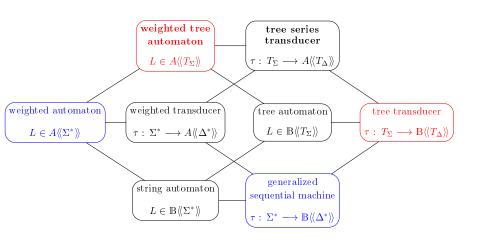
Generalization Hierarchy



Monoids

- A monoid is an algebraic structure A = (A, ⊕, 0) such that
 (i) ⊕ is associative and
- (ii) 0 is the neutral element.
- $\bullet \ \mathcal{A}$ is complete, if

(C1) $\bigoplus_{i \in [n]} a_i = a_1 \oplus \cdots \oplus a_n$ for every $n \in \mathbb{N}$,

(C2)
$$\bigoplus_{i \in J} (\bigoplus_{i \in I_i} a_i) = \bigoplus_{i \in I} a_i$$
, if $I = \bigcup_{i \in J} I_i$ is a partition.

• \mathcal{A} is naturally ordered, if the relation $\sqsubseteq \subseteq A^2$ defined by

 $a \sqsubseteq b \quad \Longleftrightarrow \quad (\exists c \in A): \ a \oplus c = b$

is a partial order.

• $\mathcal A$ is continuous, if $\mathcal A$ is naturally ordered and complete and

 $\bigoplus_{i \in I} a_i = \sup \{ \bigoplus_{i \in E} a_i \mid E \subseteq I, E \text{ finite } \}.$

June 18, 2004

Semirings and DM-monoids

June 18, 2004

Known Relations and Problems

• String-based:

Theorem: For every generalized sequential machine M, there exists a weighted automaton N such that ||M|| = ||N||. *Required semiring:* Start with the monoid $(\Delta^*, \circ, \varepsilon)$ and extend it to the semiring $(\mathbb{B}\langle\!\langle \Delta^* \rangle\!\rangle, \lor, \circ, \widetilde{0}, 1 \varepsilon) \cong (\mathcal{P}(\Delta^*), \cup, \circ, \emptyset, \{\varepsilon\}).$

Theorem: For every weighted transducer M, there exists a weighted automaton N such that ||M|| = ||N||.

• <u>Tree-based:</u>

Problem: For every tree transducer M, does there exist a weighted tree automaton N such that ||M|| = ||N||?

Problem: For every tree series transducer M, does there exist a weighted tree automaton N such that ||M|| = ||N||?

3

Relating Tree Series Transducers and Weighted Tree Automata

2

Andreas Maletti

June 18, 2004

1. Semirings and DM-monoids

2. Bottom-Up DM-monoid Weighted Tree Automata

1

3. Establishing a Relationship

Examples of Semirings

- $\mathbb{N} = (\mathbb{N}, +, \cdot, 0, 1)$ the semiring of natural numbers,
- $\mathbb{N}_{\infty}=(\mathbb{N}\cup\{\infty\},+,\cdot,0,1)$ the complete semiring of natural numbers,
- $\operatorname{Trop} = (\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$ the tropical semiring,
- $\mathbb{B} = (\{\bot,\top\}, \lor, \land, \bot, \top)$ the Boolean semiring,
- $Lang_{\Sigma} = (\mathcal{P}(\Sigma^*), \cup, \circ, \emptyset, \{\varepsilon\})$ the formal language semiring,
- and generally any ring or field

Semiring	commutative	complete	naturally ordered	continuous
IN	yes	NO	yes	NO
\mathbb{N}_∞	yes	yes	yes	yes
Trop	yes	yes	yes	yes
\mathbb{B}	yes	yes	yes	yes
Lang_Σ	NO	yes	yes	yes

Examples of semimodules (I)

Examples: $\mathcal{A} = (A, \oplus, \odot, \mathbf{0}, \mathbf{1})$ semiring, $\mathcal{A}_{\oplus} = (A, \oplus, \mathbf{0})$, and $\mathcal{D} = (D, +, 0)$ commutative monoid.

- \mathcal{A}_\oplus is a semimodule of \mathcal{A} , and
- \mathcal{A}_\oplus is a complete semimodule of \mathcal{A} , if \mathcal{A} is complete.

	complete			complete
	semimodule	semimodule	semimodule	semimodule
	of IN	of ${\rm I\!N}_\infty$	of $\mathbb B$	of $\mathbb B$
${\mathcal D}$ is a $\ ,$ if ${\mathcal D}$ is	always	continuous	idempotent	idempotent, continuous

d DM-monoids

June 18, 2004

Semirings and DM-monoids

June 18, 2004

Semirings

6

- A semiring is an algebraic structure $\mathcal{A}=(A,\oplus,\odot,\mathbf{0},\mathbf{1})$ such that
- (i) $(A,\oplus,\mathbf{0})$ is a commutative monoid,
- (ii) $(A, \odot, \mathbf{1})$ is a monoid,
- (iii) $\mathbf{0}$ is the absorbing element with respect to $\odot,$ and
- (iv) \odot (left and right) distributes over \oplus .
- \mathcal{A} is complete, if $(A,\oplus,\mathbf{0})$ is complete and
- (C3) $a \odot (\bigoplus_{i \in I} a_i) = \bigoplus_{i \in I} (a \odot a_i)$ and $(\bigoplus_{i \in I} a_i) \odot a = \bigoplus_{i \in I} (a_i \odot a)$.
- \mathcal{A} is naturally ordered, if $(A,\oplus,\mathbf{0})$ is naturally ordered.
- \mathcal{A} is continuous, if \mathcal{A} is *naturally ordered* and *complete* and $(A, \oplus, \mathbf{0})$ is continuous.

5

Semimodules (I)

- $\mathcal{A}=(A,\oplus,\odot,\mathbf{0},\mathbf{1})$ semiring and $\mathcal{D}=(D,+,0)$ commutative monoid
- \mathcal{D} is a semimodule of \mathcal{A} , if there is a mapping $\cdot : A \times D \longrightarrow D$ such that
- (S1) $(a_1 \oplus a_2) \cdot d = a_1 \cdot d + a_2 \cdot d$ and $a \cdot (d_1 + d_2) = a \cdot d_1 + a \cdot d_2$,

(S2) $(a_1 \odot a_2) \cdot d = a_1 \cdot (a_2 \cdot d),$

S3)
$$\mathbf{0} \cdot d = 0 = a \cdot 0$$
, and $\mathbf{1} \cdot d = d$.

• D is a complete semimodule of A, if D is a semimodule of A, D and A are complete, and

$$\bigoplus_{i \in I} a_i) \cdot d = \sum_{i \in I} (a_i \cdot d) \qquad \text{and} \qquad a \cdot (\sum_{i \in I} d_i) = \sum_{i \in I} (a \cdot d_i)$$

7

DM-monoids

- (D, +, 0) commutative monoid, Ω set, and $\mathrm{rk} : \Omega \longrightarrow \mathbb{N}$ mapping such that $\omega : D^k \longrightarrow D$ for every $\omega \in \Omega^{(k)}$.
- D = (D, +, 0, Ω) is a distributive multi-operator monoid (DM-monoid), if
 (i) ω(d₁,..., 0, ..., d_k) = 0, and
 (ii) ω(d₁,..., d + d_i,..., d_k) = ω(d₁,..., d_k, ..., d_k) + ω(d₁,..., d_k).
- \mathcal{D} is complete, if (D, +, 0) is *complete* and

$$\omega\left(\sum_{i_1\in I_1} d_{i_1},\ldots,\sum_{i_k\in I_k} d_{i_k}\right) = \sum_{(\forall j\in [k]):\ i_j\in I_j} \omega(d_{i_1},\ldots,d_{i_k}).$$

- \mathcal{D} is naturally ordered, whenever (D, +, 0) is naturally ordered.
- \mathcal{D} is continuous, if \mathcal{D} is complete and (D, +, 0) is continuous.

DM-monoid Weighted Tree Automata — Syntax

 Σ ranked alphabet, $I,\,\Omega$ non-empty sets.

• A tree representation over I, Σ , and Ω is $\mu = (\mu_k \mid k \in \mathbb{N})$ such that

 $\mu_k: \Sigma^{(k)} \longrightarrow \Omega^{I \times I^k}.$

- A (bottom-up) DM-monoid weighted tree automaton (DM-wta) $M=(I,\Sigma,\mathcal{D},F,\mu) \text{ consists of }$
 - non-empty set I of states,
 - ranked alphabet Σ of input symbols,
 - a complete DM-monoid $(D, +, 0, \Omega)$,
 - a final weight map $F: I \longrightarrow \Omega^{(1)}$, and
 - a tree representation μ over I, Σ , and Ω such that $\mu_k : \Sigma^{(k)} \longrightarrow \Omega^{(k)^I \times I^k}$.

10	June 18, 2004	DM-monoid weighted tree automata	12	June 18, 2004
		-		

Excursion: Tree Series

- $(A, \oplus, \mathbf{0})$ commutative, complete monoid, Σ ranked alphabet, and $X_k = \{x_1, \dots, x_k\}$.
- A tree series ψ is a mapping ψ : $T_{\Sigma}(X_k) \longrightarrow A$.
- $A\langle\!\langle T_{\Sigma}(X_k)\rangle\!\rangle$ is the set of all tree series.
- The sum of $\psi_1, \psi_2 \in A\langle\!\langle T_{\Sigma}(X_k) \rangle\!\rangle$ is $(\psi_1 \oplus \psi_2, s) = (\psi_1, s) \oplus (\psi_2, s)$.
- $\widetilde{\mathbf{0}} \in A\langle\!\langle T_{\Sigma}(X_k) \rangle\!\rangle$ is such that $(\widetilde{\mathbf{0}}, s) = \mathbf{0}$ for all $s \in T_{\Sigma}(X_k)$.
- $(A\langle\!\langle T_{\Sigma}(X_k)\rangle\!\rangle, \oplus, \widetilde{\mathbf{0}})$ is a complete monoid.
- Tree series substituion of $\psi_1, \ldots, \psi_k \in A\langle\!\langle T_\Sigma \rangle\!\rangle$ into $\psi \in A\langle\!\langle T_\Sigma (X_k) \rangle\!\rangle$ is

$$\psi \leftarrow (\psi_1, \dots, \psi_k) = \sum_{\substack{s \in T_{\Sigma}(X_k), \\ (\forall i \in [k]): s_i \in T_{\Sigma}}} \left((\psi, s) \odot \prod_{i \in [k]} (\psi_i, s_i) \right) s[s_1, \dots, s_k].$$

9

DM-monoids (II)

- $(D,+,0,\Omega)$ DM-monoid, $\mathcal{A}=(A,\oplus,\odot,\mathbf{0},\mathbf{1})$ semiring.
 - ${\mathcal D}$ is semimodule of ${\mathcal A},$ if (D,+,0) is a semimodule of ${\mathcal A}$ and

 $\omega(d_1,\ldots,a\cdot d_i,\ldots,d_k)=a\cdot\omega(d_1,\ldots,d_k).$

• \mathcal{D} is a complete semimodule of \mathcal{A} , if \mathcal{D} is complete and (D, +, 0) is a complete semimodule of \mathcal{A} .

Examples:

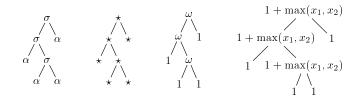
- Let $\Omega^{(k)} = \{ \underline{a}^{(k)} \mid a \in A \}$ with $\underline{a}^{(k)}(d_1, \ldots, d_k) = a \odot d_1 \odot \cdots \odot d_k$. Then $\mathcal{D}_{\mathcal{A}} = (A, \oplus, \mathbf{0}, \Omega)$ is a DM-monoid, which is complete (continuous), whenever \mathcal{A} is so.
- Let $\Omega^{(k)} = \{ \underline{\psi}^{(k)} \mid \psi \in A(\!\langle T_{\Delta}(X_k) \rangle\!\rangle \}$ with $\underline{\psi}^{(k)}(\psi_1, \dots, \psi_k) = \psi \longleftarrow (\psi_1, \dots, \psi_k)$. Then $\mathcal{D}_{A(\!\langle T_{\Delta}(X) \rangle\!\rangle} = (A(\!\langle T_{\Delta} \rangle\!\rangle, \oplus, \widetilde{\mathbf{0}}, \Omega)$ is a DM-monoid, which is complete (continuous), whenever \mathcal{A} is so.

d DM-monoid

Example DM-wta

$$\begin{split} \Sigma &= \{\sigma^{(2)}, \alpha^{(0)}\}, \ \mathcal{N} = (\mathbb{N} \cup \{\infty\}, \min, \infty, \Omega) \text{ DM-monoid with } \Omega = \{\omega^{(2)}, \operatorname{id}^{(1)}, 1^{(0)}\} \\ \text{and } \omega(n_1, n_2) &= 1 + \max(n_1, n_2) \end{split}$$

- DM-wta $M_E = (\{\star\}, \Sigma, \mathcal{N}, F, \mu)$ with $F_{\star} = \mathrm{id}$, $\mu_0(\alpha)_{\star} = 1$, and $\mu_2(\sigma)_{\star,(\star,\star)} = \omega$
- $(||M_E||, s) = \operatorname{height}(s)$



Constructing a Monoid (I)

 $\mathcal{D} = (D, +, 0, \Omega)$ DM-monoid, $\Omega X = \{\omega(x_1, \dots, x_k) \mid k \in \mathbb{N}, \omega \in \Omega^{(k)} \}$

Theorem: There exists monoid $(B, \leftarrow, \varepsilon)$ such that $D \cup \Omega X \subseteq B$ and for all $d_1, \ldots, d_k \in D$

$$\omega(d_1,\ldots,d_k) = \overline{\omega}(x_1,\ldots,x_k) \leftarrow d_1 \leftarrow \cdots \leftarrow d_k.$$

Proof sketch: Let $\Omega' = \Omega \cup D$.

• Define $h: T_{\Omega'}(X) \longrightarrow T_{\Omega'}(X)$ for every $v \in D \cup X$ by

$$\begin{split} h(v) &= v \\ h(\omega(s_1, \dots, s_k)) &= \begin{cases} \omega(h(s_1), \dots, h(s_k)) & \text{, if } h(s_1), \dots, h(s_k) \in D \\ \overline{\omega}(h(s_1), \dots, h(s_k)) & \text{, otherwise} \end{cases} \end{split}$$

•
$$h(s) \in \widehat{T_{\Omega'}}(X_n)$$
, whenever $s \in \widehat{T_{\Omega'}}(X_n)$.

weighted tree automata 14 June 18, 2004 Relationship 16 June 18, 2004

DM-monoid Weighted Tree Automata — Semantics

- $\mathcal{D} = (D, +, 0, \Omega)$ complete DM-monoid, $M = (I, \Sigma, \mathcal{D}, F, \mu)$ DM-wta.
- Define $h_{\mu}: T_{\Sigma} \longrightarrow D^{I}$ by

$$h_{\mu}(\sigma(s_1,\ldots,s_k))_i = \sum_{i_1,\ldots,i_k \in I} \mu_k(\sigma)_{i,(i_1,\ldots,i_k)} (h_{\mu}(s_1)_{i_1},\ldots,h_{\mu}(s_k)_{i_k})$$

The tree series recognized by M is $(||M||, s) = \sum_{i \in I} F_i(h_\mu(s)_i)$.

• A run on $t \in T_{\Sigma}$ is a map $r : \operatorname{sub}(t) \longrightarrow I$ and R(t) is the set of all runs on t. The weight of r is given by $\operatorname{wt}_r : \operatorname{sub}(t) \longrightarrow D$

 $\operatorname{wt}_r(\sigma(s_1,\ldots,s_k)) = \mu_k(\sigma)_{r(\sigma(s_1,\ldots,s_k)),(r(s_1),\ldots,r(s_k))}(\operatorname{wt}_r(s_1),\ldots,\operatorname{wt}_r(s_k)) \ .$

The run-based semantics of M is $(|M|, s) = \sum_{r \in R(s)} F_{r(s)}(wt_r(s)).$

Theorem: ||M|| = |M|.

Weighted Tree Automata & Tree Series Transducers

 $M=(I,\Sigma,\mathcal{D},F,\mu) \text{ DM-wta, } \mathcal{A}=(A,\oplus,\odot,\mathbf{0},\mathbf{1}) \text{ semiring, and } \Delta \text{ ranked alphabet}$

- *M* is a weighted tree automaton (wta), if $\mathcal{D} = \mathcal{D}_{\mathcal{A}} = (A, \oplus, \mathbf{0}, \Omega)$ with $\Omega^{(k)} = \{ \underline{a}^{(k)} \mid a \in A \}$ and $\underline{a}^{(k)}(d_1, \dots, d_k) = a \odot d_1 \odot \dots \odot d_k$.
- *M* is a tree series transducer (tst), if $\mathcal{D} = \mathcal{D}_{A\langle\!\langle T_{\Delta}(X)\rangle\!\rangle} = (A\langle\!\langle T_{\Delta}\rangle\!\rangle, \oplus, \widetilde{\mathbf{0}}, \Omega)$ with $\Omega^{(k)} = \{\underline{\psi}^{(k)} \mid \psi \in A\langle\!\langle T_{\Delta}(X_k)\rangle\!\rangle\}$ with $\underline{\psi}^{(k)}(\psi_1, \dots, \psi_k) = \psi \longleftarrow (\psi_1, \dots, \psi_k)$.

Theorem: Let M_1 be a wta and M_2 be a tst

- (i) There exists a DM-wta M such that $\|M\| = \|M_1\|$.
- (ii) There exists a DM-wta M such that $||M|| = ||M_2||$.

From a Monoid to a Semiring (I)

- $\mathcal{A} = (A, \oplus, \odot, \mathbf{0}, \mathbf{1})$ semiring, DM-monoid $\mathcal{D} = (D, +, 0, \Omega)$ complete semimodule of $\mathcal{A}, \varphi_1, \dots, \varphi_k \in A\langle\!\langle D \rangle\!\rangle$.
- Lift mapping $\leftarrow : B^2 \longrightarrow B$ to a mapping $\leftarrow : (A\langle\!\langle B \rangle\!\rangle)^2 \longrightarrow A\langle\!\langle B \rangle\!\rangle$ by

 $\psi_1 \leftarrow \psi_2 = \bigoplus_{b_1, b_2 \in B} \left((\psi_1, b_1) \odot (\psi_2, b_2) \right) (b_1 \leftarrow b_2).$

• Define sum of a series $\varphi \in A\langle\!\langle D \rangle\!\rangle$ (summed in D) by $\sum : A\langle\!\langle D \rangle\!\rangle \longrightarrow D$

$$\sum \varphi = \sum_{d \in D} (\varphi, d) \cdot d.$$

• Theorem:

(i) $\sum (\bigoplus_{i \in I} \varphi_i) = \sum_{i \in I} \sum \varphi_i$ for every family $(\varphi_i \mid i \in I)$ of series and (ii) $\omega (\sum \varphi_1, \dots, \sum \varphi_k) = \sum (\overline{\omega}(x_1, \dots, x_k) \leftarrow \varphi_1 \leftarrow \dots \leftarrow \varphi_k).$

Establishing a Relationship

- Theorem: For every tst M_1 , there exists a wta M such that $\|M\|=\|M_1\|$.
- Theorem: For every deterministic tst M_2 , there exists a deterministic wta M such that $||M|| = ||M_2||$.
- Theorem: For every tree transducer M_3 , there exists a wta M such that $\|M\| = \|M_3\|$.
- Theorem: For every tst M_4 over an idempotent, continuous semiring, there exists a wta M such that $||M|| = ||M_4||$.

18 June 18, 2004 Relationship 20 June 18, 2004

Constructing a Monoid (II)

- Let $s(t) = s[t, x_{k+1}, x_{k+2}, \dots, x_{k+n-1}]$ for $s \in \widehat{T}_{\Sigma}(X_n)$ and $t \in \widehat{T}_{\Sigma}(X_k)$ (non-identifying tree substitution).
- $B = D^* \cup \bigcup_{n \in \mathbb{N}_+} D^* \cdot \widehat{T_{\Omega'}}(X_n).$
- Define $\leftarrow : B^2 \longrightarrow B$ for every $a \in D^*$, $b \in B$, $s \in \widehat{T_{\Omega'}}(X_n)$, $t \in D \cup \widehat{T_{\Omega'}}(X_n)$ by

$$\begin{aligned} a \leftarrow b &= a \cdot b \\ a \cdot s \leftarrow \varepsilon &= a \cdot s \\ a \cdot s \leftarrow t \cdot b &= a \cdot (h(s(t))) \leftarrow b \end{aligned}$$

- $\bullet \ (B, \leftarrow, \varepsilon) \text{ is a monoid}.$
- $\omega(d_1,\ldots,d_k) = \overline{\omega}(x_1,\ldots,x_k) \leftarrow d_1 \leftarrow \cdots \leftarrow d_k.$

From a Monoid to a Semiring (I)

 $\mathcal{D} = (D, +, 0, \Omega)$ continuous DM-monoid. $M_1 = (I, \Sigma, \mathcal{D}, F_1, \mu_1)$ DM-wta.

• Theorem: There exists a semiring $(C, \oplus, \leftarrow, \widetilde{\mathbf{0}}, \varepsilon)$ such that $D \cup \Omega X \subseteq C$ and for all $d_1, \ldots, d_k \in D$

(i) $\omega(d_1,\ldots,d_k) = \overline{\omega}(x_1,\ldots,x_k) \leftarrow d_1 \leftarrow \cdots \leftarrow d_k$,

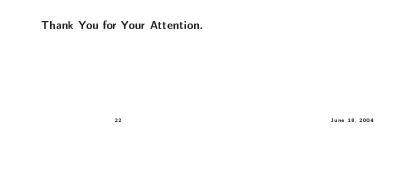
(ii) $\sum (\bigoplus_{i \in I} d_i) = \sum_{i \in I} d_i$.

Proof sketch: Let $\mathcal{A} = (A, \oplus, \odot, \mathbf{0}, \mathbf{1})$ semiring such that \mathcal{D} is a complete semimodule of \mathcal{A} . There exists a monoid $(B, \leftarrow, \varepsilon)$ such that (i) holds. Let $C = A \langle\!\langle B \rangle\!\rangle$ and $\leftarrow : C^2 \longrightarrow C$ be the extension of \leftarrow on B.

• Theorem: There exists a wta $M = (I, \Sigma, \mathcal{B}, F, \mu)$ such that $||M_1|| = \sum ||M||$.

Conclusions

- the study of arbitrary weighted tree automata provides results for tree series transducers
- e.g., a pumping lemma for tree series transducers can be derived from a pumping lemma for weighted tree automata
- unfortunately, few results for weighted tree automata over non-commutative semirings exist



Pumping Lemma for DM-wta

 $\mathcal{D} = (D, +, 0, \Omega)$ DM-monoid, $L \in \mathcal{L}^d_{\Sigma}(\mathcal{D})$, and $\Omega' = \Omega \cup D$.

Theorem: There exists $m \in \mathbb{N}$ such that for every $t \in \operatorname{supp}(L)$ with $\operatorname{height}(t) \ge m+1$ there exist $C, C' \in \widehat{T_{\Sigma}}(X_1)$, $s \in T_{\Sigma}$, and $a, a' \in \widehat{T_{\Omega'}}(X_1)$, and $d \in D$ such that

- t = C[C'[s]],
- $\operatorname{height}(C[s]) \leq m+1 \text{ and } C \neq x_1, \text{ and }$
- $(L, C'[C^n[s]]) = a' \leftarrow a^n \leftarrow d$ for every $n \in \mathbb{N}$.