Preservation of Recognizability for o-substitution

Andreas Maletti

Department of Computer Science

March 27, 2006

Department of Computer Science, TU Dresden

Andreas Maletti

Motivation

Tree Series Substitution

Preservation of Recognizability

Tree Series Transducers

Preservation of Recognizability (revisited)

Department of Computer Science, TU Dresden

Andreas Maletti

Applications

- ... of (weighted/probabilistic) tree automata:
 - Syntactic Pattern Matching (e.g. handwritten digit recognition) [López, Piñaga: Syntactic Pattern Recognition by Error Correcting Analysis on Tree Automata, 2000]
 - Tree Banks [Liakata, Pulman: Learning Theories from Text, 2004]

... of tree series transducers:

- Code Selection [Borchardt: Code Selection by Tree Series Transducers, 2004]
- Natural Language Processing [Graehl, Knight: Training Tree Transducers, 2004]

Department of Computer Science, TU Dresden

Andreas Maletti

Department of Computer Science, TU Dresden

Syntactic Pattern Recognition

Which transformations preserve finite-state recognizability?

Andreas Maletti

Tree Series Substitution Respecting Occurrences

Used Notation:

- T_Σ(V): set of V-indexed trees (terms) formed using the ranked alphabet Σ
- $T_{\Sigma} = T_{\Sigma}(\emptyset)$
- $A\langle\!\langle T \rangle\!\rangle$: set of mappings $\psi \colon T \longrightarrow A$
- (ψ, t) denotes $\psi(t)$
- $supp(\psi) = \{ t \in T \mid (\psi, t) \neq 0 \}$
- $\blacktriangleright \ \mathsf{Z}_n = \{\mathsf{z}_1, \dots, \mathsf{z}_n\}$

Definition:

Let $\psi, \psi_1, \ldots, \psi_n \in A\langle\!\langle T_{\Sigma}(\mathsf{Z}_n) \rangle\!\rangle$.

$$\psi \stackrel{\circ}{\leftarrow} (\psi_1, \dots, \psi_n) = \sum_{\substack{t \in \operatorname{supp}(\psi), \\ t_1 \in \operatorname{supp}(\psi_1), \\ \dots, \\ t_n \in \operatorname{supp}(\psi_n)}} (\psi, t) \cdot (\psi_1, t_1)^{|t|_{z_1}} \cdots (\psi_n, t_n)^{|t|_{z_n}} t[t_1, \dots, t_n]$$

Department of Computer Science, TU Dresden

Andreas Maletti

Tree Series Substitution Respecting Occurrences

Used Notation:

- T_Σ(V): set of V-indexed trees (terms) formed using the ranked alphabet Σ
- $T_{\Sigma} = T_{\Sigma}(\emptyset)$
- $A\langle\!\langle T \rangle\!\rangle$: set of mappings $\psi \colon T \longrightarrow A$
- (ψ, t) denotes $\psi(t)$
- $supp(\psi) = \{ t \in T \mid (\psi, t) \neq 0 \}$
- $\blacktriangleright \ \mathsf{Z}_n = \{\mathsf{z}_1, \dots, \mathsf{z}_n\}$

Definition:

Let $\psi, \psi_1, \ldots, \psi_n \in A\langle\!\langle T_{\Sigma}(\mathsf{Z}_n) \rangle\!\rangle$.

$$\psi \stackrel{\circ}{\leftarrow} (\psi_1, \dots, \psi_n) = \sum_{\substack{t \in \text{supp}(\psi), \\ t_1 \in \text{supp}(\psi_1), \\ \dots, \\ t_n \in \text{supp}(\psi_n)}} (\psi, t) \cdot (\psi_1, t_1)^{|t|_{z_1}} \cdot \dots \cdot (\psi_n, t_n)^{|t|_{z_n}} t[t_1, \dots, t_n]$$

Department of Computer Science, TU Dresden

= 990

Andreas Maletti

Notes on Substitution

- introduced in [Fülöp, Vogler: Tree Series Transformations that Respect Copying, 2003]
- potentially infinite sum
- usually only considered for polynomial (i.e. finite support) tree series or in complete semirings (that have an infinite summation)

Let $\Delta = \{\delta^{(2)}, \alpha^{(0)}\}$ and $\psi \in \mathbb{N}\langle\!\langle T_{\Delta}(\mathsf{Z}_1) \rangle\!\rangle$ be

$$\psi = \max_{t \in T_{\Delta}(\mathsf{Z}_1)} |t|_{\delta} t$$

▶ $\psi \stackrel{\circ}{\leftarrow} (\psi)$ undefined in $\mathbb{A} = (\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)$ [not a complete semiring]

Department of Computer Science, TU Dresden

▶ $\psi \stackrel{\circ}{\leftarrow} (\psi) = \psi$ in $\mathbb{A}_{\infty} = (\mathbb{N} \cup \{\infty, -\infty\}, \max, +, -\infty, 0)$ [a complete semiring]

Andreas Maletti

Notes on Substitution

- introduced in [Fülöp, Vogler: Tree Series Transformations that Respect Copying, 2003]
- potentially infinite sum
- usually only considered for polynomial (i.e. finite support) tree series or in complete semirings (that have an infinite summation)

Example:

Let $\Delta = \{\delta^{(2)}, \alpha^{(0)}\}$ and $\psi \in \mathbb{N}\langle\!\langle T_{\Delta}(\mathsf{Z}_1) \rangle\!\rangle$ be

$$\psi = \max_{t \in T_{\Delta}(\mathsf{Z}_1)} |t|_{\delta} t$$

- ▶ $\psi \stackrel{\circ}{\leftarrow} (\psi)$ undefined in $\mathbb{A} = (\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)$ [not a complete semiring]
- ▶ $\psi \stackrel{\circ}{\leftarrow} (\psi) = \psi$ in $\mathbb{A}_{\infty} = (\mathbb{N} \cup \{\infty, -\infty\}, \max, +, -\infty, 0)$ [a complete semiring]

Department of Computer Science, TU Dresden

= 990

Andreas Maletti

Weighted Tree Automata

Definition:

 $(Q, \Sigma, \mathcal{A}, F, \mu)$ weighted tree automaton if

- ► Q finite set (of states)
- Σ ranked alphabet
- $\mathcal{A} = (A, +, \cdot, 0, 1)$ semiring
- $F: Q \longrightarrow A$ (final distribution)

•
$$\mu = (\mu_k)_{k \in \mathbb{N}}$$
 with $\mu_k \colon \Sigma_k \longrightarrow A^{Q \times Q^k}$

Example:

- ▶ $Q = \{1, 2\}$
- ► $\Sigma = \{\delta^{(2)}, \alpha^{(0)}, x_1^{(0)}\}$
- $\blacktriangleright \ \mathcal{A} = \mathbb{A}_{\infty}$

•
$$F(1) = 0, F(2) = -\infty$$

• μ see graphic below

Department of Computer Science, TU Dresden

Andreas Maletti

Weighted Tree Automata

Definition:

 $(Q, \Sigma, \mathcal{A}, F, \mu)$ weighted tree automaton if

- ► Q finite set (of states)
- Σ ranked alphabet
- ▶ A = (A, +, ·, 0, 1) semiring
- $F: Q \longrightarrow A$ (final distribution)

•
$$\mu = (\mu_k)_{k \in \mathbb{N}}$$
 with $\mu_k \colon \Sigma_k \longrightarrow A^{Q \times Q^k}$

Example:

- ▶ $Q = \{1, 2\}$
- $\Sigma = \{\delta^{(2)}, \alpha^{(0)}, x_1^{(0)}\}$
- $\blacktriangleright \ \mathcal{A} = \mathbb{A}_{\infty}$

•
$$F(1) = 0, F(2) = -\infty$$

µ see graphic below

Department of Computer Science, TU Dresden

Preservation of Recognizability for o-substitution

Andreas Maletti

Recognizable Tree Series

Definition:

Let $M = (Q, \Sigma, \mathcal{A}, F, \mu)$ weighted tree automaton. Define $h_{\mu} \colon T_{\Sigma} \longrightarrow A^Q$

$$h_{\mu}(\sigma(t_1,\ldots,t_k))_q = \sum_{q_1,\ldots,q_k \in Q} \mu_k(\sigma)_{q,q_1,\ldots,q_k} \cdot h_{\mu}(t_1)_{q_1} \cdot \ldots \cdot h_{\mu}(t_k)_{q_k}$$

Tree series computed by M is ||M||

$$(\|M\|,t) = \sum_{q \in Q} F(q) \cdot h_{\mu}(t)_q$$

Definition: Tree series $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$ recognizable, if there exists wta M with $||M|| = \psi$.

Andreas Maletti

Preservation of Recognizability for o-substitution

Department of Computer Science, TU Dresden

-

Recognizable Tree Series

Definition:

Let $M = (Q, \Sigma, \mathcal{A}, F, \mu)$ weighted tree automaton. Define $h_{\mu} \colon T_{\Sigma} \longrightarrow A^Q$

$$h_{\mu}(\sigma(t_1,\ldots,t_k))_q = \sum_{q_1,\ldots,q_k \in Q} \mu_k(\sigma)_{q,q_1,\ldots,q_k} \cdot h_{\mu}(t_1)_{q_1} \cdot \ldots \cdot h_{\mu}(t_k)_{q_k}$$

Tree series computed by M is ||M||

$$(\|M\|, t) = \sum_{q \in Q} F(q) \cdot h_{\mu}(t)_q$$

Definition:

Tree series $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$ recognizable, if there exists wta M with $||M|| = \psi$.

Andreas Maletti

Preservation of Recognizability for o-substitution

-

イロト イポト イヨト イヨト

Theorem:

- $\blacktriangleright\ \mathcal{A}$ commutative, idempotent, and continuous
- $\psi \in A\langle\!\langle T_{\Sigma}(\mathsf{Z}_n) \rangle\!\rangle$ recognizable and linear
- $\psi_1, \ldots, \psi_n \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$ recognizable

Then $\psi \stackrel{\circ}{\leftarrow} (\psi_1, \ldots, \psi_n)$ is recognizable.

Definition:

- \mathcal{A} commutative: $a \cdot b = b \cdot a$ for all $a, b \in A$
- \mathcal{A} idempotent: a + a = a for all $a \in A$
- A continuous: A complete and \sum preserves certain suprema
- ψ linear: every $t \in \mathsf{supp}(\psi)$ linear (i.e., $\mathsf{z}_1, \ldots, \mathsf{z}_n$ occur at most once)

Department of Computer Science, TU Dresden

Andreas Maletti

Theorem:

- ► *A* commutative, idempotent, and continuous
- $\psi \in A\langle\!\langle T_{\Sigma}(\mathsf{Z}_n) \rangle\!\rangle$ recognizable and linear
- $\psi_1, \ldots, \psi_n \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$ recognizable

Then $\psi \stackrel{\circ}{\leftarrow} (\psi_1, \ldots, \psi_n)$ is recognizable.

Definition:

- \mathcal{A} commutative: $a \cdot b = b \cdot a$ for all $a, b \in A$
- \mathcal{A} idempotent: a + a = a for all $a \in A$
- \mathcal{A} continuous: \mathcal{A} complete and \sum preserves certain suprema
- ▶ ψ linear: every $t \in supp(\psi)$ linear (i.e., z_1, \ldots, z_n occur at most once)

Department of Computer Science, TU Dresden

Andreas Maletti

Theorem:

- \mathcal{A} commutative, idempotent, and continuous
- $\psi \in A\langle\!\langle T_{\Sigma}(\mathsf{Z}_n) \rangle\!\rangle$ recognizable and linear
- $\psi_1, \ldots, \psi_n \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$ recognizable

Then $\psi \stackrel{\circ}{\leftarrow} (\psi_1, \ldots, \psi_n)$ is recognizable.

Definition:

- \mathcal{A} commutative: $a \cdot b = b \cdot a$ for all $a, b \in A$
- \mathcal{A} idempotent: a + a = a for all $a \in A$
- \mathcal{A} continuous: \mathcal{A} complete and \sum preserves certain suprema
- ▶ ψ linear: every $t \in supp(\psi)$ linear (i.e., z_1, \ldots, z_n occur at most once)

Department of Computer Science, TU Dresden

Andreas Maletti

Theorem:

- \blacktriangleright ${\cal A}$ commutative, idempotent, and continuous
- $\psi \in A\langle\!\langle T_{\Sigma}(\mathsf{Z}_n) \rangle\!\rangle$ recognizable and linear
- $\psi_1, \ldots, \psi_n \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$ recognizable

Then $\psi \stackrel{\circ}{\leftarrow} (\psi_1, \ldots, \psi_n)$ is recognizable.

Definition:

- A commutative: $a \cdot b = b \cdot a$ for all $a, b \in A$
- \mathcal{A} idempotent: a + a = a for all $a \in A$
- ▶ A continuous: A complete and \sum preserves certain suprema
- ▶ ψ linear: every $t \in supp(\psi)$ linear (i.e., z_1, \ldots, z_n occur at most once)

Department of Computer Science, TU Dresden

Andreas Maletti

Theorem:

- $\blacktriangleright\ \mathcal{A}$ commutative, idempotent, and continuous
- $\psi \in A\langle\!\langle T_{\Sigma}(\mathsf{Z}_n) \rangle\!\rangle$ recognizable and linear
- $\psi_1, \ldots, \psi_n \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$ recognizable

Then $\psi \stackrel{\circ}{\leftarrow} (\psi_1, \ldots, \psi_n)$ is recognizable.

Definition:

- \mathcal{A} commutative: $a \cdot b = b \cdot a$ for all $a, b \in A$
- \mathcal{A} idempotent: a + a = a for all $a \in A$
- ▶ A continuous: A complete and \sum preserves certain suprema
- ψ linear: every $t \in \text{supp}(\psi)$ linear (i.e., z_1, \ldots, z_n occur at most once)

Department of Computer Science, TU Dresden

Andreas Maletti

Illustration

Proof Idea: Illustrated on $\psi \stackrel{\circ}{\leftarrow} (\psi)$

< • • • • • •

Andreas Maletti

Syntax

Definition:

 $(Q, \Sigma, \Delta, A, F, \mu)$ tree series transducer, if

- Q finite set (of states)
- Σ and Δ ranked alphabets
- A semiring
- $\blacktriangleright F: Q \longrightarrow A \langle\!\langle C_{\Delta}(\mathsf{Z}_1) \rangle\!\rangle$
- $\blacktriangleright \mu = (\mu_k)_{k \in \mathbb{N}}$ with $\mu_k \colon \mathbf{\Sigma}_k \longrightarrow A \langle\!\langle T_{\Delta}(\mathbf{Z}_n) \rangle\!\rangle^{Q \times Q(\mathbf{Z}_k)^*}$

- \blacktriangleright F(q) recognizable for every $q \in Q$
- $\mu_k(\sigma)_{a,w}$ recognizable for all k, σ, q , and w

-

Andreas Maletti

Syntax

Definition:

 $(Q, \Sigma, \Delta, A, F, \mu)$ tree series transducer, if

- Q finite set (of states)
- Σ and Δ ranked alphabets
- ► A semiring
- $\blacktriangleright \ F \colon Q \longrightarrow A \langle\!\langle C_{\Delta}(\mathsf{Z}_1) \rangle\!\rangle$
- $\mu = (\mu_k)_{k \in \mathbb{N}}$ with $\mu_k : \Sigma_k \longrightarrow A\langle\!\langle T_\Delta(\mathsf{Z}_n) \rangle\!\rangle^{Q \times Q(\mathsf{Z}_k)^*}$

Definition:

Tst $(Q, \Sigma, \Delta, A, F, \mu)$ recognizable, if

- F(q) recognizable for every $q \in Q$
- $\mu_k(\sigma)_{q,w}$ recognizable for all k, σ, q , and w

< (17) >

Department of Computer Science, TU Dresden

-

→ E → < E</p>

Andreas Maletti

Semantics

Definition:

Let
$$(Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$$
 tst. Define $h_{\mu}^{\circ} : T_{\Sigma} \longrightarrow A\langle\!\langle T_{\Delta} \rangle\!\rangle^Q$

$$h^{\circ}_{\mu}(\sigma(t_{1},...,t_{k}))_{q} = \sum_{\substack{w \in Q(\mathbf{Z}_{k})^{*} \\ w = q_{1}(\mathbf{z}_{i_{1}})\cdots q_{n}(\mathbf{z}_{i_{n}})}} \mu_{k}(\sigma)_{q,w} \stackrel{\circ}{\leftarrow} (h^{\circ}_{\mu}(t_{i_{1}})_{q_{1}},...,h^{\circ}_{\mu}(t_{i_{n}})_{q_{n}})$$

Example:

$$h_{\mu}^{\circ}(\alpha, \alpha), \alpha) \xrightarrow{\bullet} h_{\mu}^{\circ}(\alpha) = 0 \alpha$$

$$h_{\mu}^{\circ}(\alpha, \alpha) = 0 \alpha$$

Department of Computer Science, TU Dresden

2

<ロ> <四> <四> <三</p>

Andreas Maletti

Semantics

Definition:

Let
$$(Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$$
 tst. Define $h^{\mathsf{o}}_{\mu} : T_{\Sigma} \longrightarrow A\langle\!\langle T_{\Delta} \rangle\!\rangle^Q$

$$h^{\circ}_{\mu}(\sigma(t_1,\ldots,t_k))_q = \sum_{\substack{w \in Q(\mathbf{Z}_k)^* \\ w = q_1(\mathbf{z}_{i_1})\cdots q_n(\mathbf{z}_{i_n})}} \mu_k(\sigma)_{q,w} \stackrel{\circ}{\leftarrow} (h^{\circ}_{\mu}(t_{i_1})_{q_1},\ldots,h^{\circ}_{\mu}(t_{i_n})_{q_n})$$

Example:

$$\begin{array}{c} 0 z_1 & \text{Input tree: } \sigma(\sigma(\alpha, \alpha), \alpha) \\ & & & \\$$

Department of Computer Science, TU Dresden

<ロ> <四> <四> <三</p>

Andreas Maletti

Department of Computer Science, TU Dresden

Semantics

Definition:

Let $M = (Q, \Sigma, \Delta, A, F, \mu)$ tst. Transformation computed by M

Tree Level $||M|| : T_{\Sigma} \longrightarrow A\langle\!\langle T_{\Delta} \rangle\!\rangle :$

$$\|M\|(t) = \sum_{q \in Q} F_q \stackrel{\circ}{\leftarrow} (h^{\mathsf{o}}_{\mu}(t)_q)$$

Series Level $||M|| : A\langle\!\langle T_{\Sigma} \rangle\!\rangle \longrightarrow A\langle\!\langle T_{\Delta} \rangle\!\rangle$:

$$||M||(\psi) = \sum_{t \in \text{supp}(\psi)} (\psi, t) \cdot ||M||(t)$$

Andreas Maletti

Semantics

Definition:

Let $M = (Q, \Sigma, \Delta, A, F, \mu)$ tst. Transformation computed by M

Tree Level $||M|| : T_{\Sigma} \longrightarrow A\langle\!\langle T_{\Delta} \rangle\!\rangle :$

$$\|M\|(t) = \sum_{q \in Q} F_q \stackrel{\circ}{\leftarrow} (h^{\mathsf{o}}_{\mu}(t)_q)$$

Series Level $||M|| : A\langle\!\langle T_{\Sigma} \rangle\!\rangle \longrightarrow A\langle\!\langle T_{\Delta} \rangle\!\rangle$:

$$||M||(\psi) = \sum_{t \in \text{supp}(\psi)} (\psi, t) \cdot ||M||(t)$$

Example: Let $M = \bigoplus_{\substack{\alpha \in \alpha \\ \alpha \in \alpha}} e^{\sigma_{n}}$ Then $||M||(t) = \text{height}(t) \alpha$

Andreas Maletti

Preservation of Recognizability for o-substitution

Department of Computer Science, TU Dresden

2

Tree Series Transducers and Recognizability

Theorem:

Let $M = (Q, \Sigma, \Delta, A, F, \mu)$ tst.

- A commutative, idempotent, and continuous
- M recognizable and output-linear

Then ||M||(t) is recognizable for every $t \in T_{\Sigma}$.

Definition: *M* output-linear: $\mu_k(\sigma)_{a,w}$ linear for all k, σ, q , and

Question:

Let $M = (Q, \Sigma, \Delta, A, F, \mu)$ tst.

- A commutative, idempotent, and continuous
- M recognizable and output-linear
- $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$ recognizable

Is $||M||(\psi)$ recognizable?

Department of Computer Science, TU Dresden

Andreas Maletti

Tree Series Transducers and Recognizability

Theorem:

Let $M = (Q, \Sigma, \Delta, A, F, \mu)$ tst.

- $\blacktriangleright\ \mathcal{A}$ commutative, idempotent, and continuous
- ► *M* recognizable and output-linear

Then ||M||(t) is recognizable for every $t \in T_{\Sigma}$.

Definition: *M* output-linear: $\mu_k(\sigma)_{q,w}$ linear for all k, σ, q , and w.

Question:

Let $M = (Q, \Sigma, \Delta, A, F, \mu)$ tst.

- A commutative, idempotent, and continuous
- M recognizable and output-linear
- $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$ recognizable

Is $||M||(\psi)$ recognizable?

Department of Computer Science, TU Dresden

Andreas Maletti

Tree Series Transducers and Recognizability

Theorem:

Let $M = (Q, \Sigma, \Delta, A, F, \mu)$ tst.

- A commutative, idempotent, and continuous
- M recognizable and output-linear

Then ||M||(t) is recognizable for every $t \in T_{\Sigma}$.

Definition:

M output-linear: $\mu_k(\sigma)_{q,w}$ linear for all *k*, σ , *q*, and *w*.

Question:

Let $M = (Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$ tst.

- A commutative, idempotent, and continuous
- M recognizable and output-linear
- $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$ recognizable

Is $||M||(\psi)$ recognizable?

Department of Computer Science, TU Dresden

Theorem:

[Kuich: Tree Transducers and Formal Tree Series, 1999]

Let $M = (Q, \Sigma, \Delta, A, F, \mu)$ tst.

- A commutative and continuous
- M recognizable, input-linear and -nondeleting, top-down
- $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$ recognizable

Then $||M||(\psi)$ is recognizable!

Definition:

- M input-linear: w linear for all w such that $supp(\mu_k(\sigma)_{q,w}) \neq \emptyset$
- M input-nondeleting: w nondeleting (every variable from Z_k occurs at least once) for all w such that supp(µ_k(σ)_{q,w}) ≠ Ø
- M top-down: $\mu_k(\sigma)_{q,w}$ nondeleting and linear

<ロ> (日) (日) (日) (日) (日)

Andreas Maletti

Theorem:

[Kuich: Tree Transducers and Formal Tree Series, 1999]

Let $M = (Q, \Sigma, \Delta, A, F, \mu)$ tst.

- A commutative and continuous
- ▶ M recognizable, input-linear and -nondeleting, top-down
- $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$ recognizable

Then $||M||(\psi)$ is recognizable!

Definition:

- *M* input-linear: *w* linear for all *w* such that supp $(\mu_k(\sigma)_{q,w}) \neq \emptyset$
- ▶ *M* input-nondeleting: *w* nondeleting (every variable from Z_k occurs at least once) for all *w* such that supp $(\mu_k(\sigma)_{q,w}) \neq \emptyset$
- M top-down: $\mu_k(\sigma)_{q,w}$ nondeleting and linear

<ロ> (日) (日) (日) (日) (日)

Theorem:

[Kuich: Tree Transducers and Formal Tree Series, 1999]

Let $M = (Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$ tst.

- A commutative and continuous
- ▶ M recognizable, input-linear and -nondeleting, top-down
- $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$ recognizable

Then $||M||(\psi)$ is recognizable!

Definition:

- *M* input-linear: *w* linear for all *w* such that $supp(\mu_k(\sigma)_{q,w}) \neq \emptyset$
- ► *M* input-nondeleting: *w* nondeleting (every variable from Z_k occurs at least once) for all *w* such that supp $(\mu_k(\sigma)_{q,w}) \neq \emptyset$
- M top-down: $\mu_k(\sigma)_{q,w}$ nondeleting and linear

<ロ> (日) (日) (日) (日) (日)

Andreas Maletti

Theorem:

[Kuich: Tree Transducers and Formal Tree Series, 1999]

Let $M = (Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$ tst.

- A commutative and continuous
- M recognizable, input-linear and -nondeleting, top-down
- $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$ recognizable

Then $||M||(\psi)$ is recognizable!

Definition:

- *M* input-linear: *w* linear for all *w* such that supp $(\mu_k(\sigma)_{q,w}) \neq \emptyset$
- ► *M* input-nondeleting: *w* nondeleting (every variable from Z_k occurs at least once) for all *w* such that supp $(\mu_k(\sigma)_{q,w}) \neq \emptyset$
- M top-down: $\mu_k(\sigma)_{q,w}$ nondeleting and linear

<ロ> (日) (日) (日) (日) (日)

The Downside

Observation:

There exist single-state input-linear top-down tst M such that $||M||(\psi)$ is not recognizable albeit ψ is recognizable.

Problem:

Sequential execution preserves weight a'!

Department of Computer Science, TU Dresden

Andreas Maletti

The Downside

Observation:

There exist single-state input-linear top-down tst M such that $||M||(\psi)$ is not recognizable albeit ψ is recognizable.

Problem:

Sequential execution preserves weight a'!

Andreas Maletti

The Downside

Problem:

Deletion neglects the weight a' in the composition!

But: Distinction between 0 and 1 is preserved.

<
 <p>A I → A E → A E → E → Q A

 Department of Computer Science, TU Dresden

Andreas Maletti

Idea: Use boolean weights!

Theorem:

[Borchardt: A Pumping Lemma and Decidability Problems for Recognizable Tree Series, 2004]

- A locally finite semiring
- $M = (Q, \Sigma, \mathcal{A}, F, \mu)$ wta

Then there exists a wta M' with boolean tree representation such that ||M'|| = ||M||.

Definition:

- A locally finite: closure of finite sets under + and · still finite
- $lacksim \mu$ boolean: $\mu_k(\sigma)_{q,q_1,\ldots,q_k}\in\{0,1\}$ for all $k,\sigma,q,q_1,\ldots,q_k$

Department of Computer Science, TU Dresden

Andreas Maletti

Idea:

Use boolean weights!

Theorem:

[Borchardt: A Pumping Lemma and Decidability Problems for Recognizable Tree Series, 2004]

- A locally finite semiring
- $M = (Q, \Sigma, \mathcal{A}, F, \mu)$ wta

Then there exists a wta M' with boolean tree representation such that ||M'|| = ||M||.

Definition:

- A locally finite: closure of finite sets under + and · still finite
- μ boolean: $\mu_k(\sigma)_{q,q_1,\ldots,q_k} \in \{0,1\}$ for all $k, \sigma, q, q_1,\ldots,q_k$

Idea:

Use boolean weights!

Theorem:

[Borchardt: A Pumping Lemma and Decidability Problems for Recognizable Tree Series, 2004]

- ► A locally finite semiring
- $M = (Q, \Sigma, \mathcal{A}, F, \mu)$ wta

Then there exists a wta M' with boolean tree representation such that ||M'|| = ||M||.

Definition:

- ► A locally finite: closure of finite sets under + and · still finite
- μ boolean: $\mu_k(\sigma)_{q,q_1,\ldots,q_k} \in \{0,1\}$ for all $k, \sigma, q, q_1, \ldots, q_k$

Department of Computer Science, TU Dresden

Andreas Maletti

Idea:

Use boolean weights!

Theorem:

[Borchardt: A Pumping Lemma and Decidability Problems for Recognizable Tree Series, 2004]

- A locally finite semiring
- $M = (Q, \Sigma, \mathcal{A}, F, \mu)$ wta

Then there exists a wta M' with boolean tree representation such that ||M'|| = ||M||.

Definition:

- ► A locally finite: closure of finite sets under + and · still finite
- μ boolean: $\mu_k(\sigma)_{q,q_1,\ldots,q_k} \in \{0,1\}$ for all $k, \sigma, q, q_1, \ldots, q_k$

Andreas Maletti

The Result

Main Theorem:

- A commutative, idempotent, continuous, and locally finite
- M = (Q, Σ, Δ, A, F, μ) recognizable and linear bottom-up tst
- $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$ recognizable

Then $||M||(\psi)$ is recognizable.

Definition:

M bottom-up: $w = q_1(z_1) \cdots q_k(z_k)$ for every w such that supp $(\mu_k(\sigma)_{q,w}) \neq \emptyset$

Remaining Question:

What transformations can be realized by such tst?

The Result

Main Theorem:

- ► A commutative, idempotent, continuous, and locally finite
- $M = (Q, \Sigma, \Delta, A, F, \mu)$ recognizable and linear bottom-up tst
- $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$ recognizable

Then $||M||(\psi)$ is recognizable.

Definition:

M bottom-up: $w = q_1(z_1) \cdots q_k(z_k)$ for every *w* such that supp $(\mu_k(\sigma)_{q,w}) \neq \emptyset$

Remaining Question:

What transformations can be realized by such tst?

Department of Computer Science, TU Dresden

Andreas Maletti

The Result

Main Theorem:

- ► A commutative, idempotent, continuous, and locally finite
- M = (Q, Σ, Δ, A, F, μ) recognizable and linear bottom-up tst
- $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$ recognizable

Then $||M||(\psi)$ is recognizable.

Definition:

M bottom-up: $w = q_1(z_1) \cdots q_k(z_k)$ for every w such that $supp(\mu_k(\sigma)_{q,w}) \neq \emptyset$

Remaining Question:

What transformations can be realized by such tst?

Department of Computer Science, TU Dresden

Preservation of Recognizability for o-substitution

Andreas Maletti

References

- D. López, I. Piñaga: Syntactic Pattern Recognition by Error Correcting Analysis on Tree Automata, LNCS 1876, p. 133–142, 2000
- ► B. Borchardt: *The Theory of Recognizable Tree Series*, Akademische Abhandlungen zur Informatik, 2005
- W. Kuich: Tree Transducers and Formal Tree Series, Acta Cybernet. 14(1), p. 135–149, 1999
- J. Engelfriet, Z. Fülöp, H. Vogler: Bottom-up and Top-down Tree Series Transformations, J. Autom. Lang. Combin. 8(2), p. 219–285, 2003
- Z. Fülöp, H. Vogler: Tree Series Transformations that Respect Copying, Theory Comput. Syst. 36(3), p. 247–293, 2003

Thank you for your attention!

Andreas Maletti

Preservation of Recognizability for o-substitution

Department of Computer Science, TU Dresden