The Power of Tree Series Transducers of Type I and II

Andreas Maletti

July 6, 2005

- 1. Motivation
- 2. Tree Series Transducers
- 3. OI Tree Series Substitution
- 4. IO Tree Series Substitution

Tree Transducers

Applications:

- syntax-directed semantics
- functional program analysis and transformation
- analysis of cryptographic protocols

Form of the rules:

- bottom-up: $\sigma(q_1(z_1), \ldots, q_k(z_k)) \rightarrow q(t)$ where $t \in T_{\Delta}(Z_k)$
- top-down: $q(\sigma(x_1, \ldots, x_k)) \to t[z_i/q_i(x_{j_i})]$ where $t \in \widehat{T_{\Delta}}(Z_n)$
- general: $q(\sigma(x_1, \ldots, x_k)) \rightarrow t[z_i/q_i(x_{j_i})]$ where $t \in T_{\Delta}(Z_n)$

 $Z_n = \{z_1, \ldots, z_n\}$, $T_{\Delta}(Z_n)$ set of Δ -trees indexed by Z_n , and $\widehat{T_{\Delta}}(Z_n)$ linear and nondeleting trees of $T_{\Delta}(Z_n)$

To Tree Series Transducers

general form of the rules:

- tree transducer: $q(\sigma(x_1, \ldots, x_k)) \rightarrow t[z_i/q_i(x_{j_i})]$ where $t \in T_{\Delta}(Z_n)$
- tree series transducer: $q(\sigma(x_1, \ldots, x_k)) \xrightarrow{c} t[z_i/q_i(x_{j_i})]$ where $t \in T_{\Delta}(Z_n)$

c is called *coefficient* (or *weight*), taken from a semiring

Definition: $(A, +, \cdot, 0, 1)$ semiring, if

- (A, +, 0) commutative monoid,
- $(A,\cdot,1)$ monoid,
- $\bullet~\cdot$ distributes over +, and
- 0 acts as a zero wrt. \cdot (i.e., $a \cdot 0 = 0 = 0 \cdot a$)

Applications of Tree Series Transducers

Natural Language Processing:

- data-oriented parsing (bottom-up)
- tree bank transformations (top-down)
- language translation (neither top-down nor bottom-up)

Example: (neither top-down nor bottom-up)

$$\sigma(\sigma(\alpha, x_2), \sigma(x_1, x_3)) \xrightarrow{c} \delta(x_1, x_2, x_3)$$

in natural language translation terms:

 $\operatorname{SENT}(\operatorname{FRONT}(\operatorname{``does''}, PP3), \operatorname{VP}(VERB, OBJ)) \xrightarrow{c} \operatorname{QUES}(VERB, PP3, OBJ)$

\aleph_0 -complete Semirings

Definition: $(A, +, \cdot, 0, 1) \aleph_0$ -complete semiring, if for all I with $card(I) \leq \aleph_0$ there exists $\sum : A^I \longrightarrow A$ such that:

- $\sum_{i \in I} a_i = a_{j_1} + a_{j_2}$, if $I = \{j_1, j_2\}$ with $j_1 \neq j_2$;
- $\sum_{i \in I} a_i = \sum_{j \in J} \left(\sum_{i \in I_j} a_i \right)$, if $I = \bigcup_{j \in J} I_j$ with $\operatorname{card}(J) \leq \aleph_0$ and $I_{j_1} \cap I_{j_2} = \emptyset$ for all $j_1 \neq j_2$; and
- $\left(\sum_{i\in I} a_i\right) \cdot \left(\sum_{j\in J} b_j\right) = \sum_{(i,j)\in I\times J} (a_i \cdot b_j).$

Examples: (no non-trivial ring or field is \aleph_0 -complete)

- Natural numbers: $(\mathbb{N} \cup \{\infty\}, +, \cdot, 0, 1)$,
- Boolean semiring: $(\{\bot, \top\}, \lor, \land, \bot, \top)$,
- Tropical semiring: $(\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$,
- Language semiring: $(\mathcal{P}(\Sigma^*), \cup, \circ, \emptyset, \{\varepsilon\}).$

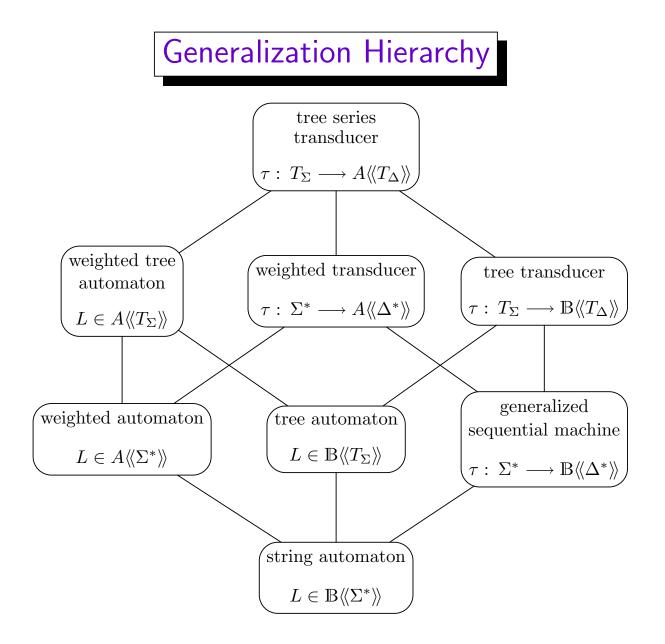
Tree Series

Definition: $\varphi \colon T_{\Sigma}(V) \longrightarrow A$ tree series, where $(A, +, \cdot, 0, 1)$ semiring

- $\operatorname{supp}(\varphi) = \{ t \in T_{\Sigma}(V) \mid \varphi(t) \neq 0 \},\$
- φ polynomial, if $\operatorname{supp}(\varphi)$ finite,
- $A\langle\!\langle T_{\Sigma}(V) \rangle\!\rangle$ class of all tree series,
- $A\langle T_{\Sigma}(V)\rangle$ class of all polynomial tree series,
- $(\varphi + \psi)(t) = \varphi(t) + \psi(t)$,
- $(a \cdot \varphi)(t) = a \cdot \varphi(t).$

Convention: We write (φ, t) instead of $\varphi(t)$ and $\sum_{t \in T_{\Sigma}(V)} (\varphi, t) t$ for φ .

Example: $\psi_{\text{height}} = \sum_{t \in T_{\Sigma}} \text{height}(t) t$,



Tree Representations

 $(A,+,\cdot,0,1)$ semiring, Σ , Δ ranked alphabets, Q finite set

Recall: $q(\sigma(x_1, \ldots, x_k)) \xrightarrow{c} t[z_i/q_i(x_{j_i})]$ where $t \in T_{\Delta}(Z_n)$

organized in matrices: $\mu_k(\sigma)_{q,q_1(x_{j_1})\dots q_n(x_{j_n})} = c t + \dots$

Definition: $(\mu_k)_{k \in \mathbb{N}}$ of $\mu_k \colon \Sigma^{(k)} \longrightarrow A\langle\!\langle T_\Delta(Z) \rangle\!\rangle^{Q \times Q(X_k)^*}$ tree representation, if

• $\mu_k(\sigma)_{q,w} \neq \widetilde{0}$ for only finitely many $(q,w) \in Q \times Q(X_k)^*$,

•
$$\mu_k(\sigma)_{q,w} \in A\langle\!\langle T_\Delta(Z_{|w|})\rangle\!\rangle.$$

Properties

Definition: μ is

- linear (resp., nondeleting), if for all (q, w) such that $\mu_k(\sigma)_{q,w} \neq \widetilde{0}$ both w is linear (resp., nondeleting) in X_k and $\mu_k(\sigma)_{q,w}$ is linear (resp., nondeleting) in $Z_{|w|}$,
- of type II (resp., top-down), if all $\mu_k(\sigma)_{q,w}$ are linear (resp., linear and nondeleting),
- bottom-up, if for all (q, w) such that $\mu_k(\sigma)_{q,w} \neq \widetilde{0}$ we have $w = q_1(x_1) \dots q_k(x_k)$.

Example Tree Representation

Example:
$$\Sigma = \Delta = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\}, Q = \{\star, \bot\},$$

semiring Arct = $(\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)$

$$\begin{array}{c|c} \mu_2(\sigma)_{\downarrow, \rightarrow} & \star(x_1) \bot (x_2) & \star(x_2) \bot (x_1) & \bot (x_1) \bot (x_2) \\ \hline \star & 1 \sigma(z_1, z_2) & 1 \sigma(z_2, z_1) & \widetilde{-\infty} \\ \bot & \widetilde{-\infty} & 0 \sigma(z_1, z_2) \end{array}$$

$$\begin{array}{c|c} \mu_0(\alpha)_{\downarrow, \rightarrow} & \varepsilon \\ \hline \star & 1 \alpha \\ \bot & 1 \alpha \\ \downarrow & 0 \alpha \end{array}$$

$$\begin{array}{c|c} \mu_1(\gamma)_{\downarrow, \rightarrow} & \star(x_1) & \bot (x_1) \\ \hline \star & 1 \gamma(z_1) & \widetilde{-\infty} \\ \bot & \widetilde{-\infty} & 0 \gamma(z_1) \end{array}$$

is a linear and nondeleting top-down tree representation, but not bottom-up.

Tree Series Transducers

Definition: $(Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$ tree series transducer, if

- Q finite set of *states*,
- Σ and Δ ranked alphabets of *input* and *output symbols*, resp.,
- $\mathcal{A} = (A, +, \cdot, 0, 1) \ \aleph_0$ -complete semiring,
- $F \in A\langle\!\langle \widehat{T_{\Delta}}(Z_1) \rangle\!\rangle^Q$,
- μ tree representation.

Convention: Tree series transducer inherits properties of its tree representation.

Example: $M_{\text{height}} = (\{\star, \bot\}, \Sigma, \Sigma, \text{Arct}, F, \mu)$ with μ from the previous example and $F_{\perp} = \widetilde{0}$ and $F_{\star} = 0 z_1$ is a

linear and nondeleting top-down tree series transducer.

11

IO Tree Series Substitution

 $\aleph_0\text{-complete semiring }(A,+,\cdot,0,1)\text{, ranked alphabet }\Delta$

Definition:
$$\varphi \in A\langle\!\langle T_{\Delta}(Z_k) \rangle\!\rangle$$
, $\psi_1, \dots, \psi_k \in A\langle\!\langle T_{\Delta} \rangle\!\rangle$
 $\varphi \longleftarrow (\psi_1, \dots, \psi_k) = \sum_{\substack{t \in T_{\Delta}(Z_k), \\ t_1, \dots, t_k \in T_{\Delta}}} (\varphi, t) \cdot (\psi_1, t_1) \cdot \dots \cdot (\psi_k, t_k) t[t_1, \dots, t_k]$

Example: $(\mathbb{N} \cup \{\infty\}, +, \cdot, 0, 1)$

$$2 \sigma(z_1, z_1) \longleftarrow (2 \alpha, 3 \gamma(\alpha)) = 12 \sigma(\alpha, \alpha)$$

IO Tree Series Transformations

 $M = (Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$ tree series transducer

• Consider the $\Sigma\text{-algebra }(A^Q,(\,\mu(\sigma)\,)_{\sigma\in\Sigma})$ with

$$\mu(\sigma)(V_1, \dots, V_k)_q = \sum_{\substack{w \in Q(X_k)^*, \\ w = q_1(x_{i_1}) \dots q_n(x_{i_n})}} \mu_k(\sigma)_{q,w} \longleftarrow ((V_{i_1})_{q_1}, \dots, (V_{i_n})_{q_n})$$

• Let h_{μ} be the unique homomorphism from T_{Σ} to A^Q .

Definition: IO tree series transformation induced by M is $||M||: A\langle\!\langle T_{\Sigma}\rangle\!\rangle \longrightarrow A\langle\!\langle T_{\Delta}\rangle\!\rangle$

$$||M||(\varphi) = \sum_{t \in T_{\Sigma}} (\varphi, t) \cdot \sum_{q \in Q} F_q \longleftarrow (h_{\mu}(t)_q)$$

Example: $||M_{\text{height}}|| (\sum_{t \in T_{\Sigma}} 0 t) = \psi_{\text{height}}$

Decomposition

p... polynomial, b... boolean, l... linear, h... homomorphism (1-state deterministic)

- $x-\mathsf{GST}(\mathcal{A}) \qquad \text{tree series transformations computed by x tree series transducers of type I (generalized sequential transducer)}$
- x-TOP^R(A) ... of type II (top-down with look-ahead)
- $x-BOT(\mathcal{A})$... x bottom-up tree series transducers

Theorem: Let \mathcal{A} be a commutative, \aleph_0 -complete semiring.

$$\begin{split} & [p][b][l]-GST(\mathcal{A}) \subseteq [l]bh-TOP(\mathcal{A}) \ ; \ & [p][b][l]-BOT(\mathcal{A}) \\ & [p][b][l]-TOP^{\mathrm{R}}(\mathcal{A}) \subseteq [l]bh-TOP(\mathcal{A}) \ ; \ & [p][b]l-BOT(\mathcal{A}) \end{split}$$

Decomposition Theorem — Proof

Proof:

- $M = (Q, \Sigma, \Delta, A, F, \mu)$ tree series transducer, construct homomorphism top-down tree series transducer M_1 and bottom-up tree series transducer M_2
- $\max = \max\{ |w|_{x_j} | q \in Q, k \in \mathbb{N}, \sigma \in \Sigma_{(k)}, j \in [k], w \in Q(X_k)^*, \mu_k(\sigma)_{q,w} \neq \widetilde{0} \}$ and $\Gamma^{(k \cdot \max)} = \Sigma^{(k)}$ and $\Gamma^{(n)} = \emptyset$ otherwise.
- construct $M_1 = (\{\star\}, \Sigma, \Gamma, \mathcal{A}, F_1, \mu_1)$ with $(F_1)_{\star} = 1 z_1$

$$(\mu_1)_k(\sigma)_{\star,\underbrace{\star(x_1)\ldots\star(x_1)}_{\text{mx times}}\ldots\underbrace{\star(x_k)\ldots\star(x_k)}_{\text{mx times}}} = 1 \sigma(z_1,\ldots,z_{k\cdot\text{mx}}) \ .$$

• $Q' = Q \cup \{\perp\}, M'_2 = (Q', \Gamma, \Delta, \mathcal{A}, F_2, \mu'_2) \text{ with } (F_2)_q = F_q \text{ and } (F_2)_\perp = \widetilde{0} \text{ and}$ $(\mu'_2)_{k \cdot mx}(\sigma)_{q, ren(w, I)} = \mu_k(\sigma)_{q, w}$ $(\mu'_2)_{k \cdot mx}(\sigma)_{\perp, \perp(x_1) \dots \perp (x_{k \cdot mx})} = 1 \sigma(z_1, \dots, z_{k \cdot mx})$

Composition

Theorem: Let \mathcal{A} be a commutative and \aleph_0 -complete semiring.

$$\begin{split} & [I]h-TOP(\mathcal{A}) \ ; \ [p][I][h]-BOT(\mathcal{A}) \subseteq [p][I][h]-GST(\mathcal{A}) \\ & [I]h-TOP(\mathcal{A}) \ ; \ [p][h]I-BOT(\mathcal{A}) \subseteq [p][I][h]-TOP^{R}(\mathcal{A}) \\ & [I]h-TOP(\mathcal{A}) \ ; \ [p][h]nI-BOT(\mathcal{A}) \subseteq [p][I][h]-TOP(\mathcal{A}) \end{split}$$

Proof:

- $M_1 = (\{\star\}, \Sigma, \Gamma, \mathcal{A}, F_1, \mu_1)$ homomorphism top-down tree series transducer and $M_2 = (Q, \Gamma, \Delta, \mathcal{A}, F, \mu_2)$ bottom-up tree series transducer
- construct tree series transducer $M = (Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$ for $w = q_1(x_{i_1}) \dots q_n(x_{i_n}) \in Q(X_k)^*$ set

$$\mu_k(\sigma)_{q,w} = h_{\mu_2}^{q_1...q_n}((\mu_1)_k(\sigma)_{\star,\star(x_{i_1})...\star(x_{i_n})})_q$$

Characterization Theorem

Theorem: Let \mathcal{A} be a commutative and \aleph_0 -complete semiring.

$$[p][I]-GST(\mathcal{A}) = [I]bh-TOP(\mathcal{A}); [p][I]-BOT(\mathcal{A})$$
$$[p][I]-TOP^{R}(\mathcal{A}) = [I]bh-TOP(\mathcal{A}); [p]I-BOT(\mathcal{A})$$

OI Tree Series Substitution

 $\aleph_0\text{-complete semiring }(A,+,\cdot,0,1)\text{, ranked alphabet }\Delta$

Definition: $\varphi \in A\langle\!\langle T_{\Delta}(Z_k) \rangle\!\rangle, \psi_1, \dots, \psi_k \in A\langle\!\langle T_{\Delta} \rangle\!\rangle$ $z_j[\psi_1, \dots, \psi_k] = \psi_j$ $\sigma(t_1, \dots, t_n)[\psi_1, \dots, \psi_k] = \sigma(t_1[\psi_1, \dots, \psi_k], \dots, t_n[\psi_1, \dots, \psi_k])$

where

$$\sigma(\psi_1,\ldots,\psi_k) = \sum_{t_1,\ldots,t_k \in T_\Delta} (\psi_1,t_1) \cdot \ldots \cdot (\psi_k,t_k) \, \sigma(t_1,\ldots,t_k).$$

Example: $(\mathbb{N} \cup \{\infty\}, +, \cdot, 0, 1)$ $2 \sigma(z_1, z_1) \longleftarrow (2 \alpha, 3 \gamma(\alpha)) = 8 \sigma(\alpha, \alpha)$

Considering Linearity and Deletion

 $n\,\ldots$ nondeleting, $d\,\ldots$ deterministic

Theorem: For every \aleph_0 -complete semiring \mathcal{A}

$$[b][l][n][d][h]p-TOP_{OI}^{R}(\mathcal{A}) = [b][l][n][d][h]p-GST_{OI}(\mathcal{A}) ,$$

$$[p][b][l][n][d][h]-TOP_{OI}^{R}(\mathcal{A}) = [p][b][l][n][d][h]-TOP_{OI}(\mathcal{A})$$

Theorem: For every \aleph_0 -complete semiring \mathcal{A}

$$\mathsf{p}-\mathsf{TOP}(\mathcal{A})=\mathsf{p}-\mathsf{TOP}_{\mathsf{OI}}(\mathcal{A})=\mathsf{p}-\mathsf{TOP}_{\mathsf{OI}}^{\mathrm{R}}(\mathcal{A})=\mathsf{p}-\mathsf{GST}_{\mathsf{OI}}(\mathcal{A})\ .$$

Thank you for your attention.