0} = {⊥},

(ii) M possesses no useless states except potentially ⊥,

(iii) for every k ∈ N, τ = (q1 . . . qk, σ, q) ∈ δ(k) with q ∈ Q{0,1} we have qj = ⊥ for

every j ∈ [k] and c(τ) = eQ(1, q,Q \ {⊥}),

(iv) for every k ∈ N, τ = (q1 . . . qk, σ, q) ∈ δ(k) we demand for every j ∈ [k] that

(a) if c(τ) = 0, then q1, . . . , qk ∈ Q{0,1}, and
(b) else c(τ) is a zero-free polynomial and

xj ∈ var(c(τ)) ⇐⇒ qj /∈ Q{0,1}.

Example: Clearly, ME is not reduced because Q{0} = {q0, q1}.
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Reduced Tree Automata with Cost Functions (cont.)

Lemma: For every tree automaton M with cost function c over a positive,

one-summand free, and one-product free semiring, a reduced tree automaton M ′ with

cost function c′ can e�ectively be constructed such that c(M) ≡ c′(M ′).

Corollary: Let M be a reduced tree automaton with cost function c. For every

q, q′ ∈ Q \Q{0,1}, if Ψ̂q
q′ 6= ∅, then there exists ψ ∈ Ψ̂q

q′ such that c(ψ) is zero-free and

x1 ∈ var(c(ψ)).
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Boundedness and Cost-Finiteness

De�nition: Let � ⊆ A×A be a partial order. M is said to be bounded (with respect

to �), if there exists a ∈ A such that for every a′ ∈ A with a′ ≡ p for some p ∈ c(M)

we have a′ � a.

De�nition: M is said to be cost-�nite, if c(M)/≡ is �nite.

Lemma: Let A be a naturally ordered and �nitely factorizing semiring and A′ ⊆ A.

A′ is �nite ⇐⇒ A′ is bounded with respect to the natural order v .

Proof sketch: (i) ⇒ (ii) Take
∑
a∈A′ a as an upper bound.

(ii) ⇒ (i) Let a ∈ A be such that a′ v a for every a′ ∈ A′. Then
A′ ⊆ B1 = { b1 ∈ A | b1 v a }. Assume that B1 is in�nite, then

B2 = { (b′, b′′) | a = b′ ⊕ b′′ } is also in�nite, because

b1 v a ⇐⇒ (∃b2 ∈ A) : a = b1 ⊕ b2.

Then A is not �nitely factorizing. Contradiction, hence B1 and A′ are �nite.
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Cost-Finiteness � Step I

Lemma: Let M be a reduced tree automaton with cost function c over a �nitely

factorizing semiring.

M is cost-�nite ⇐⇒ (∀q ∈ Q)(∀a ∈ c(M)q) : c(Ψ̂q
q)[a]/≡ is �nite

Proof sketch:

⇒: indirect using �nitely factorizing and reducedness

⇐: �rstly prove that (∀q ∈ Q)(∀r1, r2 ∈ [q]≡M
)(∀a ∈ c(M)r2) : c(Ψ̂r1

r2)[a]/≡ is �nite,

then perform well-founded induction along ≤M using the outlined decomposition
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Cost-Finiteness � Step I (cont.)

(. . . , q1)

(. . . , q2)

(. . . , q3)

s1

s2

s3

s1 ∈ Ψ̂q1
q2 , s2 ∈ Ψ̂q2

q3 , and s3 ∈ Ψq3 . Note that q3 <M q2 <M q1.
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Cost-Finiteness � Step II

De�nition: Condition (�nite) holds, if for every q ∈ Q \Q{0,1} and ψ ∈ Ψ̂q
q there exists

a ∈ A such that either

(i) c(ψ) ≡ x1 + a and (A is additively idempotent or a = 0), or

(ii) c(ψ) ≡ a.

Lemma: Let M be a reduced tree automaton with cost function c over a monotonic

and �nitely factorizing semiring. If c(Ψ̂q
q)[a]/≡ is �nite for every q ∈ Q and a ∈ c(M)q,

then Condition (�nite) holds.

Proof sketch: Assume that for some q ∈ Q and ψ ∈ Ψ̂q
q Condition (�nite) does not

hold. Next show that for every b ∈ A \ {0,1} we have b ≺ c(ψ)(b) ≺ c(ψ2)(b) ≺ · · ·
due to strictness with respect to multiplication. Contradiction.
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Cost-Finiteness � Step III

Lemma: Let M be a tree automaton ful�lling Condition (�nite) with cost function c

over a non-idempotent semiring A. Then for every k ∈ N, q ∈ Q, and ψ ∈ Ψq there

exists ψ′ ∈ Ψq such that c(ψ) ≡ c(ψ′) and height(ψ′) ≤ 2 · card(Q).

Proof sketch: Let ψ ∈ Ψq be a minimal counterexample with respect to the cardinality

of

Wψ = {w ∈ pos(ψ) | 2 · card(Q) ≤ |w| } .

Clearly there is a path of length at least 2 · card(Q) in ψ. Consider the pre�x of length

card(Q). Now we distinguish two cases.

Cost-Finiteness 19 February 20, 2004



Cost-Finiteness � Step III (cont.)

Case 1: c(ϕ) = x1 with ϕ ∈ Ψ̂r
r. The following trees have equivalent costs, but the

latter is smaller. Contradiction.

(. . . , q)

(. . . , r)

(. . . , r)

;

(. . . , q)

(. . . , r)
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Cost-Finiteness � Step III (cont.)

Case 2: c(ϕ) = a with ϕ ∈ Ψ̂r
r. The following trees have equivalent costs, but the

latter is smaller. The black subtree has height at least card(Q) + 1 and is replaced by

the green tree of height at most card(Q). Contradiction.

(. . . , q)

(. . . , r)

(. . . , r)

;

(. . . , q)

(. . . , r)

(. . . , r)

Cost-Finiteness 21 February 20, 2004



Decidability of Cost-Finiteness

De�nition: Let M be a reduced tree automaton with cost function c over a �nitely

factorizing and monotonic semiring A. Condition (�nite-trans) holds, if for every

k ∈ N+, q ∈ Q \Q{0,1}, i ∈ [k] with qi ≡M q, and τ = (q1 . . . qk, σ, q) ∈ δ(k) we have

either

(i) c(τ) ≡ xi + p for some p ∈ A〈Xk \ {xi}〉 and (A is additively idempotent or

p ≡ 0) or

(ii) xi /∈ var(c(τ)).

Observation: Condition (�nite-trans) is decidable.

Lemma: Condition (�nite) and Condition (�nite-trans) are equivalent.

Proof sketch:

(�nite-trans) ⇒ (�nite): trivial

(�nite-trans) ⇐ (�nite): apply the closed under decomposition property
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Decidability of Cost-Finiteness (cont.)

Theorem: Let M be a tree automaton with cost function c over a monotonic and

�nitely factorizing semiring A. The following statements are equivalent and decidable.

(i) M is cost-�nite.

(ii) For every q ∈ Q and a ∈ c(M)q the set c(Ψ̂q
q)[a]/≡ is �nite.

(iii) Condition (�nite) holds.

(iv) Condition (�nite-trans) holds.

(v) If A is naturally ordered, then M is bounded with respect to the natural order v.
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Boundedness results

Example: Let M be a tree automaton with cost function c over the naturally ordered

semiring A. It is decidable whether M is bounded with respect to the natural order v,

(i) if A = Nat is the semiring of the non-negative integers,

(ii) if A = Arct is the arctic semiring,

(iii) if A = LangΣ is the �nite-language semiring, or

(iv) if A = N is the �nite-subset (of the non-negative integers) semiring.

Remarks:

(a) The results (i) and (ii) were also obtained in [Sei94].

(b) For results (iii) and (iv) one shows cost-�niteness with the help of a partial order

di�erent from ⊆ (both semirings are non-monotonic with respect to ⊆).

(c) The semiring N was also considered in [Sei94], but with respect to a slightly

di�erent problem (cardinality of the elements bounded?).
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Remaining Questions

(i) Which properties of monotonic semirings are obsolete when restricting ourselves to

tree automata with linear cost functions (or cost functions of a particular type like

a · x1 · . . . · xk)?

(ii) Can we characterize boundedness of tree automata with cost functions over certain

semirings which are not �nitely factorizing?

(iii) Can we establish su�cient or necessary criteria for boundedness/unboundedness

with less restrictions on the semiring?
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