
Tree Transducers in Machine Translation

Andreas Maletti

December 6, 2006

Machine Translation

Schema

Input Text
(e.g., Arabic)

=⇒ Black Box
(e.g., computer)

=⇒ Output Text
(e.g., English)

Applications

I Automatic news wire translations

I Automatic translation of proceedings

I ...

I Powerful in conjunction with speech recognition and synthesis

MT-Evaluation 2006

See for yourself:

http://www.nist.gov/speech/tests/mt/mt06eval_
official_results.html

Disclaimer
These results are not to be construed, or represented as
endorsements of any participant’s system or commercial product,
or as official findings on the part of NIST or the U.S. Government.
〈. . .〉

http://www.nist.gov/speech/tests/mt/mt06eval_official_results.html
http://www.nist.gov/speech/tests/mt/mt06eval_official_results.html

MT-Evaluation 2006 (cont’d)

Conditions:

I Large Data Track (limited training data; publicly available)

I Arabic-to-English and Chinese-to-English

I 1 week processing time

I ≈ 40 competitors (industrial and academic)

Results

Site BLEU-score

google 0.4281
ibm 0.3954
isi 0.3908

rwth 0.3906
apptek 0.3874

Site BLEU-score

isi 0.3393
google 0.3316

lw 0.3278
rwth 0.3022
ict 0.2913

MT-Evaluation 2006 (cont’d)

Conditions:

I Large Data Track (limited training data; publicly available)

I Arabic-to-English and Chinese-to-English

I 1 week processing time

I ≈ 40 competitors (industrial and academic)

Results

Site BLEU-score

google 0.4281
ibm 0.3954
isi 0.3908

rwth 0.3906
apptek 0.3874

Site BLEU-score

isi 0.3393
google 0.3316

lw 0.3278
rwth 0.3022
ict 0.2913

Phrase-based Machine Translation

Features

I Process input and output string

I String-based transformations

I ⇒ (Weighted) finite-state automata and transducers

Example

Translation with FSA and FST

Mary did not slap the green witch.

Phrase-based Machine Translation

Features

I Process input and output string

I String-based transformations

I ⇒ (Weighted) finite-state automata and transducers

Example

Translation with FSA and FST

Mary did not slap the green witch.

Mary ε not slap slap slap the green witch.

Phrase-based Machine Translation

Features

I Process input and output string

I String-based transformations

I ⇒ (Weighted) finite-state automata and transducers

Example

Translation with FSA and FST

Mary ε not slap slap slap the green witch.

Mary not slap slap slap NULL the green witch.

Phrase-based Machine Translation

Features

I Process input and output string

I String-based transformations

I ⇒ (Weighted) finite-state automata and transducers

Example

Translation with FSA and FST

Mary not slap slap slap NULL the green witch.

Mary no dió una bofetada a la verde bruja.

Phrase-based Machine Translation

Features

I Process input and output string

I String-based transformations

I ⇒ (Weighted) finite-state automata and transducers

Example

Translation with FSA and FST

Mary no dió una bofetada a la verde bruja.

Mary no dió una bofetada a la bruja verde.

Syntax-based Machine Translation

Features

I Process parse trees of sentence instead of sentence

I Tree-based transformations

I ⇒ (Weighted) tree automata and tree transducers

Schema

S

NP

DET NN

VB =⇒ Syntax-based
Machine Translation

=⇒

S

VB NP

NN

Syntax-based Machine Translation (cont’d)

Example

VB
PRP
He

VB1
adores

VB2
VB

listening
TO

TO
to

NN
music

⇒
VB

PRP
He

VB2
TO

NN
music

TO
to

VB
listening

VB1
adores

⇓
VB

PRP
kare ha

VB2
TO

NN
ongaku

TO
wo

VB
kiku no

ga
VB1

daisuki desu ⇐
VB

PRP
He ha

VB2
TO

NN
music

TO
to

VB
listening no

ga
VB1

adores desu

kare ha ongaku wo kiku no ga daisuki desu

Translation Patterns

Extended Top-down Tree Transducer

Definition
An extended top-down tree transducer is a tuple (Q,Σ,∆, I ,R)
where

I Q is a finite set of states;

I Σ and ∆ are input and output ranked alphabet;

I I ⊆ Q is a set of initial states; and

I R is a finite set of rewrite rules of the form

q(t) → r

with q ∈ Q, t ∈ TΣ(X) linear, and r ∈ T∆(Q(var(t))).

Semantics of Extended Top-down Tree Transducers

M = (Q,Σ,∆, I ,R) an extended tdtt

Definition
Define ⇒M ⊆ T∆(Q(TΣ))2 by ξ ⇒M ξ′ iff

I there exists a position w ∈ pos(ξ);
I there exists a rule (l → r) ∈ R; and

I there exists a substitution θ : X → TΣ

such that
lθ = ξ|w and ξ′ = ξ[rθ]w .

Definition
The tree transformation computed by M is defined by

‖M‖ = {(t, u) ∈ TΣ × T∆ | ∃q ∈ I : q(t) ⇒∗
M u} .

A Hierarchy

Open Problems (according to [Knight, Graehl 2005])

I What is the most efficient algorithm for selecting the k-best
trees from a probabilistic regular tree grammar?

Better k-best Parsing by L. Huang and D. Chiang
O(|E |+ |Dmax|k log k) for k-best derivations

I How can efficient integrated search be carried out, so that all
tree acceptors and transducers in a cascade can
simultaneously participate in the best-tree search?

open

Open Problems (according to [Knight, Graehl 2005])

I What is the most efficient algorithm for selecting the k-best
trees from a probabilistic regular tree grammar?

Better k-best Parsing by L. Huang and D. Chiang
O(|E |+ |Dmax|k log k) for k-best derivations

I How can efficient integrated search be carried out, so that all
tree acceptors and transducers in a cascade can
simultaneously participate in the best-tree search?

open

Open Problems (according to [Knight, Graehl 2005])

I What is the most efficient algorithm for selecting the k-best
trees from a probabilistic regular tree grammar?

Better k-best Parsing by L. Huang and D. Chiang
O(|E |+ |Dmax|k log k) for k-best derivations

I How can efficient integrated search be carried out, so that all
tree acceptors and transducers in a cascade can
simultaneously participate in the best-tree search?

open

Open Problems (according to [Knight, Graehl 2005])

I What search heuristics (beaming, thresholding, etc.) are
necessary for efficient application of tree transducers to
large-scale natural language problems?

mostly open (some ideas in Tiburon)

I What is the most efficient algorithm for composing
probabilistic linear and nondeleting tree transducers?

Bottom-up and Top-down Tree Series Transformations by
J. Engelfriet, Z. Fülöp, and H. Vogler
complexity not analysed; not specific for R

Open Problems (according to [Knight, Graehl 2005])

I What search heuristics (beaming, thresholding, etc.) are
necessary for efficient application of tree transducers to
large-scale natural language problems?

mostly open (some ideas in Tiburon)

I What is the most efficient algorithm for composing
probabilistic linear and nondeleting tree transducers?

Bottom-up and Top-down Tree Series Transformations by
J. Engelfriet, Z. Fülöp, and H. Vogler
complexity not analysed; not specific for R

Open Problems (according to [Knight, Graehl 2005])

I What search heuristics (beaming, thresholding, etc.) are
necessary for efficient application of tree transducers to
large-scale natural language problems?

mostly open (some ideas in Tiburon)

I What is the most efficient algorithm for composing
probabilistic linear and nondeleting tree transducers?

Bottom-up and Top-down Tree Series Transformations by
J. Engelfriet, Z. Fülöp, and H. Vogler
complexity not analysed; not specific for R

Open Problems (according to [Knight, Graehl 2005])

I What is the most efficient algorithm for intersecting
probabilistic regular tree grammars?

The Theory of Recognizable Tree Series by B. Borchardt
no complexity analysis; not specific for R

I What are the most efficient algorithms for forward and
backward application of tree/tree and tree/string transducers?

custom implementation in Tiburon

Open Problems (according to [Knight, Graehl 2005])

I What is the most efficient algorithm for intersecting
probabilistic regular tree grammars?

The Theory of Recognizable Tree Series by B. Borchardt
no complexity analysis; not specific for R

I What are the most efficient algorithms for forward and
backward application of tree/tree and tree/string transducers?

custom implementation in Tiburon

Open Problems (according to [Knight, Graehl 2005])

I What is the most efficient algorithm for intersecting
probabilistic regular tree grammars?

The Theory of Recognizable Tree Series by B. Borchardt
no complexity analysis; not specific for R

I What are the most efficient algorithms for forward and
backward application of tree/tree and tree/string transducers?

custom implementation in Tiburon

Open Problems (according to [Knight, Graehl 2005])

I For large tree transducers, what data structures, indexing
strategies, and caching techniques will support efficient
algorithms?

Prototype implementation in Tiburon

I What is the linguistically most appropriate tree transducer
class for machine translation? For text summarization? Which
classes best handle the most common linguistic constructions,
and which classes best handle the most difficult ones?

nondeleting and linear extended top-down for machine
translation; open for summarization

Open Problems (according to [Knight, Graehl 2005])

I For large tree transducers, what data structures, indexing
strategies, and caching techniques will support efficient
algorithms?

Prototype implementation in Tiburon

I What is the linguistically most appropriate tree transducer
class for machine translation? For text summarization? Which
classes best handle the most common linguistic constructions,
and which classes best handle the most difficult ones?

nondeleting and linear extended top-down for machine
translation; open for summarization

Open Problems (according to [Knight, Graehl 2005])

I For large tree transducers, what data structures, indexing
strategies, and caching techniques will support efficient
algorithms?

Prototype implementation in Tiburon

I What is the linguistically most appropriate tree transducer
class for machine translation? For text summarization? Which
classes best handle the most common linguistic constructions,
and which classes best handle the most difficult ones?

nondeleting and linear extended top-down for machine
translation; open for summarization

Open Problems (according to [Knight, Graehl 2005])

I Can compact regular tree grammars encode high-performing
tree-based language models with appropriate back-off
strategies, in the same way that FSA tools can implement
n-gram models?

open

I What are the theoretical and computational properties of
extended top-down tree transducers?

class of nondeleting and linear extended top-down tree
transformations not closed under composition

Open Problems (according to [Knight, Graehl 2005])

I Can compact regular tree grammars encode high-performing
tree-based language models with appropriate back-off
strategies, in the same way that FSA tools can implement
n-gram models?

open

I What are the theoretical and computational properties of
extended top-down tree transducers?

class of nondeleting and linear extended top-down tree
transformations not closed under composition

Open Problems (according to [Knight, Graehl 2005])

I Can compact regular tree grammars encode high-performing
tree-based language models with appropriate back-off
strategies, in the same way that FSA tools can implement
n-gram models?

open

I What are the theoretical and computational properties of
extended top-down tree transducers?

class of nondeleting and linear extended top-down tree
transformations not closed under composition

Open Problems (according to [Knight, Graehl 2005])

I Where do synchronous grammars and tree cloning fit into the
tree transducer hierarchy?

syn. grammars as powerful as extended top-down

I As many syntactic and semantic theories generate acyclic
graphs rather than trees, can graph transducers adequately
capture the desired transformations?

open

Open Problems (according to [Knight, Graehl 2005])

I Where do synchronous grammars and tree cloning fit into the
tree transducer hierarchy?

syn. grammars as powerful as extended top-down

I As many syntactic and semantic theories generate acyclic
graphs rather than trees, can graph transducers adequately
capture the desired transformations?

open

Open Problems (according to [Knight, Graehl 2005])

I Where do synchronous grammars and tree cloning fit into the
tree transducer hierarchy?

syn. grammars as powerful as extended top-down

I As many syntactic and semantic theories generate acyclic
graphs rather than trees, can graph transducers adequately
capture the desired transformations?

open

Open Problems (according to [Knight, Graehl 2005])

I Are there tree transducers that can move unbounded material
over unbounded distances, while maintaining efficient
computational properties?

open

I In analogy with extended context-free grammars, are there
types of tree transducers that can process tree sets which are
not limited to a finite set of rewrites (e.g., S → NP VP PP∗)?

mostly open

Open Problems (according to [Knight, Graehl 2005])

I Are there tree transducers that can move unbounded material
over unbounded distances, while maintaining efficient
computational properties?

open

I In analogy with extended context-free grammars, are there
types of tree transducers that can process tree sets which are
not limited to a finite set of rewrites (e.g., S → NP VP PP∗)?

mostly open

Open Problems (according to [Knight, Graehl 2005])

I Are there tree transducers that can move unbounded material
over unbounded distances, while maintaining efficient
computational properties?

open

I In analogy with extended context-free grammars, are there
types of tree transducers that can process tree sets which are
not limited to a finite set of rewrites (e.g., S → NP VP PP∗)?

mostly open

Open Problems (according to [Knight, Graehl 2005])

I Can we build tree transducer models for machine translation
that:

I efficiently train on large amounts of data,
I accurately model that data by assigning it higher probability

than other models, and
I when combined with search algorithms, yield grammatical and

accurate translations?

wide open

I Can we build useful, generic tree-transducer toolkits, and
what sorts of programming interfaces will be most effective?

Tiburon

Open Problems (according to [Knight, Graehl 2005])

I Can we build tree transducer models for machine translation
that:

I efficiently train on large amounts of data,
I accurately model that data by assigning it higher probability

than other models, and
I when combined with search algorithms, yield grammatical and

accurate translations?

wide open

I Can we build useful, generic tree-transducer toolkits, and
what sorts of programming interfaces will be most effective?

Tiburon

Open Problems (according to [Knight, Graehl 2005])

I Can we build tree transducer models for machine translation
that:

I efficiently train on large amounts of data,
I accurately model that data by assigning it higher probability

than other models, and
I when combined with search algorithms, yield grammatical and

accurate translations?

wide open

I Can we build useful, generic tree-transducer toolkits, and
what sorts of programming interfaces will be most effective?

Tiburon

