Relating Tree Transducers and Weighted Tree Automata

Andreas Maletti

June 2, 2004

- 1. Introduction
- 2. Bottom-Up Tree Transducers
- 3. Bottom-Up Weighted Tree Automata
- 4. Establishing a Relationship

Generalization Hierarchy

Known Relations and Problems

• String-based:

Theorem: For every generalized sequential machine M, there exists a weighted automaton N such that ||M|| = ||N||.

Required semiring: Start with the monoid $(\Delta^*, \circ, \varepsilon)$ and extend it to the semiring $(\mathbb{B}\langle\!\langle \Delta^* \rangle\!\rangle, \lor, \circ, \widetilde{0}, 1 \varepsilon) \cong (\mathcal{P}(\Delta^*), \cup, \circ, \emptyset, \{\varepsilon\}).$

Theorem: For every weighted transducer M, there exists a weighted automaton N such that ||M|| = ||N||.

• <u>Tree-based:</u>

Problem: For every tree transducer M, does there exist a weighted tree automaton N such that ||M|| = ||N||?

Problem: For every tree series transducer M, does there exist a weighted tree automaton N such that ||M|| = ||N||?

Tree Transducer — Syntax

A (bottom-up) tree transducer $M = (Q, \Sigma, \Delta, F, \mu)$ consists of

- non-empty finite sets Q and $F \subseteq Q$ of *states* and *final states*,
- ranked alphabets Σ and Δ , and
- a tree representation $\mu = (\mu_k)_{k \in \mathbb{N}}$ of mappings $\mu_k : \Sigma^{(k)} \longrightarrow \mathbb{B}\langle\!\langle T_{\Delta}(X_k) \rangle\!\rangle^{Q \times Q^k}$.

Example: Let $Q = F = \{q\}$, $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}\}$, $\Delta = \{1^{(1)}, 2^{(1)}, \varepsilon^{(0)}\}$, and

$$\mu_0(\alpha)_q = \{\varepsilon\}$$
 $\mu_2(\sigma)_{q,(q,q)} = \{\varepsilon, 1(x_1), 2(x_2)\}.$

Then $M_1 = (Q, \Sigma, \Delta, F, \mu)$.

Tree Transducer — Semantics

Define $h_{\mu}: T_{\Sigma} \longrightarrow \mathbb{B}\langle\!\langle T_{\Delta} \rangle\!\rangle$ as

$$h_{\mu}(\sigma(s_1,\ldots,s_k))_q = \bigcup_{q_1,\ldots,q_k \in Q} \mu_k(\sigma)_{q,(q_1,\ldots,q_k)} \longleftarrow_{\text{IO}} (h_{\mu}(s_1)_{q_1},\ldots,h_{\mu}(s_k)_{q_k})$$

and $||M||: T_{\Sigma} \longrightarrow \mathbb{B}\langle\!\langle T_{\Delta} \rangle\!\rangle$ as $(||M||, s) = \bigcup_{q \in F} h_{\mu}(s)_{q}$.

Example: $(||M_1||, s) = pos(s)$.

Weighted Tree Automata — Syntax

A (bottom-up) weighted tree automaton $M = (Q, \Sigma, \mathcal{A}, F, \mu)$ consists of

- non-empty finite sets Q and $F \subseteq Q$ of states and final states,
- a ranked alphabet Σ ,
- a semiring $\mathcal{A} = (A, \oplus, \odot, \mathbf{0}, \mathbf{1})$, and
- a tree representation $\mu = (\mu_k)_{k \in \mathbb{N}}$ of mappings $\mu_k : \Sigma^{(k)} \longrightarrow A^{Q \times Q^k}$.

Example: Let $Q = \{q, p\}$, $F = \{q\}$, $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}\}$, Arct = $(\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)$, and

$$\mu_0(\alpha) = \begin{pmatrix} 1\\ 0 \end{pmatrix} \begin{pmatrix} q\\ p \end{pmatrix} \qquad \qquad \mu_2(\sigma) = \begin{pmatrix} -\infty & 1 & 1 & -\infty\\ -\infty & -\infty & -\infty & 0 \end{pmatrix} \begin{pmatrix} q\\ p \end{pmatrix}$$

Then $M_2 = (Q, \Sigma, \mathcal{A}, F, \mu)$.

Weighted Tree Automata — Semantics

The mapping $h_{\mu}: T_{\Sigma} \longrightarrow A^Q$ is defined componentwise as

$$h_{\mu}(\sigma(s_1,\ldots,s_k))_q = \sum_{q_1,\ldots,q_k \in Q} \mu_k(\sigma)_{q,(q_1,\ldots,q_k)} \odot \prod_{i \in [k]} h_{\mu}(s_i)_{q_i}.$$

The tree series computed by M is $(||M||, s) = \sum_{q \in F} h_{\mu}(s)_q$.

Example: Then M_2 computes $(||M_2||, s) = \text{height}(s)$.

$$\begin{array}{cccc} & & \begin{pmatrix} q & p \\ (3 & 0) \\ & \swarrow & & \swarrow \\ \alpha & \sigma \\ & & & & \ddots \\ \alpha & \alpha & & & & \swarrow \\ & & & & & & \ddots \\ & & & & & & & 1 \\ & & & & & & & 1 \end{array}$$

Establishing a Relationship I

Theorem: For every bottom-up tree transducer M, there exists a bottom-up weighted tree automaton N such that ||M|| = ||N||. *Required semiring:* Start with the monoid $(B, \leftarrow, \{\varepsilon\})$ where

$$B = \mathbb{B}\langle\!\langle T_{\Delta} \rangle\!\rangle^* \circ \left(\{\varepsilon\} \cup \{ (k, S) \mid k \in \mathbb{N}_+, S \in \mathbb{B}\langle\!\langle T_{\Delta}(X_k) \rangle\!\rangle \} \right)$$

and $\leftarrow : B^2 \longrightarrow B$ is defined for every $a \in \mathbb{B}\langle\!\langle T_\Delta \rangle\!\rangle^*$ as

$$\begin{array}{rcl} a \longleftarrow b &=& a.b \\ b \longleftarrow \varepsilon &=& b \\ a.(k,S) \longleftarrow T.b &=& \begin{cases} a.(S \longleftarrow_{1,0} T).b & , \mbox{ if } k=1 \\ a.(k-1,S \longleftarrow_{k,0} T) \longleftarrow b & , \mbox{ otherwise} \\ a.(k,S) \longleftarrow (n,T) &=& a.(k+n-1,S \longleftarrow_{k,n} T) \end{array}$$

with

$$S \leftarrow k, n T = S[x_2 \leftarrow x_{n+1}, \dots, x_k \leftarrow x_{k+n-1}] \leftarrow IO T$$

Establishing a Relationship II

Arrive at the semiring $(\mathcal{P}(B), \cup, \longleftarrow, \emptyset, \{\varepsilon\})$. Let $k \in \mathbb{N}$, $n \in \mathbb{N}_+$,

$$C_{k,n} = \{ S_1 \dots S_k . (n,S) \mid S_1, \dots, S_k \in \mathbb{B} \langle\!\langle T_\Delta \rangle\!\rangle, S \in \mathbb{B} \langle\!\langle T_\Delta (X_n) \rangle\!\rangle \}$$

and $C_{k,0} = \mathbb{B}\langle\!\langle T_{\Delta} \rangle\!\rangle^k$. Clearly for every $C \in \mathcal{P}(B)$ we have the unique partition $C = \bigcup_{k,n \in \mathbb{N}} C'_{k,n}$ for $C'_{k,n} \subseteq C_{k,n}$. Define the homomorphism \oplus on the partitions as follows.

$$S_1 \dots S_k (n, S) \oplus T_1 \dots T_k (n, T) = \{ (S_1 \cup T_1) \dots (S_k \cup T_k) (n, S \cup T) \}$$

Then $C/_{\ker \oplus}$ is the desired semiring.

Theorem: For every bottom-up tree series transducer M over an idempotent semiring, there exists a bottom-up weighted tree automaton N such that ||M|| = ||N||.

Conclusions

- the study of arbitrary weighted tree automata provides results for tree transducers (tree series transducers)
- e.g., a pumping lemma for tree series transducers can be derived from a pumping lemma for weighted tree automata
- unfortunately, few results for weighted tree automata over non-commutative semirings exist

Thank You for Your Attention.